/*+ −
* jquant1.c+ −
*+ −
* Copyright (C) 1991-1996, Thomas G. Lane.+ −
* This file is part of the Independent JPEG Group's software.+ −
* For conditions of distribution and use, see the accompanying README file.+ −
*+ −
* This file contains 1-pass color quantization (color mapping) routines.+ −
* These routines provide mapping to a fixed color map using equally spaced+ −
* color values. Optional Floyd-Steinberg or ordered dithering is available.+ −
*/+ −
+ −
#define JPEG_INTERNALS+ −
#include "jinclude.h"+ −
#include "jpeglib.h"+ −
+ −
#ifdef QUANT_1PASS_SUPPORTED+ −
+ −
+ −
/*+ −
* The main purpose of 1-pass quantization is to provide a fast, if not very+ −
* high quality, colormapped output capability. A 2-pass quantizer usually+ −
* gives better visual quality; however, for quantized grayscale output this+ −
* quantizer is perfectly adequate. Dithering is highly recommended with this+ −
* quantizer, though you can turn it off if you really want to.+ −
*+ −
* In 1-pass quantization the colormap must be chosen in advance of seeing the+ −
* image. We use a map consisting of all combinations of Ncolors[i] color+ −
* values for the i'th component. The Ncolors[] values are chosen so that+ −
* their product, the total number of colors, is no more than that requested.+ −
* (In most cases, the product will be somewhat less.)+ −
*+ −
* Since the colormap is orthogonal, the representative value for each color+ −
* component can be determined without considering the other components;+ −
* then these indexes can be combined into a colormap index by a standard+ −
* N-dimensional-array-subscript calculation. Most of the arithmetic involved+ −
* can be precalculated and stored in the lookup table colorindex[].+ −
* colorindex[i][j] maps pixel value j in component i to the nearest+ −
* representative value (grid plane) for that component; this index is+ −
* multiplied by the array stride for component i, so that the+ −
* index of the colormap entry closest to a given pixel value is just+ −
* sum( colorindex[component-number][pixel-component-value] )+ −
* Aside from being fast, this scheme allows for variable spacing between+ −
* representative values with no additional lookup cost.+ −
*+ −
* If gamma correction has been applied in color conversion, it might be wise+ −
* to adjust the color grid spacing so that the representative colors are+ −
* equidistant in linear space. At this writing, gamma correction is not+ −
* implemented by jdcolor, so nothing is done here.+ −
*/+ −
+ −
+ −
/* Declarations for ordered dithering.+ −
*+ −
* We use a standard 16x16 ordered dither array. The basic concept of ordered+ −
* dithering is described in many references, for instance Dale Schumacher's+ −
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).+ −
* In place of Schumacher's comparisons against a "threshold" value, we add a+ −
* "dither" value to the input pixel and then round the result to the nearest+ −
* output value. The dither value is equivalent to (0.5 - threshold) times+ −
* the distance between output values. For ordered dithering, we assume that+ −
* the output colors are equally spaced; if not, results will probably be+ −
* worse, since the dither may be too much or too little at a given point.+ −
*+ −
* The normal calculation would be to form pixel value + dither, range-limit+ −
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.+ −
* We can skip the separate range-limiting step by extending the colorindex+ −
* table in both directions.+ −
*/+ −
+ −
#define ODITHER_SIZE 16 /* dimension of dither matrix */+ −
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */+ −
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */+ −
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */+ −
+ −
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];+ −
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];+ −
+ −
