/****************************************************************************
**
** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
/***************************************************************************/
/* */
/* qgrayraster.c, derived from ftgrays.c */
/* */
/* A new `perfect' anti-aliasing renderer (body). */
/* */
/* Copyright 2000-2001, 2002, 2003 by */
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
/* */
/* This file is part of the FreeType project, and may only be used, */
/* modified, and distributed under the terms of the FreeType project */
/* license, ../../3rdparty/freetype/docs/FTL.TXT. By continuing to use, */
/* modify, or distribute this file you indicate that you have read */
/* the license and understand and accept it fully. */
/* */
/***************************************************************************/
/*************************************************************************/
/* */
/* This file can be compiled without the rest of the FreeType engine, by */
/* defining the _STANDALONE_ macro when compiling it. You also need to */
/* put the files `ftgrays.h' and `ftimage.h' into the current */
/* compilation directory. Typically, you could do something like */
/* */
/* - copy `src/smooth/ftgrays.c' (this file) to your current directory */
/* */
/* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */
/* same directory */
/* */
/* - compile `ftgrays' with the _STANDALONE_ macro defined, as in */
/* */
/* cc -c -D_STANDALONE_ ftgrays.c */
/* */
/* The renderer can be initialized with a call to */
/* `qt_ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated */
/* with a call to `qt_ft_gray_raster.raster_render'. */
/* */
/* See the comments and documentation in the file `ftimage.h' for more */
/* details on how the raster works. */
/* */
/*************************************************************************/
/*************************************************************************/
/* */
/* This is a new anti-aliasing scan-converter for FreeType 2. The */
/* algorithm used here is _very_ different from the one in the standard */
/* `ftraster' module. Actually, `ftgrays' computes the _exact_ */
/* coverage of the outline on each pixel cell. */
/* */
/* It is based on ideas that I initially found in Raph Levien's */
/* excellent LibArt graphics library (see http://www.levien.com/libart */
/* for more information, though the web pages do not tell anything */
/* about the renderer; you'll have to dive into the source code to */
/* understand how it works). */
/* */
/* Note, however, that this is a _very_ different implementation */
/* compared to Raph's. Coverage information is stored in a very */
/* different way, and I don't use sorted vector paths. Also, it doesn't */
/* use floating point values. */
/* */
/* This renderer has the following advantages: */
/* */
/* - It doesn't need an intermediate bitmap. Instead, one can supply a */
/* callback function that will be called by the renderer to draw gray */
/* spans on any target surface. You can thus do direct composition on */
/* any kind of bitmap, provided that you give the renderer the right */
/* callback. */
/* */
/* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */
/* each pixel cell. */
/* */
/* - It performs a single pass on the outline (the `standard' FT2 */
/* renderer makes two passes). */
/* */
/* - It can easily be modified to render to _any_ number of gray levels */
/* cheaply. */
/* */
/* - For small (< 20) pixel sizes, it is faster than the standard */
/* renderer. */
/* */
/*************************************************************************/
/* experimental support for gamma correction within the rasterizer */
#define xxxGRAYS_USE_GAMMA
/*************************************************************************/
/* */
/* The macro QT_FT_COMPONENT is used in trace mode. It is an implicit */
/* parameter of the QT_FT_TRACE() and QT_FT_ERROR() macros, used to print/log */
/* messages during execution. */
/* */
#undef QT_FT_COMPONENT
#define QT_FT_COMPONENT trace_smooth
#define ErrRaster_MemoryOverflow -4
#if defined(VXWORKS)
# include <vxWorksCommon.h> /* needed for setjmp.h */
#endif
#include <string.h> /* for qt_ft_memcpy() */
#include <setjmp.h>
#include <limits.h>
#define QT_FT_UINT_MAX UINT_MAX
#define qt_ft_memset memset
#define qt_ft_setjmp setjmp
#define qt_ft_longjmp longjmp
#define qt_ft_jmp_buf jmp_buf
#define ErrRaster_Invalid_Mode -2
#define ErrRaster_Invalid_Outline -1
