/****************************************************************************+ −
**+ −
** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).+ −
** All rights reserved.+ −
** Contact: Nokia Corporation (qt-info@nokia.com)+ −
**+ −
** This file is part of the QtGui module of the Qt Toolkit.+ −
**+ −
** $QT_BEGIN_LICENSE:LGPL$+ −
** No Commercial Usage+ −
** This file contains pre-release code and may not be distributed.+ −
** You may use this file in accordance with the terms and conditions+ −
** contained in the Technology Preview License Agreement accompanying+ −
** this package.+ −
**+ −
** GNU Lesser General Public License Usage+ −
** Alternatively, this file may be used under the terms of the GNU Lesser+ −
** General Public License version 2.1 as published by the Free Software+ −
** Foundation and appearing in the file LICENSE.LGPL included in the+ −
** packaging of this file. Please review the following information to+ −
** ensure the GNU Lesser General Public License version 2.1 requirements+ −
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.+ −
**+ −
** In addition, as a special exception, Nokia gives you certain additional+ −
** rights. These rights are described in the Nokia Qt LGPL Exception+ −
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.+ −
**+ −
** If you have questions regarding the use of this file, please contact+ −
** Nokia at qt-info@nokia.com.+ −
**+ −
**+ −
**+ −
**+ −
**+ −
**+ −
**+ −
**+ −
** $QT_END_LICENSE$+ −
**+ −
****************************************************************************/+ −
+ −
#include "qimage.h"+ −
#include "qdatastream.h"+ −
#include "qbuffer.h"+ −
#include "qmap.h"+ −
#include "qmatrix.h"+ −
#include "qtransform.h"+ −
#include "qimagereader.h"+ −
#include "qimagewriter.h"+ −
#include "qstringlist.h"+ −
#include "qvariant.h"+ −
#include "qimagepixmapcleanuphooks_p.h"+ −
#include <ctype.h>+ −
#include <stdlib.h>+ −
#include <limits.h>+ −
#include <math.h>+ −
#include <private/qdrawhelper_p.h>+ −
#include <private/qmemrotate_p.h>+ −
#include <private/qpixmapdata_p.h>+ −
#include <private/qimagescale_p.h>+ −
+ −
#include <qhash.h>+ −
+ −
#include <private/qpaintengine_raster_p.h>+ −
+ −
#include <private/qimage_p.h>+ −
+ −
QT_BEGIN_NAMESPACE+ −
+ −
static inline bool checkPixelSize(const QImage::Format format)+ −
{+ −
switch (format) {+ −
case QImage::Format_ARGB8565_Premultiplied:+ −
return (sizeof(qargb8565) == 3);+ −
case QImage::Format_RGB666:+ −
return (sizeof(qrgb666) == 3);+ −
case QImage::Format_ARGB6666_Premultiplied:+ −
return (sizeof(qargb6666) == 3);+ −
case QImage::Format_RGB555:+ −
return (sizeof(qrgb555) == 2);+ −
case QImage::Format_ARGB8555_Premultiplied:+ −
return (sizeof(qargb8555) == 3);+ −
case QImage::Format_RGB888:+ −
return (sizeof(qrgb888) == 3);+ −
case QImage::Format_RGB444:+ −
return (sizeof(qrgb444) == 2);+ −
case QImage::Format_ARGB4444_Premultiplied:+ −
return (sizeof(qargb4444) == 2);+ −
default:+ −
return true;+ −
}+ −
}+ −
+ −
#if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001)+ −
#pragma message disable narrowptr+ −
#endif+ −
+ −
+ −
#define QIMAGE_SANITYCHECK_MEMORY(image) \+ −
if ((image).isNull()) { \+ −
qWarning("QImage: out of memory, returning null image"); \+ −
return QImage(); \+ −
}+ −
+ −
+ −
static QImage rotated90(const QImage &src);+ −
static QImage rotated180(const QImage &src);+ −
static QImage rotated270(const QImage &src);+ −
+ −
// ### Qt 5: remove+ −
Q_GUI_EXPORT qint64 qt_image_id(const QImage &image)+ −
{+ −
return image.cacheKey();+ −
}+ −
+ −
const QVector<QRgb> *qt_image_colortable(const QImage &image)+ −
{+ −
return &image.d->colortable;+ −
}+ −
+ −
Q_GUI_EXPORT extern int qt_defaultDpiX();+ −
Q_GUI_EXPORT extern int qt_defaultDpiY();+ −
+ −
QBasicAtomicInt qimage_serial_number = Q_BASIC_ATOMIC_INITIALIZER(1);+ −
+ −
QImageData::QImageData()+ −
: ref(0), width(0), height(0), depth(0), nbytes(0), data(0),+ −
#ifdef QT3_SUPPORT+ −
jumptable(0),+ −
#endif+ −
format(QImage::Format_ARGB32), bytes_per_line(0),+ −
ser_no(qimage_serial_number.fetchAndAddRelaxed(1)),+ −
detach_no(0),+ −
dpmx(qt_defaultDpiX() * 100 / qreal(2.54)),+ −
dpmy(qt_defaultDpiY() * 100 / qreal(2.54)),+ −
offset(0, 0), own_data(true), ro_data(false), has_alpha_clut(false),+ −
is_cached(false), paintEngine(0)+ −
{+ −
}+ −
+ −
static int depthForFormat(QImage::Format format)+ −
{+ −
int depth = 0;+ −
switch(format) {+ −
case QImage::Format_Invalid:+ −
case QImage::NImageFormats:+ −
Q_ASSERT(false);+ −
case QImage::Format_Mono:+ −
case QImage::Format_MonoLSB:+ −
depth = 1;+ −
break;+ −
case QImage::Format_Indexed8:+ −
depth = 8;+ −
break;+ −
case QImage::Format_RGB32:+ −
case QImage::Format_ARGB32:+ −
case QImage::Format_ARGB32_Premultiplied:+ −
depth = 32;+ −
break;+ −
case QImage::Format_RGB555:+ −
case QImage::Format_RGB16:+ −
case QImage::Format_RGB444:+ −
case QImage::Format_ARGB4444_Premultiplied:+ −
depth = 16;+ −
break;+ −
case QImage::Format_RGB666:+ −
case QImage::Format_ARGB6666_Premultiplied:+ −
case QImage::Format_ARGB8565_Premultiplied:+ −
case QImage::Format_ARGB8555_Premultiplied:+ −
case QImage::Format_RGB888:+ −
depth = 24;+ −
break;+ −
}+ −
return depth;+ −
}+ −
+ −
/*! \fn QImageData * QImageData::create(const QSize &size, QImage::Format format, int numColors)+ −
+ −
\internal+ −
+ −
Creates a new image data.+ −
Returns 0 if invalid parameters are give or anything else failed.+ −
*/+ −
QImageData * QImageData::create(const QSize &size, QImage::Format format, int numColors)+ −
{+ −
if (!size.isValid() || numColors < 0 || format == QImage::Format_Invalid)+ −
return 0; // invalid parameter(s)+ −
+ −
if (!checkPixelSize(format)) {+ −
qWarning("QImageData::create(): Invalid pixel size for format %i",+ −
format);+ −
return 0;+ −
}+ −
+ −
uint width = size.width();+ −
uint height = size.height();+ −
uint depth = depthForFormat(format);+ −
+ −
switch (format) {+ −
case QImage::Format_Mono:+ −
case QImage::Format_MonoLSB:+ −
numColors = 2;+ −
break;+ −
case QImage::Format_Indexed8:+ −
numColors = qBound(0, numColors, 256);+ −
break;+ −
default:+ −
numColors = 0;+ −
break;+ −
}+ −
+ −
const int bytes_per_line = ((width * depth + 31) >> 5) << 2; // bytes per scanline (must be multiple of 8)+ −
+ −
// sanity check for potential overflows+ −
if (INT_MAX/depth < width+ −
|| bytes_per_line <= 0+ −
|| height <= 0+ −
|| INT_MAX/uint(bytes_per_line) < height+ −
|| INT_MAX/sizeof(uchar *) < uint(height))+ −
return 0;+ −
+ −
QScopedPointer<QImageData> d(new QImageData);+ −
d->colortable.resize(numColors);+ −
if (depth == 1) {+ −
d->colortable[0] = QColor(Qt::black).rgba();+ −
d->colortable[1] = QColor(Qt::white).rgba();+ −
} else {+ −
for (int i = 0; i < numColors; ++i)+ −
d->colortable[i] = 0;+ −
}+ −
+ −
d->width = width;+ −
d->height = height;+ −
d->depth = depth;+ −
d->format = format;+ −
d->has_alpha_clut = false;+ −
d->is_cached = false;+ −
+ −
d->bytes_per_line = bytes_per_line;+ −
+ −
d->nbytes = d->bytes_per_line*height;+ −
d->data = (uchar *)malloc(d->nbytes);+ −
+ −
if (!d->data) {+ −
return 0;+ −
}+ −
+ −
d->ref.ref();+ −
return d.take();+ −
+ −
}+ −
+ −
QImageData::~QImageData()+ −
{+ −
if (is_cached)+ −
QImagePixmapCleanupHooks::executeImageHooks((((qint64) ser_no) << 32) | ((qint64) detach_no));+ −
delete paintEngine;+ −
if (data && own_data)+ −
free(data);+ −
#ifdef QT3_SUPPORT+ −
if (jumptable)+ −
free(jumptable);+ −
jumptable = 0;+ −
#endif+ −
data = 0;+ −
}+ −
+ −
+ −
bool QImageData::checkForAlphaPixels() const+ −
{+ −
bool has_alpha_pixels = false;+ −
+ −
switch (format) {+ −
+ −
case QImage::Format_Indexed8:+ −
has_alpha_pixels = has_alpha_clut;+ −
break;+ −
+ −
case QImage::Format_ARGB32:+ −
case QImage::Format_ARGB32_Premultiplied: {+ −
uchar *bits = data;+ −
for (int y=0; y<height && !has_alpha_pixels; ++y) {+ −
for (int x=0; x<width; ++x)+ −
has_alpha_pixels |= (((uint *)bits)[x] & 0xff000000) != 0xff000000;+ −
bits += bytes_per_line;+ −
}+ −
} break;+ −
+ −
case QImage::Format_ARGB8555_Premultiplied:+ −
case QImage::Format_ARGB8565_Premultiplied: {+ −
uchar *bits = data;+ −
uchar *end_bits = data + bytes_per_line;+ −
+ −
for (int y=0; y<height && !has_alpha_pixels; ++y) {+ −
while (bits < end_bits) {+ −
has_alpha_pixels |= bits[0] != 0;+ −
bits += 3;+ −
}+ −
bits = end_bits;+ −
end_bits += bytes_per_line;+ −
}+ −
} break;+ −
+ −
case QImage::Format_ARGB6666_Premultiplied: {+ −
uchar *bits = data;+ −
uchar *end_bits = data + bytes_per_line;+ −
+ −
for (int y=0; y<height && !has_alpha_pixels; ++y) {+ −
while (bits < end_bits) {+ −
has_alpha_pixels |= (bits[0] & 0xfc) != 0;+ −
bits += 3;+ −
}+ −
bits = end_bits;+ −
end_bits += bytes_per_line;+ −
}+ −
} break;+ −
+ −
case QImage::Format_ARGB4444_Premultiplied: {+ −
uchar *bits = data;+ −
uchar *end_bits = data + bytes_per_line;+ −
+ −
for (int y=0; y<height && !has_alpha_pixels; ++y) {+ −
while (bits < end_bits) {+ −
has_alpha_pixels |= (bits[0] & 0xf0) != 0;+ −
bits += 2;+ −
}+ −
bits = end_bits;+ −
end_bits += bytes_per_line;+ −
}+ −
} break;+ −
+ −
default:+ −
break;+ −
}+ −
+ −
return has_alpha_pixels;+ −
}+ −
+ −
/*!+ −
\class QImage+ −
+ −
\ingroup painting+ −
\ingroup shared+ −
+ −
\reentrant+ −
+ −
\brief The QImage class provides a hardware-independent image+ −
representation that allows direct access to the pixel data, and+ −
can be used as a paint device.+ −
+ −
Qt provides four classes for handling image data: QImage, QPixmap,+ −
QBitmap and QPicture. QImage is designed and optimized for I/O,+ −
and for direct pixel access and manipulation, while QPixmap is+ −
designed and optimized for showing images on screen. QBitmap is+ −
only a convenience class that inherits QPixmap, ensuring a+ −
depth of 1. Finally, the QPicture class is a paint device that+ −
records and replays QPainter commands.+ −
+ −
Because QImage is a QPaintDevice subclass, QPainter can be used to+ −
draw directly onto images. When using QPainter on a QImage, the+ −
painting can be performed in another thread than the current GUI+ −
thread.+ −
+ −
The QImage class supports several image formats described by the+ −
\l Format enum. These include monochrome, 8-bit, 32-bit and+ −
alpha-blended images which are available in all versions of Qt+ −
4.x.+ −
+ −
QImage provides a collection of functions that can be used to+ −
obtain a variety of information about the image. There are also+ −
several functions that enables transformation of the image.+ −
+ −
QImage objects can be passed around by value since the QImage+ −
class uses \l{Implicit Data Sharing}{implicit data+ −
sharing}. QImage objects can also be streamed and compared.+ −
+ −
\note If you would like to load QImage objects in a static build of Qt,+ −
refer to the \l{How To Create Qt Plugins#Static Plugins}{Plugin HowTo}.+ −
+ −
\warning Painting on a QImage with the format+ −
QImage::Format_Indexed8 is not supported.+ −
+ −
\tableofcontents+ −
+ −
\section1 Reading and Writing Image Files+ −
+ −
QImage provides several ways of loading an image file: The file+ −
can be loaded when constructing the QImage object, or by using the+ −
load() or loadFromData() functions later on. QImage also provides+ −
the static fromData() function, constructing a QImage from the+ −
given data. When loading an image, the file name can either refer+ −
to an actual file on disk or to one of the application's embedded+ −
resources. See \l{The Qt Resource System} overview for details+ −
on how to embed images and other resource files in the+ −
application's executable.+ −
+ −
Simply call the save() function to save a QImage object.+ −
+ −
The complete list of supported file formats are available through+ −
the QImageReader::supportedImageFormats() and+ −
QImageWriter::supportedImageFormats() functions. New file formats+ −
can be added as plugins. By default, Qt supports the following+ −
formats:+ −
+ −
\table+ −
\header \o Format \o Description \o Qt's support+ −
\row \o BMP \o Windows Bitmap \o Read/write+ −
\row \o GIF \o Graphic Interchange Format (optional) \o Read+ −
\row \o JPG \o Joint Photographic Experts Group \o Read/write+ −
\row \o JPEG \o Joint Photographic Experts Group \o Read/write+ −
\row \o PNG \o Portable Network Graphics \o Read/write+ −
\row \o PBM \o Portable Bitmap \o Read+ −
\row \o PGM \o Portable Graymap \o Read+ −
\row \o PPM \o Portable Pixmap \o Read/write+ −
\row \o TIFF \o Tagged Image File Format \o Read/write+ −
\row \o XBM \o X11 Bitmap \o Read/write+ −
\row \o XPM \o X11 Pixmap \o Read/write+ −
\endtable+ −
+ −
\section1 Image Information+ −
+ −
QImage provides a collection of functions that can be used to+ −
obtain a variety of information about the image:+ −
+ −
\table+ −
\header+ −
\o \o Available Functions+ −
+ −
\row+ −
\o Geometry+ −
\o+ −
+ −
The size(), width(), height(), dotsPerMeterX(), and+ −
dotsPerMeterY() functions provide information about the image size+ −
and aspect ratio.+ −
+ −
The rect() function returns the image's enclosing rectangle. The+ −
valid() function tells if a given pair of coordinates is within+ −
this rectangle. The offset() function returns the number of pixels+ −
by which the image is intended to be offset by when positioned+ −
relative to other images, which also can be manipulated using the+ −
setOffset() function.+ −
+ −
\row+ −
\o Colors+ −
\o+ −
+ −
The color of a pixel can be retrieved by passing its coordinates+ −
to the pixel() function. The pixel() function returns the color+ −
as a QRgb value indepedent of the image's format.+ −
+ −
In case of monochrome and 8-bit images, the colorCount() and+ −
colorTable() functions provide information about the color+ −
components used to store the image data: The colorTable() function+ −
returns the image's entire color table. To obtain a single entry,+ −
use the pixelIndex() function to retrieve the pixel index for a+ −
given pair of coordinates, then use the color() function to+ −
retrieve the color. Note that if you create an 8-bit image+ −
manually, you have to set a valid color table on the image as+ −
well.+ −
+ −
The hasAlphaChannel() function tells if the image's format+ −
respects the alpha channel, or not. The allGray() and+ −
isGrayscale() functions tell whether an image's colors are all+ −
shades of gray.+ −
+ −
See also the \l {QImage#Pixel Manipulation}{Pixel Manipulation}+ −
and \l {QImage#Image Transformations}{Image Transformations}+ −
sections.+ −
+ −
\row+ −
\o Text+ −
\o+ −
+ −
The text() function returns the image text associated with the+ −
given text key. An image's text keys can be retrieved using the+ −
textKeys() function. Use the setText() function to alter an+ −
image's text.+ −
+ −
\row+ −
\o Low-level information+ −
\o+ −
The depth() function returns the depth of the image. The supported+ −
depths are 1 (monochrome), 8 and 32 (for more information see the+ −
\l {QImage#Image Formats}{Image Formats} section).+ −
+ −
The format(), bytesPerLine(), and byteCount() functions provide+ −
low-level information about the data stored in the image.+ −
+ −
The cacheKey() function returns a number that uniquely+ −
identifies the contents of this QImage object.+ −
\endtable+ −
+ −
\section1 Pixel Manipulation+ −
+ −
The functions used to manipulate an image's pixels depend on the+ −
image format. The reason is that monochrome and 8-bit images are+ −
index-based and use a color lookup table, while 32-bit images+ −
store ARGB values directly. For more information on image formats,+ −
see the \l {Image Formats} section.+ −
+ −
In case of a 32-bit image, the setPixel() function can be used to+ −
alter the color of the pixel at the given coordinates to any other+ −
color specified as an ARGB quadruplet. To make a suitable QRgb+ −
value, use the qRgb() (adding a default alpha component to the+ −
given RGB values, i.e. creating an opaque color) or qRgba()+ −
function. For example:+ −
+ −
\table+ −
\row+ −
\o \inlineimage qimage-32bit_scaled.png+ −
\o+ −
\snippet doc/src/snippets/code/src_gui_image_qimage.cpp 0+ −
\header+ −
\o {2,1}32-bit+ −
\endtable+ −
+ −
In case of a 8-bit and monchrome images, the pixel value is only+ −
an index from the image's color table. So the setPixel() function+ −
can only be used to alter the color of the pixel at the given+ −
coordinates to a predefined color from the image's color table,+ −
i.e. it can only change the pixel's index value. To alter or add a+ −
color to an image's color table, use the setColor() function.+ −
+ −
An entry in the color table is an ARGB quadruplet encoded as an+ −
QRgb value. Use the qRgb() and qRgba() functions to make a+ −
suitable QRgb value for use with the setColor() function. For+ −
example:+ −
+ −
\table+ −
\row+ −
\o \inlineimage qimage-8bit_scaled.png+ −
\o+ −
\snippet doc/src/snippets/code/src_gui_image_qimage.cpp 1+ −
\header+ −
\o {2,1} 8-bit+ −
\endtable+ −
+ −
QImage also provide the scanLine() function which returns a+ −
pointer to the pixel data at the scanline with the given index,+ −
and the bits() function which returns a pointer to the first pixel+ −
data (this is equivalent to \c scanLine(0)).+ −
+ −
\section1 Image Formats+ −
+ −
Each pixel stored in a QImage is represented by an integer. The+ −
size of the integer varies depending on the format. QImage+ −
supports several image formats described by the \l Format+ −
enum.+ −
+ −
Monochrome images are stored using 1-bit indexes into a color table+ −
with at most two colors. There are two different types of+ −
monochrome images: big endian (MSB first) or little endian (LSB+ −
first) bit order.+ −
+ −
8-bit images are stored using 8-bit indexes into a color table,+ −
i.e. they have a single byte per pixel. The color table is a+ −
QVector<QRgb>, and the QRgb typedef is equivalent to an unsigned+ −
int containing an ARGB quadruplet on the format 0xAARRGGBB.+ −
+ −
32-bit images have no color table; instead, each pixel contains an+ −
QRgb value. There are three different types of 32-bit images+ −
storing RGB (i.e. 0xffRRGGBB), ARGB and premultiplied ARGB+ −
values respectively. In the premultiplied format the red, green,+ −
and blue channels are multiplied by the alpha component divided by+ −
255.+ −
+ −
An image's format can be retrieved using the format()+ −
function. Use the convertToFormat() functions to convert an image+ −
into another format. The allGray() and isGrayscale() functions+ −
tell whether a color image can safely be converted to a grayscale+ −
image.+ −
+ −
\section1 Image Transformations+ −
+ −
QImage supports a number of functions for creating a new image+ −
that is a transformed version of the original: The+ −
createAlphaMask() function builds and returns a 1-bpp mask from+ −
the alpha buffer in this image, and the createHeuristicMask()+ −
function creates and returns a 1-bpp heuristic mask for this+ −
image. The latter function works by selecting a color from one of+ −
the corners, then chipping away pixels of that color starting at+ −
all the edges.+ −
+ −
The mirrored() function returns a mirror of the image in the+ −
desired direction, the scaled() returns a copy of the image scaled+ −
to a rectangle of the desired measures, and the rgbSwapped() function+ −
constructs a BGR image from a RGB image.+ −
+ −
The scaledToWidth() and scaledToHeight() functions return scaled+ −
copies of the image.+ −
+ −
The transformed() function returns a copy of the image that is+ −
transformed with the given transformation matrix and+ −
transformation mode: Internally, the transformation matrix is+ −
adjusted to compensate for unwanted translation,+ −
i.e. transformed() returns the smallest image containing all+ −
transformed points of the original image. The static trueMatrix()+ −
function returns the actual matrix used for transforming the+ −
image.+ −
+ −
There are also functions for changing attributes of an image+ −
in-place:+ −
+ −
\table+ −
\header \o Function \o Description+ −
\row+ −
\o setDotsPerMeterX()+ −
\o Defines the aspect ratio by setting the number of pixels that fit+ −
horizontally in a physical meter.+ −
\row+ −
\o setDotsPerMeterY()+ −
\o Defines the aspect ratio by setting the number of pixels that fit+ −
vertically in a physical meter.+ −
\row+ −
\o fill()+ −
\o Fills the entire image with the given pixel value.+ −
\row+ −
\o invertPixels()+ −
\o Inverts all pixel values in the image using the given InvertMode value.+ −
\row+ −
\o setColorTable()+ −
\o Sets the color table used to translate color indexes. Only+ −
monochrome and 8-bit formats.+ −
\row+ −
\o setColorCount()+ −
\o Resizes the color table. Only monochrome and 8-bit formats.+ −
+ −
\endtable+ −
+ −
\section1 Legal Information+ −
+ −
For smooth scaling, the transformed() functions use code based on+ −
smooth scaling algorithm by Daniel M. Duley.+ −
+ −
\legalese+ −
Copyright (C) 2004, 2005 Daniel M. Duley+ −
+ −
Redistribution and use in source and binary forms, with or without+ −
modification, are permitted provided that the following conditions+ −
are met:+ −
+ −
1. Redistributions of source code must retain the above copyright+ −
notice, this list of conditions and the following disclaimer.+ −
2. Redistributions in binary form must reproduce the above copyright+ −
notice, this list of conditions and the following disclaimer in the+ −
documentation and/or other materials provided with the distribution.+ −
+ −
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR+ −
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES+ −
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.+ −
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,+ −
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT+ −
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,+ −
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY+ −
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT+ −