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {+ −
/* Bayer's order-4 dither array. Generated by the code given in+ −
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.+ −
* The values in this array must range from 0 to ODITHER_CELLS-1.+ −
*/+ −
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },+ −
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },+ −
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },+ −
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },+ −
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },+ −
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },+ −
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },+ −
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },+ −
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },+ −
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },+ −
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },+ −
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },+ −
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },+ −
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },+ −
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },+ −
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }+ −
};+ −
+ −
+ −
/* Declarations for Floyd-Steinberg dithering.+ −
*+ −
* Errors are accumulated into the array fserrors[], at a resolution of+ −
* 1/16th of a pixel count. The error at a given pixel is propagated+ −
* to its not-yet-processed neighbors using the standard F-S fractions,+ −
* ... (here) 7/16+ −
* 3/16 5/16 1/16+ −
* We work left-to-right on even rows, right-to-left on odd rows.+ −
*+ −
* We can get away with a single array (holding one row's worth of errors)+ −
* by using it to store the current row's errors at pixel columns not yet+ −
* processed, but the next row's errors at columns already processed. We+ −
* need only a few extra variables to hold the errors immediately around the+ −
* current column. (If we are lucky, those variables are in registers, but+ −
* even if not, they're probably cheaper to access than array elements are.)+ −
*+ −
* The fserrors[] array is indexed [component#][position].+ −
* We provide (#columns + 2) entries per component; the extra entry at each+ −
* end saves us from special-casing the first and last pixels.+ −
*+ −
* Note: on a wide image, we might not have enough room in a PC's near data+ −
* segment to hold the error array; so it is allocated with alloc_large.+ −
*/+ −
+ −
#if BITS_IN_JSAMPLE == 8+ −
typedef INT16 FSERROR; /* 16 bits should be enough */+ −
typedef int LOCFSERROR; /* use 'int' for calculation temps */+ −
#else+ −
typedef INT32 FSERROR; /* may need more than 16 bits */+ −
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */+ −
#endif+ −
+ −
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */+ −
+ −
+ −
/* Private subobject */+ −
+ −
#define MAX_Q_COMPS 4 /* max components I can handle */+ −
+ −
typedef struct {+ −
struct jpeg_color_quantizer pub; /* public fields */+ −
+ −
/* Initially allocated colormap is saved here */+ −
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */+ −
int sv_actual; /* number of entries in use */+ −
+ −
JSAMPARRAY colorindex; /* Precomputed mapping for speed */+ −
/* colorindex[i][j] = index of color closest to pixel value j in component i,+ −
* premultiplied as described above. Since colormap indexes must fit into+ −
* JSAMPLEs, the entries of this array will too.+ −
*/+ −
boolean is_padded; /* is the colorindex padded for odither? */+ −
+ −
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */+ −
+ −
/* Variables for ordered dithering */+ −
int row_index; /* cur row's vertical index in dither matrix */+ −
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */+ −
+ −
/* Variables for Floyd-Steinberg dithering */+ −
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */+ −
boolean on_odd_row; /* flag to remember which row we are on */+ −
} my_cquantizer;+ −