#define ErrRaster_Invalid_Argument -3
#define ErrRaster_Memory_Overflow -4
#define QT_FT_BEGIN_HEADER
#define QT_FT_END_HEADER
#include <private/qrasterdefs_p.h>
#include <private/qgrayraster_p.h>
#include <stdlib.h>
#include <stdio.h>
/* This macro is used to indicate that a function parameter is unused. */
/* Its purpose is simply to reduce compiler warnings. Note also that */
/* simply defining it as `(void)x' doesn't avoid warnings with certain */
/* ANSI compilers (e.g. LCC). */
#define QT_FT_UNUSED( x ) (x) = (x)
/* Disable the tracing mechanism for simplicity -- developers can */
/* activate it easily by redefining these two macros. */
#ifndef QT_FT_ERROR
#define QT_FT_ERROR( x ) do ; while ( 0 ) /* nothing */
#endif
#ifndef QT_FT_TRACE
#define QT_FT_TRACE( x ) do ; while ( 0 ) /* nothing */
#endif
#ifndef QT_FT_MEM_SET
#define QT_FT_MEM_SET( d, s, c ) qt_ft_memset( d, s, c )
#endif
#ifndef QT_FT_MEM_ZERO
#define QT_FT_MEM_ZERO( dest, count ) QT_FT_MEM_SET( dest, 0, count )
#endif
/* define this to dump debugging information */
#define xxxDEBUG_GRAYS
#define RAS_ARG PWorker worker
#define RAS_ARG_ PWorker worker,
#define RAS_VAR worker
#define RAS_VAR_ worker,
#define ras (*worker)
/* must be at least 6 bits! */
#define PIXEL_BITS 8
#define ONE_PIXEL ( 1L << PIXEL_BITS )
#define PIXEL_MASK ( -1L << PIXEL_BITS )
#define TRUNC( x ) ( (TCoord)( (x) >> PIXEL_BITS ) )
#define SUBPIXELS( x ) ( (TPos)(x) << PIXEL_BITS )
#define FLOOR( x ) ( (x) & -ONE_PIXEL )
#define CEILING( x ) ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
#define ROUND( x ) ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
#if PIXEL_BITS >= 6
#define UPSCALE( x ) ( (x) << ( PIXEL_BITS - 6 ) )
#define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) )
#else
#define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) )
#define DOWNSCALE( x ) ( (x) << ( 6 - PIXEL_BITS ) )
#endif
/*************************************************************************/
/* */
/* TYPE DEFINITIONS */
/* */
/* don't change the following types to QT_FT_Int or QT_FT_Pos, since we might */
/* need to define them to "float" or "double" when experimenting with */
/* new algorithms */
typedef int TCoord; /* integer scanline/pixel coordinate */
typedef long TPos; /* sub-pixel coordinate */
/* determine the type used to store cell areas. This normally takes at */
/* least PIXEL_BITS*2 + 1 bits. On 16-bit systems, we need to use */
/* `long' instead of `int', otherwise bad things happen */
#if PIXEL_BITS <= 7
typedef int TArea;
#else /* PIXEL_BITS >= 8 */
/* approximately determine the size of integers using an ANSI-C header */
#if QT_FT_UINT_MAX == 0xFFFFU
typedef long TArea;
#else
typedef int TArea;
#endif
#endif /* PIXEL_BITS >= 8 */
/* maximal number of gray spans in a call to the span callback */
#define QT_FT_MAX_GRAY_SPANS 256
typedef struct TCell_* PCell;
typedef struct TCell_
{
int x;
int cover;
TArea area;
PCell next;
} TCell;
typedef struct TWorker_
{
TCoord ex, ey;
TPos min_ex, max_ex;
TPos min_ey, max_ey;
TPos count_ex, count_ey;
TArea area;
int cover;
int invalid;
PCell cells;
int max_cells;
int num_cells;
TCoord cx, cy;
TPos x, y;
TPos last_ey;
QT_FT_Vector bez_stack[32 * 3 + 1];
int lev_stack[32];
QT_FT_Outline outline;
QT_FT_Bitmap target;
QT_FT_BBox clip_box;
QT_FT_Span gray_spans[QT_FT_MAX_GRAY_SPANS];
int num_gray_spans;
QT_FT_Raster_Span_Func render_span;
void* render_span_data;
int band_size;
int band_shoot;
int conic_level;
int cubic_level;
qt_ft_jmp_buf jump_buffer;
void* buffer;
long buffer_size;
PCell* ycells;
int ycount;
} TWorker, *PWorker;
typedef struct TRaster_
{
void* buffer;
long buffer_size;
int band_size;
void* memory;
PWorker worker;
} TRaster, *PRaster;
/*************************************************************************/
/* */
/* Initialize the cells table. */
/* */
static void
gray_init_cells( RAS_ARG_ void* buffer,
long byte_size )
{
ras.buffer = buffer;
ras.buffer_size = byte_size;
ras.ycells = (PCell*) buffer;
ras.cells = NULL;
ras.max_cells = 0;
ras.num_cells = 0;
ras.area = 0;
ras.cover = 0;
ras.invalid = 1;
}
/*************************************************************************/
/* */
/* Compute the outline bounding box. */
/* */
static void
gray_compute_cbox( RAS_ARG )
{
QT_FT_Outline* outline = &ras.outline;
QT_FT_Vector* vec = outline->points;
QT_FT_Vector* limit = vec + outline->n_points;
if ( outline->n_points <= 0 )
{
ras.min_ex = ras.max_ex = 0;
ras.min_ey = ras.max_ey = 0;
