/****************************************************************************
**
** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <private/qdrawhelper_x86_p.h>
#ifdef QT_HAVE_SSSE3
#include <private/qdrawingprimitive_sse2_p.h>
QT_BEGIN_NAMESPACE
inline static void blend_pixel(quint32 &dst, const quint32 src)
{
if (src >= 0xff000000)
dst = src;
else if (src != 0)
dst = src + BYTE_MUL(dst, qAlpha(~src));
}
/* The instruction palignr uses direct arguments, so we have to generate the code fo the different
shift (4, 8, 12). Checking the alignment inside the loop is unfortunatelly way too slow.
*/
#define BLENDING_LOOP(palignrOffset, length)\
for (; x < length-3; x += 4) { \
const __m128i srcVectorLastLoaded = _mm_load_si128((__m128i *)&src[x - minusOffsetToAlignSrcOn16Bytes + 4]);\
const __m128i srcVector = _mm_alignr_epi8(srcVectorLastLoaded, srcVectorPrevLoaded, palignrOffset); \
const __m128i srcVectorAlpha = _mm_and_si128(srcVector, alphaMask); \
if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, alphaMask)) == 0xffff) { \
_mm_store_si128((__m128i *)&dst[x], srcVector); \
} else if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, nullVector)) != 0xffff) { \
__m128i alphaChannel = _mm_shuffle_epi8(srcVector, alphaShuffleMask); \
alphaChannel = _mm_sub_epi16(one, alphaChannel); \
const __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]); \
__m128i destMultipliedByOneMinusAlpha; \
BYTE_MUL_SSE2(destMultipliedByOneMinusAlpha, dstVector, alphaChannel, colorMask, half); \
const __m128i result = _mm_add_epi8(srcVector, destMultipliedByOneMinusAlpha); \
_mm_store_si128((__m128i *)&dst[x], result); \
} \
srcVectorPrevLoaded = srcVectorLastLoaded;\
}
#define BLEND_SOURCE_OVER_ARGB32_FIRST_ROW_SSSE3(dst, src, length, nullVector, half, one, colorMask, alphaMask) { \
int x = 0; \
\
/* First, get dst aligned. */ \
const int offsetToAlignOn16Bytes = (4 - ((reinterpret_cast<quintptr>(dst) >> 2) & 0x3)) & 0x3;\
const int prologLength = qMin(length, offsetToAlignOn16Bytes);\
\
for (; x < prologLength; ++x) {\
blend_pixel(dst[x], src[x]); \
} \
\
const int minusOffsetToAlignSrcOn16Bytes = (reinterpret_cast<quintptr>(&(src[x])) >> 2) & 0x3;\
\
if (!minusOffsetToAlignSrcOn16Bytes) {\
/* src is aligned, usual algorithm but with aligned operations.\
See the SSE2 version for more documentation on the algorithm itself. */\
const __m128i alphaShuffleMask = _mm_set_epi8(0xff,15,0xff,15,0xff,11,0xff,11,0xff,7,0xff,7,0xff,3,0xff,3);\
for (; x < length-3; x += 4) { \
const __m128i srcVector = _mm_load_si128((__m128i *)&src[x]); \
const __m128i srcVectorAlpha = _mm_and_si128(srcVector, alphaMask); \
if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, alphaMask)) == 0xffff) { \
_mm_store_si128((__m128i *)&dst[x], srcVector); \
} else if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, nullVector)) != 0xffff) { \
__m128i alphaChannel = _mm_shuffle_epi8(srcVector, alphaShuffleMask); \
alphaChannel = _mm_sub_epi16(one, alphaChannel); \
const __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]); \
__m128i destMultipliedByOneMinusAlpha; \
BYTE_MUL_SSE2(destMultipliedByOneMinusAlpha, dstVector, alphaChannel, colorMask, half); \
const __m128i result = _mm_add_epi8(srcVector, destMultipliedByOneMinusAlpha); \
_mm_store_si128((__m128i *)&dst[x], result); \
} \
} /* end for() */\
} else if ((length - x) >= 8) {\
/* We are at the first line, so "x - minusOffsetToAlignSrcOn16Bytes" could go before src, and\
generate an invalid access. */\
\
/* We use two vectors to extract the src: prevLoaded for the first pixels, lastLoaded for the current pixels. */\
__m128i srcVectorPrevLoaded;\
if (minusOffsetToAlignSrcOn16Bytes > prologLength) {\
/* We go forward 4 pixels to avoid reading before src. */\
for (; x < prologLength + 4; ++x)\
blend_pixel(dst[x], src[x]); \
}\
srcVectorPrevLoaded = _mm_load_si128((__m128i *)&src[x - minusOffsetToAlignSrcOn16Bytes]);\
const int palignrOffset = minusOffsetToAlignSrcOn16Bytes << 2;\
\
const __m128i alphaShuffleMask = _mm_set_epi8(0xff,15,0xff,15,0xff,11,0xff,11,0xff,7,0xff,7,0xff,3,0xff,3);\
switch (palignrOffset) {\
case 4:\
BLENDING_LOOP(4, length)\
break;\
case 8:\
BLENDING_LOOP(8, length)\
break;\
case 12:\
BLENDING_LOOP(12, length)\
break;\
}\
}\
for (; x < length; ++x) \
blend_pixel(dst[x], src[x]); \
}
// Basically blend src over dst with the const alpha defined as constAlphaVector.