+ −
typedef my_cquantizer * my_cquantize_ptr;+ −
+ −
+ −
/*+ −
* Policy-making subroutines for create_colormap and create_colorindex.+ −
* These routines determine the colormap to be used. The rest of the module+ −
* only assumes that the colormap is orthogonal.+ −
*+ −
* * select_ncolors decides how to divvy up the available colors+ −
* among the components.+ −
* * output_value defines the set of representative values for a component.+ −
* * largest_input_value defines the mapping from input values to+ −
* representative values for a component.+ −
* Note that the latter two routines may impose different policies for+ −
* different components, though this is not currently done.+ −
*/+ −
+ −
+ −
LOCAL(int)+ −
select_ncolors (j_decompress_ptr cinfo, int Ncolors[])+ −
/* Determine allocation of desired colors to components, */+ −
/* and fill in Ncolors[] array to indicate choice. */+ −
/* Return value is total number of colors (product of Ncolors[] values). */+ −
{+ −
int nc = cinfo->out_color_components; /* number of color components */+ −
int max_colors = cinfo->desired_number_of_colors;+ −
int total_colors, iroot, i, j;+ −
boolean changed;+ −
long temp;+ −
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };+ −
+ −
/* We can allocate at least the nc'th root of max_colors per component. */+ −
/* Compute floor(nc'th root of max_colors). */+ −
iroot = 1;+ −
do {+ −
iroot++;+ −
temp = iroot; /* set temp = iroot ** nc */+ −
for (i = 1; i < nc; i++)+ −
temp *= iroot;+ −
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */+ −
iroot--; /* now iroot = floor(root) */+ −
+ −
/* Must have at least 2 color values per component */+ −
if (iroot < 2)+ −
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);+ −
+ −
/* Initialize to iroot color values for each component */+ −
total_colors = 1;+ −
for (i = 0; i < nc; i++) {+ −
Ncolors[i] = iroot;+ −
total_colors *= iroot;+ −
}+ −
/* We may be able to increment the count for one or more components without+ −
* exceeding max_colors, though we know not all can be incremented.+ −
* Sometimes, the first component can be incremented more than once!+ −
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)+ −
* In RGB colorspace, try to increment G first, then R, then B.+ −
*/+ −
do {+ −
changed = FALSE;+ −
for (i = 0; i < nc; i++) {+ −
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);+ −
/* calculate new total_colors if Ncolors[j] is incremented */+ −
temp = total_colors / Ncolors[j];+ −
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */+ −
if (temp > (long) max_colors)+ −
break; /* won't fit, done with this pass */+ −
Ncolors[j]++; /* OK, apply the increment */+ −
total_colors = (int) temp;+ −
changed = TRUE;+ −
}+ −
} while (changed);+ −
+ −
return total_colors;+ −
}+ −
+ −
+ −
LOCAL(int)+ −
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)+ −
/* Return j'th output value, where j will range from 0 to maxj */+ −
/* The output values must fall in 0..MAXJSAMPLE in increasing order */+ −
{+ −
/* We always provide values 0 and MAXJSAMPLE for each component;+ −
* any additional values are equally spaced between these limits.+ −
* (Forcing the upper and lower values to the limits ensures that+ −
* dithering can't produce a color outside the selected gamut.)+ −
*/+ −
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);+ −
}+ −
+ −
+ −
LOCAL(int)+ −
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)+ −
/* Return largest input value that should map to j'th output value */+ −
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */+ −
{+ −
/* Breakpoints are halfway between values returned by output_value */+ −
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));+ −
}+ −
+ −
+ −
/*+ −
* Create the colormap.+ −
*/+ −
+ −
LOCAL(void)+ −
create_colormap (j_decompress_ptr cinfo)+ −
{+ −
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;+ −