return;
}
ras.min_ex = ras.max_ex = vec->x;
ras.min_ey = ras.max_ey = vec->y;
vec++;
for ( ; vec < limit; vec++ )
{
TPos x = vec->x;
TPos y = vec->y;
if ( x < ras.min_ex ) ras.min_ex = x;
if ( x > ras.max_ex ) ras.max_ex = x;
if ( y < ras.min_ey ) ras.min_ey = y;
if ( y > ras.max_ey ) ras.max_ey = y;
}
/* truncate the bounding box to integer pixels */
ras.min_ex = ras.min_ex >> 6;
ras.min_ey = ras.min_ey >> 6;
ras.max_ex = ( ras.max_ex + 63 ) >> 6;
ras.max_ey = ( ras.max_ey + 63 ) >> 6;
}
/*************************************************************************/
/* */
/* Record the current cell in the table. */
/* */
static PCell
gray_find_cell( RAS_ARG )
{
PCell *pcell, cell;
int x = ras.ex;
if ( x > ras.max_ex )
x = ras.max_ex;
pcell = &ras.ycells[ras.ey];
for (;;)
{
cell = *pcell;
if ( cell == NULL || cell->x > x )
break;
if ( cell->x == x )
goto Exit;
pcell = &cell->next;
}
if ( ras.num_cells >= ras.max_cells )
qt_ft_longjmp( ras.jump_buffer, 1 );
cell = ras.cells + ras.num_cells++;
cell->x = x;
cell->area = 0;
cell->cover = 0;
cell->next = *pcell;
*pcell = cell;
Exit:
return cell;
}
static void
gray_record_cell( RAS_ARG )
{
if ( !ras.invalid && ( ras.area | ras.cover ) )
{
PCell cell = gray_find_cell( RAS_VAR );
cell->area += ras.area;
cell->cover += ras.cover;
}
}
/*************************************************************************/
/* */
/* Set the current cell to a new position. */
/* */
static void
gray_set_cell( RAS_ARG_ TCoord ex,
TCoord ey )
{
/* Move the cell pointer to a new position. We set the `invalid' */
/* flag to indicate that the cell isn't part of those we're interested */
/* in during the render phase. This means that: */
/* */
/* . the new vertical position must be within min_ey..max_ey-1. */
/* . the new horizontal position must be strictly less than max_ex */
/* */
/* Note that if a cell is to the left of the clipping region, it is */
/* actually set to the (min_ex-1) horizontal position. */
/* All cells that are on the left of the clipping region go to the */
/* min_ex - 1 horizontal position. */
ey -= ras.min_ey;
if ( ex > ras.max_ex )
ex = ras.max_ex;
ex -= ras.min_ex;
if ( ex < 0 )
ex = -1;
/* are we moving to a different cell ? */
if ( ex != ras.ex || ey != ras.ey )
{
/* record the current one if it is valid */
if ( !ras.invalid )
gray_record_cell( RAS_VAR );
ras.area = 0;
ras.cover = 0;
}
ras.ex = ex;
ras.ey = ey;
ras.invalid = ( (unsigned)ey >= (unsigned)ras.count_ey ||
ex >= ras.count_ex );
}
/*************************************************************************/
/* */
/* Start a new contour at a given cell. */
/* */
static void
gray_start_cell( RAS_ARG_ TCoord ex,
TCoord ey )
{
if ( ex > ras.max_ex )
ex = (TCoord)( ras.max_ex );
if ( ex < ras.min_ex )
ex = (TCoord)( ras.min_ex - 1 );
ras.area = 0;
ras.cover = 0;
ras.ex = ex - ras.min_ex;
ras.ey = ey - ras.min_ey;
ras.last_ey = SUBPIXELS( ey );
ras.invalid = 0;
gray_set_cell( RAS_VAR_ ex, ey );
}
/*************************************************************************/
/* */
/* Render a scanline as one or more cells. */
/* */
static void
gray_render_scanline( RAS_ARG_ TCoord ey,
TPos x1,
TCoord y1,
TPos x2,
TCoord y2 )
{
TCoord ex1, ex2, fx1, fx2, delta;
long p, first, dx;
int incr, lift, mod, rem;
dx = x2 - x1;
ex1 = TRUNC( x1 );
ex2 = TRUNC( x2 );
fx1 = (TCoord)( x1 - SUBPIXELS( ex1 ) );
fx2 = (TCoord)( x2 - SUBPIXELS( ex2 ) );
/* trivial case. Happens often */
if ( y1 == y2 )
{
gray_set_cell( RAS_VAR_ ex2, ey );
return;
}
/* everything is located in a single cell. That is easy! */
/* */
if ( ex1 == ex2 )
{
delta = y2 - y1;
ras.area += (TArea)( fx1 + fx2 ) * delta;
ras.cover += delta;
return;
}
/* ok, we'll have to render a run of adjacent cells on the same */
/* scanline... */
/* */
p = ( ONE_PIXEL - fx1 ) * ( y2 - y1 );
first = ONE_PIXEL;
incr = 1;
if ( dx < 0 )
{
p = fx1 * ( y2 - y1 );
first = 0;
incr = -1;
dx = -dx;
}
delta = (TCoord)( p / dx );
mod = (TCoord)( p % dx );
if ( mod < 0 )
{
delta--;
mod += (TCoord)dx;
}
ras.area += (TArea)( fx1 + first ) * delta;
ras.cover += delta;
ex1 += incr;
gray_set_cell( RAS_VAR_ ex1, ey );
y1 += delta;
if ( ex1 != ex2 )
{
p = ONE_PIXEL * ( y2 - y1 + delta );
lift = (TCoord)( p / dx );
rem = (TCoord)( p % dx );
if ( rem < 0 )
{
lift--;
rem += (TCoord)dx;
}
mod -= (int)dx;
while ( ex1 != ex2 )
{
delta = lift;
mod += rem;
if ( mod >= 0 )
{
mod -= (TCoord)dx;
delta++;
}
ras.area += (TArea)ONE_PIXEL * delta;
ras.cover += delta;
y1 += delta;
ex1 += incr;