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF+ −
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.+ −
\endlegalese+ −
+ −
\sa QImageReader, QImageWriter, QPixmap, QSvgRenderer, {Image Composition Example},+ −
{Image Viewer Example}, {Scribble Example}, {Pixelator Example}+ −
*/+ −
+ −
/*!+ −
\enum QImage::Endian+ −
\compat+ −
+ −
This enum type is used to describe the endianness of the CPU and+ −
graphics hardware. It is provided here for compatibility with earlier versions of Qt.+ −
+ −
Use the \l Format enum instead. The \l Format enum specify the+ −
endianess for monchrome formats, but for other formats the+ −
endianess is not relevant.+ −
+ −
\value IgnoreEndian Endianness does not matter. Useful for some+ −
operations that are independent of endianness.+ −
\value BigEndian Most significant bit first or network byte order, as on SPARC, PowerPC, and Motorola CPUs.+ −
\value LittleEndian Least significant bit first or little endian byte order, as on Intel x86.+ −
*/+ −
+ −
/*!+ −
\enum QImage::InvertMode+ −
+ −
This enum type is used to describe how pixel values should be+ −
inverted in the invertPixels() function.+ −
+ −
\value InvertRgb Invert only the RGB values and leave the alpha+ −
channel unchanged.+ −
+ −
\value InvertRgba Invert all channels, including the alpha channel.+ −
+ −
\sa invertPixels()+ −
*/+ −
+ −
/*!+ −
\enum QImage::Format+ −
+ −
The following image formats are available in Qt. Values greater+ −
than QImage::Format_RGB16 were added in Qt 4.4. See the notes+ −
after the table.+ −
+ −
\value Format_Invalid The image is invalid.+ −
\value Format_Mono The image is stored using 1-bit per pixel. Bytes are+ −
packed with the most significant bit (MSB) first.+ −
\value Format_MonoLSB The image is stored using 1-bit per pixel. Bytes are+ −
packed with the less significant bit (LSB) first.+ −
+ −
\value Format_Indexed8 The image is stored using 8-bit indexes+ −
into a colormap. + −
+ −
\value Format_RGB32 The image is stored using a 32-bit RGB format (0xffRRGGBB).+ −
+ −
\value Format_ARGB32 The image is stored using a 32-bit ARGB+ −
format (0xAARRGGBB).+ −
+ −
\value Format_ARGB32_Premultiplied The image is stored using a premultiplied 32-bit+ −
ARGB format (0xAARRGGBB), i.e. the red,+ −
green, and blue channels are multiplied+ −
by the alpha component divided by 255. (If RR, GG, or BB+ −
has a higher value than the alpha channel, the results are+ −
undefined.) Certain operations (such as image composition+ −
using alpha blending) are faster using premultiplied ARGB32+ −
than with plain ARGB32.+ −
+ −
\value Format_RGB16 The image is stored using a 16-bit RGB format (5-6-5).+ −
+ −
\value Format_ARGB8565_Premultiplied The image is stored using a+ −
premultiplied 24-bit ARGB format (8-5-6-5).+ −
\value Format_RGB666 The image is stored using a 24-bit RGB format (6-6-6).+ −
The unused most significant bits is always zero.+ −
\value Format_ARGB6666_Premultiplied The image is stored using a+ −
premultiplied 24-bit ARGB format (6-6-6-6).+ −
\value Format_RGB555 The image is stored using a 16-bit RGB format (5-5-5).+ −
The unused most significant bit is always zero.+ −
\value Format_ARGB8555_Premultiplied The image is stored using a+ −
premultiplied 24-bit ARGB format (8-5-5-5).+ −
\value Format_RGB888 The image is stored using a 24-bit RGB format (8-8-8).+ −
\value Format_RGB444 The image is stored using a 16-bit RGB format (4-4-4).+ −
The unused bits are always zero.+ −
\value Format_ARGB4444_Premultiplied The image is stored using a+ −
premultiplied 16-bit ARGB format (4-4-4-4).+ −
+ −
\note Drawing into a QImage with QImage::Format_Indexed8 is not+ −
supported.+ −
+ −
\note Do not render into ARGB32 images using QPainter. Using+ −
QImage::Format_ARGB32_Premultiplied is significantly faster.+ −
+ −
\sa format(), convertToFormat()+ −
*/+ −
+ −
/*****************************************************************************+ −
QImage member functions+ −
*****************************************************************************/+ −
+ −
// table to flip bits+ −
static const uchar bitflip[256] = {+ −
/*+ −
open OUT, "| fmt";+ −
for $i (0..255) {+ −
print OUT (($i >> 7) & 0x01) | (($i >> 5) & 0x02) |+ −
(($i >> 3) & 0x04) | (($i >> 1) & 0x08) |+ −
(($i << 7) & 0x80) | (($i << 5) & 0x40) |+ −
(($i << 3) & 0x20) | (($i << 1) & 0x10), ", ";+ −
}+ −
close OUT;+ −
*/+ −
0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240,+ −
8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248,+ −
4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244,+ −
12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252,+ −
2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242,+ −
10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250,+ −
6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246,+ −
14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254,+ −
1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241,+ −
9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249,+ −
5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245,+ −
13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253,+ −
3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243,+ −
11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251,+ −
7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247,+ −
15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255+ −
};+ −
+ −
const uchar *qt_get_bitflip_array() // called from QPixmap code+ −
{+ −
return bitflip;+ −
}+ −
+ −
#if defined(QT3_SUPPORT)+ −
static QImage::Format formatFor(int depth, QImage::Endian bitOrder)+ −
{+ −
QImage::Format format;+ −
if (depth == 1) {+ −
format = bitOrder == QImage::BigEndian ? QImage::Format_Mono : QImage::Format_MonoLSB;+ −
} else if (depth == 8) {+ −
format = QImage::Format_Indexed8;+ −
} else if (depth == 32) {+ −
format = QImage::Format_RGB32;+ −
} else if (depth == 24) {+ −
format = QImage::Format_RGB888;+ −
} else if (depth == 16) {+ −
format = QImage::Format_RGB16;+ −
} else {+ −
qWarning("QImage: Depth %d not supported", depth);+ −
format = QImage::Format_Invalid;+ −
}+ −
return format;+ −
}+ −
#endif+ −
+ −
/*!+ −
Constructs a null image.+ −
+ −
\sa isNull()+ −
*/+ −
+ −
QImage::QImage()+ −
: QPaintDevice()+ −
{+ −
d = 0;+ −
}+ −
+ −
/*!+ −
Constructs an image with the given \a width, \a height and \a+ −
format.+ −
+ −
\warning This will create a QImage with uninitialized data. Call+ −
fill() to fill the image with an appropriate pixel value before+ −
drawing onto it with QPainter.+ −
*/+ −
QImage::QImage(int width, int height, Format format)+ −
: QPaintDevice()+ −
{+ −
d = QImageData::create(QSize(width, height), format, 0);+ −
}+ −
+ −
/*!+ −
Constructs an image with the given \a size and \a format.+ −
+ −
\warning This will create a QImage with uninitialized data. Call+ −
fill() to fill the image with an appropriate pixel value before+ −
drawing onto it with QPainter.+ −
*/+ −
QImage::QImage(const QSize &size, Format format)+ −
: QPaintDevice()+ −
{+ −
d = QImageData::create(size, format, 0);+ −
}+ −
+ −
+ −
+ −
QImageData *QImageData::create(uchar *data, int width, int height, int bpl, QImage::Format format, bool readOnly)+ −
{+ −
QImageData *d = 0;+ −
+ −
if (format == QImage::Format_Invalid)+ −
return d;+ −
+ −
if (!checkPixelSize(format)) {+ −
qWarning("QImageData::create(): Invalid pixel size for format %i",+ −
format);+ −
return 0;+ −
}+ −
+ −
const int depth = depthForFormat(format);+ −
const int calc_bytes_per_line = ((width * depth + 31)/32) * 4;+ −
const int min_bytes_per_line = (width * depth + 7)/8;+ −
+ −
if (bpl <= 0)+ −
bpl = calc_bytes_per_line;+ −
+ −
if (width <= 0 || height <= 0 || !data+ −
|| INT_MAX/sizeof(uchar *) < uint(height)+ −
|| INT_MAX/uint(depth) < uint(width)+ −
|| bpl <= 0+ −
|| height <= 0+ −
|| bpl < min_bytes_per_line+ −
|| INT_MAX/uint(bpl) < uint(height))+ −
return d; // invalid parameter(s)+ −
+ −
d = new QImageData;+ −
d->ref.ref();+ −
+ −
d->own_data = false;+ −
d->ro_data = readOnly;+ −
d->data = data;+ −
d->width = width;+ −
d->height = height;+ −
d->depth = depth;+ −
d->format = format;+ −
+ −
d->bytes_per_line = bpl;+ −
d->nbytes = d->bytes_per_line * height;+ −
+ −
return d;+ −
}+ −
+ −
/*!+ −
Constructs an image with the given \a width, \a height and \a+ −
format, that uses an existing memory buffer, \a data. The \a width+ −
and \a height must be specified in pixels, \a data must be 32-bit aligned,+ −
and each scanline of data in the image must also be 32-bit aligned.+ −
+ −
The buffer must remain valid throughout the life of the+ −
QImage. The image does not delete the buffer at destruction.+ −
+ −
If \a format is an indexed color format, the image color table is+ −
initially empty and must be sufficiently expanded with+ −
setColorCount() or setColorTable() before the image is used.+ −
*/+ −
QImage::QImage(uchar* data, int width, int height, Format format)+ −
: QPaintDevice()+ −
{+ −
d = QImageData::create(data, width, height, 0, format, false);+ −
}+ −
+ −
/*!+ −
Constructs an image with the given \a width, \a height and \a+ −
format, that uses an existing read-only memory buffer, \a+ −
data. The \a width and \a height must be specified in pixels, \a+ −
data must be 32-bit aligned, and each scanline of data in the+ −
image must also be 32-bit aligned.+ −
+ −
The buffer must remain valid throughout the life of the QImage and+ −
all copies that have not been modified or otherwise detached from+ −
the original buffer. The image does not delete the buffer at+ −
destruction.+ −
+ −
If \a format is an indexed color format, the image color table is+ −
initially empty and must be sufficiently expanded with+ −
setColorCount() or setColorTable() before the image is used.+ −
+ −
Unlike the similar QImage constructor that takes a non-const data buffer,+ −
this version will never alter the contents of the buffer. For example,+ −
calling QImage::bits() will return a deep copy of the image, rather than+ −
the buffer passed to the constructor. This allows for the efficiency of+ −
constructing a QImage from raw data, without the possibility of the raw+ −
data being changed.+ −
*/+ −
QImage::QImage(const uchar* data, int width, int height, Format format)+ −
: QPaintDevice()+ −
{+ −
d = QImageData::create(const_cast<uchar*>(data), width, height, 0, format, true);+ −
}+ −
+ −
/*!+ −
Constructs an image with the given \a width, \a height and \a+ −
format, that uses an existing memory buffer, \a data. The \a width+ −
and \a height must be specified in pixels. \a bytesPerLine+ −
specifies the number of bytes per line (stride).+ −
+ −
The buffer must remain valid throughout the life of the+ −
QImage. The image does not delete the buffer at destruction.+ −
+ −
If \a format is an indexed color format, the image color table is+ −
initially empty and must be sufficiently expanded with+ −
setColorCount() or setColorTable() before the image is used.+ −
*/+ −
QImage::QImage(uchar *data, int width, int height, int bytesPerLine, Format format)+ −
:QPaintDevice()+ −
{+ −
d = QImageData::create(data, width, height, bytesPerLine, format, false);+ −
}+ −
+ −
+ −
/*!+ −
Constructs an image with the given \a width, \a height and \a+ −
format, that uses an existing memory buffer, \a data. The \a width+ −
and \a height must be specified in pixels. \a bytesPerLine+ −
specifies the number of bytes per line (stride).+ −
+ −
The buffer must remain valid throughout the life of the+ −
QImage. The image does not delete the buffer at destruction.+ −
+ −
If \a format is an indexed color format, the image color table is+ −
initially empty and must be sufficiently expanded with+ −
setColorCount() or setColorTable() before the image is used.+ −
+ −
Unlike the similar QImage constructor that takes a non-const data buffer,+ −
this version will never alter the contents of the buffer. For example,+ −
calling QImage::bits() will return a deep copy of the image, rather than+ −
the buffer passed to the constructor. This allows for the efficiency of+ −
constructing a QImage from raw data, without the possibility of the raw+ −
data being changed.+ −
*/+ −
+ −
QImage::QImage(const uchar *data, int width, int height, int bytesPerLine, Format format)+ −
:QPaintDevice()+ −
{+ −
d = QImageData::create(const_cast<uchar*>(data), width, height, bytesPerLine, format, true);+ −
}+ −
+ −
/*!+ −
Constructs an image and tries to load the image from the file with+ −
the given \a fileName.+ −
+ −
The loader attempts to read the image using the specified \a+ −
format. If the \a format is not specified (which is the default),+ −
the loader probes the file for a header to guess the file format.+ −
+ −
If the loading of the image failed, this object is a null image.+ −
+ −
The file name can either refer to an actual file on disk or to one+ −
of the application's embedded resources. See the+ −
\l{resources.html}{Resource System} overview for details on how to+ −
embed images and other resource files in the application's+ −
executable.+ −
+ −
\sa isNull(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}+ −
*/+ −
+ −
QImage::QImage(const QString &fileName, const char *format)+ −
: QPaintDevice()+ −
{+ −
d = 0;+ −
load(fileName, format);+ −
}+ −
+ −
/*!+ −
Constructs an image and tries to load the image from the file with+ −
the given \a fileName.+ −
+ −
The loader attempts to read the image using the specified \a+ −
format. If the \a format is not specified (which is the default),+ −
the loader probes the file for a header to guess the file format.+ −
+ −
If the loading of the image failed, this object is a null image.+ −
+ −
The file name can either refer to an actual file on disk or to one+ −
of the application's embedded resources. See the+ −
\l{resources.html}{Resource System} overview for details on how to+ −
embed images and other resource files in the application's+ −
executable.+ −
+ −
You can disable this constructor by defining \c+ −
QT_NO_CAST_FROM_ASCII when you compile your applications. This can+ −
be useful, for example, if you want to ensure that all+ −
user-visible strings go through QObject::tr().+ −
+ −
\sa QString::fromAscii(), isNull(), {QImage#Reading and Writing+ −
Image Files}{Reading and Writing Image Files}+ −
*/+ −
#ifndef QT_NO_CAST_FROM_ASCII+ −
QImage::QImage(const char *fileName, const char *format)+ −
: QPaintDevice()+ −
{+ −
// ### Qt 5: if you remove the QImage(const QByteArray &) QT3_SUPPORT+ −
// constructor, remove this constructor as well. The constructor here+ −
// exists so that QImage("foo.png") compiles without ambiguity.+ −
d = 0;+ −
load(QString::fromAscii(fileName), format);+ −
}+ −
#endif+ −
+ −
#ifndef QT_NO_IMAGEFORMAT_XPM+ −
extern bool qt_read_xpm_image_or_array(QIODevice *device, const char * const *source, QImage &image);+ −
+ −
/*!+ −
Constructs an image from the given \a xpm image.+ −
+ −
Make sure that the image is a valid XPM image. Errors are silently+ −
ignored.+ −
+ −
Note that it's possible to squeeze the XPM variable a little bit+ −
by using an unusual declaration:+ −
+ −
\snippet doc/src/snippets/code/src_gui_image_qimage.cpp 2+ −
+ −
The extra \c const makes the entire definition read-only, which is+ −
slightly more efficient (e.g., when the code is in a shared+ −
library) and able to be stored in ROM with the application.+ −
*/+ −
+ −
QImage::QImage(const char * const xpm[])+ −
: QPaintDevice()+ −
{+ −
d = 0;+ −
if (!xpm)+ −
return;+ −
if (!qt_read_xpm_image_or_array(0, xpm, *this))+ −
// Issue: Warning because the constructor may be ambigious+ −
qWarning("QImage::QImage(), XPM is not supported");+ −
}+ −
#endif // QT_NO_IMAGEFORMAT_XPM+ −
+ −
/*!+ −
\fn QImage::QImage(const QByteArray &data)+ −
+ −
Use the static fromData() function instead.+ −
+ −
\oldcode+ −
QByteArray data;+ −
...+ −
QImage image(data);+ −
\newcode+ −
QByteArray data;+ −
...+ −
QImage image = QImage::fromData(data);+ −
\endcode+ −
*/+ −
+ −
+ −
/*!+ −
Constructs a shallow copy of the given \a image.+ −
+ −
For more information about shallow copies, see the \l {Implicit+ −
Data Sharing} documentation.+ −
+ −
\sa copy()+ −
*/+ −
+ −
QImage::QImage(const QImage &image)+ −
: QPaintDevice()+ −
{+ −
d = image.d;+ −
if (d)+ −
d->ref.ref();+ −
}+ −
+ −
#ifdef QT3_SUPPORT+ −
/*!+ −
\fn QImage::QImage(int width, int height, int depth, int numColors, Endian bitOrder)+ −
+ −
Constructs an image with the given \a width, \a height, \a depth,+ −
\a numColors colors and \a bitOrder.+ −
+ −
Use the constructor that accepts a width, a height and a format+ −
(i.e. specifying the depth and bit order), in combination with the+ −
setColorCount() function, instead.+ −
+ −
\oldcode+ −
QImage image(width, height, depth, numColors);+ −
\newcode+ −
QImage image(width, height, format);+ −
+ −
// For 8 bit images the default number of colors is 256. If+ −
// another number of colors is required it can be specified+ −
// using the setColorCount() function.+ −
image.setColorCount(numColors);+ −
\endcode+ −
*/+ −
+ −
QImage::QImage(int w, int h, int depth, int colorCount, Endian bitOrder)+ −
: QPaintDevice()+ −
{+ −
d = QImageData::create(QSize(w, h), formatFor(depth, bitOrder), colorCount);+ −
}+ −
+ −
/*!+ −
Constructs an image with the given \a size, \a depth, \a numColors+ −
and \a bitOrder.+ −
+ −
Use the constructor that accepts a size and a format+ −
(i.e. specifying the depth and bit order), in combination with the+ −
setColorCount() function, instead.+ −
+ −
\oldcode+ −
QSize mySize(width, height);+ −
QImage image(mySize, depth, numColors);+ −
\newcode+ −
QSize mySize(width, height);+ −
QImage image(mySize, format);+ −
+ −
// For 8 bit images the default number of colors is 256. If+ −
// another number of colors is required it can be specified+ −
// using the setColorCount() function.+ −
image.setColorCount(numColors);+ −
\endcode+ −
*/+ −
QImage::QImage(const QSize& size, int depth, int numColors, Endian bitOrder)+ −
: QPaintDevice()+ −
{+ −
d = QImageData::create(size, formatFor(depth, bitOrder), numColors);+ −
}+ −
+ −
/*!+ −
\fn QImage::QImage(uchar* data, int width, int height, int depth, const QRgb* colortable, int numColors, Endian bitOrder)+ −
+ −
Constructs an image with the given \a width, \a height, depth, \a+ −
colortable, \a numColors and \a bitOrder, that uses an existing+ −
memory buffer, \a data.+ −
+ −
Use the constructor that accepts a uchar pointer, a width, a+ −
height and a format (i.e. specifying the depth and bit order), in+ −
combination with the setColorTable() function, instead.+ −
+ −
\oldcode+ −
uchar *myData;+ −
QRgb *myColorTable;+ −
+ −
QImage image(myData, width, height, depth,+ −
myColorTable, numColors, IgnoreEndian);+ −
\newcode+ −
uchar *myData;+ −
QVector<QRgb> myColorTable;+ −
+ −
QImage image(myData, width, height, format);+ −
image.setColorTable(myColorTable);+ −
\endcode+ −
*/+ −
QImage::QImage(uchar* data, int w, int h, int depth, const QRgb* colortable, int numColors, Endian bitOrder)+ −
: QPaintDevice()+ −
{+ −
d = 0;+ −
Format f = formatFor(depth, bitOrder);+ −
if (f == Format_Invalid)+ −
return;+ −
+ −
const int bytes_per_line = ((w*depth+31)/32)*4; // bytes per scanline+ −
if (w <= 0 || h <= 0 || numColors < 0 || !data+ −
|| INT_MAX/sizeof(uchar *) < uint(h)+ −
|| INT_MAX/uint(depth) < uint(w)+ −
|| bytes_per_line <= 0+ −
|| INT_MAX/uint(bytes_per_line) < uint(h))+ −
return; // invalid parameter(s)+ −
d = new QImageData;+ −
d->ref.ref();+ −
+ −
d->own_data = false;+ −
d->data = data;+ −
d->width = w;+ −
d->height = h;+ −
d->depth = depth;+ −
d->format = f;+ −
if (depth == 32)+ −
numColors = 0;+ −
+ −
d->bytes_per_line = bytes_per_line;+ −
d->nbytes = d->bytes_per_line * h;+ −
if (colortable) {+ −
d->colortable.resize(numColors);+ −
for (int i = 0; i < numColors; ++i)+ −
d->colortable[i] = colortable[i];+ −
} else if (numColors) {+ −
setColorCount(numColors);+ −
}+ −
}+ −
+ −
#ifdef Q_WS_QWS+ −
+ −
/*!+ −
\fn QImage::QImage(uchar* data, int width, int height, int depth, int bytesPerLine, const QRgb* colortable, int numColors, Endian bitOrder)+ −
+ −
Constructs an image with the given \a width, \a height, \a depth,+ −
\a bytesPerLine, \a colortable, \a numColors and \a bitOrder, that+ −
uses an existing memory buffer, \a data. The image does not delete+ −
the buffer at destruction.+ −
+ −
\warning This constructor is only available in Qt for Embedded Linux.+ −
+ −
The data has to be 32-bit aligned, and each scanline of data in the image+ −
must also be 32-bit aligned, so it's no longer possible to specify a custom+ −
\a bytesPerLine value.+ −
*/+ −
QImage::QImage(uchar* data, int w, int h, int depth, int bpl, const QRgb* colortable, int numColors, Endian bitOrder)+ −
: QPaintDevice()+ −
{+ −
d = 0;+ −
Format f = formatFor(depth, bitOrder);+ −
if (f == Format_Invalid)+ −
return;+ −
if (!data || w <= 0 || h <= 0 || depth <= 0 || numColors < 0+ −
|| INT_MAX/sizeof(uchar *) < uint(h)+ −
|| INT_MAX/uint(depth) < uint(w)+ −
|| bpl <= 0+ −
|| INT_MAX/uint(bpl) < uint(h))+ −
return; // invalid parameter(s)+ −
+ −
d = new QImageData;+ −
d->ref.ref();+ −
d->own_data = false;+ −
d->data = data;+ −
d->width = w;+ −
d->height = h;+ −
d->depth = depth;+ −
d->format = f;+ −
if (depth == 32)+ −
numColors = 0;+ −
d->bytes_per_line = bpl;+ −
d->nbytes = d->bytes_per_line * h;+ −
if (colortable) {+ −
d->colortable.resize(numColors);+ −
for (int i = 0; i < numColors; ++i)+ −
d->colortable[i] = colortable[i];+ −
} else if (numColors) {+ −
setColorCount(numColors);+ −
}+ −
}+ −
#endif // Q_WS_QWS+ −
#endif // QT3_SUPPORT+ −
+ −
/*!+ −
Destroys the image and cleans up.+ −
*/+ −
+ −
QImage::~QImage()+ −
{+ −
if (d && !d->ref.deref())+ −
delete d;+ −
}+ −
+ −
/*!+ −
Assigns a shallow copy of the given \a image to this image and+ −
returns a reference to this image.+ −
+ −
For more information about shallow copies, see the \l {Implicit+ −