JSAMPARRAY colormap; /* Created colormap */+ −
int total_colors; /* Number of distinct output colors */+ −
int i,j,k, nci, blksize, blkdist, ptr, val;+ −
+ −
/* Select number of colors for each component */+ −
total_colors = select_ncolors(cinfo, cquantize->Ncolors);+ −
+ −
/* Report selected color counts */+ −
if (cinfo->out_color_components == 3)+ −
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,+ −
total_colors, cquantize->Ncolors[0],+ −
cquantize->Ncolors[1], cquantize->Ncolors[2]);+ −
else+ −
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);+ −
+ −
/* Allocate and fill in the colormap. */+ −
/* The colors are ordered in the map in standard row-major order, */+ −
/* i.e. rightmost (highest-indexed) color changes most rapidly. */+ −
+ −
colormap = (*cinfo->mem->alloc_sarray)+ −
((j_common_ptr) cinfo, JPOOL_IMAGE,+ −
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);+ −
+ −
/* blksize is number of adjacent repeated entries for a component */+ −
/* blkdist is distance between groups of identical entries for a component */+ −
blkdist = total_colors;+ −
+ −
for (i = 0; i < cinfo->out_color_components; i++) {+ −
/* fill in colormap entries for i'th color component */+ −
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */+ −
blksize = blkdist / nci;+ −
for (j = 0; j < nci; j++) {+ −
/* Compute j'th output value (out of nci) for component */+ −
val = output_value(cinfo, i, j, nci-1);+ −
/* Fill in all colormap entries that have this value of this component */+ −
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {+ −
/* fill in blksize entries beginning at ptr */+ −
for (k = 0; k < blksize; k++)+ −
colormap[i][ptr+k] = (JSAMPLE) val;+ −
}+ −
}+ −
blkdist = blksize; /* blksize of this color is blkdist of next */+ −
}+ −
+ −
/* Save the colormap in private storage,+ −
* where it will survive color quantization mode changes.+ −
*/+ −
cquantize->sv_colormap = colormap;+ −
cquantize->sv_actual = total_colors;+ −
}+ −
+ −
+ −
/*+ −
* Create the color index table.+ −
*/+ −
+ −
LOCAL(void)+ −
create_colorindex (j_decompress_ptr cinfo)+ −
{+ −
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;+ −
JSAMPROW indexptr;+ −
int i,j,k, nci, blksize, val, pad;+ −
+ −
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in+ −
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).+ −
* This is not necessary in the other dithering modes. However, we+ −
* flag whether it was done in case user changes dithering mode.+ −
*/+ −
if (cinfo->dither_mode == JDITHER_ORDERED) {+ −
pad = MAXJSAMPLE*2;+ −
cquantize->is_padded = TRUE;+ −
} else {+ −
pad = 0;+ −
cquantize->is_padded = FALSE;+ −
}+ −
+ −
cquantize->colorindex = (*cinfo->mem->alloc_sarray)+ −
((j_common_ptr) cinfo, JPOOL_IMAGE,+ −
(JDIMENSION) (MAXJSAMPLE+1 + pad),+ −
(JDIMENSION) cinfo->out_color_components);+ −
+ −
/* blksize is number of adjacent repeated entries for a component */+ −
blksize = cquantize->sv_actual;+ −
+ −
for (i = 0; i < cinfo->out_color_components; i++) {+ −
/* fill in colorindex entries for i'th color component */+ −
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */+ −
blksize = blksize / nci;+ −
+ −
/* adjust colorindex pointers to provide padding at negative indexes. */+ −
if (pad)+ −
cquantize->colorindex[i] += MAXJSAMPLE;+ −
+ −
/* in loop, val = index of current output value, */+ −
/* and k = largest j that maps to current val */+ −
indexptr = cquantize->colorindex[i];+ −
val = 0;+ −
k = largest_input_value(cinfo, i, 0, nci-1);+ −
for (j = 0; j <= MAXJSAMPLE; j++) {+ −
while (j > k) /* advance val if past boundary */+ −
k = largest_input_value(cinfo, i, ++val, nci-1);+ −
/* premultiply so that no multiplication needed in main processing */+ −
indexptr[j] = (JSAMPLE) (val * blksize);+ −
}+ −
/* Pad at both ends if necessary */+ −
if (pad)+ −
for (j = 1; j <= MAXJSAMPLE; j++) {+ −
indexptr[-j] = indexptr[0];+ −
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];+ −