gray_set_cell( RAS_VAR_ ex1, ey );
}
}
delta = y2 - y1;
ras.area += (TArea)( fx2 + ONE_PIXEL - first ) * delta;
ras.cover += delta;
}
/*************************************************************************/
/* */
/* Render a given line as a series of scanlines. */
/* */
static void
gray_render_line( RAS_ARG_ TPos to_x,
TPos to_y )
{
TCoord ey1, ey2, fy1, fy2;
TPos dx, dy, x, x2;
long p, first;
int delta, rem, mod, lift, incr;
ey1 = TRUNC( ras.last_ey );
ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
fy1 = (TCoord)( ras.y - ras.last_ey );
fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
dx = to_x - ras.x;
dy = to_y - ras.y;
/* XXX: we should do something about the trivial case where dx == 0, */
/* as it happens very often! */
/* perform vertical clipping */
{
TCoord min, max;
min = ey1;
max = ey2;
if ( ey1 > ey2 )
{
min = ey2;
max = ey1;
}
if ( min >= ras.max_ey || max < ras.min_ey )
goto End;
}
/* everything is on a single scanline */
if ( ey1 == ey2 )
{
gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
goto End;
}
/* vertical line - avoid calling gray_render_scanline */
incr = 1;
if ( dx == 0 )
{
TCoord ex = TRUNC( ras.x );
TCoord two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
TPos area;
first = ONE_PIXEL;
if ( dy < 0 )
{
first = 0;
incr = -1;
}
delta = (int)( first - fy1 );
ras.area += (TArea)two_fx * delta;
ras.cover += delta;
ey1 += incr;
gray_set_cell( &ras, ex, ey1 );
delta = (int)( first + first - ONE_PIXEL );
area = (TArea)two_fx * delta;
while ( ey1 != ey2 )
{
ras.area += area;
ras.cover += delta;
ey1 += incr;
gray_set_cell( &ras, ex, ey1 );
}
delta = (int)( fy2 - ONE_PIXEL + first );
ras.area += (TArea)two_fx * delta;
ras.cover += delta;
goto End;
}
/* ok, we have to render several scanlines */
p = ( ONE_PIXEL - fy1 ) * dx;
first = ONE_PIXEL;
incr = 1;
if ( dy < 0 )
{
p = fy1 * dx;
first = 0;
incr = -1;
dy = -dy;
}
delta = (int)( p / dy );
mod = (int)( p % dy );
if ( mod < 0 )
{
delta--;
mod += (TCoord)dy;
}
x = ras.x + delta;
gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, (TCoord)first );
ey1 += incr;
gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
if ( ey1 != ey2 )
{
p = ONE_PIXEL * dx;
lift = (int)( p / dy );
rem = (int)( p % dy );
if ( rem < 0 )
{
lift--;
rem += (int)dy;
}
mod -= (int)dy;
while ( ey1 != ey2 )
{
delta = lift;
mod += rem;
if ( mod >= 0 )
{
mod -= (int)dy;
delta++;
}
x2 = x + delta;
gray_render_scanline( RAS_VAR_ ey1, x,
(TCoord)( ONE_PIXEL - first ), x2,
(TCoord)first );
x = x2;
ey1 += incr;
gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
}
}
gray_render_scanline( RAS_VAR_ ey1, x,
(TCoord)( ONE_PIXEL - first ), to_x,
fy2 );
End:
ras.x = to_x;
ras.y = to_y;
ras.last_ey = SUBPIXELS( ey2 );
}
static void
gray_split_conic( QT_FT_Vector* base )
{
TPos a, b;
base[4].x = base[2].x;
b = base[1].x;
a = base[3].x = ( base[2].x + b ) / 2;
b = base[1].x = ( base[0].x + b ) / 2;
base[2].x = ( a + b ) / 2;
base[4].y = base[2].y;
b = base[1].y;
a = base[3].y = ( base[2].y + b ) / 2;
b = base[1].y = ( base[0].y + b ) / 2;
base[2].y = ( a + b ) / 2;
}
static void
gray_render_conic( RAS_ARG_ const QT_FT_Vector* control,
const QT_FT_Vector* to )
{
TPos dx, dy;
int top, level;
int* levels;
QT_FT_Vector* arc;
dx = DOWNSCALE( ras.x ) + to->x - ( control->x << 1 );
if ( dx < 0 )
dx = -dx;
dy = DOWNSCALE( ras.y ) + to->y - ( control->y << 1 );
if ( dy < 0 )
dy = -dy;
if ( dx < dy )
dx = dy;
level = 1;
dx = dx / ras.conic_level;
while ( dx > 0 )
{
dx >>= 2;
level++;
}
/* a shortcut to speed things up */
if ( level <= 1 )
{
/* we compute the mid-point directly in order to avoid */
/* calling gray_split_conic() */
TPos to_x, to_y, mid_x, mid_y;
to_x = UPSCALE( to->x );
to_y = UPSCALE( to->y );
mid_x = ( ras.x + to_x + 2 * UPSCALE( control->x ) ) / 4;
mid_y = ( ras.y + to_y + 2 * UPSCALE( control->y ) ) / 4;
gray_render_line( RAS_VAR_ mid_x, mid_y );
gray_render_line( RAS_VAR_ to_x, to_y );
return;
}
arc = ras.bez_stack;
levels = ras.lev_stack;
top = 0;
levels[0] = level;
arc[0].x = UPSCALE( to->x );
arc[0].y = UPSCALE( to->y );
arc[1].x = UPSCALE( control->x );
arc[1].y = UPSCALE( control->y );
arc[2].x = ras.x;
arc[2].y = ras.y;
while ( top >= 0 )
{
level = levels[top];
if ( level > 1 )
{
/* check that the arc crosses the current band */
TPos min, max, y;
min = max = arc[0].y;
y = arc[1].y;
if ( y < min ) min = y;
if ( y > max ) max = y;
y = arc[2].y;
if ( y < min ) min = y;
if ( y > max ) max = y;
if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
