src/plugins/imageformats/jpeg/qjpeghandler.cpp
author Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
Mon, 03 May 2010 13:17:34 +0300
changeset 19 fcece45ef507
parent 18 2f34d5167611
child 30 5dc02b23752f
permissions -rw-r--r--
Revision: 201015 Kit: 201018

/****************************************************************************
**
** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the plugins of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file.  Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights.  These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qjpeghandler.h"

#include <qimage.h>
#include <qvariant.h>
#include <qvector.h>

#include <stdio.h>      // jpeglib needs this to be pre-included
#include <setjmp.h>

#ifdef FAR
#undef FAR
#endif

// hw: optimize smoothscaler for returning 24-bit images

// including jpeglib.h seems to be a little messy
extern "C" {
// mingw includes rpcndr.h but does not define boolean
#if defined(Q_OS_WIN) && defined(Q_CC_GNU)
#   if defined(__RPCNDR_H__) && !defined(boolean)
        typedef unsigned char boolean;
#       define HAVE_BOOLEAN
#   endif
#endif

#define XMD_H           // shut JPEGlib up
#if defined(Q_OS_UNIXWARE)
#  define HAVE_BOOLEAN  // libjpeg under Unixware seems to need this
#endif
#include <jpeglib.h>
#ifdef const
#  undef const          // remove crazy C hackery in jconfig.h
#endif
}

QT_BEGIN_NAMESPACE

//#define QT_NO_IMAGE_SMOOTHSCALE
#ifndef QT_NO_IMAGE_SMOOTHSCALE
class QImageSmoothScalerPrivate;
class QImageSmoothScaler
{
public:
    QImageSmoothScaler(const int w, const int h, const QImage &src);
    QImageSmoothScaler(const int srcWidth, const int srcHeight,
                       const int dstWidth, const int dstHeight);

    virtual ~QImageSmoothScaler(void);

    QImage  scale();

private:
    QImageSmoothScalerPrivate	*d;
    virtual QRgb *scanLine(const int line = 0, const QImage *src = 0);
};

class QImageSmoothScalerPrivate
{
public:
    int	    cols;
    int	    newcols;
    int	    rows;
    int	    newrows;
    bool    hasAlpha;

    const QImage  *src;

    void setup(const int srcWidth, const int srcHeight, const int dstWidth,
               const int dstHeight, bool hasAlphaChannel);
};

QImageSmoothScaler::QImageSmoothScaler(const int w, const int h,
                                       const QImage &src)
{
    d = new QImageSmoothScalerPrivate;

    d->setup(src.width(), src.height(), w, h, src.hasAlphaChannel() );
    this->d->src = &src;
}

QImageSmoothScaler::QImageSmoothScaler(const int srcWidth, const int srcHeight,
                                       const int dstWidth, const int dstHeight)
{
    d = new QImageSmoothScalerPrivate;
    d->setup(srcWidth, srcHeight, dstWidth, dstHeight, 0);
}

void QImageSmoothScalerPrivate::setup(const int srcWidth, const int srcHeight,
                                      const int dstWidth, const int dstHeight,
                                      bool hasAlphaChannel)
{
    cols = srcWidth;
    rows = srcHeight;
    newcols = dstWidth;
    newrows = dstHeight;
    hasAlpha = hasAlphaChannel;
}

QImageSmoothScaler::~QImageSmoothScaler()
{
    delete d;
}

inline QRgb *QImageSmoothScaler::scanLine(const int line, const QImage *src)
{
    return (QRgb*)src->scanLine(line);
}

/*
  This function uses code based on pnmscale.c by Jef Poskanzer.

  pnmscale.c - read a portable anymap and scale it

  Copyright (C) 1989, 1991 by Jef Poskanzer.

  Permission to use, copy, modify, and distribute this software and its
  documentation for any purpose and without fee is hereby granted, provided
  that the above copyright notice appear in all copies and that both that
  copyright notice and this permission notice appear in supporting
  documentation.  This software is provided "as is" without express or
  implied warranty.
*/

QImage QImageSmoothScaler::scale()
{
    long SCALE;
    long HALFSCALE;
    QRgb *xelrow = 0;
    QRgb *tempxelrow = 0;
    QRgb *xP;
    QRgb *nxP;
    int row, rowsread;
    int col, needtoreadrow;
    uchar maxval = 255;
    qreal xscale, yscale;
    long sxscale, syscale;
    long fracrowtofill, fracrowleft;
    long *as;
    long *rs;
    long *gs;
    long *bs;
    int rowswritten = 0;
    QImage dst;

    if (d->cols > 4096) {
        SCALE = 4096;
        HALFSCALE = 2048;
    } else {
        int fac = 4096;
        while (d->cols * fac > 4096)
            fac /= 2;