}+ −
}+ −
}+ −
+ −
+ −
/*+ −
* Create an ordered-dither array for a component having ncolors+ −
* distinct output values.+ −
*/+ −
+ −
LOCAL(ODITHER_MATRIX_PTR)+ −
make_odither_array (j_decompress_ptr cinfo, int ncolors)+ −
{+ −
ODITHER_MATRIX_PTR odither;+ −
int j,k;+ −
INT32 num,den;+ −
+ −
odither = (ODITHER_MATRIX_PTR)+ −
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,+ −
SIZEOF(ODITHER_MATRIX));+ −
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).+ −
* Hence the dither value for the matrix cell with fill order f+ −
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).+ −
* On 16-bit-int machine, be careful to avoid overflow.+ −
*/+ −
den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));+ −
for (j = 0; j < ODITHER_SIZE; j++) {+ −
for (k = 0; k < ODITHER_SIZE; k++) {+ −
num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))+ −
* MAXJSAMPLE;+ −
/* Ensure round towards zero despite C's lack of consistency+ −
* about rounding negative values in integer division...+ −
*/+ −
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);+ −
}+ −
}+ −
return odither;+ −
}+ −
+ −
+ −
/*+ −
* Create the ordered-dither tables.+ −
* Components having the same number of representative colors may + −
* share a dither table.+ −
*/+ −
+ −
LOCAL(void)+ −
create_odither_tables (j_decompress_ptr cinfo)+ −
{+ −
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;+ −
ODITHER_MATRIX_PTR odither;+ −
int i, j, nci;+ −
+ −
for (i = 0; i < cinfo->out_color_components; i++) {+ −
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */+ −
odither = NULL; /* search for matching prior component */+ −
for (j = 0; j < i; j++) {+ −
if (nci == cquantize->Ncolors[j]) {+ −
odither = cquantize->odither[j];+ −
break;+ −
}+ −
}+ −
if (odither == NULL) /* need a new table? */+ −
odither = make_odither_array(cinfo, nci);+ −
cquantize->odither[i] = odither;+ −
}+ −
}+ −
+ −
+ −
/*+ −
* Map some rows of pixels to the output colormapped representation.+ −
*/+ −
+ −
METHODDEF(void)+ −
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,+ −
JSAMPARRAY output_buf, int num_rows)+ −
/* General case, no dithering */+ −
{+ −
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;+ −
JSAMPARRAY colorindex = cquantize->colorindex;+ −
register int pixcode, ci;+ −
register JSAMPROW ptrin, ptrout;+ −
int row;+ −
JDIMENSION col;+ −
JDIMENSION width = cinfo->output_width;+ −
register int nc = cinfo->out_color_components;+ −
+ −
for (row = 0; row < num_rows; row++) {+ −
ptrin = input_buf[row];+ −
ptrout = output_buf[row];+ −
for (col = width; col > 0; col--) {+ −
pixcode = 0;+ −
for (ci = 0; ci < nc; ci++) {+ −
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);+ −
}+ −
*ptrout++ = (JSAMPLE) pixcode;+ −
}+ −
}+ −
}+ −
+ −
+ −
METHODDEF(void)+ −
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,+ −
JSAMPARRAY output_buf, int num_rows)+ −
/* Fast path for out_color_components==3, no dithering */+ −
{+ −
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;+ −
register int pixcode;+ −
register JSAMPROW ptrin, ptrout;+ −
JSAMPROW colorindex0 = cquantize->colorindex[0];+ −
JSAMPROW colorindex1 = cquantize->colorindex[1];+ −
JSAMPROW colorindex2 = cquantize->colorindex[2];+ −
int row;+ −
JDIMENSION col;+ −
JDIMENSION width = cinfo->output_width;+ −
+ −
for (row = 0; row < num_rows; row++) {+ −
ptrin = input_buf[row];+ −
ptrout = output_buf[row];+ −
for (col = width; col > 0; col--) {+ −
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);+ −
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);+ −
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);+ −
*ptrout++ = (JSAMPLE) pixcode;+ −
}+ −
}+ −
}+ −
+ −
+ −
METHODDEF(void)+ −
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,+ −
JSAMPARRAY output_buf, int num_rows)+ −
/* General case, with ordered dithering */+ −
{+ −
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;+ −