goto Draw;
gray_split_conic( arc );
arc += 2;
top++;
levels[top] = levels[top - 1] = level - 1;
continue;
}
Draw:
{
TPos to_x, to_y, mid_x, mid_y;
to_x = arc[0].x;
to_y = arc[0].y;
mid_x = ( ras.x + to_x + 2 * arc[1].x ) / 4;
mid_y = ( ras.y + to_y + 2 * arc[1].y ) / 4;
gray_render_line( RAS_VAR_ mid_x, mid_y );
gray_render_line( RAS_VAR_ to_x, to_y );
top--;
arc -= 2;
}
}
return;
}
static void
gray_split_cubic( QT_FT_Vector* base )
{
TPos a, b, c, d;
base[6].x = base[3].x;
c = base[1].x;
d = base[2].x;
base[1].x = a = ( base[0].x + c ) / 2;
base[5].x = b = ( base[3].x + d ) / 2;
c = ( c + d ) / 2;
base[2].x = a = ( a + c ) / 2;
base[4].x = b = ( b + c ) / 2;
base[3].x = ( a + b ) / 2;
base[6].y = base[3].y;
c = base[1].y;
d = base[2].y;
base[1].y = a = ( base[0].y + c ) / 2;
base[5].y = b = ( base[3].y + d ) / 2;
c = ( c + d ) / 2;
base[2].y = a = ( a + c ) / 2;
base[4].y = b = ( b + c ) / 2;
base[3].y = ( a + b ) / 2;
}
static void
gray_render_cubic( RAS_ARG_ const QT_FT_Vector* control1,
const QT_FT_Vector* control2,
const QT_FT_Vector* to )
{
TPos dx, dy, da, db;
int top, level;
int* levels;
QT_FT_Vector* arc;
dx = DOWNSCALE( ras.x ) + to->x - ( control1->x << 1 );
if ( dx < 0 )
dx = -dx;
dy = DOWNSCALE( ras.y ) + to->y - ( control1->y << 1 );
if ( dy < 0 )
dy = -dy;
if ( dx < dy )
dx = dy;
da = dx;
dx = DOWNSCALE( ras.x ) + to->x - 3 * ( control1->x + control2->x );
if ( dx < 0 )
dx = -dx;
dy = DOWNSCALE( ras.y ) + to->y - 3 * ( control1->x + control2->y );
if ( dy < 0 )
dy = -dy;
if ( dx < dy )
dx = dy;
db = dx;
level = 1;
da = da / ras.cubic_level;
db = db / ras.conic_level;
while ( da > 0 || db > 0 )
{
da >>= 2;
db >>= 3;
level++;
}
if ( level <= 1 )
{
TPos to_x, to_y, mid_x, mid_y;
to_x = UPSCALE( to->x );
to_y = UPSCALE( to->y );
mid_x = ( ras.x + to_x +
3 * UPSCALE( control1->x + control2->x ) ) / 8;
mid_y = ( ras.y + to_y +
3 * UPSCALE( control1->y + control2->y ) ) / 8;
gray_render_line( RAS_VAR_ mid_x, mid_y );
gray_render_line( RAS_VAR_ to_x, to_y );
return;
}
arc = ras.bez_stack;
arc[0].x = UPSCALE( to->x );
arc[0].y = UPSCALE( to->y );
arc[1].x = UPSCALE( control2->x );
arc[1].y = UPSCALE( control2->y );
arc[2].x = UPSCALE( control1->x );
arc[2].y = UPSCALE( control1->y );
arc[3].x = ras.x;
arc[3].y = ras.y;
levels = ras.lev_stack;
top = 0;
levels[0] = level;
while ( top >= 0 )
{
level = levels[top];
if ( level > 1 )
{
/* check that the arc crosses the current band */
TPos min, max, y;
min = max = arc[0].y;
y = arc[1].y;
if ( y < min ) min = y;
if ( y > max ) max = y;
y = arc[2].y;
if ( y < min ) min = y;
if ( y > max ) max = y;
y = arc[3].y;
if ( y < min ) min = y;
if ( y > max ) max = y;
if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < 0 )
goto Draw;
gray_split_cubic( arc );
arc += 3;
top ++;
levels[top] = levels[top - 1] = level - 1;
continue;
}
Draw:
{
TPos to_x, to_y, mid_x, mid_y;
to_x = arc[0].x;
to_y = arc[0].y;
mid_x = ( ras.x + to_x + 3 * ( arc[1].x + arc[2].x ) ) / 8;
mid_y = ( ras.y + to_y + 3 * ( arc[1].y + arc[2].y ) ) / 8;
gray_render_line( RAS_VAR_ mid_x, mid_y );
gray_render_line( RAS_VAR_ to_x, to_y );
top --;
arc -= 3;
}
}
return;
}
static int
gray_move_to( const QT_FT_Vector* to,
PWorker worker )
{
TPos x, y;
/* record current cell, if any */
gray_record_cell( worker );
/* start to a new position */
x = UPSCALE( to->x );
y = UPSCALE( to->y );
gray_start_cell( worker, TRUNC( x ), TRUNC( y ) );
worker->x = x;
worker->y = y;
return 0;
}
static int
gray_line_to( const QT_FT_Vector* to,
PWorker worker )
{
gray_render_line( worker, UPSCALE( to->x ), UPSCALE( to->y ) );
return 0;
}
static int
gray_conic_to( const QT_FT_Vector* control,
const QT_FT_Vector* to,
PWorker worker )
{
gray_render_conic( worker, control, to );
return 0;
}
static int
gray_cubic_to( const QT_FT_Vector* control1,
const QT_FT_Vector* control2,
const QT_FT_Vector* to,
PWorker worker )
{
gray_render_cubic( worker, control1, control2, to );
return 0;
}
static void
gray_render_span( int count,
const QT_FT_Span* spans,
PWorker worker )
{
unsigned char* p;
QT_FT_Bitmap* map = &worker->target;
for ( ; count > 0; count--, spans++ )
{
unsigned char coverage = spans->coverage;
/* first of all, compute the scanline offset */
p = (unsigned char*)map->buffer - spans->y * map->pitch;
if ( map->pitch >= 0 )
p += ( map->rows - 1 ) * map->pitch;
if ( coverage )
{
/* For small-spans it is faster to do it by ourselves than
* calling `memset'. This is mainly due to the cost of the
* function call.