Data Sharing} documentation.+ −
+ −
\sa copy(), QImage()+ −
*/+ −
+ −
QImage &QImage::operator=(const QImage &image)+ −
{+ −
if (image.d)+ −
image.d->ref.ref();+ −
if (d && !d->ref.deref())+ −
delete d;+ −
d = image.d;+ −
return *this;+ −
}+ −
+ −
/*!+ −
\internal+ −
*/+ −
int QImage::devType() const+ −
{+ −
return QInternal::Image;+ −
}+ −
+ −
/*!+ −
Returns the image as a QVariant.+ −
*/+ −
QImage::operator QVariant() const+ −
{+ −
return QVariant(QVariant::Image, this);+ −
}+ −
+ −
/*!+ −
\internal+ −
+ −
If multiple images share common data, this image makes a copy of+ −
the data and detaches itself from the sharing mechanism, making+ −
sure that this image is the only one referring to the data.+ −
+ −
Nothing is done if there is just a single reference.+ −
+ −
\sa copy(), isDetached(), {Implicit Data Sharing}+ −
*/+ −
void QImage::detach()+ −
{+ −
if (d) {+ −
if (d->is_cached && d->ref == 1)+ −
QImagePixmapCleanupHooks::executeImageHooks(cacheKey());+ −
+ −
if (d->ref != 1 || d->ro_data)+ −
*this = copy();+ −
+ −
if (d)+ −
++d->detach_no;+ −
}+ −
}+ −
+ −
+ −
/*!+ −
\fn QImage QImage::copy(int x, int y, int width, int height) const+ −
\overload+ −
+ −
The returned image is copied from the position (\a x, \a y) in+ −
this image, and will always have the given \a width and \a height.+ −
In areas beyond this image, pixels are set to 0.+ −
+ −
*/+ −
+ −
/*!+ −
\fn QImage QImage::copy(const QRect& rectangle) const+ −
+ −
Returns a sub-area of the image as a new image.+ −
+ −
The returned image is copied from the position (\a+ −
{rectangle}.x(), \a{rectangle}.y()) in this image, and will always+ −
have the size of the given \a rectangle.+ −
+ −
In areas beyond this image, pixels are set to 0. For 32-bit RGB+ −
images, this means black; for 32-bit ARGB images, this means+ −
transparent black; for 8-bit images, this means the color with+ −
index 0 in the color table which can be anything; for 1-bit+ −
images, this means Qt::color0.+ −
+ −
If the given \a rectangle is a null rectangle the entire image is+ −
copied.+ −
+ −
\sa QImage()+ −
*/+ −
QImage QImage::copy(const QRect& r) const+ −
{+ −
if (!d)+ −
return QImage();+ −
+ −
if (r.isNull()) {+ −
QImage image(d->width, d->height, d->format);+ −
if (image.isNull())+ −
return image;+ −
+ −
// Qt for Embedded Linux can create images with non-default bpl+ −
// make sure we don't crash.+ −
if (image.d->nbytes != d->nbytes) {+ −
int bpl = image.bytesPerLine();+ −
for (int i = 0; i < height(); i++)+ −
memcpy(image.scanLine(i), scanLine(i), bpl);+ −
} else+ −
memcpy(image.bits(), bits(), d->nbytes);+ −
image.d->colortable = d->colortable;+ −
image.d->dpmx = d->dpmx;+ −
image.d->dpmy = d->dpmy;+ −
image.d->offset = d->offset;+ −
image.d->has_alpha_clut = d->has_alpha_clut;+ −
#ifndef QT_NO_IMAGE_TEXT+ −
image.d->text = d->text;+ −
#endif+ −
return image;+ −
}+ −
+ −
int x = r.x();+ −
int y = r.y();+ −
int w = r.width();+ −
int h = r.height();+ −
+ −
int dx = 0;+ −
int dy = 0;+ −
if (w <= 0 || h <= 0)+ −
return QImage();+ −
+ −
QImage image(w, h, d->format);+ −
if (image.isNull())+ −
return image;+ −
+ −
if (x < 0 || y < 0 || x + w > d->width || y + h > d->height) {+ −
// bitBlt will not cover entire image - clear it.+ −
image.fill(0);+ −
if (x < 0) {+ −
dx = -x;+ −
x = 0;+ −
}+ −
if (y < 0) {+ −
dy = -y;+ −
y = 0;+ −
}+ −
}+ −
+ −
image.d->colortable = d->colortable;+ −
+ −
int pixels_to_copy = qMax(w - dx, 0);+ −
if (x > d->width)+ −
pixels_to_copy = 0;+ −
else if (pixels_to_copy > d->width - x)+ −
pixels_to_copy = d->width - x;+ −
int lines_to_copy = qMax(h - dy, 0);+ −
if (y > d->height)+ −
lines_to_copy = 0;+ −
else if (lines_to_copy > d->height - y)+ −
lines_to_copy = d->height - y;+ −
+ −
bool byteAligned = true;+ −
if (d->format == Format_Mono || d->format == Format_MonoLSB)+ −
byteAligned = !(dx & 7) && !(x & 7) && !(pixels_to_copy & 7);+ −
+ −
if (byteAligned) {+ −
const uchar *src = d->data + ((x * d->depth) >> 3) + y * d->bytes_per_line;+ −
uchar *dest = image.d->data + ((dx * d->depth) >> 3) + dy * image.d->bytes_per_line;+ −
const int bytes_to_copy = (pixels_to_copy * d->depth) >> 3;+ −
for (int i = 0; i < lines_to_copy; ++i) {+ −
memcpy(dest, src, bytes_to_copy);+ −
src += d->bytes_per_line;+ −
dest += image.d->bytes_per_line;+ −
}+ −
} else if (d->format == Format_Mono) {+ −
const uchar *src = d->data + y * d->bytes_per_line;+ −
uchar *dest = image.d->data + dy * image.d->bytes_per_line;+ −
for (int i = 0; i < lines_to_copy; ++i) {+ −
for (int j = 0; j < pixels_to_copy; ++j) {+ −
if (src[(x + j) >> 3] & (0x80 >> ((x + j) & 7)))+ −
dest[(dx + j) >> 3] |= (0x80 >> ((dx + j) & 7));+ −
else+ −
dest[(dx + j) >> 3] &= ~(0x80 >> ((dx + j) & 7));+ −
}+ −
src += d->bytes_per_line;+ −
dest += image.d->bytes_per_line;+ −
}+ −
} else { // Format_MonoLSB+ −
Q_ASSERT(d->format == Format_MonoLSB);+ −
const uchar *src = d->data + y * d->bytes_per_line;+ −
uchar *dest = image.d->data + dy * image.d->bytes_per_line;+ −
for (int i = 0; i < lines_to_copy; ++i) {+ −
for (int j = 0; j < pixels_to_copy; ++j) {+ −
if (src[(x + j) >> 3] & (0x1 << ((x + j) & 7)))+ −
dest[(dx + j) >> 3] |= (0x1 << ((dx + j) & 7));+ −
else+ −
dest[(dx + j) >> 3] &= ~(0x1 << ((dx + j) & 7));+ −
}+ −
src += d->bytes_per_line;+ −
dest += image.d->bytes_per_line;+ −
}+ −
}+ −
+ −
image.d->dpmx = dotsPerMeterX();+ −
image.d->dpmy = dotsPerMeterY();+ −
image.d->offset = offset();+ −
image.d->has_alpha_clut = d->has_alpha_clut;+ −
#ifndef QT_NO_IMAGE_TEXT+ −
image.d->text = d->text;+ −
#endif+ −
return image;+ −
}+ −
+ −
+ −
/*!+ −
\fn bool QImage::isNull() const+ −
+ −
Returns true if it is a null image, otherwise returns false.+ −
+ −
A null image has all parameters set to zero and no allocated data.+ −
*/+ −
bool QImage::isNull() const+ −
{+ −
return !d;+ −
}+ −
+ −
/*!+ −
\fn int QImage::width() const+ −
+ −
Returns the width of the image.+ −
+ −
\sa {QImage#Image Information}{Image Information}+ −
*/+ −
int QImage::width() const+ −
{+ −
return d ? d->width : 0;+ −
}+ −
+ −
/*!+ −
\fn int QImage::height() const+ −
+ −
Returns the height of the image.+ −
+ −
\sa {QImage#Image Information}{Image Information}+ −
*/+ −
int QImage::height() const+ −
{+ −
return d ? d->height : 0;+ −
}+ −
+ −
/*!+ −
\fn QSize QImage::size() const+ −
+ −
Returns the size of the image, i.e. its width() and height().+ −
+ −
\sa {QImage#Image Information}{Image Information}+ −
*/+ −
QSize QImage::size() const+ −
{+ −
return d ? QSize(d->width, d->height) : QSize(0, 0);+ −
}+ −
+ −
/*!+ −
\fn QRect QImage::rect() const+ −
+ −
Returns the enclosing rectangle (0, 0, width(), height()) of the+ −
image.+ −
+ −
\sa {QImage#Image Information}{Image Information}+ −
*/+ −
QRect QImage::rect() const+ −
{+ −
return d ? QRect(0, 0, d->width, d->height) : QRect();+ −
}+ −
+ −
/*!+ −
Returns the depth of the image.+ −
+ −
The image depth is the number of bits used to encode a single+ −
pixel, also called bits per pixel (bpp).+ −
+ −
The supported depths are 1, 8, 16, 24 and 32.+ −
+ −
\sa convertToFormat(), {QImage#Image Formats}{Image Formats},+ −
{QImage#Image Information}{Image Information}+ −
+ −
*/+ −
int QImage::depth() const+ −
{+ −
return d ? d->depth : 0;+ −
}+ −
+ −
/*!+ −
\obsolete+ −
\fn int QImage::numColors() const+ −
+ −
Returns the size of the color table for the image.+ −
+ −
\sa setColorCount()+ −
*/+ −
int QImage::numColors() const+ −
{+ −
return d ? d->colortable.size() : 0;+ −
}+ −
+ −
/*!+ −
\since 4.6+ −
\fn int QImage::colorCount() const+ −
+ −
Returns the size of the color table for the image.+ −
+ −
Notice that colorCount() returns 0 for 32-bpp images because these+ −
images do not use color tables, but instead encode pixel values as+ −
ARGB quadruplets.+ −
+ −
\sa setColorCount(), {QImage#Image Information}{Image Information}+ −
*/+ −
int QImage::colorCount() const+ −
{+ −
return d ? d->colortable.size() : 0;+ −
}+ −
+ −
+ −
#ifdef QT3_SUPPORT+ −
/*!+ −
\fn QImage::Endian QImage::bitOrder() const+ −
+ −
Returns the bit order for the image. If it is a 1-bpp image, this+ −
function returns either QImage::BigEndian or+ −
QImage::LittleEndian. Otherwise, this function returns+ −
QImage::IgnoreEndian.+ −
+ −
Use the format() function instead for the monochrome formats. For+ −
non-monochrome formats the bit order is irrelevant.+ −
*/+ −
+ −
/*!+ −
Returns a pointer to the scanline pointer table. This is the+ −
beginning of the data block for the image.+ −
Returns 0 in case of an error.+ −
+ −
Use the bits() or scanLine() function instead.+ −
*/+ −
uchar **QImage::jumpTable()+ −
{+ −
if (!d)+ −
return 0;+ −
detach();+ −
+ −
// in case detach() ran out of memory..+ −
if (!d)+ −
return 0;+ −
+ −
if (!d->jumptable) {+ −
d->jumptable = (uchar **)malloc(d->height*sizeof(uchar *));+ −
if (!d->jumptable)+ −
return 0;+ −
uchar *data = d->data;+ −
int height = d->height;+ −
uchar **p = d->jumptable;+ −
while (height--) {+ −
*p++ = data;+ −
data += d->bytes_per_line;+ −
}+ −
}+ −
return d->jumptable;+ −
}+ −
+ −
/*!+ −
\overload+ −
*/+ −
const uchar * const *QImage::jumpTable() const+ −
{+ −
if (!d)+ −
return 0;+ −
if (!d->jumptable) {+ −
d->jumptable = (uchar **)malloc(d->height*sizeof(uchar *));+ −
if (!d->jumptable)+ −
return 0;+ −
uchar *data = d->data;+ −
int height = d->height;+ −
uchar **p = d->jumptable;+ −
while (height--) {+ −
*p++ = data;+ −
data += d->bytes_per_line;+ −
}+ −
}+ −
return d->jumptable;+ −
}+ −
#endif+ −
+ −
/*!+ −
Sets the color table used to translate color indexes to QRgb+ −
values, to the specified \a colors.+ −
+ −
When the image is used, the color table must be large enough to+ −
have entries for all the pixel/index values present in the image,+ −
otherwise the results are undefined.+ −
+ −
\sa colorTable(), setColor(), {QImage#Image Transformations}{Image+ −
Transformations}+ −
*/+ −
void QImage::setColorTable(const QVector<QRgb> colors)+ −
{+ −
if (!d)+ −
return;+ −
detach();+ −
+ −
// In case detach() ran out of memory+ −
if (!d)+ −
return;+ −
+ −
d->colortable = colors;+ −
d->has_alpha_clut = false;+ −
for (int i = 0; i < d->colortable.size(); ++i) {+ −
if (qAlpha(d->colortable.at(i)) != 255) {+ −
d->has_alpha_clut = true;+ −
break;+ −
}+ −
}+ −
}+ −
+ −
/*!+ −
Returns a list of the colors contained in the image's color table,+ −
or an empty list if the image does not have a color table+ −
+ −
\sa setColorTable(), colorCount(), color()+ −
*/+ −
QVector<QRgb> QImage::colorTable() const+ −
{+ −
return d ? d->colortable : QVector<QRgb>();+ −
}+ −
+ −
+ −
/*!+ −
\obsolete+ −
Returns the number of bytes occupied by the image data.+ −
+ −
\sa byteCount()+ −
*/+ −
int QImage::numBytes() const+ −
{+ −
return d ? d->nbytes : 0;+ −
}+ −
+ −
/*!+ −
\since 4.6+ −
Returns the number of bytes occupied by the image data.+ −
+ −
\sa bytesPerLine(), bits(), {QImage#Image Information}{Image+ −
Information}+ −
*/+ −
int QImage::byteCount() const+ −
{+ −
return d ? d->nbytes : 0;+ −
}+ −
+ −
/*!+ −
Returns the number of bytes per image scanline.+ −
+ −
This is equivalent to byteCount() / height().+ −
+ −
\sa scanLine()+ −
*/+ −
int QImage::bytesPerLine() const+ −
{+ −
return (d && d->height) ? d->nbytes / d->height : 0;+ −
}+ −
+ −
+ −
/*!+ −
Returns the color in the color table at index \a i. The first+ −
color is at index 0.+ −
+ −
The colors in an image's color table are specified as ARGB+ −
quadruplets (QRgb). Use the qAlpha(), qRed(), qGreen(), and+ −
qBlue() functions to get the color value components.+ −
+ −
\sa setColor(), pixelIndex(), {QImage#Pixel Manipulation}{Pixel+ −
Manipulation}+ −
*/+ −
QRgb QImage::color(int i) const+ −
{+ −
Q_ASSERT(i < colorCount());+ −
return d ? d->colortable.at(i) : QRgb(uint(-1));+ −
}+ −
+ −
/*!+ −
\fn void QImage::setColor(int index, QRgb colorValue)+ −
+ −
Sets the color at the given \a index in the color table, to the+ −
given to \a colorValue. The color value is an ARGB quadruplet.+ −
+ −
If \a index is outside the current size of the color table, it is+ −
expanded with setColorCount().+ −
+ −
\sa color(), colorCount(), setColorTable(), {QImage#Pixel Manipulation}{Pixel+ −
Manipulation}+ −
*/+ −
void QImage::setColor(int i, QRgb c)+ −
{+ −
if (!d)+ −
return;+ −
if (i < 0 || d->depth > 8 || i >= 1<<d->depth) {+ −
qWarning("QImage::setColor: Index out of bound %d", i);+ −
return;+ −
}+ −
detach();+ −
+ −
// In case detach() run out of memory+ −
if (!d)+ −
return;+ −
+ −
if (i >= d->colortable.size())+ −
setColorCount(i+1);+ −
d->colortable[i] = c;+ −
d->has_alpha_clut |= (qAlpha(c) != 255);+ −
}+ −
+ −
/*!+ −
Returns a pointer to the pixel data at the scanline with index \a+ −
i. The first scanline is at index 0.+ −
+ −
The scanline data is aligned on a 32-bit boundary.+ −
+ −
\warning If you are accessing 32-bpp image data, cast the returned+ −
pointer to \c{QRgb*} (QRgb has a 32-bit size) and use it to+ −
read/write the pixel value. You cannot use the \c{uchar*} pointer+ −
directly, because the pixel format depends on the byte order on+ −
the underlying platform. Use qRed(), qGreen(), qBlue(), and+ −
qAlpha() to access the pixels.+ −
+ −
\sa bytesPerLine(), bits(), {QImage#Pixel Manipulation}{Pixel+ −
Manipulation}+ −
*/+ −
uchar *QImage::scanLine(int i)+ −
{+ −
if (!d)+ −
return 0;+ −
+ −
detach();+ −
+ −
// In case detach() ran out of memory+ −
if (!d)+ −
return 0;+ −
+ −
return d->data + i * d->bytes_per_line;+ −
}+ −
+ −
/*!+ −
\overload+ −
*/+ −
const uchar *QImage::scanLine(int i) const+ −
{+ −
if (!d)+ −
return 0;+ −
+ −
Q_ASSERT(i >= 0 && i < height());+ −
return d->data + i * d->bytes_per_line;+ −
}+ −
+ −
+ −
/*!+ −
Returns a pointer to the first pixel data. This is equivalent to+ −
scanLine(0).+ −
+ −
Note that QImage uses \l{Implicit Data Sharing} {implicit data+ −
sharing}. This function performs a deep copy of the shared pixel+ −
data, thus ensuring that this QImage is the only one using the+ −
current return value.+ −
+ −
\sa scanLine(), byteCount()+ −
*/+ −
uchar *QImage::bits()+ −
{+ −
if (!d)+ −
return 0;+ −
detach();+ −
+ −
// In case detach ran out of memory...+ −
if (!d)+ −
return 0;+ −
+ −
return d->data;+ −
}+ −
+ −
/*!+ −
\overload+ −
+ −
Note that QImage uses \l{Implicit Data Sharing} {implicit data+ −
sharing}, but this function does \e not perform a deep copy of the+ −
shared pixel data, because the returned data is const.+ −
*/+ −
const uchar *QImage::bits() const+ −
{+ −
return d ? d->data : 0;+ −
}+ −
+ −
+ −
+ −
/*!+ −
\fn void QImage::reset()+ −
+ −
Resets all image parameters and deallocates the image data.+ −
+ −
Assign a null image instead.+ −
+ −
\oldcode+ −
QImage image;+ −
image.reset();+ −
\newcode+ −
QImage image;+ −
image = QImage();+ −
\endcode+ −
*/+ −
+ −
/*!+ −
\fn void QImage::fill(uint pixelValue)+ −
+ −
Fills the entire image with the given \a pixelValue.+ −
+ −
If the depth of this image is 1, only the lowest bit is used. If+ −
you say fill(0), fill(2), etc., the image is filled with 0s. If+ −
you say fill(1), fill(3), etc., the image is filled with 1s. If+ −
the depth is 8, the lowest 8 bits are used and if the depth is 16+ −
the lowest 16 bits are used.+ −
+ −
Note: QImage::pixel() returns the color of the pixel at the given+ −
coordinates while QColor::pixel() returns the pixel value of the+ −
underlying window system (essentially an index value), so normally+ −
you will want to use QImage::pixel() to use a color from an+ −
existing image or QColor::rgb() to use a specific color.+ −
+ −
\sa depth(), {QImage#Image Transformations}{Image Transformations}+ −
*/+ −
+ −
void QImage::fill(uint pixel)+ −
{+ −
if (!d)+ −
return;+ −
+ −
detach();+ −
+ −
// In case detach() ran out of memory+ −
if (!d)+ −
return;+ −
+ −
if (d->depth == 1 || d->depth == 8) {+ −
int w = d->width;+ −
if (d->depth == 1) {+ −
if (pixel & 1)+ −
pixel = 0xffffffff;+ −
else+ −
pixel = 0;+ −
w = (w + 7) / 8;+ −
} else {+ −
pixel &= 0xff;+ −
}+ −
qt_rectfill<quint8>(d->data, pixel, 0, 0,+ −
w, d->height, d->bytes_per_line);+ −
return;+ −
} else if (d->depth == 16) {+ −
qt_rectfill<quint16>(reinterpret_cast<quint16*>(d->data), pixel,+ −
0, 0, d->width, d->height, d->bytes_per_line);+ −
return;+ −
} else if (d->depth == 24) {+ −
qt_rectfill<quint24>(reinterpret_cast<quint24*>(d->data), pixel,+ −
0, 0, d->width, d->height, d->bytes_per_line);+ −
return;+ −
}+ −
+ −
if (d->format == Format_RGB32)+ −
pixel |= 0xff000000;+ −
+ −
qt_rectfill<uint>(reinterpret_cast<uint*>(d->data), pixel,+ −
0, 0, d->width, d->height, d->bytes_per_line);+ −
}+ −
+ −
/*!+ −
Inverts all pixel values in the image.+ −
+ −
The given invert \a mode only have a meaning when the image's+ −
depth is 32. The default \a mode is InvertRgb, which leaves the+ −
alpha channel unchanged. If the \a mode is InvertRgba, the alpha+ −
bits are also inverted.+ −
+ −
Inverting an 8-bit image means to replace all pixels using color+ −
index \e i with a pixel using color index 255 minus \e i. The same+ −
is the case for a 1-bit image. Note that the color table is \e not+ −
changed.+ −
+ −
\sa {QImage#Image Transformations}{Image Transformations}+ −
*/+ −
+ −
void QImage::invertPixels(InvertMode mode)+ −
{+ −
if (!d)+ −
return;+ −
+ −
detach();+ −
+ −
// In case detach() ran out of memory+ −
if (!d)+ −
return;+ −
+ −
if (depth() != 32) {+ −
// number of used bytes pr line+ −
int bpl = (d->width * d->depth + 7) / 8;+ −
int pad = d->bytes_per_line - bpl;+ −
uchar *sl = d->data;+ −
for (int y=0; y<d->height; ++y) {+ −
for (int x=0; x<bpl; ++x)+ −
*sl++ ^= 0xff;+ −
sl += pad;+ −
}+ −
} else {+ −
quint32 *p = (quint32*)d->data;+ −
quint32 *end = (quint32*)(d->data + d->nbytes);+ −
uint xorbits = (mode == InvertRgba) ? 0xffffffff : 0x00ffffff;+ −
while (p < end)+ −
*p++ ^= xorbits;+ −
}+ −
}+ −
+ −
/*!+ −
\fn void QImage::invertPixels(bool invertAlpha)+ −
+ −
Use the invertPixels() function that takes a QImage::InvertMode+ −
parameter instead.+ −
*/+ −
+ −
/*! \fn QImage::Endian QImage::systemByteOrder()+ −
+ −
Determines the host computer byte order. Returns+ −
QImage::LittleEndian (LSB first) or QImage::BigEndian (MSB first).+ −
+ −
This function is no longer relevant for QImage. Use QSysInfo+ −
instead.+ −
*/+ −
+ −
// Windows defines these+ −
#if defined(write)+ −
# undef write+ −
#endif+ −
#if defined(close)+ −
# undef close+ −
#endif+ −
#if defined(read)+ −
# undef read+ −
#endif+ −
+ −
/*!+ −
\obsolete+ −
Resizes the color table to contain \a numColors entries.+ −
+ −
\sa setColorCount()+ −
*/+ −
+ −
void QImage::setNumColors(int numColors)+ −
{+ −
setColorCount(numColors);+ −
}+ −
+ −
/*!+ −
\since 4.6+ −
Resizes the color table to contain \a colorCount entries.+ −
+ −
If the color table is expanded, all the extra colors will be set to+ −
transparent (i.e qRgba(0, 0, 0, 0)).+ −
+ −
When the image is used, the color table must be large enough to+ −
have entries for all the pixel/index values present in the image,+ −
otherwise the results are undefined.+ −
+ −
\sa colorCount(), colorTable(), setColor(), {QImage#Image+ −
Transformations}{Image Transformations}+ −
*/+ −
+ −
void QImage::setColorCount(int colorCount)+ −
{+ −
if (!d) {+ −
qWarning("QImage::setColorCount: null image");+ −
return;+ −
}+ −
+ −
detach();+ −
+ −
// In case detach() ran out of memory+ −
if (!d)+ −
return;+ −
+ −
if (colorCount == d->colortable.size())+ −
return;+ −
if (colorCount <= 0) { // use no color table+ −
d->colortable = QVector<QRgb>();+ −
return;+ −
}+ −
int nc = d->colortable.size();+ −
d->colortable.resize(colorCount);+ −
for (int i = nc; i < colorCount; ++i)+ −
d->colortable[i] = 0;+ −
}+ −
+ −
/*!+ −
Returns the format of the image.+ −
+ −
\sa {QImage#Image Formats}{Image Formats}+ −
*/+ −
QImage::Format QImage::format() const+ −
{+ −
return d ? d->format : Format_Invalid;+ −
}+ −
+ −
+ −
#ifdef QT3_SUPPORT+ −
/*!+ −
Returns true if alpha buffer mode is enabled; otherwise returns+ −
false.+ −
+ −
Use the hasAlphaChannel() function instead.+ −
+ −
*/+ −
bool QImage::hasAlphaBuffer() const+ −
{+ −
if (!d)+ −
return false;+ −
+ −
switch (d->format) {+ −
case Format_ARGB32:+ −
case Format_ARGB32_Premultiplied:+ −
case Format_ARGB8565_Premultiplied:+ −
case Format_ARGB8555_Premultiplied:+ −
case Format_ARGB6666_Premultiplied:+ −
case Format_ARGB4444_Premultiplied:+ −
return true;+ −
default:+ −
return false;+ −
}+ −
}+ −
+ −
/*!+ −
Enables alpha buffer mode if \a enable is true, otherwise disables+ −
it. The alpha buffer is used to set a mask when a QImage is+ −
translated to a QPixmap.+ −
+ −
If a monochrome or indexed 8-bit image has alpha channels in their+ −
color tables they will automatically detect that they have an+ −
alpha channel, so this function is not required. To force alpha+ −
channels on 32-bit images, use the convertToFormat() function.+ −
*/+ −
+ −
void QImage::setAlphaBuffer(bool enable)+ −
{+ −
if (!d+ −
|| d->format == Format_Mono+ −
|| d->format == Format_MonoLSB+ −
|| d->format == Format_Indexed8)+ −
return;+ −
if (enable && (d->format == Format_ARGB32 ||+ −
d->format == Format_ARGB32_Premultiplied ||+ −
d->format == Format_ARGB8565_Premultiplied ||+ −
d->format == Format_ARGB6666_Premultiplied ||+ −
d->format == Format_ARGB8555_Premultiplied ||+ −
d->format == Format_ARGB4444_Premultiplied))+ −
{+ −
return;+ −
}+ −
if (!enable && (d->format == Format_RGB32 ||+ −
d->format == Format_RGB555 ||+ −
d->format == Format_RGB666 ||+ −
d->format == Format_RGB888 ||+ −
d->format == Format_RGB444))+ −
{+ −
return;+ −
}+ −
detach();+ −
d->format = (enable ? Format_ARGB32 : Format_RGB32);+ −
}+ −
+ −
+ −
/*!+ −
\fn bool QImage::create(int width, int height, int depth, int numColors, Endian bitOrder)+ −
+ −
Sets the image \a width, \a height, \a depth, its number of colors+ −
(in \a numColors), and bit order. Returns true if successful, or+ −
false if the parameters are incorrect or if memory cannot be+ −