register JSAMPROW input_ptr;+ −
register JSAMPROW output_ptr;+ −
JSAMPROW colorindex_ci;+ −
int * dither; /* points to active row of dither matrix */+ −
int row_index, col_index; /* current indexes into dither matrix */+ −
int nc = cinfo->out_color_components;+ −
int ci;+ −
int row;+ −
JDIMENSION col;+ −
JDIMENSION width = cinfo->output_width;+ −
+ −
for (row = 0; row < num_rows; row++) {+ −
/* Initialize output values to 0 so can process components separately */+ −
jzero_far((void FAR *) output_buf[row],+ −
(size_t) (width * SIZEOF(JSAMPLE)));+ −
row_index = cquantize->row_index;+ −
for (ci = 0; ci < nc; ci++) {+ −
input_ptr = input_buf[row] + ci;+ −
output_ptr = output_buf[row];+ −
colorindex_ci = cquantize->colorindex[ci];+ −
dither = cquantize->odither[ci][row_index];+ −
col_index = 0;+ −
+ −
for (col = width; col > 0; col--) {+ −
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,+ −
* select output value, accumulate into output code for this pixel.+ −
* Range-limiting need not be done explicitly, as we have extended+ −
* the colorindex table to produce the right answers for out-of-range+ −
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the+ −
* required amount of padding.+ −
*/+ −
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];+ −
input_ptr += nc;+ −
output_ptr++;+ −
col_index = (col_index + 1) & ODITHER_MASK;+ −
}+ −
}+ −
/* Advance row index for next row */+ −
row_index = (row_index + 1) & ODITHER_MASK;+ −
cquantize->row_index = row_index;+ −
}+ −
}+ −
+ −
+ −
METHODDEF(void)+ −
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,+ −
JSAMPARRAY output_buf, int num_rows)+ −
/* Fast path for out_color_components==3, with ordered dithering */+ −
{+ −
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;+ −
register int pixcode;+ −
register JSAMPROW input_ptr;+ −
register JSAMPROW output_ptr;+ −
JSAMPROW colorindex0 = cquantize->colorindex[0];+ −
JSAMPROW colorindex1 = cquantize->colorindex[1];+ −
JSAMPROW colorindex2 = cquantize->colorindex[2];+ −
int * dither0; /* points to active row of dither matrix */+ −
int * dither1;+ −
int * dither2;+ −
int row_index, col_index; /* current indexes into dither matrix */+ −
int row;+ −
JDIMENSION col;+ −
JDIMENSION width = cinfo->output_width;+ −
+ −
for (row = 0; row < num_rows; row++) {+ −
row_index = cquantize->row_index;+ −
input_ptr = input_buf[row];+ −
output_ptr = output_buf[row];+ −
dither0 = cquantize->odither[0][row_index];+ −
dither1 = cquantize->odither[1][row_index];+ −
dither2 = cquantize->odither[2][row_index];+ −
col_index = 0;+ −
+ −
for (col = width; col > 0; col--) {+ −
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) ++ −
dither0[col_index]]);+ −
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) ++ −
dither1[col_index]]);+ −
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) ++ −
dither2[col_index]]);+ −
*output_ptr++ = (JSAMPLE) pixcode;+ −
col_index = (col_index + 1) & ODITHER_MASK;+ −
}+ −
row_index = (row_index + 1) & ODITHER_MASK;+ −
cquantize->row_index = row_index;+ −
}+ −
}+ −
+ −
+ −
METHODDEF(void)+ −
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,+ −
JSAMPARRAY output_buf, int num_rows)+ −
/* General case, with Floyd-Steinberg dithering */+ −
{+ −
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;+ −
register LOCFSERROR cur; /* current error or pixel value */+ −
LOCFSERROR belowerr; /* error for pixel below cur */+ −
LOCFSERROR bpreverr; /* error for below/prev col */+ −
LOCFSERROR bnexterr; /* error for below/next col */+ −
LOCFSERROR delta;+ −
register FSERRPTR errorptr; /* => fserrors[] at column before current */+ −
register JSAMPROW input_ptr;+ −
register JSAMPROW output_ptr;+ −
JSAMPROW colorindex_ci;+ −
JSAMPROW colormap_ci;+ −
int pixcode;+ −
int nc = cinfo->out_color_components;+ −
int dir; /* 1 for left-to-right, -1 for right-to-left */+ −
int dirnc; /* dir * nc */+ −