*/
if ( spans->len >= 8 )
QT_FT_MEM_SET( p + spans->x, (unsigned char)coverage, spans->len );
else
{
unsigned char* q = p + spans->x;
switch ( spans->len )
{
case 7: *q++ = (unsigned char)coverage;
case 6: *q++ = (unsigned char)coverage;
case 5: *q++ = (unsigned char)coverage;
case 4: *q++ = (unsigned char)coverage;
case 3: *q++ = (unsigned char)coverage;
case 2: *q++ = (unsigned char)coverage;
case 1: *q = (unsigned char)coverage;
default:
;
}
}
}
}
}
static void
gray_hline( RAS_ARG_ TCoord x,
TCoord y,
TPos area,
int acount )
{
QT_FT_Span* span;
int coverage;
/* compute the coverage line's coverage, depending on the */
/* outline fill rule */
/* */
/* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
/* */
coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) );
/* use range 0..256 */
if ( coverage < 0 )
coverage = -coverage;
if ( ras.outline.flags & QT_FT_OUTLINE_EVEN_ODD_FILL )
{
coverage &= 511;
if ( coverage > 256 )
coverage = 512 - coverage;
else if ( coverage == 256 )
coverage = 255;
}
else
{
/* normal non-zero winding rule */
if ( coverage >= 256 )
coverage = 255;
}
y += (TCoord)ras.min_ey;
x += (TCoord)ras.min_ex;
/* QT_FT_Span.x is a 16-bit short, so limit our coordinates appropriately */
if ( x >= 32768 )
x = 32767;
if ( coverage )
{
/* see whether we can add this span to the current list */
span = ras.gray_spans + ras.num_gray_spans - 1;
if ( ras.num_gray_spans > 0 &&
span->y == y &&
(int)span->x + span->len == (int)x &&
span->coverage == coverage )
{
span->len = (unsigned short)( span->len + acount );
return;
}
if ( ras.num_gray_spans >= QT_FT_MAX_GRAY_SPANS )
{
if ( ras.render_span )
ras.render_span( ras.num_gray_spans, ras.gray_spans,
ras.render_span_data );
/* ras.render_span( span->y, ras.gray_spans, count ); */
#ifdef DEBUG_GRAYS
if ( 1 )
{
int n;
fprintf( stderr, "y=%3d ", y );
span = ras.gray_spans;
for ( n = 0; n < count; n++, span++ )
fprintf( stderr, "[%d..%d]:%02x ",
span->x, span->x + span->len - 1, span->coverage );
fprintf( stderr, "\n" );
}
#endif /* DEBUG_GRAYS */
ras.num_gray_spans = 0;
span = ras.gray_spans;
}
else
span++;
/* add a gray span to the current list */
span->x = (short)x;
span->len = (unsigned short)acount;
span->y = (short)y;
span->coverage = (unsigned char)coverage;
ras.num_gray_spans++;
}
}
#ifdef DEBUG_GRAYS
/* to be called while in the debugger */
gray_dump_cells( RAS_ARG )
{
int yindex;
for ( yindex = 0; yindex < ras.ycount; yindex++ )
{
PCell cell;
printf( "%3d:", yindex );
for ( cell = ras.ycells[yindex]; cell != NULL; cell = cell->next )
printf( " (%3d, c:%4d, a:%6d)", cell->x, cell->cover, cell->area );
printf( "\n" );
}
}
#endif /* DEBUG_GRAYS */
static void
gray_sweep( RAS_ARG_ const QT_FT_Bitmap* target )
{
int yindex;
QT_FT_UNUSED( target );
if ( ras.num_cells == 0 )
return;
for ( yindex = 0; yindex < ras.ycount; yindex++ )
{
PCell cell = ras.ycells[yindex];
TCoord cover = 0;
TCoord x = 0;
for ( ; cell != NULL; cell = cell->next )
{
TArea area;
if ( cell->x > x && cover != 0 )
gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
cell->x - x );
cover += cell->cover;
area = cover * ( ONE_PIXEL * 2 ) - cell->area;
if ( area != 0 && cell->x >= 0 )
gray_hline( RAS_VAR_ cell->x, yindex, area, 1 );
x = cell->x + 1;
}
if ( ras.count_ex > x && cover != 0 )
gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
ras.count_ex - x );
}
}
/*************************************************************************/
/* */
/* The following function should only compile in stand_alone mode, */
/* i.e., when building this component without the rest of FreeType. */
/* */
/*************************************************************************/
/*************************************************************************/
/* */
/* <Function> */
/* QT_FT_Outline_Decompose */
/* */
/* <Description> */
/* Walks over an outline's structure to decompose it into individual */
/* segments and Bezier arcs. This function is also able to emit */
/* `move to' and `close to' operations to indicate the start and end */
/* of new contours in the outline. */
/* */
/* <Input> */
/* outline :: A pointer to the source target. */
/* */
/* func_interface :: A table of `emitters', i.e,. function pointers */
/* called during decomposition to indicate path */
/* operations. */
/* */
/* user :: A typeless pointer which is passed to each */
/* emitter during the decomposition. It can be */
/* used to store the state during the */
/* decomposition. */
/* */
/* <Return> */
/* Error code. 0 means success. */
/* */
static
int QT_FT_Outline_Decompose( const QT_FT_Outline* outline,
const QT_FT_Outline_Funcs* func_interface,
void* user )
{
#undef SCALED
#if 0
#define SCALED( x ) ( ( (x) << shift ) - delta )
#else
#define SCALED( x ) (x)
#endif
QT_FT_Vector v_last;
QT_FT_Vector v_control;
QT_FT_Vector v_start;
QT_FT_Vector* point;
QT_FT_Vector* limit;
char* tags;
int n; /* index of contour in outline */
int first; /* index of first point in contour */
int error;
char tag; /* current point's state */
#if 0
int shift = func_interface->shift;
TPos delta = func_interface->delta;
#endif
first = 0;
for ( n = 0; n < outline->n_contours; n++ )
{
int last; /* index of last point in contour */