allocated.+ −
+ −
The \a width and \a height is limited to 32767. \a depth must be+ −
1, 8, or 32. If \a depth is 1, \a bitOrder must be set to+ −
either QImage::LittleEndian or QImage::BigEndian. For other depths+ −
\a bitOrder must be QImage::IgnoreEndian.+ −
+ −
This function allocates a color table and a buffer for the image+ −
data. The image data is not initialized. The image buffer is+ −
allocated as a single block that consists of a table of scanLine()+ −
pointers (jumpTable()) and the image data (bits()).+ −
+ −
Use a QImage constructor instead.+ −
*/+ −
bool QImage::create(int width, int height, int depth, int numColors, Endian bitOrder)+ −
{+ −
if (d && !d->ref.deref())+ −
delete d;+ −
d = QImageData::create(QSize(width, height), formatFor(depth, bitOrder), numColors);+ −
return true;+ −
}+ −
+ −
/*!+ −
\fn bool QImage::create(const QSize& size, int depth, int numColors, Endian bitOrder)+ −
\overload+ −
+ −
The width and height are specified in the \a size argument.+ −
+ −
Use a QImage constructor instead.+ −
*/+ −
bool QImage::create(const QSize& size, int depth, int numColors, QImage::Endian bitOrder)+ −
{+ −
if (d && !d->ref.deref())+ −
delete d;+ −
d = QImageData::create(size, formatFor(depth, bitOrder), numColors);+ −
return true;+ −
}+ −
#endif // QT3_SUPPORT+ −
+ −
/*****************************************************************************+ −
Internal routines for converting image depth.+ −
*****************************************************************************/+ −
+ −
typedef void (*Image_Converter)(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags);+ −
+ −
static void convert_ARGB_to_ARGB_PM(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)+ −
{+ −
Q_ASSERT(src->format == QImage::Format_ARGB32);+ −
Q_ASSERT(dest->format == QImage::Format_ARGB32_Premultiplied);+ −
Q_ASSERT(src->width == dest->width);+ −
Q_ASSERT(src->height == dest->height);+ −
+ −
const int src_pad = (src->bytes_per_line >> 2) - src->width;+ −
const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;+ −
const QRgb *src_data = (QRgb *) src->data;+ −
QRgb *dest_data = (QRgb *) dest->data;+ −
+ −
for (int i = 0; i < src->height; ++i) {+ −
const QRgb *end = src_data + src->width;+ −
while (src_data < end) {+ −
*dest_data = PREMUL(*src_data);+ −
++src_data;+ −
++dest_data;+ −
}+ −
src_data += src_pad;+ −
dest_data += dest_pad;+ −
}+ −
}+ −
+ −
static void convert_ARGB_PM_to_ARGB(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)+ −
{+ −
Q_ASSERT(src->format == QImage::Format_ARGB32_Premultiplied);+ −
Q_ASSERT(dest->format == QImage::Format_ARGB32);+ −
Q_ASSERT(src->width == dest->width);+ −
Q_ASSERT(src->height == dest->height);+ −
+ −
const int src_pad = (src->bytes_per_line >> 2) - src->width;+ −
const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;+ −
const QRgb *src_data = (QRgb *) src->data;+ −
QRgb *dest_data = (QRgb *) dest->data;+ −
+ −
for (int i = 0; i < src->height; ++i) {+ −
const QRgb *end = src_data + src->width;+ −
while (src_data < end) {+ −
*dest_data = INV_PREMUL(*src_data);+ −
++src_data;+ −
++dest_data;+ −
}+ −
src_data += src_pad;+ −
dest_data += dest_pad;+ −
}+ −
}+ −
+ −
static void convert_ARGB_PM_to_RGB(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)+ −
{+ −
Q_ASSERT(src->format == QImage::Format_ARGB32_Premultiplied);+ −
Q_ASSERT(dest->format == QImage::Format_RGB32);+ −
Q_ASSERT(src->width == dest->width);+ −
Q_ASSERT(src->height == dest->height);+ −
+ −
const int src_pad = (src->bytes_per_line >> 2) - src->width;+ −
const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;+ −
const QRgb *src_data = (QRgb *) src->data;+ −
QRgb *dest_data = (QRgb *) dest->data;+ −
+ −
for (int i = 0; i < src->height; ++i) {+ −
const QRgb *end = src_data + src->width;+ −
while (src_data < end) {+ −
*dest_data = 0xff000000 | INV_PREMUL(*src_data);+ −
++src_data;+ −
++dest_data;+ −
}+ −
src_data += src_pad;+ −
dest_data += dest_pad;+ −
}+ −
}+ −
+ −
static void swap_bit_order(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)+ −
{+ −
Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB);+ −
Q_ASSERT(dest->format == QImage::Format_Mono || dest->format == QImage::Format_MonoLSB);+ −
Q_ASSERT(src->width == dest->width);+ −
Q_ASSERT(src->height == dest->height);+ −
Q_ASSERT(src->nbytes == dest->nbytes);+ −
Q_ASSERT(src->bytes_per_line == dest->bytes_per_line);+ −
+ −
dest->colortable = src->colortable;+ −
+ −
const uchar *src_data = src->data;+ −
const uchar *end = src->data + src->nbytes;+ −
uchar *dest_data = dest->data;+ −
while (src_data < end) {+ −
*dest_data = bitflip[*src_data];+ −
++src_data;+ −
++dest_data;+ −
}+ −
}+ −
+ −
static void mask_alpha_converter(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)+ −
{+ −
Q_ASSERT(src->width == dest->width);+ −
Q_ASSERT(src->height == dest->height);+ −
+ −
const int src_pad = (src->bytes_per_line >> 2) - src->width;+ −
const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;+ −
const uint *src_data = (const uint *)src->data;+ −
uint *dest_data = (uint *)dest->data;+ −
+ −
for (int i = 0; i < src->height; ++i) {+ −
const uint *end = src_data + src->width;+ −
while (src_data < end) {+ −
*dest_data = *src_data | 0xff000000;+ −
++src_data;+ −
++dest_data;+ −
}+ −
src_data += src_pad;+ −
dest_data += dest_pad;+ −
}+ −
}+ −
+ −
static QVector<QRgb> fix_color_table(const QVector<QRgb> &ctbl, QImage::Format format)+ −
{+ −
QVector<QRgb> colorTable = ctbl;+ −
if (format == QImage::Format_RGB32) {+ −
// check if the color table has alpha+ −
for (int i = 0; i < colorTable.size(); ++i)+ −
if (qAlpha(colorTable.at(i) != 0xff))+ −
colorTable[i] = colorTable.at(i) | 0xff000000;+ −
} else if (format == QImage::Format_ARGB32_Premultiplied) {+ −
// check if the color table has alpha+ −
for (int i = 0; i < colorTable.size(); ++i)+ −
colorTable[i] = PREMUL(colorTable.at(i));+ −
}+ −
return colorTable;+ −
}+ −
+ −
//+ −
// dither_to_1: Uses selected dithering algorithm.+ −
//+ −
+ −
static void dither_to_Mono(QImageData *dst, const QImageData *src,+ −
Qt::ImageConversionFlags flags, bool fromalpha)+ −
{+ −
Q_ASSERT(src->width == dst->width);+ −
Q_ASSERT(src->height == dst->height);+ −
Q_ASSERT(dst->format == QImage::Format_Mono || dst->format == QImage::Format_MonoLSB);+ −
+ −
dst->colortable.clear();+ −
dst->colortable.append(0xffffffff);+ −
dst->colortable.append(0xff000000);+ −
+ −
enum { Threshold, Ordered, Diffuse } dithermode;+ −
+ −
if (fromalpha) {+ −
if ((flags & Qt::AlphaDither_Mask) == Qt::DiffuseAlphaDither)+ −
dithermode = Diffuse;+ −
else if ((flags & Qt::AlphaDither_Mask) == Qt::OrderedAlphaDither)+ −
dithermode = Ordered;+ −
else+ −
dithermode = Threshold;+ −
} else {+ −
if ((flags & Qt::Dither_Mask) == Qt::ThresholdDither)+ −
dithermode = Threshold;+ −
else if ((flags & Qt::Dither_Mask) == Qt::OrderedDither)+ −
dithermode = Ordered;+ −
else+ −
dithermode = Diffuse;+ −
}+ −
+ −
int w = src->width;+ −
int h = src->height;+ −
int d = src->depth;+ −
uchar gray[256]; // gray map for 8 bit images+ −
bool use_gray = (d == 8);+ −
if (use_gray) { // make gray map+ −
if (fromalpha) {+ −
// Alpha 0x00 -> 0 pixels (white)+ −
// Alpha 0xFF -> 1 pixels (black)+ −
for (int i = 0; i < src->colortable.size(); i++)+ −
gray[i] = (255 - (src->colortable.at(i) >> 24));+ −
} else {+ −
// Pixel 0x00 -> 1 pixels (black)+ −
// Pixel 0xFF -> 0 pixels (white)+ −
for (int i = 0; i < src->colortable.size(); i++)+ −
gray[i] = qGray(src->colortable.at(i));+ −
}+ −
}+ −
+ −
uchar *dst_data = dst->data;+ −
int dst_bpl = dst->bytes_per_line;+ −
const uchar *src_data = src->data;+ −
int src_bpl = src->bytes_per_line;+ −
+ −
switch (dithermode) {+ −
case Diffuse: {+ −
QScopedArrayPointer<int> lineBuffer(new int[w * 2]);+ −
int *line1 = lineBuffer.data();+ −
int *line2 = lineBuffer.data() + w;+ −
int bmwidth = (w+7)/8;+ −
+ −
int *b1, *b2;+ −
int wbytes = w * (d/8);+ −
register const uchar *p = src->data;+ −
const uchar *end = p + wbytes;+ −
b2 = line2;+ −
if (use_gray) { // 8 bit image+ −
while (p < end)+ −
*b2++ = gray[*p++];+ −
} else { // 32 bit image+ −
if (fromalpha) {+ −
while (p < end) {+ −
*b2++ = 255 - (*(uint*)p >> 24);+ −
p += 4;+ −
}+ −
} else {+ −
while (p < end) {+ −
*b2++ = qGray(*(uint*)p);+ −
p += 4;+ −
}+ −
}+ −
}+ −
for (int y=0; y<h; y++) { // for each scan line...+ −
int *tmp = line1; line1 = line2; line2 = tmp;+ −
bool not_last_line = y < h - 1;+ −
if (not_last_line) { // calc. grayvals for next line+ −
p = src->data + (y+1)*src->bytes_per_line;+ −
end = p + wbytes;+ −
b2 = line2;+ −
if (use_gray) { // 8 bit image+ −
while (p < end)+ −
*b2++ = gray[*p++];+ −
} else { // 24 bit image+ −
if (fromalpha) {+ −
while (p < end) {+ −
*b2++ = 255 - (*(uint*)p >> 24);+ −
p += 4;+ −
}+ −
} else {+ −
while (p < end) {+ −
*b2++ = qGray(*(uint*)p);+ −
p += 4;+ −
}+ −
}+ −
}+ −
}+ −
+ −
int err;+ −
uchar *p = dst->data + y*dst->bytes_per_line;+ −
memset(p, 0, bmwidth);+ −
b1 = line1;+ −
b2 = line2;+ −
int bit = 7;+ −
for (int x=1; x<=w; x++) {+ −
if (*b1 < 128) { // black pixel+ −
err = *b1++;+ −
*p |= 1 << bit;+ −
} else { // white pixel+ −
err = *b1++ - 255;+ −
}+ −
if (bit == 0) {+ −
p++;+ −
bit = 7;+ −
} else {+ −
bit--;+ −
}+ −
if (x < w)+ −
*b1 += (err*7)>>4; // spread error to right pixel+ −
if (not_last_line) {+ −
b2[0] += (err*5)>>4; // pixel below+ −
if (x > 1)+ −
b2[-1] += (err*3)>>4; // pixel below left+ −
if (x < w)+ −
b2[1] += err>>4; // pixel below right+ −
}+ −
b2++;+ −
}+ −
}+ −
} break;+ −
case Ordered: {+ −
+ −
memset(dst->data, 0, dst->nbytes);+ −
if (d == 32) {+ −
for (int i=0; i<h; i++) {+ −
const uint *p = (const uint *)src_data;+ −
const uint *end = p + w;+ −
uchar *m = dst_data;+ −
int bit = 7;+ −
int j = 0;+ −
if (fromalpha) {+ −
while (p < end) {+ −
if ((*p++ >> 24) >= qt_bayer_matrix[j++&15][i&15])+ −
*m |= 1 << bit;+ −
if (bit == 0) {+ −
m++;+ −
bit = 7;+ −
} else {+ −
bit--;+ −
}+ −
}+ −
} else {+ −
while (p < end) {+ −
if ((uint)qGray(*p++) < qt_bayer_matrix[j++&15][i&15])+ −
*m |= 1 << bit;+ −
if (bit == 0) {+ −
m++;+ −
bit = 7;+ −
} else {+ −
bit--;+ −
}+ −
}+ −
}+ −
dst_data += dst_bpl;+ −
src_data += src_bpl;+ −
}+ −
} else+ −
/* (d == 8) */ {+ −
for (int i=0; i<h; i++) {+ −
const uchar *p = src_data;+ −
const uchar *end = p + w;+ −
uchar *m = dst_data;+ −
int bit = 7;+ −
int j = 0;+ −
while (p < end) {+ −
if ((uint)gray[*p++] < qt_bayer_matrix[j++&15][i&15])+ −
*m |= 1 << bit;+ −
if (bit == 0) {+ −
m++;+ −
bit = 7;+ −
} else {+ −
bit--;+ −
}+ −
}+ −
dst_data += dst_bpl;+ −
src_data += src_bpl;+ −
}+ −
}+ −
} break;+ −
default: { // Threshold:+ −
memset(dst->data, 0, dst->nbytes);+ −
if (d == 32) {+ −
for (int i=0; i<h; i++) {+ −
const uint *p = (const uint *)src_data;+ −
const uint *end = p + w;+ −
uchar *m = dst_data;+ −
int bit = 7;+ −
if (fromalpha) {+ −
while (p < end) {+ −
if ((*p++ >> 24) >= 128)+ −
*m |= 1 << bit; // Set mask "on"+ −
if (bit == 0) {+ −
m++;+ −
bit = 7;+ −
} else {+ −
bit--;+ −
}+ −
}+ −
} else {+ −
while (p < end) {+ −
if (qGray(*p++) < 128)+ −
*m |= 1 << bit; // Set pixel "black"+ −
if (bit == 0) {+ −
m++;+ −
bit = 7;+ −
} else {+ −
bit--;+ −
}+ −
}+ −
}+ −
dst_data += dst_bpl;+ −
src_data += src_bpl;+ −
}+ −
} else+ −
if (d == 8) {+ −
for (int i=0; i<h; i++) {+ −
const uchar *p = src_data;+ −
const uchar *end = p + w;+ −
uchar *m = dst_data;+ −
int bit = 7;+ −
while (p < end) {+ −
if (gray[*p++] < 128)+ −
*m |= 1 << bit; // Set mask "on"/ pixel "black"+ −
if (bit == 0) {+ −
m++;+ −
bit = 7;+ −
} else {+ −
bit--;+ −
}+ −
}+ −
dst_data += dst_bpl;+ −
src_data += src_bpl;+ −
}+ −
}+ −
}+ −
}+ −
+ −
if (dst->format == QImage::Format_MonoLSB) {+ −
// need to swap bit order+ −
uchar *sl = dst->data;+ −
int bpl = (dst->width + 7) * dst->depth / 8;+ −
int pad = dst->bytes_per_line - bpl;+ −
for (int y=0; y<dst->height; ++y) {+ −
for (int x=0; x<bpl; ++x) {+ −
*sl = bitflip[*sl];+ −
++sl;+ −
}+ −
sl += pad;+ −
}+ −
}+ −
}+ −
+ −
static void convert_X_to_Mono(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)+ −
{+ −
dither_to_Mono(dst, src, flags, false);+ −
}+ −
+ −
static void convert_ARGB_PM_to_Mono(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)+ −
{+ −
QScopedPointer<QImageData> tmp(QImageData::create(QSize(src->width, src->height), QImage::Format_ARGB32));+ −
convert_ARGB_PM_to_ARGB(tmp.data(), src, flags);+ −
dither_to_Mono(dst, tmp.data(), flags, false);+ −
}+ −
+ −
//+ −
// convert_32_to_8: Converts a 32 bits depth (true color) to an 8 bit+ −
// image with a colormap. If the 32 bit image has more than 256 colors,+ −
// we convert the red,green and blue bytes into a single byte encoded+ −
// as 6 shades of each of red, green and blue.+ −
//+ −
// if dithering is needed, only 1 color at most is available for alpha.+ −
//+ −
struct QRgbMap {+ −
inline QRgbMap() : used(0) { }+ −
uchar pix;+ −
uchar used;+ −
QRgb rgb;+ −
};+ −
+ −
static void convert_RGB_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)+ −
{+ −
Q_ASSERT(src->format == QImage::Format_RGB32 || src->format == QImage::Format_ARGB32);+ −
Q_ASSERT(dst->format == QImage::Format_Indexed8);+ −
Q_ASSERT(src->width == dst->width);+ −
Q_ASSERT(src->height == dst->height);+ −
+ −
bool do_quant = (flags & Qt::DitherMode_Mask) == Qt::PreferDither+ −
|| src->format == QImage::Format_ARGB32;+ −
uint alpha_mask = src->format == QImage::Format_RGB32 ? 0xff000000 : 0;+ −
+ −
const int tablesize = 997; // prime+ −
QRgbMap table[tablesize];+ −
int pix=0;+ −
+ −
if (!dst->colortable.isEmpty()) {+ −
QVector<QRgb> ctbl = dst->colortable;+ −
dst->colortable.resize(256);+ −
// Preload palette into table.+ −
// Almost same code as pixel insertion below+ −
for (int i = 0; i < dst->colortable.size(); ++i) {+ −
// Find in table...+ −
QRgb p = ctbl.at(i) | alpha_mask;+ −
int hash = p % tablesize;+ −
for (;;) {+ −
if (table[hash].used) {+ −
if (table[hash].rgb == p) {+ −
// Found previous insertion - use it+ −
break;+ −
} else {+ −
// Keep searching...+ −
if (++hash == tablesize) hash = 0;+ −
}+ −
} else {+ −
// Cannot be in table+ −
Q_ASSERT (pix != 256); // too many colors+ −
// Insert into table at this unused position+ −
dst->colortable[pix] = p;+ −
table[hash].pix = pix++;+ −
table[hash].rgb = p;+ −
table[hash].used = 1;+ −
break;+ −
}+ −
}+ −
}+ −
}+ −
+ −
if ((flags & Qt::DitherMode_Mask) != Qt::PreferDither) {+ −
dst->colortable.resize(256);+ −
const uchar *src_data = src->data;+ −
uchar *dest_data = dst->data;+ −
for (int y = 0; y < src->height; y++) { // check if <= 256 colors+ −
const QRgb *s = (const QRgb *)src_data;+ −
uchar *b = dest_data;+ −
for (int x = 0; x < src->width; ++x) {+ −
QRgb p = s[x] | alpha_mask;+ −
int hash = p % tablesize;+ −
for (;;) {+ −
if (table[hash].used) {+ −
if (table[hash].rgb == (p)) {+ −
// Found previous insertion - use it+ −
break;+ −
} else {+ −
// Keep searching...+ −
if (++hash == tablesize) hash = 0;+ −
}+ −
} else {+ −
// Cannot be in table+ −
if (pix == 256) { // too many colors+ −
do_quant = true;+ −
// Break right out+ −
x = src->width;+ −
y = src->height;+ −
} else {+ −
// Insert into table at this unused position+ −
dst->colortable[pix] = p;+ −
table[hash].pix = pix++;+ −
table[hash].rgb = p;+ −
table[hash].used = 1;+ −
}+ −
break;+ −
}+ −
}+ −
*b++ = table[hash].pix; // May occur once incorrectly+ −
}+ −
src_data += src->bytes_per_line;+ −
dest_data += dst->bytes_per_line;+ −
}+ −
}+ −
int numColors = do_quant ? 256 : pix;+ −
+ −
dst->colortable.resize(numColors);+ −
+ −
if (do_quant) { // quantization needed+ −
+ −
#define MAX_R 5+ −
#define MAX_G 5+ −
#define MAX_B 5+ −
#define INDEXOF(r,g,b) (((r)*(MAX_G+1)+(g))*(MAX_B+1)+(b))+ −
+ −
for (int rc=0; rc<=MAX_R; rc++) // build 6x6x6 color cube+ −
for (int gc=0; gc<=MAX_G; gc++)+ −
for (int bc=0; bc<=MAX_B; bc++)+ −
dst->colortable[INDEXOF(rc,gc,bc)] = 0xff000000 | qRgb(rc*255/MAX_R, gc*255/MAX_G, bc*255/MAX_B);+ −
+ −
const uchar *src_data = src->data;+ −
uchar *dest_data = dst->data;+ −
if ((flags & Qt::Dither_Mask) == Qt::ThresholdDither) {+ −
for (int y = 0; y < src->height; y++) {+ −
const QRgb *p = (const QRgb *)src_data;+ −
const QRgb *end = p + src->width;+ −
uchar *b = dest_data;+ −
+ −
while (p < end) {+ −
#define DITHER(p,m) ((uchar) ((p * (m) + 127) / 255))+ −
*b++ =+ −
INDEXOF(+ −
DITHER(qRed(*p), MAX_R),+ −
DITHER(qGreen(*p), MAX_G),+ −
DITHER(qBlue(*p), MAX_B)+ −
);+ −
#undef DITHER+ −
p++;+ −
}+ −
src_data += src->bytes_per_line;+ −
dest_data += dst->bytes_per_line;+ −
}+ −
} else if ((flags & Qt::Dither_Mask) == Qt::DiffuseDither) {+ −
int* line1[3];+ −
int* line2[3];+ −
int* pv[3];+ −
QScopedArrayPointer<int> lineBuffer(new int[src->width * 9]);+ −
line1[0] = lineBuffer.data();+ −
line2[0] = lineBuffer.data() + src->width;+ −
line1[1] = lineBuffer.data() + src->width * 2;+ −
line2[1] = lineBuffer.data() + src->width * 3;+ −
line1[2] = lineBuffer.data() + src->width * 4;+ −
line2[2] = lineBuffer.data() + src->width * 5;+ −
pv[0] = lineBuffer.data() + src->width * 6;+ −
pv[1] = lineBuffer.data() + src->width * 7;+ −
pv[2] = lineBuffer.data() + src->width * 8;+ −
+ −
int endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian);+ −
for (int y = 0; y < src->height; y++) {+ −
const uchar* q = src_data;+ −
const uchar* q2 = y < src->height - 1 ? q + src->bytes_per_line : src->data;+ −
uchar *b = dest_data;+ −
for (int chan = 0; chan < 3; chan++) {+ −
int *l1 = (y&1) ? line2[chan] : line1[chan];+ −
int *l2 = (y&1) ? line1[chan] : line2[chan];+ −
if (y == 0) {+ −
for (int i = 0; i < src->width; i++)+ −
l1[i] = q[i*4+chan+endian];+ −
}+ −
if (y+1 < src->height) {+ −
for (int i = 0; i < src->width; i++)+ −
l2[i] = q2[i*4+chan+endian];+ −
}+ −
// Bi-directional error diffusion+ −
if (y&1) {+ −
for (int x = 0; x < src->width; x++) {+ −
int pix = qMax(qMin(5, (l1[x] * 5 + 128)/ 255), 0);+ −
int err = l1[x] - pix * 255 / 5;+ −
pv[chan][x] = pix;+ −
+ −
// Spread the error around...+ −
if (x + 1< src->width) {+ −
l1[x+1] += (err*7)>>4;+ −
l2[x+1] += err>>4;+ −
}+ −
l2[x]+=(err*5)>>4;+ −
if (x>1)+ −
l2[x-1]+=(err*3)>>4;+ −
}+ −
} else {+ −
for (int x = src->width; x-- > 0;) {+ −
int pix = qMax(qMin(5, (l1[x] * 5 + 128)/ 255), 0);+ −
int err = l1[x] - pix * 255 / 5;+ −
pv[chan][x] = pix;+ −
+ −
// Spread the error around...+ −
if (x > 0) {+ −
l1[x-1] += (err*7)>>4;+ −
l2[x-1] += err>>4;+ −
}+ −
l2[x]+=(err*5)>>4;+ −
if (x + 1 < src->width)+ −
l2[x+1]+=(err*3)>>4;+ −
}+ −
}+ −
}+ −
if (endian) {+ −
for (int x = 0; x < src->width; x++) {+ −
*b++ = INDEXOF(pv[0][x],pv[1][x],pv[2][x]);+ −
}+ −
} else {+ −
for (int x = 0; x < src->width; x++) {+ −
*b++ = INDEXOF(pv[2][x],pv[1][x],pv[0][x]);+ −
}+ −
}+ −
src_data += src->bytes_per_line;+ −
dest_data += dst->bytes_per_line;+ −
}+ −
} else { // OrderedDither+ −
for (int y = 0; y < src->height; y++) {+ −
const QRgb *p = (const QRgb *)src_data;+ −
const QRgb *end = p + src->width;+ −
uchar *b = dest_data;+ −
+ −
int x = 0;+ −
while (p < end) {+ −
uint d = qt_bayer_matrix[y & 15][x & 15] << 8;+ −
+ −
#define DITHER(p, d, m) ((uchar) ((((256 * (m) + (m) + 1)) * (p) + (d)) >> 16))+ −
*b++ =+ −
INDEXOF(+ −
DITHER(qRed(*p), d, MAX_R),+ −
DITHER(qGreen(*p), d, MAX_G),+ −
DITHER(qBlue(*p), d, MAX_B)+ −
);+ −
#undef DITHER+ −
+ −
p++;+ −
x++;+ −
}+ −
src_data += src->bytes_per_line;+ −
dest_data += dst->bytes_per_line;+ −
}+ −
}+ −
+ −
if (src->format != QImage::Format_RGB32+ −
&& src->format != QImage::Format_RGB16) {+ −
const int trans = 216;+ −
Q_ASSERT(dst->colortable.size() > trans);+ −
dst->colortable[trans] = 0;+ −
QScopedPointer<QImageData> mask(QImageData::create(QSize(src->width, src->height), QImage::Format_Mono));+ −
dither_to_Mono(mask.data(), src, flags, true);+ −
uchar *dst_data = dst->data;+ −
const uchar *mask_data = mask->data;+ −
for (int y = 0; y < src->height; y++) {+ −
for (int x = 0; x < src->width ; x++) {+ −
if (!(mask_data[x>>3] & (0x80 >> (x & 7))))+ −
dst_data[x] = trans;+ −
}+ −
mask_data += mask->bytes_per_line;+ −
dst_data += dst->bytes_per_line;+ −
}+ −
dst->has_alpha_clut = true;+ −
}+ −
+ −
#undef MAX_R+ −
#undef MAX_G+ −
#undef MAX_B+ −
#undef INDEXOF+ −
+ −
}+ −
}+ −
+ −
static void convert_ARGB_PM_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)+ −
{+ −
QScopedPointer<QImageData> tmp(QImageData::create(QSize(src->width, src->height), QImage::Format_ARGB32));+ −
convert_ARGB_PM_to_ARGB(tmp.data(), src, flags);+ −
convert_RGB_to_Indexed8(dst, tmp.data(), flags);+ −
}+ −
+ −
static void convert_ARGB_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)+ −
{+ −
convert_RGB_to_Indexed8(dst, src, flags);+ −
}+ −
+ −
static void convert_Indexed8_to_X32(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)+ −
{+ −
Q_ASSERT(src->format == QImage::Format_Indexed8);+ −
Q_ASSERT(dest->format == QImage::Format_RGB32+ −
|| dest->format == QImage::Format_ARGB32+ −
|| dest->format == QImage::Format_ARGB32_Premultiplied);+ −
Q_ASSERT(src->width == dest->width);+ −
Q_ASSERT(src->height == dest->height);+ −
+ −
QVector<QRgb> colorTable = fix_color_table(src->colortable, dest->format);+ −
if (colorTable.size() == 0) {+ −
colorTable.resize(256);+ −
for (int i=0; i<256; ++i)+ −
colorTable[i] = qRgb(i, i, i);+ −
+ −
}+ −
+ −
int w = src->width;+ −
const uchar *src_data = src->data;+ −
uchar *dest_data = dest->data;+ −
for (int y = 0; y < src->height; y++) {+ −
uint *p = (uint *)dest_data;+ −
const uchar *b = src_data;+ −
uint *end = p + w;+ −
+ −
while (p < end)+ −
*p++ = colorTable.at(*b++);+ −
+ −
src_data += src->bytes_per_line;+ −
dest_data += dest->bytes_per_line;+ −
}+ −
}+ −
+ −
static void convert_Mono_to_X32(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)+ −
{+ −
Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB);+ −
Q_ASSERT(dest->format == QImage::Format_RGB32+ −
|| dest->format == QImage::Format_ARGB32+ −
|| dest->format == QImage::Format_ARGB32_Premultiplied);+ −