int ci;+ −
int row;+ −
JDIMENSION col;+ −
JDIMENSION width = cinfo->output_width;+ −
JSAMPLE *range_limit = cinfo->sample_range_limit;+ −
SHIFT_TEMPS+ −
+ −
for (row = 0; row < num_rows; row++) {+ −
/* Initialize output values to 0 so can process components separately */+ −
jzero_far((void FAR *) output_buf[row],+ −
(size_t) (width * SIZEOF(JSAMPLE)));+ −
for (ci = 0; ci < nc; ci++) {+ −
input_ptr = input_buf[row] + ci;+ −
output_ptr = output_buf[row];+ −
if (cquantize->on_odd_row) {+ −
/* work right to left in this row */+ −
input_ptr += (width-1) * nc; /* so point to rightmost pixel */+ −
output_ptr += width-1;+ −
dir = -1;+ −
dirnc = -nc;+ −
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */+ −
} else {+ −
/* work left to right in this row */+ −
dir = 1;+ −
dirnc = nc;+ −
errorptr = cquantize->fserrors[ci]; /* => entry before first column */+ −
}+ −
colorindex_ci = cquantize->colorindex[ci];+ −
colormap_ci = cquantize->sv_colormap[ci];+ −
/* Preset error values: no error propagated to first pixel from left */+ −
cur = 0;+ −
/* and no error propagated to row below yet */+ −
belowerr = bpreverr = 0;+ −
+ −
for (col = width; col > 0; col--) {+ −
/* cur holds the error propagated from the previous pixel on the+ −
* current line. Add the error propagated from the previous line+ −
* to form the complete error correction term for this pixel, and+ −
* round the error term (which is expressed * 16) to an integer.+ −
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct+ −
* for either sign of the error value.+ −
* Note: errorptr points to *previous* column's array entry.+ −
*/+ −
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);+ −
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.+ −
* The maximum error is +- MAXJSAMPLE; this sets the required size+ −
* of the range_limit array.+ −
*/+ −
cur += GETJSAMPLE(*input_ptr);+ −
cur = GETJSAMPLE(range_limit[cur]);+ −
/* Select output value, accumulate into output code for this pixel */+ −
pixcode = GETJSAMPLE(colorindex_ci[cur]);+ −
*output_ptr += (JSAMPLE) pixcode;+ −
/* Compute actual representation error at this pixel */+ −
/* Note: we can do this even though we don't have the final */+ −
/* pixel code, because the colormap is orthogonal. */+ −
cur -= GETJSAMPLE(colormap_ci[pixcode]);+ −
/* Compute error fractions to be propagated to adjacent pixels.+ −
* Add these into the running sums, and simultaneously shift the+ −
* next-line error sums left by 1 column.+ −
*/+ −
bnexterr = cur;+ −
delta = cur * 2;+ −
cur += delta; /* form error * 3 */+ −
errorptr[0] = (FSERROR) (bpreverr + cur);+ −
cur += delta; /* form error * 5 */+ −
bpreverr = belowerr + cur;+ −
belowerr = bnexterr;+ −
cur += delta; /* form error * 7 */+ −
/* At this point cur contains the 7/16 error value to be propagated+ −
* to the next pixel on the current line, and all the errors for the+ −
* next line have been shifted over. We are therefore ready to move on.+ −
*/+ −
input_ptr += dirnc; /* advance input ptr to next column */+ −
output_ptr += dir; /* advance output ptr to next column */+ −
errorptr += dir; /* advance errorptr to current column */+ −
}+ −
/* Post-loop cleanup: we must unload the final error value into the+ −
* final fserrors[] entry. Note we need not unload belowerr because+ −
* it is for the dummy column before or after the actual array.+ −
*/+ −
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */+ −
}+ −
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);+ −
}+ −
}+ −
+ −
+ −
/*+ −
* Allocate workspace for Floyd-Steinberg errors.+ −
*/+ −
+ −
LOCAL(void)+ −
alloc_fs_workspace (j_decompress_ptr cinfo)+ −
{+ −
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;+ −
size_t arraysize;+ −
int i;+ −
+ −
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));+ −
for (i = 0; i < cinfo->out_color_components; i++) {+ −
cquantize->fserrors[i] = (FSERRPTR)+ −