// nullVector, half, one, colorMask are constant accross the whole image/texture, and should be defined as:
//const __m128i nullVector = _mm_set1_epi32(0);
//const __m128i half = _mm_set1_epi16(0x80);
//const __m128i one = _mm_set1_epi16(0xff);
//const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
//const __m128i alphaMask = _mm_set1_epi32(0xff000000);
//
// The computation being done is:
// result = s + d * (1-alpha)
// with shortcuts if fully opaque or fully transparent.
#define BLEND_SOURCE_OVER_ARGB32_MAIN_SSSE3(dst, src, length, nullVector, half, one, colorMask, alphaMask) { \
int x = 0; \
\
/* First, get dst aligned. */ \
ALIGNMENT_PROLOGUE_16BYTES(dst, x, length) { \
blend_pixel(dst[x], src[x]); \
} \
\
const int minusOffsetToAlignSrcOn16Bytes = (reinterpret_cast<quintptr>(&(src[x])) >> 2) & 0x3;\
\
if (!minusOffsetToAlignSrcOn16Bytes) {\
/* src is aligned, usual algorithm but with aligned operations.\
See the SSE2 version for more documentation on the algorithm itself. */\
const __m128i alphaShuffleMask = _mm_set_epi8(0xff,15,0xff,15,0xff,11,0xff,11,0xff,7,0xff,7,0xff,3,0xff,3);\
for (; x < length-3; x += 4) { \
const __m128i srcVector = _mm_load_si128((__m128i *)&src[x]); \
const __m128i srcVectorAlpha = _mm_and_si128(srcVector, alphaMask); \
if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, alphaMask)) == 0xffff) { \
_mm_store_si128((__m128i *)&dst[x], srcVector); \
} else if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, nullVector)) != 0xffff) { \
__m128i alphaChannel = _mm_shuffle_epi8(srcVector, alphaShuffleMask); \
alphaChannel = _mm_sub_epi16(one, alphaChannel); \
const __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]); \
__m128i destMultipliedByOneMinusAlpha; \
BYTE_MUL_SSE2(destMultipliedByOneMinusAlpha, dstVector, alphaChannel, colorMask, half); \
const __m128i result = _mm_add_epi8(srcVector, destMultipliedByOneMinusAlpha); \
_mm_store_si128((__m128i *)&dst[x], result); \
} \
} /* end for() */\
} else if ((length - x) >= 8) {\
/* We use two vectors to extract the src: prevLoaded for the first pixels, lastLoaded for the current pixels. */\
__m128i srcVectorPrevLoaded = _mm_load_si128((__m128i *)&src[x - minusOffsetToAlignSrcOn16Bytes]);\
const int palignrOffset = minusOffsetToAlignSrcOn16Bytes << 2;\
\
const __m128i alphaShuffleMask = _mm_set_epi8(0xff,15,0xff,15,0xff,11,0xff,11,0xff,7,0xff,7,0xff,3,0xff,3);\
switch (palignrOffset) {\
case 4:\
BLENDING_LOOP(4, length)\
break;\
case 8:\
BLENDING_LOOP(8, length)\
break;\
case 12:\
BLENDING_LOOP(12, length)\
break;\
}\
}\
for (; x < length; ++x) \
blend_pixel(dst[x], src[x]); \
}
void qt_blend_argb32_on_argb32_ssse3(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha)
{
const quint32 *src = (const quint32 *) srcPixels;
quint32 *dst = (quint32 *) destPixels;
if (const_alpha == 256) {
const __m128i alphaMask = _mm_set1_epi32(0xff000000);
const __m128i nullVector = _mm_setzero_si128();
const __m128i half = _mm_set1_epi16(0x80);
const __m128i one = _mm_set1_epi16(0xff);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
// We have to unrol the first row in order to deal with the load on unaligned data
// prior to the src pointer.
BLEND_SOURCE_OVER_ARGB32_FIRST_ROW_SSSE3(dst, src, w, nullVector, half, one, colorMask, alphaMask);
dst = (quint32 *)(((uchar *) dst) + dbpl);
src = (const quint32 *)(((const uchar *) src) + sbpl);
for (int y = 1; y < h; ++y) {
BLEND_SOURCE_OVER_ARGB32_MAIN_SSSE3(dst, src, w, nullVector, half, one, colorMask, alphaMask);
dst = (quint32 *)(((uchar *) dst) + dbpl);
src = (const quint32 *)(((const uchar *) src) + sbpl);
}
} else if (const_alpha != 0) {
// dest = (s + d * sia) * ca + d * cia
// = s * ca + d * (sia * ca + cia)
// = s * ca + d * (1 - sa*ca)
const_alpha = (const_alpha * 255) >> 8;
const __m128i nullVector = _mm_setzero_si128();
const __m128i half = _mm_set1_epi16(0x80);
const __m128i one = _mm_set1_epi16(0xff);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
const __m128i constAlphaVector = _mm_set1_epi16(const_alpha);
for (int y = 0; y < h; ++y) {
BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2(dst, src, w, nullVector, half, one, colorMask, constAlphaVector)
dst = (quint32 *)(((uchar *) dst) + dbpl);
src = (const quint32 *)(((const uchar *) src) + sbpl);
}
}
}
QT_END_NAMESPACE
#endif // QT_HAVE_SSSE3