last = outline->contours[n];
limit = outline->points + last;
v_start = outline->points[first];
v_last = outline->points[last];
v_start.x = SCALED( v_start.x );
v_start.y = SCALED( v_start.y );
v_last.x = SCALED( v_last.x );
v_last.y = SCALED( v_last.y );
v_control = v_start;
point = outline->points + first;
tags = outline->tags + first;
tag = QT_FT_CURVE_TAG( tags[0] );
/* A contour cannot start with a cubic control point! */
if ( tag == QT_FT_CURVE_TAG_CUBIC )
goto Invalid_Outline;
/* check first point to determine origin */
if ( tag == QT_FT_CURVE_TAG_CONIC )
{
/* first point is conic control. Yes, this happens. */
if ( QT_FT_CURVE_TAG( outline->tags[last] ) == QT_FT_CURVE_TAG_ON )
{
/* start at last point if it is on the curve */
v_start = v_last;
limit--;
}
else
{
/* if both first and last points are conic, */
/* start at their middle and record its position */
/* for closure */
v_start.x = ( v_start.x + v_last.x ) / 2;
v_start.y = ( v_start.y + v_last.y ) / 2;
v_last = v_start;
}
point--;
tags--;
}
error = func_interface->move_to( &v_start, user );
if ( error )
goto Exit;
while ( point < limit )
{
point++;
tags++;
tag = QT_FT_CURVE_TAG( tags[0] );
switch ( tag )
{
case QT_FT_CURVE_TAG_ON: /* emit a single line_to */
{
QT_FT_Vector vec;
vec.x = SCALED( point->x );
vec.y = SCALED( point->y );
error = func_interface->line_to( &vec, user );
if ( error )
goto Exit;
continue;
}
case QT_FT_CURVE_TAG_CONIC: /* consume conic arcs */
{
v_control.x = SCALED( point->x );
v_control.y = SCALED( point->y );
Do_Conic:
if ( point < limit )
{
QT_FT_Vector vec;
QT_FT_Vector v_middle;
point++;
tags++;
tag = QT_FT_CURVE_TAG( tags[0] );
vec.x = SCALED( point->x );
vec.y = SCALED( point->y );
if ( tag == QT_FT_CURVE_TAG_ON )
{
error = func_interface->conic_to( &v_control, &vec,
user );
if ( error )
goto Exit;
continue;
}
if ( tag != QT_FT_CURVE_TAG_CONIC )
goto Invalid_Outline;
v_middle.x = ( v_control.x + vec.x ) / 2;
v_middle.y = ( v_control.y + vec.y ) / 2;
error = func_interface->conic_to( &v_control, &v_middle,
user );
if ( error )
goto Exit;
v_control = vec;
goto Do_Conic;
}
error = func_interface->conic_to( &v_control, &v_start,
user );
goto Close;
}
default: /* QT_FT_CURVE_TAG_CUBIC */
{
QT_FT_Vector vec1, vec2;
if ( point + 1 > limit ||
QT_FT_CURVE_TAG( tags[1] ) != QT_FT_CURVE_TAG_CUBIC )
goto Invalid_Outline;
point += 2;
tags += 2;
vec1.x = SCALED( point[-2].x );
vec1.y = SCALED( point[-2].y );
vec2.x = SCALED( point[-1].x );
vec2.y = SCALED( point[-1].y );
if ( point <= limit )
{
QT_FT_Vector vec;
vec.x = SCALED( point->x );
vec.y = SCALED( point->y );
error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
if ( error )
goto Exit;
continue;
}
error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
goto Close;
}
}
}
/* close the contour with a line segment */
error = func_interface->line_to( &v_start, user );
Close:
if ( error )
goto Exit;
first = last + 1;
}
return 0;
Exit:
return error;
Invalid_Outline:
return ErrRaster_Invalid_Outline;
}
typedef struct TBand_
{
TPos min, max;
} TBand;
static int
gray_convert_glyph_inner( RAS_ARG )
{
static
const QT_FT_Outline_Funcs func_interface =
{
(QT_FT_Outline_MoveTo_Func) gray_move_to,
(QT_FT_Outline_LineTo_Func) gray_line_to,
(QT_FT_Outline_ConicTo_Func)gray_conic_to,
(QT_FT_Outline_CubicTo_Func)gray_cubic_to,
0,
0
};
volatile int error = 0;
if ( qt_ft_setjmp( ras.jump_buffer ) == 0 )
{
error = QT_FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
gray_record_cell( RAS_VAR );
}
else
{
error = ErrRaster_Memory_Overflow;
}
return error;
}
static int
gray_convert_glyph( RAS_ARG )
{
TBand bands[40];
TBand* volatile band;
int volatile n, num_bands;
TPos volatile min, max, max_y;
QT_FT_BBox* clip;
ras.num_gray_spans = 0;
/* Set up state in the raster object */
gray_compute_cbox( RAS_VAR );
/* clip to target bitmap, exit if nothing to do */
clip = &ras.clip_box;
if ( ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax ||
ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax )
return 0;
if ( ras.min_ex < clip->xMin ) ras.min_ex = clip->xMin;
if ( ras.min_ey < clip->yMin ) ras.min_ey = clip->yMin;
if ( ras.max_ex > clip->xMax ) ras.max_ex = clip->xMax;
if ( ras.max_ey > clip->yMax ) ras.max_ey = clip->yMax;
ras.count_ex = ras.max_ex - ras.min_ex;
ras.count_ey = ras.max_ey - ras.min_ey;
/* simple heuristic used to speed-up the bezier decomposition -- see */
/* the code in gray_render_conic() and gray_render_cubic() for more */
/* details */
ras.conic_level = 32;
ras.cubic_level = 16;
{
int level = 0;
if ( ras.count_ex > 24 || ras.count_ey > 24 )
level++;
if ( ras.count_ex > 120 || ras.count_ey > 120 )
level++;
ras.conic_level <<= level;
ras.cubic_level <<= level;
}
/* setup vertical bands */
num_bands = (int)( ( ras.max_ey - ras.min_ey ) / ras.band_size );
if ( num_bands == 0 ) num_bands = 1;
if ( num_bands >= 39 ) num_bands = 39;
ras.band_shoot = 0;
min = ras.min_ey;
max_y = ras.max_ey;
for ( n = 0; n < num_bands; n++, min = max )
{
max = min + ras.band_size;
if ( n == num_bands - 1 || max > max_y )
max = max_y;
bands[0].min = min;
bands[0].max = max;
band = bands;
while ( band >= bands )
{
TPos bottom, top, middle;
int error;
{
PCell cells_max;