(*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);+ −
}+ −
}+ −
+ −
+ −
/*+ −
* Initialize for one-pass color quantization.+ −
*/+ −
+ −
METHODDEF(void)+ −
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)+ −
{+ −
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;+ −
size_t arraysize;+ −
int i;+ −
+ −
/* Install my colormap. */+ −
cinfo->colormap = cquantize->sv_colormap;+ −
cinfo->actual_number_of_colors = cquantize->sv_actual;+ −
+ −
/* Initialize for desired dithering mode. */+ −
switch (cinfo->dither_mode) {+ −
case JDITHER_NONE:+ −
if (cinfo->out_color_components == 3)+ −
cquantize->pub.color_quantize = color_quantize3;+ −
else+ −
cquantize->pub.color_quantize = color_quantize;+ −
break;+ −
case JDITHER_ORDERED:+ −
if (cinfo->out_color_components == 3)+ −
cquantize->pub.color_quantize = quantize3_ord_dither;+ −
else+ −
cquantize->pub.color_quantize = quantize_ord_dither;+ −
cquantize->row_index = 0; /* initialize state for ordered dither */+ −
/* If user changed to ordered dither from another mode,+ −
* we must recreate the color index table with padding.+ −
* This will cost extra space, but probably isn't very likely.+ −
*/+ −
if (! cquantize->is_padded)+ −
create_colorindex(cinfo);+ −
/* Create ordered-dither tables if we didn't already. */+ −
if (cquantize->odither[0] == NULL)+ −
create_odither_tables(cinfo);+ −
break;+ −
case JDITHER_FS:+ −
cquantize->pub.color_quantize = quantize_fs_dither;+ −
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */+ −
/* Allocate Floyd-Steinberg workspace if didn't already. */+ −
if (cquantize->fserrors[0] == NULL)+ −
alloc_fs_workspace(cinfo);+ −
/* Initialize the propagated errors to zero. */+ −
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));+ −
for (i = 0; i < cinfo->out_color_components; i++)+ −
jzero_far((void FAR *) cquantize->fserrors[i], arraysize);+ −
break;+ −
default:+ −
ERREXIT(cinfo, JERR_NOT_COMPILED);+ −
break;+ −
}+ −
}+ −
+ −
+ −
/*+ −
* Finish up at the end of the pass.+ −
*/+ −
+ −
METHODDEF(void)+ −
finish_pass_1_quant (j_decompress_ptr cinfo)+ −
{+ −
/* no work in 1-pass case */+ −
}+ −
+ −
+ −
/*+ −
* Switch to a new external colormap between output passes.+ −
* Shouldn't get to this module!+ −
*/+ −
+ −
METHODDEF(void)+ −
new_color_map_1_quant (j_decompress_ptr cinfo)+ −
{+ −
ERREXIT(cinfo, JERR_MODE_CHANGE);+ −
}+ −
+ −
+ −
/*+ −
* Module initialization routine for 1-pass color quantization.+ −
*/+ −
+ −
GLOBAL(void)+ −
jinit_1pass_quantizer (j_decompress_ptr cinfo)+ −
{+ −
my_cquantize_ptr cquantize;+ −
+ −
cquantize = (my_cquantize_ptr)+ −
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,+ −
SIZEOF(my_cquantizer));+ −
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;+ −
cquantize->pub.start_pass = start_pass_1_quant;+ −
cquantize->pub.finish_pass = finish_pass_1_quant;+ −
cquantize->pub.new_color_map = new_color_map_1_quant;+ −
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */+ −
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */+ −
+ −
/* Make sure my internal arrays won't overflow */+ −
if (cinfo->out_color_components > MAX_Q_COMPS)+ −
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);+ −
/* Make sure colormap indexes can be represented by JSAMPLEs */+ −
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))+ −
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);+ −
+ −
/* Create the colormap and color index table. */+ −
create_colormap(cinfo);+ −
create_colorindex(cinfo);+ −
+ −
/* Allocate Floyd-Steinberg workspace now if requested.+ −
* We do this now since it is FAR storage and may affect the memory+ −
* manager's space calculations. If the user changes to FS dither+ −
* mode in a later pass, we will allocate the space then, and will+ −
* possibly overrun the max_memory_to_use setting.+ −
*/+ −
if (cinfo->dither_mode == JDITHER_FS)+ −
alloc_fs_workspace(cinfo);+ −
}+ −
+ −
#endif /* QUANT_1PASS_SUPPORTED */+ −