Q_ASSERT(src->width == dest->width);+ −
Q_ASSERT(src->height == dest->height);+ −
+ −
QVector<QRgb> colorTable = fix_color_table(src->colortable, dest->format);+ −
+ −
// Default to black / white colors+ −
if (colorTable.size() < 2) {+ −
if (colorTable.size() == 0)+ −
colorTable << 0xff000000;+ −
colorTable << 0xffffffff;+ −
}+ −
+ −
const uchar *src_data = src->data;+ −
uchar *dest_data = dest->data;+ −
if (src->format == QImage::Format_Mono) {+ −
for (int y = 0; y < dest->height; y++) {+ −
register uint *p = (uint *)dest_data;+ −
for (int x = 0; x < dest->width; x++)+ −
*p++ = colorTable.at((src_data[x>>3] >> (7 - (x & 7))) & 1);+ −
+ −
src_data += src->bytes_per_line;+ −
dest_data += dest->bytes_per_line;+ −
}+ −
} else {+ −
for (int y = 0; y < dest->height; y++) {+ −
register uint *p = (uint *)dest_data;+ −
for (int x = 0; x < dest->width; x++)+ −
*p++ = colorTable.at((src_data[x>>3] >> (x & 7)) & 1);+ −
+ −
src_data += src->bytes_per_line;+ −
dest_data += dest->bytes_per_line;+ −
}+ −
}+ −
}+ −
+ −
+ −
static void convert_Mono_to_Indexed8(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)+ −
{+ −
Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB);+ −
Q_ASSERT(dest->format == QImage::Format_Indexed8);+ −
Q_ASSERT(src->width == dest->width);+ −
Q_ASSERT(src->height == dest->height);+ −
+ −
QVector<QRgb> ctbl = src->colortable;+ −
if (ctbl.size() > 2) {+ −
ctbl.resize(2);+ −
} else if (ctbl.size() < 2) {+ −
if (ctbl.size() == 0)+ −
ctbl << 0xff000000;+ −
ctbl << 0xffffffff;+ −
}+ −
dest->colortable = ctbl;+ −
dest->has_alpha_clut = src->has_alpha_clut;+ −
+ −
+ −
const uchar *src_data = src->data;+ −
uchar *dest_data = dest->data;+ −
if (src->format == QImage::Format_Mono) {+ −
for (int y = 0; y < dest->height; y++) {+ −
register uchar *p = dest_data;+ −
for (int x = 0; x < dest->width; x++)+ −
*p++ = (src_data[x>>3] >> (7 - (x & 7))) & 1;+ −
src_data += src->bytes_per_line;+ −
dest_data += dest->bytes_per_line;+ −
}+ −
} else {+ −
for (int y = 0; y < dest->height; y++) {+ −
register uchar *p = dest_data;+ −
for (int x = 0; x < dest->width; x++)+ −
*p++ = (src_data[x>>3] >> (x & 7)) & 1;+ −
src_data += src->bytes_per_line;+ −
dest_data += dest->bytes_per_line;+ −
}+ −
}+ −
}+ −
+ −
#define CONVERT_DECL(DST, SRC) \+ −
static void convert_##SRC##_to_##DST(QImageData *dest, \+ −
const QImageData *src, \+ −
Qt::ImageConversionFlags) \+ −
{ \+ −
qt_rectconvert<DST, SRC>(reinterpret_cast<DST*>(dest->data), \+ −
reinterpret_cast<const SRC*>(src->data), \+ −
0, 0, src->width, src->height, \+ −
dest->bytes_per_line, src->bytes_per_line); \+ −
}+ −
+ −
CONVERT_DECL(quint32, quint16)+ −
CONVERT_DECL(quint16, quint32)+ −
CONVERT_DECL(quint32, qargb8565)+ −
CONVERT_DECL(qargb8565, quint32)+ −
CONVERT_DECL(quint32, qrgb555)+ −
CONVERT_DECL(qrgb666, quint32)+ −
CONVERT_DECL(quint32, qrgb666)+ −
CONVERT_DECL(qargb6666, quint32)+ −
CONVERT_DECL(quint32, qargb6666)+ −
CONVERT_DECL(qrgb555, quint32)+ −
#if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16))+ −
CONVERT_DECL(quint16, qrgb555)+ −
CONVERT_DECL(qrgb555, quint16)+ −
#endif+ −
CONVERT_DECL(quint32, qrgb888)+ −
CONVERT_DECL(qrgb888, quint32)+ −
CONVERT_DECL(quint32, qargb8555)+ −
CONVERT_DECL(qargb8555, quint32)+ −
CONVERT_DECL(quint32, qrgb444)+ −
CONVERT_DECL(qrgb444, quint32)+ −
CONVERT_DECL(quint32, qargb4444)+ −
CONVERT_DECL(qargb4444, quint32)+ −
#undef CONVERT_DECL+ −
#define CONVERT_PTR(DST, SRC) convert_##SRC##_to_##DST+ −
+ −
/*+ −
Format_Invalid,+ −
Format_Mono,+ −
Format_MonoLSB,+ −
Format_Indexed8,+ −
Format_RGB32,+ −
Format_ARGB32,+ −
Format_ARGB32_Premultiplied,+ −
Format_RGB16,+ −
Format_ARGB8565_Premultiplied,+ −
Format_RGB666,+ −
Format_ARGB6666_Premultiplied,+ −
Format_RGB555,+ −
Format_ARGB8555_Premultiplied,+ −
Format_RGB888+ −
Format_RGB444+ −
Format_ARGB4444_Premultiplied+ −
*/+ −
+ −
+ −
// first index source, second dest+ −
static const Image_Converter converter_map[QImage::NImageFormats][QImage::NImageFormats] =+ −
{+ −
{+ −
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0+ −
},+ −
{+ −
0,+ −
0,+ −
swap_bit_order,+ −
convert_Mono_to_Indexed8,+ −
convert_Mono_to_X32,+ −
convert_Mono_to_X32,+ −
convert_Mono_to_X32,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0+ −
}, // Format_Mono+ −
+ −
{+ −
0,+ −
swap_bit_order,+ −
0,+ −
convert_Mono_to_Indexed8,+ −
convert_Mono_to_X32,+ −
convert_Mono_to_X32,+ −
convert_Mono_to_X32,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0+ −
}, // Format_MonoLSB+ −
+ −
{+ −
0,+ −
convert_X_to_Mono,+ −
convert_X_to_Mono,+ −
0,+ −
convert_Indexed8_to_X32,+ −
convert_Indexed8_to_X32,+ −
convert_Indexed8_to_X32,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0+ −
}, // Format_Indexed8+ −
+ −
{+ −
0,+ −
convert_X_to_Mono,+ −
convert_X_to_Mono,+ −
convert_RGB_to_Indexed8,+ −
0,+ −
mask_alpha_converter,+ −
mask_alpha_converter,+ −
CONVERT_PTR(quint16, quint32),+ −
CONVERT_PTR(qargb8565, quint32),+ −
CONVERT_PTR(qrgb666, quint32),+ −
CONVERT_PTR(qargb6666, quint32),+ −
CONVERT_PTR(qrgb555, quint32),+ −
CONVERT_PTR(qargb8555, quint32),+ −
CONVERT_PTR(qrgb888, quint32),+ −
CONVERT_PTR(qrgb444, quint32),+ −
CONVERT_PTR(qargb4444, quint32)+ −
}, // Format_RGB32+ −
+ −
{+ −
0,+ −
convert_X_to_Mono,+ −
convert_X_to_Mono,+ −
convert_ARGB_to_Indexed8,+ −
mask_alpha_converter,+ −
0,+ −
convert_ARGB_to_ARGB_PM,+ −
CONVERT_PTR(quint16, quint32),+ −
CONVERT_PTR(qargb8565, quint32),+ −
CONVERT_PTR(qrgb666, quint32),+ −
CONVERT_PTR(qargb6666, quint32),+ −
CONVERT_PTR(qrgb555, quint32),+ −
CONVERT_PTR(qargb8555, quint32),+ −
CONVERT_PTR(qrgb888, quint32),+ −
CONVERT_PTR(qrgb444, quint32),+ −
CONVERT_PTR(qargb4444, quint32)+ −
}, // Format_ARGB32+ −
+ −
{+ −
0,+ −
convert_ARGB_PM_to_Mono,+ −
convert_ARGB_PM_to_Mono,+ −
convert_ARGB_PM_to_Indexed8,+ −
convert_ARGB_PM_to_RGB,+ −
convert_ARGB_PM_to_ARGB,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0+ −
}, // Format_ARGB32_Premultiplied+ −
+ −
{+ −
0,+ −
0,+ −
0,+ −
0,+ −
CONVERT_PTR(quint32, quint16),+ −
CONVERT_PTR(quint32, quint16),+ −
CONVERT_PTR(quint32, quint16),+ −
0,+ −
0,+ −
0,+ −
0,+ −
#if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16))+ −
CONVERT_PTR(qrgb555, quint16),+ −
#else+ −
0,+ −
#endif+ −
0,+ −
0,+ −
0,+ −
0+ −
}, // Format_RGB16+ −
+ −
{+ −
0,+ −
0,+ −
0,+ −
0,+ −
CONVERT_PTR(quint32, qargb8565),+ −
CONVERT_PTR(quint32, qargb8565),+ −
CONVERT_PTR(quint32, qargb8565),+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0+ −
}, // Format_ARGB8565_Premultiplied+ −
+ −
{+ −
0,+ −
0,+ −
0,+ −
0,+ −
CONVERT_PTR(quint32, qrgb666),+ −
CONVERT_PTR(quint32, qrgb666),+ −
CONVERT_PTR(quint32, qrgb666),+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0+ −
}, // Format_RGB666+ −
+ −
{+ −
0,+ −
0,+ −
0,+ −
0,+ −
CONVERT_PTR(quint32, qargb6666),+ −
CONVERT_PTR(quint32, qargb6666),+ −
CONVERT_PTR(quint32, qargb6666),+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0+ −
}, // Format_ARGB6666_Premultiplied+ −
+ −
{+ −
0,+ −
0,+ −
0,+ −
0,+ −
CONVERT_PTR(quint32, qrgb555),+ −
CONVERT_PTR(quint32, qrgb555),+ −
CONVERT_PTR(quint32, qrgb555),+ −
#if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16))+ −
CONVERT_PTR(quint16, qrgb555),+ −
#else+ −
0,+ −
#endif+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0+ −
}, // Format_RGB555+ −
+ −
{+ −
0,+ −
0,+ −
0,+ −
0,+ −
CONVERT_PTR(quint32, qargb8555),+ −
CONVERT_PTR(quint32, qargb8555),+ −
CONVERT_PTR(quint32, qargb8555),+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0+ −
}, // Format_ARGB8555_Premultiplied+ −
+ −
{+ −
0,+ −
0,+ −
0,+ −
0,+ −
CONVERT_PTR(quint32, qrgb888),+ −
CONVERT_PTR(quint32, qrgb888),+ −
CONVERT_PTR(quint32, qrgb888),+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0+ −
}, // Format_RGB888+ −
+ −
{+ −
0,+ −
0,+ −
0,+ −
0,+ −
CONVERT_PTR(quint32, qrgb444),+ −
CONVERT_PTR(quint32, qrgb444),+ −
CONVERT_PTR(quint32, qrgb444),+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0+ −
}, // Format_RGB444+ −
+ −
{+ −
0,+ −
0,+ −
0,+ −
0,+ −
CONVERT_PTR(quint32, qargb4444),+ −
CONVERT_PTR(quint32, qargb4444),+ −
CONVERT_PTR(quint32, qargb4444),+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0,+ −
0+ −
} // Format_ARGB4444_Premultiplied+ −
};+ −
+ −
/*!+ −
Returns a copy of the image in the given \a format.+ −
+ −
The specified image conversion \a flags control how the image data+ −
is handled during the conversion process.+ −
+ −
\sa {QImage#Image Format}{Image Format}+ −
*/+ −
QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) const+ −
{+ −
if (!d || d->format == format)+ −
return *this;+ −
+ −
if (format == Format_Invalid || d->format == Format_Invalid)+ −
return QImage();+ −
+ −
const Image_Converter *converterPtr = &converter_map[d->format][format];+ −
Image_Converter converter = *converterPtr;+ −
if (converter) {+ −
QImage image(d->width, d->height, format);+ −
+ −
QIMAGE_SANITYCHECK_MEMORY(image);+ −
+ −
image.setDotsPerMeterY(dotsPerMeterY());+ −
image.setDotsPerMeterX(dotsPerMeterX());+ −
+ −
#if !defined(QT_NO_IMAGE_TEXT)+ −
image.d->text = d->text;+ −
#endif // !QT_NO_IMAGE_TEXT+ −
+ −
converter(image.d, d, flags);+ −
return image;+ −
}+ −
+ −
Q_ASSERT(format != QImage::Format_ARGB32);+ −
Q_ASSERT(d->format != QImage::Format_ARGB32);+ −
+ −
QImage image = convertToFormat(Format_ARGB32, flags);+ −
return image.convertToFormat(format, flags);+ −
}+ −
+ −
+ −
+ −
static inline int pixel_distance(QRgb p1, QRgb p2) {+ −
int r1 = qRed(p1);+ −
int g1 = qGreen(p1);+ −
int b1 = qBlue(p1);+ −
int a1 = qAlpha(p1);+ −
+ −
int r2 = qRed(p2);+ −
int g2 = qGreen(p2);+ −
int b2 = qBlue(p2);+ −
int a2 = qAlpha(p2);+ −
+ −
return abs(r1 - r2) + abs(g1 - g2) + abs(b1 - b2) + abs(a1 - a2);+ −
}+ −
+ −
static inline int closestMatch(QRgb pixel, const QVector<QRgb> &clut) {+ −
int idx = 0;+ −
int current_distance = INT_MAX;+ −
for (int i=0; i<clut.size(); ++i) {+ −
int dist = pixel_distance(pixel, clut.at(i));+ −
if (dist < current_distance) {+ −
current_distance = dist;+ −
idx = i;+ −
}+ −
}+ −
return idx;+ −
}+ −
+ −
static QImage convertWithPalette(const QImage &src, QImage::Format format,+ −
const QVector<QRgb> &clut) {+ −
QImage dest(src.size(), format);+ −
dest.setColorTable(clut);+ −
+ −
#if !defined(QT_NO_IMAGE_TEXT)+ −
QString textsKeys = src.text();+ −
QStringList textKeyList = textsKeys.split(QLatin1Char('\n'), QString::SkipEmptyParts);+ −
foreach (const QString &textKey, textKeyList) {+ −
QStringList textKeySplitted = textKey.split(QLatin1String(": "));+ −
dest.setText(textKeySplitted[0], textKeySplitted[1]);+ −
}+ −
#endif // !QT_NO_IMAGE_TEXT+ −
+ −
int h = src.height();+ −
int w = src.width();+ −
+ −
QHash<QRgb, int> cache;+ −
+ −
if (format == QImage::Format_Indexed8) {+ −
for (int y=0; y<h; ++y) {+ −
QRgb *src_pixels = (QRgb *) src.scanLine(y);+ −
uchar *dest_pixels = (uchar *) dest.scanLine(y);+ −
for (int x=0; x<w; ++x) {+ −
int src_pixel = src_pixels[x];+ −
int value = cache.value(src_pixel, -1);+ −
if (value == -1) {+ −
value = closestMatch(src_pixel, clut);+ −
cache.insert(src_pixel, value);+ −
}+ −
dest_pixels[x] = (uchar) value;+ −
}+ −
}+ −
} else {+ −
QVector<QRgb> table = clut;+ −
table.resize(2);+ −
for (int y=0; y<h; ++y) {+ −
QRgb *src_pixels = (QRgb *) src.scanLine(y);+ −
for (int x=0; x<w; ++x) {+ −
int src_pixel = src_pixels[x];+ −
int value = cache.value(src_pixel, -1);+ −
if (value == -1) {+ −
value = closestMatch(src_pixel, table);+ −
cache.insert(src_pixel, value);+ −
}+ −
dest.setPixel(x, y, value);+ −
}+ −
}+ −
}+ −
+ −
return dest;+ −
}+ −
+ −
/*!+ −
\overload+ −
+ −
Returns a copy of the image converted to the given \a format,+ −
using the specified \a colorTable.+ −
+ −
Conversion from 32 bit to 8 bit indexed is a slow operation and+ −
will use a straightforward nearest color approach, with no+ −
dithering.+ −
*/+ −
QImage QImage::convertToFormat(Format format, const QVector<QRgb> &colorTable, Qt::ImageConversionFlags flags) const+ −
{+ −
if (d->format == format)+ −
return *this;+ −
+ −
if (format <= QImage::Format_Indexed8 && depth() == 32) {+ −
return convertWithPalette(*this, format, colorTable);+ −
}+ −
+ −
const Image_Converter *converterPtr = &converter_map[d->format][format];+ −
Image_Converter converter = *converterPtr;+ −
if (!converter)+ −
return QImage();+ −
+ −
QImage image(d->width, d->height, format);+ −
QIMAGE_SANITYCHECK_MEMORY(image);+ −
+ −
#if !defined(QT_NO_IMAGE_TEXT)+ −
image.d->text = d->text;+ −
#endif // !QT_NO_IMAGE_TEXT+ −
+ −
converter(image.d, d, flags);+ −
return image;+ −
}+ −
+ −
#ifdef QT3_SUPPORT+ −
/*!+ −
Converts the depth (bpp) of the image to the given \a depth and+ −
returns the converted image. The original image is not changed.+ −
Returns this image if \a depth is equal to the image depth, or a+ −
null image if this image cannot be converted. The \a depth+ −
argument must be 1, 8 or 32. If the image needs to be modified to+ −
fit in a lower-resolution result (e.g. converting from 32-bit to+ −
8-bit), use the \a flags to specify how you'd prefer this to+ −
happen.+ −
+ −
Use the convertToFormat() function instead.+ −
*/+ −
+ −
QImage QImage::convertDepth(int depth, Qt::ImageConversionFlags flags) const+ −
{+ −
if (!d || d->depth == depth)+ −
return *this;+ −
+ −
Format format = formatFor (depth, QImage::LittleEndian);+ −
return convertToFormat(format, flags);+ −
}+ −
#endif+ −
+ −
/*!+ −
\fn bool QImage::valid(const QPoint &pos) const+ −
+ −
Returns true if \a pos is a valid coordinate pair within the+ −
image; otherwise returns false.+ −
+ −
\sa rect(), QRect::contains()+ −
*/+ −
+ −
/*!+ −
\overload+ −
+ −
Returns true if QPoint(\a x, \a y) is a valid coordinate pair+ −
within the image; otherwise returns false.+ −
*/+ −
bool QImage::valid(int x, int y) const+ −
{+ −
return d+ −
&& x >= 0 && x < d->width+ −
&& y >= 0 && y < d->height;+ −
}+ −
+ −
/*!+ −
\fn int QImage::pixelIndex(const QPoint &position) const+ −
+ −
Returns the pixel index at the given \a position.+ −
+ −
If \a position is not valid, or if the image is not a paletted+ −
image (depth() > 8), the results are undefined.+ −
+ −
\sa valid(), depth(), {QImage#Pixel Manipulation}{Pixel Manipulation}+ −
*/+ −
+ −
/*!+ −
\overload+ −
+ −
Returns the pixel index at (\a x, \a y).+ −
*/+ −
int QImage::pixelIndex(int x, int y) const+ −
{+ −
if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) {+ −
qWarning("QImage::pixelIndex: coordinate (%d,%d) out of range", x, y);+ −
return -12345;+ −
}+ −
const uchar * s = scanLine(y);+ −
switch(d->format) {+ −
case Format_Mono:+ −
return (*(s + (x >> 3)) >> (7- (x & 7))) & 1;+ −
case Format_MonoLSB:+ −
return (*(s + (x >> 3)) >> (x & 7)) & 1;+ −
case Format_Indexed8:+ −
return (int)s[x];+ −
default:+ −
qWarning("QImage::pixelIndex: Not applicable for %d-bpp images (no palette)", d->depth);+ −
}+ −
return 0;+ −
}+ −
+ −
+ −
/*!+ −
\fn QRgb QImage::pixel(const QPoint &position) const+ −
+ −
Returns the color of the pixel at the given \a position.+ −
+ −
If the \a position is not valid, the results are undefined.+ −
+ −
\warning This function is expensive when used for massive pixel+ −
manipulations.+ −
+ −
\sa setPixel(), valid(), {QImage#Pixel Manipulation}{Pixel+ −
Manipulation}+ −
*/+ −
+ −
/*!+ −
\overload+ −
+ −
Returns the color of the pixel at coordinates (\a x, \a y).+ −
*/+ −
QRgb QImage::pixel(int x, int y) const+ −
{+ −
if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) {+ −
qWarning("QImage::pixel: coordinate (%d,%d) out of range", x, y);+ −
return 12345;+ −
}+ −
const uchar * s = scanLine(y);+ −
switch(d->format) {+ −
case Format_Mono:+ −
return d->colortable.at((*(s + (x >> 3)) >> (7- (x & 7))) & 1);+ −
case Format_MonoLSB:+ −
return d->colortable.at((*(s + (x >> 3)) >> (x & 7)) & 1);+ −
case Format_Indexed8:+ −
return d->colortable.at((int)s[x]);+ −
case Format_ARGB8565_Premultiplied:+ −
return qt_colorConvert<quint32, qargb8565>(reinterpret_cast<const qargb8565*>(s)[x], 0);+ −
case Format_RGB666:+ −
return qt_colorConvert<quint32, qrgb666>(reinterpret_cast<const qrgb666*>(s)[x], 0);+ −
case Format_ARGB6666_Premultiplied:+ −
return qt_colorConvert<quint32, qargb6666>(reinterpret_cast<const qargb6666*>(s)[x], 0);+ −
case Format_RGB555:+ −
return qt_colorConvert<quint32, qrgb555>(reinterpret_cast<const qrgb555*>(s)[x], 0);+ −
case Format_ARGB8555_Premultiplied:+ −
return qt_colorConvert<quint32, qargb8555>(reinterpret_cast<const qargb8555*>(s)[x], 0);+ −
case Format_RGB888:+ −
return qt_colorConvert<quint32, qrgb888>(reinterpret_cast<const qrgb888*>(s)[x], 0);+ −
case Format_RGB444:+ −
return qt_colorConvert<quint32, qrgb444>(reinterpret_cast<const qrgb444*>(s)[x], 0);+ −
case Format_ARGB4444_Premultiplied:+ −
return qt_colorConvert<quint32, qargb4444>(reinterpret_cast<const qargb4444*>(s)[x], 0);+ −
case Format_RGB16:+ −
return qt_colorConvert<quint32, quint16>(reinterpret_cast<const quint16*>(s)[x], 0);+ −
default:+ −
return ((QRgb*)s)[x];+ −
}+ −
}+ −
+ −
+ −
/*!+ −
\fn void QImage::setPixel(const QPoint &position, uint index_or_rgb)+ −
+ −
Sets the pixel index or color at the given \a position to \a+ −
index_or_rgb.+ −
+ −
If the image's format is either monochrome or 8-bit, the given \a+ −
index_or_rgb value must be an index in the image's color table,+ −
otherwise the parameter must be a QRgb value.+ −
+ −
If \a position is not a valid coordinate pair in the image, or if+ −
\a index_or_rgb >= colorCount() in the case of monochrome and+ −
8-bit images, the result is undefined.+ −
+ −
\warning This function is expensive due to the call of the internal+ −
\c{detach()} function called within; if performance is a concern, we+ −
recommend the use of \l{QImage::}{scanLine()} to access pixel data+ −
directly.+ −
+ −
\sa pixel(), {QImage#Pixel Manipulation}{Pixel Manipulation}+ −
*/+ −
+ −
/*!+ −
\overload+ −
+ −
Sets the pixel index or color at (\a x, \a y) to \a index_or_rgb.+ −
*/+ −
void QImage::setPixel(int x, int y, uint index_or_rgb)+ −
{+ −
if (!d || x < 0 || x >= width() || y < 0 || y >= height()) {+ −
qWarning("QImage::setPixel: coordinate (%d,%d) out of range", x, y);+ −
return;+ −
}+ −
// detach is called from within scanLine+ −
uchar * s = scanLine(y);+ −
const quint32p p = quint32p::fromRawData(index_or_rgb);+ −
switch(d->format) {+ −
case Format_Mono:+ −
case Format_MonoLSB:+ −
if (index_or_rgb > 1) {+ −
qWarning("QImage::setPixel: Index %d out of range", index_or_rgb);+ −
} else if (format() == Format_MonoLSB) {+ −
if (index_or_rgb==0)+ −
*(s + (x >> 3)) &= ~(1 << (x & 7));+ −
else+ −
*(s + (x >> 3)) |= (1 << (x & 7));+ −
} else {+ −
if (index_or_rgb==0)+ −
*(s + (x >> 3)) &= ~(1 << (7-(x & 7)));+ −
else+ −
*(s + (x >> 3)) |= (1 << (7-(x & 7)));+ −
}+ −
break;+ −
case Format_Indexed8:+ −
if (index_or_rgb > (uint)d->colortable.size()) {+ −
qWarning("QImage::setPixel: Index %d out of range", index_or_rgb);+ −
return;+ −
}+ −
s[x] = index_or_rgb;+ −
break;+ −
case Format_RGB32:+ −
//make sure alpha is 255, we depend on it in qdrawhelper for cases+ −
// when image is set as a texture pattern on a qbrush+ −
((uint *)s)[x] = uint(255 << 24) | index_or_rgb;+ −
break;+ −
case Format_ARGB32:+ −
case Format_ARGB32_Premultiplied:+ −
((uint *)s)[x] = index_or_rgb;+ −
break;+ −
case Format_RGB16:+ −
((quint16 *)s)[x] = qt_colorConvert<quint16, quint32p>(p, 0);+ −
break;+ −
case Format_ARGB8565_Premultiplied:+ −
((qargb8565*)s)[x] = qt_colorConvert<qargb8565, quint32p>(p, 0);+ −
break;+ −
case Format_RGB666:+ −
((qrgb666*)s)[x] = qt_colorConvert<qrgb666, quint32p>(p, 0);+ −
break;+ −
case Format_ARGB6666_Premultiplied:+ −
((qargb6666*)s)[x] = qt_colorConvert<qargb6666, quint32p>(p, 0);+ −
break;+ −
case Format_RGB555:+ −
((qrgb555*)s)[x] = qt_colorConvert<qrgb555, quint32p>(p, 0);+ −
break;+ −
case Format_ARGB8555_Premultiplied:+ −
((qargb8555*)s)[x] = qt_colorConvert<qargb8555, quint32p>(p, 0);+ −
break;+ −
case Format_RGB888:+ −
((qrgb888*)s)[x] = qt_colorConvert<qrgb888, quint32p>(p, 0);+ −
break;+ −
case Format_RGB444:+ −
((qrgb444*)s)[x] = qt_colorConvert<qrgb444, quint32p>(p, 0);+ −
break;+ −
case Format_ARGB4444_Premultiplied:+ −
((qargb4444*)s)[x] = qt_colorConvert<qargb4444, quint32p>(p, 0);+ −
break;+ −
case Format_Invalid:+ −
case NImageFormats:+ −
Q_ASSERT(false);+ −
}+ −
}+ −
+ −
#ifdef QT3_SUPPORT+ −
/*!+ −
Converts the bit order of the image to the given \a bitOrder and+ −
returns the converted image. The original image is not changed.+ −
Returns this image if the given \a bitOrder is equal to the image+ −
current bit order, or a null image if this image cannot be+ −
converted.+ −
+ −
Use convertToFormat() instead.+ −
*/+ −
+ −
QImage QImage::convertBitOrder(Endian bitOrder) const+ −
{+ −
if (!d || isNull() || d->depth != 1 || !(bitOrder == BigEndian || bitOrder == LittleEndian))+ −
return QImage();+ −
+ −
if ((d->format == Format_Mono && bitOrder == BigEndian)+ −
|| (d->format == Format_MonoLSB && bitOrder == LittleEndian))+ −
return *this;+ −
+ −
QImage image(d->width, d->height, d->format == Format_Mono ? Format_MonoLSB : Format_Mono);+ −
+ −
const uchar *data = d->data;+ −
const uchar *end = data + d->nbytes;+ −
uchar *ndata = image.d->data;+ −
while (data < end)+ −
*ndata++ = bitflip[*data++];+ −
+ −
image.setDotsPerMeterX(dotsPerMeterX());+ −
image.setDotsPerMeterY(dotsPerMeterY());+ −
+ −
image.d->colortable = d->colortable;+ −
return image;+ −
}+ −
#endif+ −
/*!+ −
Returns true if all the colors in the image are shades of gray+ −
(i.e. their red, green and blue components are equal); otherwise+ −
false.+ −
+ −
Note that this function is slow for images without color table.+ −
+ −
\sa isGrayscale()+ −
*/+ −
bool QImage::allGray() const+ −
{+ −
if (!d)+ −
return true;+ −
+ −
if (d->depth == 32) {+ −
int p = width()*height();+ −
const QRgb* b = (const QRgb*)bits();+ −
while (p--)+ −
if (!qIsGray(*b++))+ −
return false;+ −