int yindex;
long cell_start, cell_end, cell_mod;
ras.ycells = (PCell*)ras.buffer;
ras.ycount = band->max - band->min;
cell_start = sizeof ( PCell ) * ras.ycount;
cell_mod = cell_start % sizeof ( TCell );
if ( cell_mod > 0 )
cell_start += sizeof ( TCell ) - cell_mod;
cell_end = ras.buffer_size;
cell_end -= cell_end % sizeof( TCell );
cells_max = (PCell)( (char*)ras.buffer + cell_end );
ras.cells = (PCell)( (char*)ras.buffer + cell_start );
if ( ras.cells >= cells_max )
goto ReduceBands;
ras.max_cells = (int)(cells_max - ras.cells);
if ( ras.max_cells < 2 )
goto ReduceBands;
for ( yindex = 0; yindex < ras.ycount; yindex++ )
ras.ycells[yindex] = NULL;
}
ras.num_cells = 0;
ras.invalid = 1;
ras.min_ey = band->min;
ras.max_ey = band->max;
ras.count_ey = band->max - band->min;
error = gray_convert_glyph_inner( RAS_VAR );
if ( !error )
{
gray_sweep( RAS_VAR_ &ras.target );
band--;
continue;
}
else if ( error != ErrRaster_Memory_Overflow )
return 1;
ReduceBands:
/* render pool overflow; we will reduce the render band by half */
bottom = band->min;
top = band->max;
middle = bottom + ( ( top - bottom ) >> 1 );
/* This is too complex for a single scanline; there must */
/* be some problems. */
if ( middle == bottom )
{
#ifdef DEBUG_GRAYS
fprintf( stderr, "Rotten glyph!\n" );
#endif
/* == Raster_Err_OutOfMemory in qblackraster.c */
return -6;
}
if ( bottom-top >= ras.band_size )
ras.band_shoot++;
band[1].min = bottom;
band[1].max = middle;
band[0].min = middle;
band[0].max = top;
band++;
}
}
if ( ras.render_span && ras.num_gray_spans > 0 )
ras.render_span( ras.num_gray_spans,
ras.gray_spans, ras.render_span_data );
if ( ras.band_shoot > 8 && ras.band_size > 16 )
ras.band_size = ras.band_size / 2;
return 0;
}
static int
gray_raster_render( PRaster raster,
const QT_FT_Raster_Params* params )
{
const QT_FT_Outline* outline = (const QT_FT_Outline*)params->source;
const QT_FT_Bitmap* target_map = params->target;
PWorker worker;
if ( !raster || !raster->buffer || !raster->buffer_size )
return ErrRaster_Invalid_Argument;
/* return immediately if the outline is empty */
if ( outline->n_points == 0 || outline->n_contours <= 0 )
return 0;
if ( !outline || !outline->contours || !outline->points )
return ErrRaster_Invalid_Outline;
if ( outline->n_points !=
outline->contours[outline->n_contours - 1] + 1 )
return ErrRaster_Invalid_Outline;
worker = raster->worker;
/* if direct mode is not set, we must have a target bitmap */
if ( ( params->flags & QT_FT_RASTER_FLAG_DIRECT ) == 0 )
{
if ( !target_map )
return ErrRaster_Invalid_Argument;
/* nothing to do */
if ( !target_map->width || !target_map->rows )
return 0;
if ( !target_map->buffer )
return ErrRaster_Invalid_Argument;
}
/* this version does not support monochrome rendering */
if ( !( params->flags & QT_FT_RASTER_FLAG_AA ) )
return ErrRaster_Invalid_Mode;
/* compute clipping box */
if ( ( params->flags & QT_FT_RASTER_FLAG_DIRECT ) == 0 )
{
/* compute clip box from target pixmap */
ras.clip_box.xMin = 0;
ras.clip_box.yMin = 0;
ras.clip_box.xMax = target_map->width;
ras.clip_box.yMax = target_map->rows;
}
else if ( params->flags & QT_FT_RASTER_FLAG_CLIP )
{
ras.clip_box = params->clip_box;
}
else
{
ras.clip_box.xMin = -32768L;
ras.clip_box.yMin = -32768L;
ras.clip_box.xMax = 32767L;
ras.clip_box.yMax = 32767L;
}
gray_init_cells( worker, raster->buffer, raster->buffer_size );
ras.outline = *outline;
ras.num_cells = 0;
ras.invalid = 1;
ras.band_size = raster->band_size;
if ( target_map )
ras.target = *target_map;
ras.render_span = (QT_FT_Raster_Span_Func)gray_render_span;
ras.render_span_data = &ras;
if ( params->flags & QT_FT_RASTER_FLAG_DIRECT )
{
ras.render_span = (QT_FT_Raster_Span_Func)params->gray_spans;
ras.render_span_data = params->user;
}
return gray_convert_glyph( worker );
}
/**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/
/**** a static object. *****/
static int
gray_raster_new( void * memory,
QT_FT_Raster* araster )
{
if (memory)
fprintf(stderr, "gray_raster_new(), memory ignored");
memory = malloc(sizeof(TRaster));
if (!memory) {
*araster = 0;
return ErrRaster_Memory_Overflow;
}
QT_FT_MEM_ZERO(memory, sizeof(TRaster));
*araster = (QT_FT_Raster) memory;
return 0;
}
static void
gray_raster_done( QT_FT_Raster raster )
{
free(raster);
}
static void
gray_raster_reset( QT_FT_Raster raster,
char* pool_base,
long pool_size )
{
PRaster rast = (PRaster)raster;
if ( raster )
{
if ( pool_base && pool_size >= (long)sizeof ( TWorker ) + 2048 )
{
PWorker worker = (PWorker)pool_base;
rast->worker = worker;
rast->buffer = pool_base +
( ( sizeof ( TWorker ) + sizeof ( TCell ) - 1 ) &
~( sizeof ( TCell ) - 1 ) );
rast->buffer_size = (long)( ( pool_base + pool_size ) -
(char*)rast->buffer ) &
~( sizeof ( TCell ) - 1 );
rast->band_size = (int)( rast->buffer_size /
( sizeof ( TCell ) * 8 ) );
}
else
{
rast->buffer = NULL;
rast->buffer_size = 0;
rast->worker = NULL;
}
}
}
const QT_FT_Raster_Funcs qt_ft_grays_raster =
{
QT_FT_GLYPH_FORMAT_OUTLINE,
(QT_FT_Raster_New_Func) gray_raster_new,
(QT_FT_Raster_Reset_Func) gray_raster_reset,
(QT_FT_Raster_Set_Mode_Func)0,
(QT_FT_Raster_Render_Func) gray_raster_render,
(QT_FT_Raster_Done_Func) gray_raster_done
};
/* END */