} else if (d->depth == 16) {+ −
int p = width()*height();+ −
const ushort* b = (const ushort *)bits();+ −
while (p--)+ −
if (!qIsGray(qt_colorConvert<quint32, quint16>(*b++, 0)))+ −
return false;+ −
} else if (d->format == QImage::Format_RGB888) {+ −
int p = width()*height();+ −
const qrgb888* b = (const qrgb888 *)bits();+ −
while (p--)+ −
if (!qIsGray(qt_colorConvert<quint32, qrgb888>(*b++, 0)))+ −
return false;+ −
} else {+ −
if (d->colortable.isEmpty())+ −
return true;+ −
for (int i = 0; i < colorCount(); i++)+ −
if (!qIsGray(d->colortable.at(i)))+ −
return false;+ −
}+ −
return true;+ −
}+ −
+ −
/*!+ −
For 32-bit images, this function is equivalent to allGray().+ −
+ −
For 8-bpp images, this function returns true if color(i) is+ −
QRgb(i, i, i) for all indexes of the color table; otherwise+ −
returns false.+ −
+ −
\sa allGray(), {QImage#Image Formats}{Image Formats}+ −
*/+ −
bool QImage::isGrayscale() const+ −
{+ −
if (!d)+ −
return false;+ −
+ −
switch (depth()) {+ −
case 32:+ −
case 24:+ −
case 16:+ −
return allGray();+ −
case 8: {+ −
for (int i = 0; i < colorCount(); i++)+ −
if (d->colortable.at(i) != qRgb(i,i,i))+ −
return false;+ −
return true;+ −
}+ −
}+ −
return false;+ −
}+ −
+ −
+ −
/*!+ −
\fn QImage QImage::smoothScale(int width, int height, Qt::AspectRatioMode mode) const+ −
+ −
Use scaled() instead.+ −
+ −
\oldcode+ −
QImage image;+ −
image.smoothScale(width, height, mode);+ −
\newcode+ −
QImage image;+ −
image.scaled(width, height, mode, Qt::SmoothTransformation);+ −
\endcode+ −
*/+ −
+ −
/*!+ −
\fn QImage QImage::smoothScale(const QSize &size, Qt::AspectRatioMode mode) const+ −
\overload+ −
+ −
Use scaled() instead.+ −
+ −
\oldcode+ −
QImage image;+ −
image.smoothScale(size, mode);+ −
\newcode+ −
QImage image;+ −
image.scaled(size, mode, Qt::SmoothTransformation);+ −
\endcode+ −
*/+ −
+ −
/*!+ −
\fn QImage QImage::scaled(int width, int height, Qt::AspectRatioMode aspectRatioMode,+ −
Qt::TransformationMode transformMode) const+ −
\overload+ −
+ −
Returns a copy of the image scaled to a rectangle with the given+ −
\a width and \a height according to the given \a aspectRatioMode+ −
and \a transformMode.+ −
+ −
If either the \a width or the \a height is zero or negative, this+ −
function returns a null image.+ −
*/+ −
+ −
/*!+ −
\fn QImage QImage::scaled(const QSize &size, Qt::AspectRatioMode aspectRatioMode,+ −
Qt::TransformationMode transformMode) const+ −
+ −
Returns a copy of the image scaled to a rectangle defined by the+ −
given \a size according to the given \a aspectRatioMode and \a+ −
transformMode.+ −
+ −
\image qimage-scaling.png+ −
+ −
\list+ −
\i If \a aspectRatioMode is Qt::IgnoreAspectRatio, the image+ −
is scaled to \a size.+ −
\i If \a aspectRatioMode is Qt::KeepAspectRatio, the image is+ −
scaled to a rectangle as large as possible inside \a size, preserving the aspect ratio.+ −
\i If \a aspectRatioMode is Qt::KeepAspectRatioByExpanding,+ −
the image is scaled to a rectangle as small as possible+ −
outside \a size, preserving the aspect ratio.+ −
\endlist+ −
+ −
If the given \a size is empty, this function returns a null image.+ −
+ −
\sa isNull(), {QImage#Image Transformations}{Image+ −
Transformations}+ −
*/+ −
QImage QImage::scaled(const QSize& s, Qt::AspectRatioMode aspectMode, Qt::TransformationMode mode) const+ −
{+ −
if (!d) {+ −
qWarning("QImage::scaled: Image is a null image");+ −
return QImage();+ −
}+ −
if (s.isEmpty())+ −
return QImage();+ −
+ −
QSize newSize = size();+ −
newSize.scale(s, aspectMode);+ −
if (newSize == size())+ −
return *this;+ −
+ −
QTransform wm = QTransform::fromScale((qreal)newSize.width() / width(), (qreal)newSize.height() / height());+ −
QImage img = transformed(wm, mode);+ −
return img;+ −
}+ −
+ −
/*!+ −
\fn QImage QImage::scaledToWidth(int width, Qt::TransformationMode mode) const+ −
+ −
Returns a scaled copy of the image. The returned image is scaled+ −
to the given \a width using the specified transformation \a+ −
mode.+ −
+ −
This function automatically calculates the height of the image so+ −
that its aspect ratio is preserved.+ −
+ −
If the given \a width is 0 or negative, a null image is returned.+ −
+ −
\sa {QImage#Image Transformations}{Image Transformations}+ −
*/+ −
QImage QImage::scaledToWidth(int w, Qt::TransformationMode mode) const+ −
{+ −
if (!d) {+ −
qWarning("QImage::scaleWidth: Image is a null image");+ −
return QImage();+ −
}+ −
if (w <= 0)+ −
return QImage();+ −
+ −
qreal factor = (qreal) w / width();+ −
QTransform wm = QTransform::fromScale(factor, factor);+ −
return transformed(wm, mode);+ −
}+ −
+ −
/*!+ −
\fn QImage QImage::scaledToHeight(int height, Qt::TransformationMode mode) const+ −
+ −
Returns a scaled copy of the image. The returned image is scaled+ −
to the given \a height using the specified transformation \a+ −
mode.+ −
+ −
This function automatically calculates the width of the image so that+ −
the ratio of the image is preserved.+ −
+ −
If the given \a height is 0 or negative, a null image is returned.+ −
+ −
\sa {QImage#Image Transformations}{Image Transformations}+ −
*/+ −
QImage QImage::scaledToHeight(int h, Qt::TransformationMode mode) const+ −
{+ −
if (!d) {+ −
qWarning("QImage::scaleHeight: Image is a null image");+ −
return QImage();+ −
}+ −
if (h <= 0)+ −
return QImage();+ −
+ −
qreal factor = (qreal) h / height();+ −
QTransform wm = QTransform::fromScale(factor, factor);+ −
return transformed(wm, mode);+ −
}+ −
+ −
+ −
/*!+ −
\fn QMatrix QImage::trueMatrix(const QMatrix &matrix, int width, int height)+ −
+ −
Returns the actual matrix used for transforming an image with the+ −
given \a width, \a height and \a matrix.+ −
+ −
When transforming an image using the transformed() function, the+ −
transformation matrix is internally adjusted to compensate for+ −
unwanted translation, i.e. transformed() returns the smallest+ −
image containing all transformed points of the original image.+ −
This function returns the modified matrix, which maps points+ −
correctly from the original image into the new image.+ −
+ −
\sa transformed(), {QImage#Image Transformations}{Image+ −
Transformations}+ −
*/+ −
QMatrix QImage::trueMatrix(const QMatrix &matrix, int w, int h)+ −
{+ −
return trueMatrix(QTransform(matrix), w, h).toAffine();+ −
}+ −
+ −
/*!+ −
Returns a copy of the image that is transformed using the given+ −
transformation \a matrix and transformation \a mode.+ −
+ −
The transformation \a matrix is internally adjusted to compensate+ −
for unwanted translation; i.e. the image produced is the smallest+ −
image that contains all the transformed points of the original+ −
image. Use the trueMatrix() function to retrieve the actual matrix+ −
used for transforming an image.+ −
+ −
\sa trueMatrix(), {QImage#Image Transformations}{Image+ −
Transformations}+ −
*/+ −
QImage QImage::transformed(const QMatrix &matrix, Qt::TransformationMode mode) const+ −
{+ −
return transformed(QTransform(matrix), mode);+ −
}+ −
+ −
/*!+ −
Builds and returns a 1-bpp mask from the alpha buffer in this+ −
image. Returns a null image if the image's format is+ −
QImage::Format_RGB32.+ −
+ −
The \a flags argument is a bitwise-OR of the+ −
Qt::ImageConversionFlags, and controls the conversion+ −
process. Passing 0 for flags sets all the default options.+ −
+ −
The returned image has little-endian bit order (i.e. the image's+ −
format is QImage::Format_MonoLSB), which you can convert to+ −
big-endian (QImage::Format_Mono) using the convertToFormat()+ −
function.+ −
+ −
\sa createHeuristicMask(), {QImage#Image Transformations}{Image+ −
Transformations}+ −
*/+ −
QImage QImage::createAlphaMask(Qt::ImageConversionFlags flags) const+ −
{+ −
if (!d || d->format == QImage::Format_RGB32)+ −
return QImage();+ −
+ −
if (d->depth == 1) {+ −
// A monochrome pixmap, with alpha channels on those two colors.+ −
// Pretty unlikely, so use less efficient solution.+ −
return convertToFormat(Format_Indexed8, flags).createAlphaMask(flags);+ −
}+ −
+ −
QImage mask(d->width, d->height, Format_MonoLSB);+ −
if (!mask.isNull())+ −
dither_to_Mono(mask.d, d, flags, true);+ −
return mask;+ −
}+ −
+ −
#ifndef QT_NO_IMAGE_HEURISTIC_MASK+ −
/*!+ −
Creates and returns a 1-bpp heuristic mask for this image.+ −
+ −
The function works by selecting a color from one of the corners,+ −
then chipping away pixels of that color starting at all the edges.+ −
The four corners vote for which color is to be masked away. In+ −
case of a draw (this generally means that this function is not+ −
applicable to the image), the result is arbitrary.+ −
+ −
The returned image has little-endian bit order (i.e. the image's+ −
format is QImage::Format_MonoLSB), which you can convert to+ −
big-endian (QImage::Format_Mono) using the convertToFormat()+ −
function.+ −
+ −
If \a clipTight is true (the default) the mask is just large+ −
enough to cover the pixels; otherwise, the mask is larger than the+ −
data pixels.+ −
+ −
Note that this function disregards the alpha buffer.+ −
+ −
\sa createAlphaMask(), {QImage#Image Transformations}{Image+ −
Transformations}+ −
*/+ −
+ −
QImage QImage::createHeuristicMask(bool clipTight) const+ −
{+ −
if (!d)+ −
return QImage();+ −
+ −
if (d->depth != 32) {+ −
QImage img32 = convertToFormat(Format_RGB32);+ −
return img32.createHeuristicMask(clipTight);+ −
}+ −
+ −
#define PIX(x,y) (*((QRgb*)scanLine(y)+x) & 0x00ffffff)+ −
+ −
int w = width();+ −
int h = height();+ −
QImage m(w, h, Format_MonoLSB);+ −
m.setColorCount(2);+ −
m.setColor(0, QColor(Qt::color0).rgba());+ −
m.setColor(1, QColor(Qt::color1).rgba());+ −
m.fill(0xff);+ −
+ −
QRgb background = PIX(0,0);+ −
if (background != PIX(w-1,0) &&+ −
background != PIX(0,h-1) &&+ −
background != PIX(w-1,h-1)) {+ −
background = PIX(w-1,0);+ −
if (background != PIX(w-1,h-1) &&+ −
background != PIX(0,h-1) &&+ −
PIX(0,h-1) == PIX(w-1,h-1)) {+ −
background = PIX(w-1,h-1);+ −
}+ −
}+ −
+ −
int x,y;+ −
bool done = false;+ −
uchar *ypp, *ypc, *ypn;+ −
while(!done) {+ −
done = true;+ −
ypn = m.scanLine(0);+ −
ypc = 0;+ −
for (y = 0; y < h; y++) {+ −
ypp = ypc;+ −
ypc = ypn;+ −
ypn = (y == h-1) ? 0 : m.scanLine(y+1);+ −
QRgb *p = (QRgb *)scanLine(y);+ −
for (x = 0; x < w; x++) {+ −
// slowness here - it's possible to do six of these tests+ −
// together in one go. oh well.+ −
if ((x == 0 || y == 0 || x == w-1 || y == h-1 ||+ −
!(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) ||+ −
!(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) ||+ −
!(*(ypp + (x >> 3)) & (1 << (x & 7))) ||+ −
!(*(ypn + (x >> 3)) & (1 << (x & 7)))) &&+ −
( (*(ypc + (x >> 3)) & (1 << (x & 7)))) &&+ −
((*p & 0x00ffffff) == background)) {+ −
done = false;+ −
*(ypc + (x >> 3)) &= ~(1 << (x & 7));+ −
}+ −
p++;+ −
}+ −
}+ −
}+ −
+ −
if (!clipTight) {+ −
ypn = m.scanLine(0);+ −
ypc = 0;+ −
for (y = 0; y < h; y++) {+ −
ypp = ypc;+ −
ypc = ypn;+ −
ypn = (y == h-1) ? 0 : m.scanLine(y+1);+ −
QRgb *p = (QRgb *)scanLine(y);+ −
for (x = 0; x < w; x++) {+ −
if ((*p & 0x00ffffff) != background) {+ −
if (x > 0)+ −
*(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7));+ −
if (x < w-1)+ −
*(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7));+ −
if (y > 0)+ −
*(ypp + (x >> 3)) |= (1 << (x & 7));+ −
if (y < h-1)+ −
*(ypn + (x >> 3)) |= (1 << (x & 7));+ −
}+ −
p++;+ −
}+ −
}+ −
}+ −
+ −
#undef PIX+ −
+ −
return m;+ −
}+ −
#endif //QT_NO_IMAGE_HEURISTIC_MASK+ −
+ −
/*!+ −
Creates and returns a mask for this image based on the given \a+ −
color value. If the \a mode is MaskInColor (the default value),+ −
all pixels matching \a color will be opaque pixels in the mask. If+ −
\a mode is MaskOutColor, all pixels matching the given color will+ −
be transparent.+ −
+ −
\sa createAlphaMask(), createHeuristicMask()+ −
*/+ −
+ −
QImage QImage::createMaskFromColor(QRgb color, Qt::MaskMode mode) const+ −
{+ −
if (!d)+ −
return QImage();+ −
QImage maskImage(size(), QImage::Format_MonoLSB);+ −
maskImage.fill(0);+ −
uchar *s = maskImage.bits();+ −
+ −
if (depth() == 32) {+ −
for (int h = 0; h < d->height; h++) {+ −
const uint *sl = (uint *) scanLine(h);+ −
for (int w = 0; w < d->width; w++) {+ −
if (sl[w] == color)+ −
*(s + (w >> 3)) |= (1 << (w & 7));+ −
}+ −
s += maskImage.bytesPerLine();+ −
}+ −
} else {+ −
for (int h = 0; h < d->height; h++) {+ −
for (int w = 0; w < d->width; w++) {+ −
if ((uint) pixel(w, h) == color)+ −
*(s + (w >> 3)) |= (1 << (w & 7));+ −
}+ −
s += maskImage.bytesPerLine();+ −
}+ −
}+ −
if (mode == Qt::MaskOutColor)+ −
maskImage.invertPixels();+ −
return maskImage;+ −
}+ −
+ −
+ −
/*+ −
This code is contributed by Philipp Lang,+ −
GeneriCom Software Germany (www.generi.com)+ −
under the terms of the QPL, Version 1.0+ −
*/+ −
+ −
/*!+ −
\fn QImage QImage::mirror(bool horizontal, bool vertical) const+ −
+ −
Use mirrored() instead.+ −
*/+ −
+ −
/*!+ −
Returns a mirror of the image, mirrored in the horizontal and/or+ −
the vertical direction depending on whether \a horizontal and \a+ −
vertical are set to true or false.+ −
+ −
Note that the original image is not changed.+ −
+ −
\sa {QImage#Image Transformations}{Image Transformations}+ −
*/+ −
QImage QImage::mirrored(bool horizontal, bool vertical) const+ −
{+ −
if (!d)+ −
return QImage();+ −
+ −
if ((d->width <= 1 && d->height <= 1) || (!horizontal && !vertical))+ −
return *this;+ −
+ −
int w = d->width;+ −
int h = d->height;+ −
// Create result image, copy colormap+ −
QImage result(d->width, d->height, d->format);+ −
+ −
// check if we ran out of of memory..+ −
if (!result.d)+ −
return QImage();+ −
+ −
result.d->colortable = d->colortable;+ −
result.d->has_alpha_clut = d->has_alpha_clut;+ −
+ −
if (depth() == 1)+ −
w = (w+7)/8;+ −
int dxi = horizontal ? -1 : 1;+ −
int dxs = horizontal ? w-1 : 0;+ −
int dyi = vertical ? -1 : 1;+ −
int dy = vertical ? h-1: 0;+ −
+ −
// 1 bit, 8 bit+ −
if (d->depth == 1 || d->depth == 8) {+ −
for (int sy = 0; sy < h; sy++, dy += dyi) {+ −
quint8* ssl = (quint8*)(d->data + sy*d->bytes_per_line);+ −
quint8* dsl = (quint8*)(result.d->data + dy*result.d->bytes_per_line);+ −
int dx = dxs;+ −
for (int sx = 0; sx < w; sx++, dx += dxi)+ −
dsl[dx] = ssl[sx];+ −
}+ −
}+ −
// 16 bit+ −
else if (d->depth == 16) {+ −
for (int sy = 0; sy < h; sy++, dy += dyi) {+ −
quint16* ssl = (quint16*)(d->data + sy*d->bytes_per_line);+ −
quint16* dsl = (quint16*)(result.d->data + dy*result.d->bytes_per_line);+ −
int dx = dxs;+ −
for (int sx = 0; sx < w; sx++, dx += dxi)+ −
dsl[dx] = ssl[sx];+ −
}+ −
}+ −
// 24 bit+ −
else if (d->depth == 24) {+ −
for (int sy = 0; sy < h; sy++, dy += dyi) {+ −
quint24* ssl = (quint24*)(d->data + sy*d->bytes_per_line);+ −
quint24* dsl = (quint24*)(result.d->data + dy*result.d->bytes_per_line);+ −
int dx = dxs;+ −
for (int sx = 0; sx < w; sx++, dx += dxi)+ −
dsl[dx] = ssl[sx];+ −
}+ −
}+ −
// 32 bit+ −
else if (d->depth == 32) {+ −
for (int sy = 0; sy < h; sy++, dy += dyi) {+ −
quint32* ssl = (quint32*)(d->data + sy*d->bytes_per_line);+ −
quint32* dsl = (quint32*)(result.d->data + dy*result.d->bytes_per_line);+ −
int dx = dxs;+ −
for (int sx = 0; sx < w; sx++, dx += dxi)+ −
dsl[dx] = ssl[sx];+ −
}+ −
}+ −
+ −
// special handling of 1 bit images for horizontal mirroring+ −
if (horizontal && d->depth == 1) {+ −
int shift = width() % 8;+ −
for (int y = h-1; y >= 0; y--) {+ −
quint8* a0 = (quint8*)(result.d->data + y*d->bytes_per_line);+ −
// Swap bytes+ −
quint8* a = a0+dxs;+ −
while (a >= a0) {+ −
*a = bitflip[*a];+ −
a--;+ −
}+ −
// Shift bits if unaligned+ −
if (shift != 0) {+ −
a = a0+dxs;+ −
quint8 c = 0;+ −
if (format() == Format_MonoLSB) {+ −
while (a >= a0) {+ −
quint8 nc = *a << shift;+ −
*a = (*a >> (8-shift)) | c;+ −
--a;+ −
c = nc;+ −
}+ −
} else {+ −
while (a >= a0) {+ −
quint8 nc = *a >> shift;+ −
*a = (*a << (8-shift)) | c;+ −
--a;+ −
c = nc;+ −
}+ −
}+ −
}+ −
}+ −
}+ −
+ −
return result;+ −
}+ −
+ −
/*!+ −
\fn QImage QImage::swapRGB() const+ −
+ −
Use rgbSwapped() instead.+ −
+ −
\omit+ −
Returns a QImage in which the values of the red and blue+ −
components of all pixels have been swapped, effectively converting+ −
an RGB image to an BGR image. The original QImage is not changed.+ −
\endomit+ −
*/+ −
+ −
/*!+ −
Returns a QImage in which the values of the red and blue+ −
components of all pixels have been swapped, effectively converting+ −
an RGB image to an BGR image.+ −
+ −
The original QImage is not changed.+ −
+ −
\sa {QImage#Image Transformations}{Image Transformations}+ −
*/+ −
QImage QImage::rgbSwapped() const+ −
{+ −
if (isNull())+ −
return *this;+ −
QImage res;+ −
switch (d->format) {+ −
case Format_Invalid:+ −
case NImageFormats:+ −
Q_ASSERT(false);+ −
break;+ −
case Format_Mono:+ −
case Format_MonoLSB:+ −
case Format_Indexed8:+ −
res = copy();+ −
for (int i = 0; i < res.d->colortable.size(); i++) {+ −
QRgb c = res.d->colortable.at(i);+ −
res.d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00));+ −
}+ −
break;+ −
case Format_RGB32:+ −
case Format_ARGB32:+ −
case Format_ARGB32_Premultiplied:+ −
res = QImage(d->width, d->height, d->format);+ −
for (int i = 0; i < d->height; i++) {+ −
uint *q = (uint*)res.scanLine(i);+ −
uint *p = (uint*)scanLine(i);+ −
uint *end = p + d->width;+ −
while (p < end) {+ −
*q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | (*p & 0xff00ff00);+ −
p++;+ −
q++;+ −
}+ −
}+ −
break;+ −
case Format_RGB16:+ −
res = QImage(d->width, d->height, d->format);+ −
for (int i = 0; i < d->height; i++) {+ −
ushort *q = (ushort*)res.scanLine(i);+ −
const ushort *p = (const ushort*)scanLine(i);+ −
const ushort *end = p + d->width;+ −
while (p < end) {+ −
*q = ((*p << 11) & 0xf800) | ((*p >> 11) & 0x1f) | (*p & 0x07e0);+ −
p++;+ −
q++;+ −
}+ −
}+ −
break;+ −
case Format_ARGB8565_Premultiplied:+ −
res = QImage(d->width, d->height, d->format);+ −
for (int i = 0; i < d->height; i++) {+ −
quint8 *p = (quint8*)scanLine(i);+ −
const quint8 *end = p + d->width * sizeof(qargb8565);+ −
while (p < end) {+ −
quint16 *q = reinterpret_cast<quint16*>(p + 1);+ −
*q = ((*q << 11) & 0xf800) | ((*q >> 11) & 0x1f) | (*q & 0x07e0);+ −
p += sizeof(qargb8565);+ −
}+ −
}+ −
break;+ −
case Format_RGB666:+ −
res = QImage(d->width, d->height, d->format);+ −
for (int i = 0; i < d->height; i++) {+ −
qrgb666 *q = reinterpret_cast<qrgb666*>(res.scanLine(i));+ −
const qrgb666 *p = reinterpret_cast<const qrgb666*>(scanLine(i));+ −
const qrgb666 *end = p + d->width;+ −
while (p < end) {+ −
const QRgb rgb = quint32(*p++);+ −
*q++ = qRgb(qBlue(rgb), qGreen(rgb), qRed(rgb));+ −
}+ −
}+ −
break;+ −
case Format_ARGB6666_Premultiplied:+ −
res = QImage(d->width, d->height, d->format);+ −
for (int i = 0; i < d->height; i++) {+ −
qargb6666 *q = reinterpret_cast<qargb6666*>(res.scanLine(i));+ −
const qargb6666 *p = reinterpret_cast<const qargb6666*>(scanLine(i));+ −
const qargb6666 *end = p + d->width;+ −
while (p < end) {+ −
const QRgb rgb = quint32(*p++);+ −
*q++ = qRgba(qBlue(rgb), qGreen(rgb), qRed(rgb), qAlpha(rgb));+ −
}+ −
}+ −
break;+ −
case Format_RGB555:+ −
res = QImage(d->width, d->height, d->format);+ −
for (int i = 0; i < d->height; i++) {+ −
ushort *q = (ushort*)res.scanLine(i);+ −
const ushort *p = (const ushort*)scanLine(i);+ −
const ushort *end = p + d->width;+ −
while (p < end) {+ −
*q = ((*p << 10) & 0x7800) | ((*p >> 10) & 0x1f) | (*p & 0x83e0);+ −
p++;+ −
q++;+ −
}+ −
}+ −
break;+ −
case Format_ARGB8555_Premultiplied:+ −
res = QImage(d->width, d->height, d->format);+ −
for (int i = 0; i < d->height; i++) {+ −
quint8 *p = (quint8*)scanLine(i);+ −
const quint8 *end = p + d->width * sizeof(qargb8555);+ −
while (p < end) {+ −
quint16 *q = reinterpret_cast<quint16*>(p + 1);+ −
*q = ((*q << 10) & 0x7800) | ((*q >> 10) & 0x1f) | (*q & 0x83e0);+ −
p += sizeof(qargb8555);+ −
}+ −
}+ −
break;+ −
case Format_RGB888:+ −
res = QImage(d->width, d->height, d->format);+ −
for (int i = 0; i < d->height; i++) {+ −
quint8 *q = reinterpret_cast<quint8*>(res.scanLine(i));+ −
const quint8 *p = reinterpret_cast<const quint8*>(scanLine(i));+ −
const quint8 *end = p + d->width * sizeof(qrgb888);+ −
while (p < end) {+ −
q[0] = p[2];+ −
q[1] = p[1];+ −
q[2] = p[0];+ −
q += sizeof(qrgb888);+ −
p += sizeof(qrgb888);+ −
}+ −
}+ −
break;+ −
case Format_RGB444:+ −
res = QImage(d->width, d->height, d->format);+ −
for (int i = 0; i < d->height; i++) {+ −
quint8 *q = reinterpret_cast<quint8*>(res.scanLine(i));+ −
const quint8 *p = reinterpret_cast<const quint8*>(scanLine(i));+ −
const quint8 *end = p + d->width * sizeof(qrgb444);+ −
while (p < end) {+ −
q[0] = (p[0] & 0xf0) | ((p[1] & 0x0f) << 8);+ −
q[1] = ((p[0] & 0x0f) >> 8) | (p[1] & 0xf0);+ −
q += sizeof(qrgb444);+ −
p += sizeof(qrgb444);+ −
}+ −
}+ −
break;+ −
case Format_ARGB4444_Premultiplied:+ −
res = QImage(d->width, d->height, d->format);+ −
for (int i = 0; i < d->height; i++) {+ −
quint8 *q = reinterpret_cast<quint8*>(res.scanLine(i));+ −
const quint8 *p = reinterpret_cast<const quint8*>(scanLine(i));+ −
const quint8 *end = p + d->width * sizeof(qargb4444);+ −
while (p < end) {+ −
q[0] = (p[0] & 0xf0) | ((p[1] & 0x0f) << 8);+ −
q[1] = ((p[0] & 0x0f) >> 8) | (p[1] & 0xf0);+ −
q += sizeof(qargb4444);+ −
p += sizeof(qargb4444);+ −
}+ −
}+ −
break;+ −
}+ −
return res;+ −
}+ −
+ −
/*!+ −
Loads an image from the file with the given \a fileName. Returns true if+ −
the image was successfully loaded; otherwise returns false.+ −
+ −
The loader attempts to read the image using the specified \a format, e.g.,+ −
PNG or JPG. If \a format is not specified (which is the default), the+ −
loader probes the file for a header to guess the file format.+ −
+ −
The file name can either refer to an actual file on disk or to one+ −
of the application's embedded resources. See the+ −
\l{resources.html}{Resource System} overview for details on how to+ −
embed images and other resource files in the application's+ −
executable.+ −
+ −
\sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}+ −
*/+ −
+ −
bool QImage::load(const QString &fileName, const char* format)+ −
{+ −
if (fileName.isEmpty())+ −
return false;+ −
+ −
QImage image = QImageReader(fileName, format).read();+ −
if (!image.isNull()) {+ −
operator=(image);+ −
return true;+ −
}+ −
return false;+ −
}+ −
+ −
/*!+ −
\overload+ −
+ −
This function reads a QImage from the given \a device. This can,+ −
for example, be used to load an image directly into a QByteArray.+ −
*/+ −
+ −
bool QImage::load(QIODevice* device, const char* format)+ −
{+ −
QImage image = QImageReader(device, format).read();+ −
if(!image.isNull()) {+ −
operator=(image);+ −
return true;+ −
}+ −
return false;+ −
}+ −
+ −
/*!+ −
\fn bool QImage::loadFromData(const uchar *data, int len, const char *format)+ −
+ −
Loads an image from the first \a len bytes of the given binary \a+ −
data. Returns true if the image was successfully loaded; otherwise+ −
returns false.+ −
+ −
The loader attempts to read the image using the specified \a format, e.g.,+ −
PNG or JPG. If \a format is not specified (which is the default), the+ −
loader probes the file for a header to guess the file format.+ −
+ −
\sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}+ −
*/+ −
+ −
bool QImage::loadFromData(const uchar *data, int len, const char *format)+ −
{+ −
QImage image = fromData(data, len, format);+ −
if (!image.isNull()) {+ −
operator=(image);+ −
return true;+ −
}+ −
return false;+ −
}+ −
+ −
/*!+ −
\fn bool QImage::loadFromData(const QByteArray &data, const char *format)+ −
+ −
\overload+ −
+ −
Loads an image from the given QByteArray \a data.+ −
*/+ −
+ −
/*!+ −
\fn QImage QImage::fromData(const uchar *data, int size, const char *format)+ −
+ −
Constructs a QImage from the first \a size bytes of the given+ −
binary \a data. The loader attempts to read the image using the+ −
specified \a format. If \a format is not specified (which is the default),+ −
the loader probes the file for a header to guess the file format.+ −
binary \a data. The loader attempts to read the image, either using the+ −
optional image \a format specified or by determining the image format from+ −
the data.+ −
+ −
If \a format is not specified (which is the default), the loader probes the+ −
file for a header to determine the file format. If \a format is specified,+ −
it must be one of the values returned by QImageReader::supportedImageFormats().+ −
+ −
If the loading of the image fails, the image returned will be a null image.+ −
+ −
\sa load(), save(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}+ −
*/+ −
+ −
QImage QImage::fromData(const uchar *data, int size, const char *format)+ −
{+ −
QByteArray a = QByteArray::fromRawData(reinterpret_cast<const char *>(data), size);+ −
QBuffer b;+ −
b.setData(a);+ −
b.open(QIODevice::ReadOnly);+ −
return QImageReader(&b, format).read();+ −
}+ −
+ −
/*!+ −
\fn QImage QImage::fromData(const QByteArray &data, const char *format)+ −
+ −
\overload+ −
+ −
Loads an image from the given QByteArray \a data.+ −
*/+ −
+ −
/*!+ −
Saves the image to the file with the given \a fileName, using the+ −
given image file \a format and \a quality factor. If \a format is+ −
0, QImage will attempt to guess the format by looking at \a fileName's+ −
suffix.+ −
+ −
The \a quality factor must be in the range 0 to 100 or -1. Specify+ −
0 to obtain small compressed files, 100 for large uncompressed+ −
files, and -1 (the default) to use the default settings.+ −
+ −
Returns true if the image was successfully saved; otherwise+ −
returns false.+ −
+ −
\sa {QImage#Reading and Writing Image Files}{Reading and Writing+ −
Image Files}+ −
*/+ −
bool QImage::save(const QString &fileName, const char *format, int quality) const+ −
{+ −
if (isNull())+ −
return false;+ −
QImageWriter writer(fileName, format);+ −
return d->doImageIO(this, &writer, quality);+ −
}+ −
+ −
/*!+ −
\overload+ −
+ −
This function writes a QImage to the given \a device.+ −
+ −
This can, for example, be used to save an image directly into a+ −
QByteArray:+ −
+ −
\snippet doc/src/snippets/image/image.cpp 0+ −
*/+ −
+ −
bool QImage::save(QIODevice* device, const char* format, int quality) const+ −
{+ −
if (isNull())+ −
return false; // nothing to save+ −
QImageWriter writer(device, format);+ −
return d->doImageIO(this, &writer, quality);+ −
}+ −
+ −
/* \internal+ −
*/+ −
+ −
bool QImageData::doImageIO(const QImage *image, QImageWriter *writer, int quality) const+ −
{+ −
if (quality > 100 || quality < -1)+ −
qWarning("QPixmap::save: Quality out of range [-1, 100]");+ −
if (quality >= 0)+ −
writer->setQuality(qMin(quality,100));+ −
return writer->write(*image);+ −
}+ −
+ −
/*****************************************************************************+ −
QImage stream functions+ −
*****************************************************************************/+ −
#if !defined(QT_NO_DATASTREAM)+ −
/*!+ −
\fn QDataStream &operator<<(QDataStream &stream, const QImage &image)+ −
\relates QImage+ −
+ −
Writes the given \a image to the given \a stream as a PNG image,+ −
or as a BMP image if the stream's version is 1. Note that writing+ −
the stream to a file will not produce a valid image file.+ −
+ −
\sa QImage::save(), {Format of the QDataStream Operators}+ −
*/+ −
+ −
QDataStream &operator<<(QDataStream &s, const QImage &image)+ −
{+ −
if (s.version() >= 5) {+ −
if (image.isNull()) {+ −
s << (qint32) 0; // null image marker+ −
return s;+ −
} else {+ −
s << (qint32) 1;+ −
// continue ...+ −
}+ −
}+ −
QImageWriter writer(s.device(), s.version() == 1 ? "bmp" : "png");+ −
writer.write(image);+ −
return s;+ −
}+ −
+ −
/*!+ −
\fn QDataStream &operator>>(QDataStream &stream, QImage &image)+ −
\relates QImage+ −
+ −
Reads an image from the given \a stream and stores it in the given+ −
\a image.+ −
+ −
\sa QImage::load(), {Format of the QDataStream Operators}+ −
*/+ −
+ −
QDataStream &operator>>(QDataStream &s, QImage &image)+ −
{+ −
if (s.version() >= 5) {+ −
qint32 nullMarker;+ −
s >> nullMarker;+ −
if (!nullMarker) {+ −
image = QImage(); // null image+ −
return s;+ −
}+ −
}+ −
image = QImageReader(s.device(), 0).read();+ −
return s;+ −
}+ −
#endif // QT_NO_DATASTREAM+ −
+ −
+ −
#ifdef QT3_SUPPORT+ −
/*!+ −
\fn QImage QImage::convertDepthWithPalette(int depth, QRgb* palette, int palette_count, Qt::ImageConversionFlags flags) const+ −
+ −
Returns an image with the given \a depth, using the \a+ −
palette_count colors pointed to by \a palette. If \a depth is 1 or+ −
8, the returned image will have its color table ordered in the+ −
same way as \a palette.+ −
+ −
If the image needs to be modified to fit in a lower-resolution+ −
result (e.g. converting from 32-bit to 8-bit), use the \a flags to+ −
specify how you'd prefer this to happen.+ −
+ −
Note: currently no closest-color search is made. If colors are+ −
found that are not in the palette, the palette may not be used at+ −
all. This result should not be considered valid because it may+ −
change in future implementations.+ −
+ −
Currently inefficient for non-32-bit images.+ −
+ −
Use the convertToFormat() function in combination with the+ −
setColorTable() function instead.+ −
*/+ −
QImage QImage::convertDepthWithPalette(int d, QRgb* palette, int palette_count, Qt::ImageConversionFlags flags) const+ −
{+ −
Format f = formatFor(d, QImage::LittleEndian);+ −
QVector<QRgb> colortable;+ −
for (int i = 0; i < palette_count; ++i)+ −
colortable.append(palette[i]);+ −
return convertToFormat(f, colortable, flags);+ −
}+ −
+ −
/*!+ −
\relates QImage+ −
+ −
Copies a block of pixels from \a src to \a dst. The pixels+ −
copied from source (src) are converted according to+ −
\a flags if it is incompatible with the destination+ −
(\a dst).+ −
+ −
\a sx, \a sy is the top-left pixel in \a src, \a dx, \a dy is the+ −
top-left position in \a dst and \a sw, \a sh is the size of the+ −
copied block. The copying is clipped if areas outside \a src or \a+ −
dst are specified. If \a sw is -1, it is adjusted to+ −
src->width(). Similarly, if \a sh is -1, it is adjusted to+ −
src->height().+ −
+ −
Currently inefficient for non 32-bit images.+ −
+ −
Use copy() or QPainter::drawImage() instead.+ −
*/+ −
void bitBlt(QImage *dst, int dx, int dy, const QImage *src, int sx, int sy, int sw, int sh,+ −
Qt::ImageConversionFlags flags)+ −
{+ −
if (dst->isNull() || src->isNull())+ −
return;+ −
QPainter p(dst);+ −
p.drawImage(QPoint(dx, dy), *src, QRect(sx, sy, sw, sh), flags);+ −
}+ −
#endif+ −
+ −
/*!+ −
\fn bool QImage::operator==(const QImage & image) const+ −
+ −
Returns true if this image and the given \a image have the same+ −
contents; otherwise returns false.+ −
+ −
The comparison can be slow, unless there is some obvious+ −
difference (e.g. different size or format), in which case the+ −
function will return quickly.+ −
+ −
\sa operator=()+ −
*/+ −
+ −
bool QImage::operator==(const QImage & i) const+ −
{+ −
// same object, or shared?+ −
if (i.d == d)+ −
return true;+ −
if (!i.d || !d)+ −
return false;+ −
+ −
// obviously different stuff?+ −
if (i.d->height != d->height || i.d->width != d->width || i.d->format != d->format)+ −
return false;+ −
+ −
if (d->format != Format_RGB32) {+ −
if (d->format >= Format_ARGB32) { // all bits defined+ −
const int n = d->width * d->depth / 8;+ −
if (n == d->bytes_per_line && n == i.d->bytes_per_line) {+ −
if (memcmp(bits(), i.bits(), d->nbytes))+ −
return false;+ −
} else {+ −
for (int y = 0; y < d->height; ++y) {+ −
if (memcmp(scanLine(y), i.scanLine(y), n))+ −
return false;+ −
}+ −
}+ −
} else {+ −
const int w = width();+ −
const int h = height();+ −
const QVector<QRgb> &colortable = d->colortable;+ −
const QVector<QRgb> &icolortable = i.d->colortable;+ −
for (int y=0; y<h; ++y) {+ −
for (int x=0; x<w; ++x) {+ −
if (colortable[pixelIndex(x, y)] != icolortable[i.pixelIndex(x, y)])+ −
return false;+ −
}+ −
}+ −
}+ −
} else {+ −
//alpha channel undefined, so we must mask it out+ −
for(int l = 0; l < d->height; l++) {+ −
int w = d->width;+ −
const uint *p1 = reinterpret_cast<const uint*>(scanLine(l));+ −
const uint *p2 = reinterpret_cast<const uint*>(i.scanLine(l));+ −
while (w--) {+ −
if ((*p1++ & 0x00ffffff) != (*p2++ & 0x00ffffff))+ −
return false;+ −
}+ −
}+ −
}+ −
return true;+ −
}+ −
+ −
+ −
/*!+ −
\fn bool QImage::operator!=(const QImage & image) const+ −
+ −
Returns true if this image and the given \a image have different+ −
contents; otherwise returns false.+ −
+ −
The comparison can be slow, unless there is some obvious+ −
difference, such as different widths, in which case the function+ −
will return quickly.+ −
+ −
\sa operator=()+ −
*/+ −
+ −
bool QImage::operator!=(const QImage & i) const+ −
{+ −
return !(*this == i);+ −
}+ −
+ −
+ −
+ −
+ −
/*!+ −
Returns the number of pixels that fit horizontally in a physical+ −
meter. Together with dotsPerMeterY(), this number defines the+ −
intended scale and aspect ratio of the image.+ −
+ −
\sa setDotsPerMeterX(), {QImage#Image Information}{Image+ −
Information}+ −
*/+ −
int QImage::dotsPerMeterX() const+ −
{+ −
return d ? qRound(d->dpmx) : 0;+ −
}+ −
+ −
/*!+ −
Returns the number of pixels that fit vertically in a physical+ −
meter. Together with dotsPerMeterX(), this number defines the+ −
intended scale and aspect ratio of the image.+ −
+ −
\sa setDotsPerMeterY(), {QImage#Image Information}{Image+ −
Information}+ −
*/+ −
int QImage::dotsPerMeterY() const+ −
{+ −
return d ? qRound(d->dpmy) : 0;+ −
}+ −
+ −
/*!+ −
Sets the number of pixels that fit horizontally in a physical+ −
meter, to \a x.+ −
+ −
Together with dotsPerMeterY(), this number defines the intended+ −
scale and aspect ratio of the image, and determines the scale+ −
at which QPainter will draw graphics on the image. It does not+ −
change the scale or aspect ratio of the image when it is rendered+ −
on other paint devices.+ −
+ −
\sa dotsPerMeterX(), {QImage#Image Information}{Image Information}+ −
*/+ −
void QImage::setDotsPerMeterX(int x)+ −
{+ −
if (!d || !x)+ −
return;+ −
detach();+ −
+ −
if (d)+ −
d->dpmx = x;+ −
}+ −
+ −
/*!+ −
Sets the number of pixels that fit vertically in a physical meter,+ −
to \a y.+ −
+ −
Together with dotsPerMeterX(), this number defines the intended+ −
scale and aspect ratio of the image, and determines the scale+ −
at which QPainter will draw graphics on the image. It does not+ −
change the scale or aspect ratio of the image when it is rendered+ −
on other paint devices.+ −
+ −
\sa dotsPerMeterY(), {QImage#Image Information}{Image Information}+ −
*/+ −
void QImage::setDotsPerMeterY(int y)+ −
{+ −
if (!d || !y)+ −
return;+ −
detach();+ −
+ −
if (d)+ −
d->dpmy = y;+ −
}+ −
+ −
/*!+ −
\fn QPoint QImage::offset() const+ −
+ −
Returns the number of pixels by which the image is intended to be+ −
offset by when positioning relative to other images.+ −
+ −
\sa setOffset(), {QImage#Image Information}{Image Information}+ −
*/+ −
QPoint QImage::offset() const+ −
{+ −
return d ? d->offset : QPoint();+ −
}+ −
+ −
+ −
/*!+ −
\fn void QImage::setOffset(const QPoint& offset)+ −
+ −
Sets the number of pixels by which the image is intended to be+ −
offset by when positioning relative to other images, to \a offset.+ −
+ −
\sa offset(), {QImage#Image Information}{Image Information}+ −
*/+ −
void QImage::setOffset(const QPoint& p)+ −
{+ −
if (!d)+ −
return;+ −
detach();+ −
+ −
if (d)+ −
d->offset = p;+ −
}+ −
#ifndef QT_NO_IMAGE_TEXT+ −
+ −
/*!+ −
Returns the text keys for this image.+ −
+ −
You can use these keys with text() to list the image text for a+ −
certain key.+ −
+ −
\sa text()+ −
*/+ −
QStringList QImage::textKeys() const+ −
{+ −
return d ? QStringList(d->text.keys()) : QStringList();+ −
}+ −
+ −
/*!+ −
Returns the image text associated with the given \a key. If the+ −
specified \a key is an empty string, the whole image text is+ −
returned, with each key-text pair separated by a newline.+ −
+ −
\sa setText(), textKeys()+ −
*/+ −
QString QImage::text(const QString &key) const+ −
{+ −
if (!d)+ −
return QString();+ −
+ −
if (!key.isEmpty())+ −
return d->text.value(key);+ −
+ −
QString tmp;+ −
foreach (const QString &key, d->text.keys()) {+ −
if (!tmp.isEmpty())+ −
tmp += QLatin1String("\n\n");+ −
tmp += key + QLatin1String(": ") + d->text.value(key).simplified();+ −
}+ −
return tmp;+ −
}+ −
+ −
/*!+ −
\fn void QImage::setText(const QString &key, const QString &text)+ −
+ −
Sets the image text to the given \a text and associate it with the+ −
given \a key.+ −
+ −
If you just want to store a single text block (i.e., a "comment"+ −
or just a description), you can either pass an empty key, or use a+ −
generic key like "Description".+ −
+ −
The image text is embedded into the image data when you+ −
call save() or QImageWriter::write().+ −
+ −
Not all image formats support embedded text. You can find out+ −
if a specific image or format supports embedding text+ −
by using QImageWriter::supportsOption(). We give an example:+ −
+ −
\snippet doc/src/snippets/image/supportedformat.cpp 0+ −
+ −
You can use QImageWriter::supportedImageFormats() to find out+ −
which image formats are available to you.+ −
+ −
\sa text(), textKeys()+ −
*/+ −
void QImage::setText(const QString &key, const QString &value)+ −
{+ −
if (!d)+ −
return;+ −
detach();+ −
+ −
if (d)+ −
d->text.insert(key, value);+ −
}+ −
+ −
/*!+ −
\fn QString QImage::text(const char* key, const char* language) const+ −
\obsolete+ −
+ −
Returns the text recorded for the given \a key in the given \a+ −
language, or in a default language if \a language is 0.+ −
+ −
Use text() instead.+ −
+ −
The language the text is recorded in is no longer relevant since+ −
the text is always set using QString and UTF-8 representation.+ −
*/+ −
QString QImage::text(const char* key, const char* lang) const+ −
{+ −
if (!d)+ −
return QString();+ −
QString k = QString::fromAscii(key);+ −
if (lang && *lang)+ −
k += QLatin1Char('/') + QString::fromAscii(lang);+ −
return d->text.value(k);+ −
}+ −
+ −
/*!+ −
\fn QString QImage::text(const QImageTextKeyLang& keywordAndLanguage) const+ −
\overload+ −
\obsolete+ −
+ −
Returns the text recorded for the given \a keywordAndLanguage.+ −
+ −
Use text() instead.+ −
+ −
The language the text is recorded in is no longer relevant since+ −
the text is always set using QString and UTF-8 representation.+ −
*/+ −
QString QImage::text(const QImageTextKeyLang& kl) const+ −
{+ −
if (!d)+ −
return QString();+ −
QString k = QString::fromAscii(kl.key);+ −
if (!kl.lang.isEmpty())+ −
k += QLatin1Char('/') + QString::fromAscii(kl.lang);+ −
return d->text.value(k);+ −
}+ −
+ −
/*!+ −
\obsolete+ −
+ −
Returns the language identifiers for which some texts are+ −
recorded. Note that if you want to iterate over the list, you+ −
should iterate over a copy.+ −
+ −
The language the text is recorded in is no longer relevant since+ −
the text is always set using QString and UTF-8 representation.+ −
*/+ −
QStringList QImage::textLanguages() const+ −
{+ −
if (!d)+ −
return QStringList();+ −
QStringList keys = textKeys();+ −
QStringList languages;+ −
for (int i = 0; i < keys.size(); ++i) {+ −
int index = keys.at(i).indexOf(QLatin1Char('/'));+ −
if (index > 0)+ −
languages += keys.at(i).mid(index+1);+ −
}+ −
+ −
return languages;+ −
}+ −
+ −
/*!+ −
\obsolete+ −
+ −
Returns a list of QImageTextKeyLang objects that enumerate all the+ −
texts key/language pairs set for this image.+ −
+ −
Use textKeys() instead.+ −
+ −
The language the text is recorded in is no longer relevant since+ −
the text is always set using QString and UTF-8 representation.+ −
*/+ −
QList<QImageTextKeyLang> QImage::textList() const+ −
{+ −
QList<QImageTextKeyLang> imageTextKeys;+ −
if (!d)+ −
return imageTextKeys;+ −
QStringList keys = textKeys();+ −
for (int i = 0; i < keys.size(); ++i) {+ −
int index = keys.at(i).indexOf(QLatin1Char('/'));+ −
if (index > 0) {+ −
QImageTextKeyLang tkl;+ −
tkl.key = keys.at(i).left(index).toAscii();+ −
tkl.lang = keys.at(i).mid(index+1).toAscii();+ −
imageTextKeys += tkl;+ −
}+ −
}+ −
+ −
return imageTextKeys;+ −
}+ −
+ −
/*!+ −
\fn void QImage::setText(const char* key, const char* language, const QString& text)+ −
\obsolete+ −
+ −
Sets the image text to the given \a text and associate it with the+ −
given \a key. The text is recorded in the specified \a language,+ −
or in a default language if \a language is 0.+ −
+ −
Use setText() instead.+ −
+ −
The language the text is recorded in is no longer relevant since+ −
the text is always set using QString and UTF-8 representation.+ −
+ −
\omit+ −
Records string \a for the keyword \a key. The \a key should be+ −
a portable keyword recognizable by other software - some suggested+ −
values can be found in+ −
\l{http://www.libpng.org/pub/png/spec/1.2/png-1.2-pdg.html#C.Anc-text}+ −
{the PNG specification}. \a s can be any text. \a lang should+ −
specify the language code (see+ −
\l{http://www.rfc-editor.org/rfc/rfc1766.txt}{RFC 1766}) or 0.+ −
\endomit+ −
*/+ −
void QImage::setText(const char* key, const char* lang, const QString& s)+ −
{+ −
if (!d)+ −
return;+ −
detach();+ −
+ −
// In case detach() ran out of memory+ −
if (!d)+ −
return;+ −
+ −
QString k = QString::fromAscii(key);+ −
if (lang && *lang)+ −
k += QLatin1Char('/') + QString::fromAscii(lang);+ −
d->text.insert(k, s);+ −
}+ −
+ −
#endif // QT_NO_IMAGE_TEXT+ −
+ −
/*+ −
Sets the image bits to the \a pixmap contents and returns a+ −
reference to the image.+ −
+ −
If the image shares data with other images, it will first+ −
dereference the shared data.+ −
+ −
Makes a call to QPixmap::convertToImage().+ −
*/+ −
+ −
/*! \fn QImage::Endian QImage::systemBitOrder()+ −
+ −
Determines the bit order of the display hardware. Returns+ −
QImage::LittleEndian (LSB first) or QImage::BigEndian (MSB first).+ −
+ −
This function is no longer relevant for QImage. Use QSysInfo+ −
instead.+ −
*/+ −
+ −
+ −
/*!+ −
\internal+ −
+ −
Used by QPainter to retrieve a paint engine for the image.+ −
*/+ −
+ −
QPaintEngine *QImage::paintEngine() const+ −
{+ −
if (!d)+ −
return 0;+ −
+ −
if (!d->paintEngine) {+ −
d->paintEngine = new QRasterPaintEngine(const_cast<QImage *>(this));+ −
}+ −
+ −
return d->paintEngine;+ −
}+ −
+ −
+ −
/*!+ −
\internal+ −
+ −
Returns the size for the specified \a metric on the device.+ −
*/+ −
int QImage::metric(PaintDeviceMetric metric) const+ −
{+ −
if (!d)+ −
return 0;+ −
+ −
switch (metric) {+ −
case PdmWidth:+ −
return d->width;+ −
break;+ −
+ −
case PdmHeight:+ −
return d->height;+ −
break;+ −
+ −
case PdmWidthMM:+ −
return qRound(d->width * 1000 / d->dpmx);+ −
break;+ −
+ −
case PdmHeightMM:+ −
return qRound(d->height * 1000 / d->dpmy);+ −
break;+ −
+ −
case PdmNumColors:+ −
return d->colortable.size();+ −
break;+ −
+ −
case PdmDepth:+ −
return d->depth;+ −
break;+ −
+ −
case PdmDpiX:+ −
return qRound(d->dpmx * 0.0254);+ −
break;+ −
+ −
case PdmDpiY:+ −
return qRound(d->dpmy * 0.0254);+ −
break;+ −
+ −
case PdmPhysicalDpiX:+ −
return qRound(d->dpmx * 0.0254);+ −
break;+ −
+ −
case PdmPhysicalDpiY:+ −
return qRound(d->dpmy * 0.0254);+ −
break;+ −
+ −
default:+ −
qWarning("QImage::metric(): Unhandled metric type %d", metric);+ −
break;+ −
}+ −
return 0;+ −
}+ −
+ −
+ −
+ −
/*****************************************************************************+ −
QPixmap (and QImage) helper functions+ −
*****************************************************************************/+ −
/*+ −
This internal function contains the common (i.e. platform independent) code+ −
to do a transformation of pixel data. It is used by QPixmap::transform() and by+ −
QImage::transform().+ −
+ −
\a trueMat is the true transformation matrix (see QPixmap::trueMatrix()) and+ −
\a xoffset is an offset to the matrix.+ −
+ −
\a msbfirst specifies for 1bpp images, if the MSB or LSB comes first and \a+ −
depth specifies the colordepth of the data.+ −
+ −
\a dptr is a pointer to the destination data, \a dbpl specifies the bits per+ −
line for the destination data, \a p_inc is the offset that we advance for+ −
every scanline and \a dHeight is the height of the destination image.+ −
+ −
\a sprt is the pointer to the source data, \a sbpl specifies the bits per+ −
line of the source data, \a sWidth and \a sHeight are the width and height of+ −
the source data.+ −
*/+ −
+ −
#undef IWX_MSB+ −
#define IWX_MSB(b) if (trigx < maxws && trigy < maxhs) { \+ −
if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \+ −
(1 << (7-((trigx>>12)&7)))) \+ −
*dptr |= b; \+ −
} \+ −
trigx += m11; \+ −
trigy += m12;+ −
// END OF MACRO+ −
#undef IWX_LSB+ −
#define IWX_LSB(b) if (trigx < maxws && trigy < maxhs) { \+ −
if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \+ −
(1 << ((trigx>>12)&7))) \+ −
*dptr |= b; \+ −
} \+ −
trigx += m11; \+ −
trigy += m12;+ −
// END OF MACRO+ −
#undef IWX_PIX+ −
#define IWX_PIX(b) if (trigx < maxws && trigy < maxhs) { \+ −
if ((*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \+ −
(1 << (7-((trigx>>12)&7)))) == 0) \+ −
*dptr &= ~b; \+ −
} \+ −
trigx += m11; \+ −
trigy += m12;+ −
// END OF MACRO+ −
bool qt_xForm_helper(const QTransform &trueMat, int xoffset, int type, int depth,+ −
uchar *dptr, int dbpl, int p_inc, int dHeight,+ −
const uchar *sptr, int sbpl, int sWidth, int sHeight)+ −
{+ −
int m11 = int(trueMat.m11()*4096.0);+ −
int m12 = int(trueMat.m12()*4096.0);+ −
int m21 = int(trueMat.m21()*4096.0);+ −
int m22 = int(trueMat.m22()*4096.0);+ −
int dx = qRound(trueMat.dx()*4096.0);+ −
int dy = qRound(trueMat.dy()*4096.0);+ −
+ −
int m21ydx = dx + (xoffset<<16) + (m11 + m21) / 2;+ −
int m22ydy = dy + (m12 + m22) / 2;+ −
uint trigx;+ −
uint trigy;+ −
uint maxws = sWidth<<12;+ −
uint maxhs = sHeight<<12;+ −
+ −
for (int y=0; y<dHeight; y++) { // for each target scanline+ −
trigx = m21ydx;+ −
trigy = m22ydy;+ −
uchar *maxp = dptr + dbpl;+ −
if (depth != 1) {+ −
switch (depth) {+ −
case 8: // 8 bpp transform+ −
while (dptr < maxp) {+ −
if (trigx < maxws && trigy < maxhs)+ −
*dptr = *(sptr+sbpl*(trigy>>12)+(trigx>>12));+ −
trigx += m11;+ −
trigy += m12;+ −
dptr++;+ −
}+ −
break;+ −
+ −
case 16: // 16 bpp transform+ −
while (dptr < maxp) {+ −
if (trigx < maxws && trigy < maxhs)+ −
*((ushort*)dptr) = *((ushort *)(sptr+sbpl*(trigy>>12) ++ −
((trigx>>12)<<1)));+ −
trigx += m11;+ −
trigy += m12;+ −
dptr++;+ −
dptr++;+ −
}+ −
break;+ −
+ −
case 24: // 24 bpp transform+ −
while (dptr < maxp) {+ −
if (trigx < maxws && trigy < maxhs) {+ −
const uchar *p2 = sptr+sbpl*(trigy>>12) + ((trigx>>12)*3);+ −
dptr[0] = p2[0];+ −
dptr[1] = p2[1];+ −
dptr[2] = p2[2];+ −
}+ −
trigx += m11;+ −
trigy += m12;+ −
dptr += 3;+ −
}+ −
break;+ −
+ −
case 32: // 32 bpp transform+ −
while (dptr < maxp) {+ −
if (trigx < maxws && trigy < maxhs)+ −
*((uint*)dptr) = *((uint *)(sptr+sbpl*(trigy>>12) ++ −
((trigx>>12)<<2)));+ −
trigx += m11;+ −
trigy += m12;+ −
dptr += 4;+ −
}+ −
break;+ −
+ −
default: {+ −
return false;+ −
}+ −
}+ −
} else {+ −
switch (type) {+ −
case QT_XFORM_TYPE_MSBFIRST:+ −
while (dptr < maxp) {+ −
IWX_MSB(128);+ −
IWX_MSB(64);+ −
IWX_MSB(32);+ −
IWX_MSB(16);+ −
IWX_MSB(8);+ −
IWX_MSB(4);+ −
IWX_MSB(2);+ −
IWX_MSB(1);+ −
dptr++;+ −
}+ −
break;+ −
case QT_XFORM_TYPE_LSBFIRST:+ −
while (dptr < maxp) {+ −
IWX_LSB(1);+ −
IWX_LSB(2);+ −
IWX_LSB(4);+ −
IWX_LSB(8);+ −
IWX_LSB(16);+ −
IWX_LSB(32);+ −
IWX_LSB(64);+ −
IWX_LSB(128);+ −
dptr++;+ −
}+ −
break;+ −
# if defined(Q_WS_WIN)+ −
case QT_XFORM_TYPE_WINDOWSPIXMAP:+ −
while (dptr < maxp) {+ −
IWX_PIX(128);+ −
IWX_PIX(64);+ −
IWX_PIX(32);+ −
IWX_PIX(16);+ −
IWX_PIX(8);+ −
IWX_PIX(4);+ −
IWX_PIX(2);+ −
IWX_PIX(1);+ −
dptr++;+ −
}+ −
break;+ −
# endif+ −
}+ −
}+ −
m21ydx += m21;+ −
m22ydy += m22;+ −
dptr += p_inc;+ −
}+ −
return true;+ −
}+ −
#undef IWX_MSB+ −
#undef IWX_LSB+ −
#undef IWX_PIX+ −
+ −
/*!+ −
\fn QImage QImage::xForm(const QMatrix &matrix) const+ −
+ −
Use transformed() instead.+ −
+ −
\oldcode+ −
QImage image;+ −
...+ −
image.xForm(matrix);+ −
\newcode+ −
QImage image;+ −
...+ −
image.transformed(matrix);+ −
\endcode+ −
*/+ −
+ −
/*! \obsolete+ −
Returns a number that identifies the contents of this+ −
QImage object. Distinct QImage objects can only have the same+ −
serial number if they refer to the same contents (but they don't+ −
have to).+ −
+ −
Use cacheKey() instead.+ −
+ −
\warning The serial number doesn't necessarily change when the+ −
image is altered. This means that it may be dangerous to use+ −
it as a cache key.+ −
+ −
\sa operator==()+ −
*/+ −
+ −
int QImage::serialNumber() const+ −
{+ −
if (!d)+ −
return 0;+ −
else+ −
return d->ser_no;+ −
}+ −
+ −
/*!+ −
Returns a number that identifies the contents of this QImage+ −
object. Distinct QImage objects can only have the same key if they+ −
refer to the same contents.+ −
+ −
The key will change when the image is altered.+ −
*/+ −
qint64 QImage::cacheKey() const+ −
{+ −
if (!d)+ −
return 0;+ −
else+ −
return (((qint64) d->ser_no) << 32) | ((qint64) d->detach_no);+ −
}+ −
+ −
/*!+ −
\internal+ −
+ −
Returns true if the image is detached; otherwise returns false.+ −
+ −
\sa detach(), {Implicit Data Sharing}+ −
*/+ −
+ −
bool QImage::isDetached() const+ −
{+ −
return d && d->ref == 1;+ −
}+ −
+ −
+ −
/*!+ −
\obsolete+ −
Sets the alpha channel of this image to the given \a alphaChannel.+ −
+ −
If \a alphaChannel is an 8 bit grayscale image, the intensity values are+ −
written into this buffer directly. Otherwise, \a alphaChannel is converted+ −
to 32 bit and the intensity of the RGB pixel values is used.+ −
+ −
Note that the image will be converted to the Format_ARGB32_Premultiplied+ −
format if the function succeeds.+ −
+ −
Use one of the composition modes in QPainter::CompositionMode instead.+ −
+ −
\warning This function is expensive.+ −
+ −
\sa alphaChannel(), {QImage#Image Transformations}{Image+ −
Transformations}, {QImage#Image Formats}{Image Formats}+ −
*/+ −
+ −
void QImage::setAlphaChannel(const QImage &alphaChannel)+ −
{+ −
if (!d)+ −
return;+ −
+ −
int w = d->width;+ −
int h = d->height;+ −
+ −
if (w != alphaChannel.d->width || h != alphaChannel.d->height) {+ −
qWarning("QImage::setAlphaChannel: "+ −
"Alpha channel must have same dimensions as the target image");+ −
return;+ −
}+ −
+ −
if (d->paintEngine && d->paintEngine->isActive()) {+ −
qWarning("QImage::setAlphaChannel: "+ −
"Unable to set alpha channel while image is being painted on");+ −
return;+ −
}+ −
+ −
detach();+ −
+ −
QImage converted = convertToFormat(QImage::Format_ARGB32_Premultiplied);+ −
if (!converted.isNull())+ −
*this = converted;+ −
else+ −
return;+ −
+ −
// Slight optimization since alphachannels are returned as 8-bit grays.+ −
if (alphaChannel.d->depth == 8 && alphaChannel.isGrayscale()) {+ −
const uchar *src_data = alphaChannel.d->data;+ −
const uchar *dest_data = d->data;+ −
for (int y=0; y<h; ++y) {+ −
const uchar *src = src_data;+ −
QRgb *dest = (QRgb *)dest_data;+ −
for (int x=0; x<w; ++x) {+ −
int alpha = *src;+ −
int destAlpha = qt_div_255(alpha * qAlpha(*dest));+ −
*dest = ((destAlpha << 24)+ −
| (qt_div_255(qRed(*dest) * alpha) << 16)+ −
| (qt_div_255(qGreen(*dest) * alpha) << 8)+ −
| (qt_div_255(qBlue(*dest) * alpha)));+ −
++dest;+ −
++src;+ −
}+ −
src_data += alphaChannel.d->bytes_per_line;+ −
dest_data += d->bytes_per_line;+ −
}+ −
+ −
} else {+ −
const QImage sourceImage = alphaChannel.convertToFormat(QImage::Format_RGB32);+ −
const uchar *src_data = sourceImage.d->data;+ −
const uchar *dest_data = d->data;+ −
for (int y=0; y<h; ++y) {+ −
const QRgb *src = (const QRgb *) src_data;+ −
QRgb *dest = (QRgb *) dest_data;+ −
for (int x=0; x<w; ++x) {+ −
int alpha = qGray(*src);+ −
int destAlpha = qt_div_255(alpha * qAlpha(*dest));+ −
*dest = ((destAlpha << 24)+ −
| (qt_div_255(qRed(*dest) * alpha) << 16)+ −
| (qt_div_255(qGreen(*dest) * alpha) << 8)+ −
| (qt_div_255(qBlue(*dest) * alpha)));+ −
++dest;+ −
++src;+ −
}+ −
src_data += sourceImage.d->bytes_per_line;+ −
dest_data += d->bytes_per_line;+ −
}+ −
}+ −
}+ −
+ −
+ −
/*!+ −
\obsolete+ −
+ −
Returns the alpha channel of the image as a new grayscale QImage in which+ −
each pixel's red, green, and blue values are given the alpha value of the+ −
original image. The color depth of the returned image is 8-bit.+ −
+ −
You can see an example of use of this function in QPixmap's+ −
\l{QPixmap::}{alphaChannel()}, which works in the same way as+ −
this function on QPixmaps.+ −
+ −
Most usecases for this function can be replaced with QPainter and+ −
using composition modes.+ −
+ −
\warning This is an expensive function.+ −
+ −
\sa setAlphaChannel(), hasAlphaChannel(),+ −
{QPixmap#Pixmap Information}{Pixmap},+ −
{QImage#Image Transformations}{Image Transformations}+ −
*/+ −
+ −
QImage QImage::alphaChannel() const+ −
{+ −
if (!d)+ −
return QImage();+ −
+ −
int w = d->width;+ −
int h = d->height;+ −
+ −
QImage image(w, h, Format_Indexed8);+ −
image.setColorCount(256);+ −
+ −
// set up gray scale table.+ −
for (int i=0; i<256; ++i)+ −
image.setColor(i, qRgb(i, i, i));+ −
+ −
if (!hasAlphaChannel()) {+ −
image.fill(255);+ −
return image;+ −
}+ −
+ −
if (d->format == Format_Indexed8) {+ −
const uchar *src_data = d->data;+ −
uchar *dest_data = image.d->data;+ −
for (int y=0; y<h; ++y) {+ −
const uchar *src = src_data;+ −
uchar *dest = dest_data;+ −
for (int x=0; x<w; ++x) {+ −
*dest = qAlpha(d->colortable.at(*src));+ −
++dest;+ −
++src;+ −
}+ −
src_data += d->bytes_per_line;+ −
dest_data += image.d->bytes_per_line;+ −
}+ −
} else {+ −
QImage alpha32 = *this;+ −
if (d->format != Format_ARGB32 && d->format != Format_ARGB32_Premultiplied)+ −
alpha32 = convertToFormat(Format_ARGB32);+ −
+ −
const uchar *src_data = alpha32.d->data;+ −
uchar *dest_data = image.d->data;+ −
for (int y=0; y<h; ++y) {+ −
const QRgb *src = (const QRgb *) src_data;+ −
uchar *dest = dest_data;+ −
for (int x=0; x<w; ++x) {+ −
*dest = qAlpha(*src);+ −
++dest;+ −
++src;+ −
}+ −
src_data += alpha32.d->bytes_per_line;+ −
dest_data += image.d->bytes_per_line;+ −
}+ −
}+ −
+ −
return image;+ −
}+ −
+ −
/*!+ −
Returns true if the image has a format that respects the alpha+ −
channel, otherwise returns false.+ −
+ −
\sa {QImage#Image Information}{Image Information}+ −
*/+ −
bool QImage::hasAlphaChannel() const+ −
{+ −
return d && (d->format == Format_ARGB32_Premultiplied+ −
|| d->format == Format_ARGB32+ −
|| d->format == Format_ARGB8565_Premultiplied+ −
|| d->format == Format_ARGB8555_Premultiplied+ −
|| d->format == Format_ARGB6666_Premultiplied+ −
|| d->format == Format_ARGB4444_Premultiplied+ −
|| (d->has_alpha_clut && (d->format == Format_Indexed8+ −
|| d->format == Format_Mono+ −
|| d->format == Format_MonoLSB)));+ −
}+ −
+ −
+ −
#ifdef QT3_SUPPORT+ −
#if defined(Q_WS_X11)+ −
QT_BEGIN_INCLUDE_NAMESPACE+ −
#include <private/qt_x11_p.h>+ −
QT_END_INCLUDE_NAMESPACE+ −
#endif+ −
+ −
QImage::Endian QImage::systemBitOrder()+ −
{+ −
#if defined(Q_WS_X11)+ −
return BitmapBitOrder(X11->display) == MSBFirst ? BigEndian : LittleEndian;+ −
#else+ −
return BigEndian;+ −
#endif+ −
}+ −
#endif+ −
+ −
/*!+ −
\fn QImage QImage::copy(const QRect &rect, Qt::ImageConversionFlags flags) const+ −
\compat+ −
+ −
Use copy() instead.+ −
*/+ −
+ −
/*!+ −
\fn QImage QImage::copy(int x, int y, int w, int h, Qt::ImageConversionFlags flags) const+ −
\compat+ −
+ −
Use copy() instead.+ −
*/+ −
+ −
/*!+ −
\fn QImage QImage::scaleWidth(int w) const+ −
\compat+ −
+ −
Use scaledToWidth() instead.+ −
*/+ −
+ −
/*!+ −
\fn QImage QImage::scaleHeight(int h) const+ −
\compat+ −
+ −
Use scaledToHeight() instead.+ −
*/+ −
+ −
static QImage smoothScaled(const QImage &source, int w, int h) {+ −
QImage src = source;+ −
if (src.format() == QImage::Format_ARGB32)+ −
src = src.convertToFormat(QImage::Format_ARGB32_Premultiplied);+ −
else if (src.depth() < 32) {+ −
if (src.hasAlphaChannel())+ −
src = src.convertToFormat(QImage::Format_ARGB32_Premultiplied);+ −
else+ −
src = src.convertToFormat(QImage::Format_RGB32);+ −
}+ −
+ −
return qSmoothScaleImage(src, w, h);+ −
}+ −
+ −
+ −
static QImage rotated90(const QImage &image) {+ −
QImage out(image.height(), image.width(), image.format());+ −
if (image.colorCount() > 0)+ −
out.setColorTable(image.colorTable());+ −
int w = image.width();+ −
int h = image.height();+ −
switch (image.format()) {+ −
case QImage::Format_RGB32:+ −
case QImage::Format_ARGB32:+ −
case QImage::Format_ARGB32_Premultiplied:+ −
qt_memrotate270(reinterpret_cast<const quint32*>(image.bits()),+ −
w, h, image.bytesPerLine(),+ −
reinterpret_cast<quint32*>(out.bits()),+ −
out.bytesPerLine());+ −
break;+ −
case QImage::Format_RGB666:+ −
case QImage::Format_ARGB6666_Premultiplied:+ −
case QImage::Format_ARGB8565_Premultiplied:+ −
case QImage::Format_ARGB8555_Premultiplied:+ −
case QImage::Format_RGB888:+ −
qt_memrotate270(reinterpret_cast<const quint24*>(image.bits()),+ −
w, h, image.bytesPerLine(),+ −
reinterpret_cast<quint24*>(out.bits()),+ −
out.bytesPerLine());+ −
break;+ −
case QImage::Format_RGB555:+ −
case QImage::Format_RGB16:+ −
case QImage::Format_ARGB4444_Premultiplied:+ −
qt_memrotate270(reinterpret_cast<const quint16*>(image.bits()),+ −
w, h, image.bytesPerLine(),+ −
reinterpret_cast<quint16*>(out.bits()),+ −
out.bytesPerLine());+ −
break;+ −
case QImage::Format_Indexed8:+ −
qt_memrotate270(reinterpret_cast<const quint8*>(image.bits()),+ −
w, h, image.bytesPerLine(),+ −
reinterpret_cast<quint8*>(out.bits()),+ −
out.bytesPerLine());+ −
break;+ −
default:+ −
for (int y=0; y<h; ++y) {+ −
if (image.colorCount())+ −
for (int x=0; x<w; ++x)+ −
out.setPixel(h-y-1, x, image.pixelIndex(x, y));+ −
else+ −
for (int x=0; x<w; ++x)+ −
out.setPixel(h-y-1, x, image.pixel(x, y));+ −
}+ −
break;+ −
}+ −
return out;+ −
}+ −
+ −
+ −
static QImage rotated180(const QImage &image) {+ −
return image.mirrored(true, true);+ −
}+ −
+ −
+ −
static QImage rotated270(const QImage &image) {+ −
QImage out(image.height(), image.width(), image.format());+ −
if (image.colorCount() > 0)+ −
out.setColorTable(image.colorTable());+ −
int w = image.width();+ −
int h = image.height();+ −
switch (image.format()) {+ −
case QImage::Format_RGB32:+ −
case QImage::Format_ARGB32:+ −
case QImage::Format_ARGB32_Premultiplied:+ −
qt_memrotate90(reinterpret_cast<const quint32*>(image.bits()),+ −
w, h, image.bytesPerLine(),+ −
reinterpret_cast<quint32*>(out.bits()),+ −
out.bytesPerLine());+ −
break;+ −
case QImage::Format_RGB666:+ −
case QImage::Format_ARGB6666_Premultiplied:+ −
case QImage::Format_ARGB8565_Premultiplied:+ −
case QImage::Format_ARGB8555_Premultiplied:+ −
case QImage::Format_RGB888:+ −
qt_memrotate90(reinterpret_cast<const quint24*>(image.bits()),+ −
w, h, image.bytesPerLine(),+ −
reinterpret_cast<quint24*>(out.bits()),+ −
out.bytesPerLine());+ −
break;+ −
case QImage::Format_RGB555:+ −
case QImage::Format_RGB16:+ −
case QImage::Format_ARGB4444_Premultiplied:+ −
qt_memrotate90(reinterpret_cast<const quint16*>(image.bits()),+ −
w, h, image.bytesPerLine(),+ −
reinterpret_cast<quint16*>(out.bits()),+ −
out.bytesPerLine());+ −
break;+ −
case QImage::Format_Indexed8:+ −
qt_memrotate90(reinterpret_cast<const quint8*>(image.bits()),+ −
w, h, image.bytesPerLine(),+ −
reinterpret_cast<quint8*>(out.bits()),+ −
out.bytesPerLine());+ −
break;+ −
default:+ −
for (int y=0; y<h; ++y) {+ −
if (image.colorCount())+ −
for (int x=0; x<w; ++x)+ −
out.setPixel(y, w-x-1, image.pixelIndex(x, y));+ −
else+ −
for (int x=0; x<w; ++x)+ −
out.setPixel(y, w-x-1, image.pixel(x, y));+ −
}+ −
break;+ −
}+ −
return out;+ −
}+ −
+ −
/*!+ −
Returns a copy of the image that is transformed using the given+ −
transformation \a matrix and transformation \a mode.+ −
+ −
The transformation \a matrix is internally adjusted to compensate+ −
for unwanted translation; i.e. the image produced is the smallest+ −
image that contains all the transformed points of the original+ −
image. Use the trueMatrix() function to retrieve the actual matrix+ −
used for transforming an image.+ −
+ −
Unlike the other overload, this function can be used to perform perspective+ −
transformations on images.+ −
+ −
\sa trueMatrix(), {QImage#Image Transformations}{Image+ −
Transformations}+ −
*/+ −
+ −
QImage QImage::transformed(const QTransform &matrix, Qt::TransformationMode mode ) const+ −
{+ −
if (!d)+ −
return QImage();+ −
+ −
// source image data+ −
int ws = width();+ −
int hs = height();+ −
+ −
// target image data+ −
int wd;+ −
int hd;+ −
+ −
// compute size of target image+ −
QTransform mat = trueMatrix(matrix, ws, hs);+ −
bool complex_xform = false;+ −
bool scale_xform = false;+ −
if (mat.type() <= QTransform::TxScale) {+ −
if (mat.type() == QTransform::TxNone) // identity matrix+ −
return *this;+ −
else if (mat.m11() == -1. && mat.m22() == -1.)+ −
return rotated180(*this);+ −
+ −
if (mode == Qt::FastTransformation) {+ −
hd = qRound(qAbs(mat.m22()) * hs);+ −
wd = qRound(qAbs(mat.m11()) * ws);+ −
} else {+ −
hd = int(qAbs(mat.m22()) * hs + 0.9999);+ −
wd = int(qAbs(mat.m11()) * ws + 0.9999);+ −
}+ −
scale_xform = true;+ −
} else {+ −
if (mat.type() <= QTransform::TxRotate && mat.m11() == 0 && mat.m22() == 0) {+ −
if (mat.m12() == 1. && mat.m21() == -1.)+ −
return rotated90(*this);+ −
else if (mat.m12() == -1. && mat.m21() == 1.)+ −
return rotated270(*this);+ −
}+ −
+ −
QPolygonF a(QRectF(0, 0, ws, hs));+ −
a = mat.map(a);+ −
QRect r = a.boundingRect().toAlignedRect();+ −
wd = r.width();+ −
hd = r.height();+ −
complex_xform = true;+ −
}+ −
+ −
if (wd == 0 || hd == 0)+ −
return QImage();+ −
+ −
// Make use of the optimized algorithm when we're scaling+ −
if (scale_xform && mode == Qt::SmoothTransformation) {+ −
if (mat.m11() < 0.0F && mat.m22() < 0.0F) { // horizontal/vertical flip+ −
return smoothScaled(mirrored(true, true), wd, hd);+ −
} else if (mat.m11() < 0.0F) { // horizontal flip+ −
return smoothScaled(mirrored(true, false), wd, hd);+ −
} else if (mat.m22() < 0.0F) { // vertical flip+ −
return smoothScaled(mirrored(false, true), wd, hd);+ −
} else { // no flipping+ −
return smoothScaled(*this, wd, hd);+ −
}+ −
}+ −
+ −
int bpp = depth();+ −
+ −
int sbpl = bytesPerLine();+ −
const uchar *sptr = bits();+ −
+ −
QImage::Format target_format = d->format;+ −
+ −
if (complex_xform || mode == Qt::SmoothTransformation) {+ −
if (d->format < QImage::Format_RGB32 || !hasAlphaChannel()) {+ −
switch(d->format) {+ −
case QImage::Format_RGB16:+ −
target_format = Format_ARGB8565_Premultiplied;+ −
break;+ −
case QImage::Format_RGB555:+ −
target_format = Format_ARGB8555_Premultiplied;+ −
break;+ −
case QImage::Format_RGB666:+ −
target_format = Format_ARGB6666_Premultiplied;+ −
break;+ −
case QImage::Format_RGB444:+ −
target_format = Format_ARGB4444_Premultiplied;+ −
break;+ −
default:+ −
target_format = Format_ARGB32_Premultiplied;+ −
break;+ −
}+ −
}+ −
}+ −
+ −
QImage dImage(wd, hd, target_format);+ −
QIMAGE_SANITYCHECK_MEMORY(dImage);+ −
+ −
if (target_format == QImage::Format_MonoLSB+ −
|| target_format == QImage::Format_Mono+ −
|| target_format == QImage::Format_Indexed8) {+ −
dImage.d->colortable = d->colortable;+ −
dImage.d->has_alpha_clut = d->has_alpha_clut | complex_xform;+ −
}+ −
+ −
dImage.d->dpmx = dotsPerMeterX();+ −
dImage.d->dpmy = dotsPerMeterY();+ −
+ −
switch (bpp) {+ −
// initizialize the data+ −
case 8:+ −
if (dImage.d->colortable.size() < 256) {+ −
// colors are left in the color table, so pick that one as transparent+ −
dImage.d->colortable.append(0x0);+ −
memset(dImage.bits(), dImage.d->colortable.size() - 1, dImage.byteCount());+ −
} else {+ −
memset(dImage.bits(), 0, dImage.byteCount());+ −
}+ −
break;+ −
case 1:+ −
case 16:+ −
case 24:+ −
case 32:+ −
memset(dImage.bits(), 0x00, dImage.byteCount());+ −
break;+ −
}+ −
+ −
if (target_format >= QImage::Format_RGB32) {+ −
QPainter p(&dImage);+ −
if (mode == Qt::SmoothTransformation) {+ −
p.setRenderHint(QPainter::Antialiasing);+ −
p.setRenderHint(QPainter::SmoothPixmapTransform);+ −
}+ −
p.setTransform(mat);+ −
p.drawImage(QPoint(0, 0), *this);+ −
} else {+ −
bool invertible;+ −
mat = mat.inverted(&invertible); // invert matrix+ −
if (!invertible) // error, return null image+ −
return QImage();+ −
+ −
// create target image (some of the code is from QImage::copy())+ −
int type = format() == Format_Mono ? QT_XFORM_TYPE_MSBFIRST : QT_XFORM_TYPE_LSBFIRST;+ −
int dbpl = dImage.bytesPerLine();+ −
qt_xForm_helper(mat, 0, type, bpp, dImage.bits(), dbpl, 0, hd, sptr, sbpl, ws, hs);+ −
}+ −
return dImage;+ −
}+ −
+ −
/*!+ −
\fn QTransform QImage::trueMatrix(const QTransform &matrix, int width, int height)+ −
+ −
Returns the actual matrix used for transforming an image with the+ −
given \a width, \a height and \a matrix.+ −
+ −
When transforming an image using the transformed() function, the+ −
transformation matrix is internally adjusted to compensate for+ −
unwanted translation, i.e. transformed() returns the smallest+ −
image containing all transformed points of the original image.+ −
This function returns the modified matrix, which maps points+ −
correctly from the original image into the new image.+ −
+ −
Unlike the other overload, this function creates transformation+ −
matrices that can be used to perform perspective+ −
transformations on images.+ −
+ −
\sa transformed(), {QImage#Image Transformations}{Image+ −
Transformations}+ −
*/+ −
+ −
QTransform QImage::trueMatrix(const QTransform &matrix, int w, int h)+ −
{+ −
const QRectF rect(0, 0, w, h);+ −
const QRect mapped = matrix.mapRect(rect).toAlignedRect();+ −
const QPoint delta = mapped.topLeft();+ −
return matrix * QTransform().translate(-delta.x(), -delta.y());+ −
}+ −
+ −
+ −
/*!+ −
\typedef QImage::DataPtr+ −
\internal+ −
*/+ −
+ −
/*!+ −
\fn DataPtr & QImage::data_ptr()+ −
\internal+ −
*/+ −
+ −
QT_END_NAMESPACE+ −