        SCALE = fac * d->cols;
        HALFSCALE = fac * d->cols / 2;
    }

    xscale = (qreal)d->newcols / (qreal)d->cols;
    yscale = (qreal)d->newrows / (qreal)d->rows;
    sxscale = (long)(xscale * SCALE);
    syscale = (long)(yscale * SCALE);

    // shortcut Y scaling if possible
    if (d->newrows != d->rows)
        tempxelrow = new QRgb[d->cols];

    if (d->hasAlpha) {
        as = new long[d->cols];
        for (col = 0; col < d->cols; ++col)
            as[col] = HALFSCALE;
    } else {
        as = 0;
    }
    rs = new long[d->cols];
    gs = new long[d->cols];
    bs = new long[d->cols];
    rowsread = 0;
    fracrowleft = syscale;
    needtoreadrow = 1;
    for (col = 0; col < d->cols; ++col)
        rs[col] = gs[col] = bs[col] = HALFSCALE;
    fracrowtofill = SCALE;

    dst = QImage(d->newcols, d->newrows, d->hasAlpha ? QImage::Format_ARGB32 : QImage::Format_RGB32);

    for (row = 0; row < d->newrows; ++row) {
        // First scale Y from xelrow into tempxelrow.
        if (d->newrows == d->rows) {
            // shortcut Y scaling if possible
            tempxelrow = xelrow = scanLine(rowsread++, d->src);
        } else {
            while (fracrowleft < fracrowtofill) {
                if (needtoreadrow && rowsread < d->rows)
                    xelrow = scanLine(rowsread++, d->src);
                for (col = 0, xP = xelrow; col < d->cols; ++col, ++xP) {
                    if (as) {
                        as[col] += fracrowleft * qAlpha(*xP);
                        rs[col] += fracrowleft * qRed(*xP) * qAlpha(*xP) / 255;
                        gs[col] += fracrowleft * qGreen(*xP) * qAlpha(*xP) / 255;
                        bs[col] += fracrowleft * qBlue(*xP) * qAlpha(*xP) / 255;
                    } else {
                        rs[col] += fracrowleft * qRed(*xP);
                        gs[col] += fracrowleft * qGreen(*xP);
                        bs[col] += fracrowleft * qBlue(*xP);
                    }
                }
                fracrowtofill -= fracrowleft;
                fracrowleft = syscale;
                needtoreadrow = 1;
            }
            // Now fracrowleft is >= fracrowtofill, so we can produce a row.
            if (needtoreadrow && rowsread < d->rows) {
                xelrow = scanLine(rowsread++, d->src);
                needtoreadrow = 0;
            }
            for (col = 0, xP = xelrow, nxP = tempxelrow; col < d->cols; ++col, ++xP, ++nxP) {
                register long a, r, g, b;

                if (as) {
                    r = rs[col] + fracrowtofill * qRed(*xP) * qAlpha(*xP) / 255;
                    g = gs[col] + fracrowtofill * qGreen(*xP) * qAlpha(*xP) / 255;
                    b = bs[col] + fracrowtofill * qBlue(*xP) * qAlpha(*xP) / 255;
                    a = as[col] + fracrowtofill * qAlpha(*xP);
                    if (a) {
                        r = r * 255 / a * SCALE;
                        g = g * 255 / a * SCALE;
                        b = b * 255 / a * SCALE;
                    }
                } else {
                    r = rs[col] + fracrowtofill * qRed(*xP);
                    g = gs[col] + fracrowtofill * qGreen(*xP);
                    b = bs[col] + fracrowtofill * qBlue(*xP);
                    a = 0; // unwarn
                }
                r /= SCALE;
                if (r > maxval)
                    r = maxval;
                g /= SCALE;
                if (g > maxval)
                    g = maxval;
                b /= SCALE;
                if (b > maxval)
                    b = maxval;
                if (as) {
                    a /= SCALE;
                    if (a > maxval)
                        a = maxval;
                    *nxP = qRgba((int)r, (int)g, (int)b, (int)a);
                    as[col] = HALFSCALE;
                } else {
                    *nxP = qRgb((int)r, (int)g, (int)b);
                }
                rs[col] = gs[col] = bs[col] = HALFSCALE;
            }
            fracrowleft -= fracrowtofill;
            if (fracrowleft == 0) {
                fracrowleft = syscale;
                needtoreadrow = 1;
            }
            fracrowtofill = SCALE;
        }

        // Now scale X from tempxelrow into dst and write it out.
        if (d->newcols == d->cols) {
            // shortcut X scaling if possible
            memcpy(dst.scanLine(rowswritten++), tempxelrow, d->newcols * 4);
        } else {
            register long a, r, g, b;
            register long fraccoltofill, fraccolleft = 0;
            register int needcol;

            nxP = (QRgb *)dst.scanLine(rowswritten++);
            QRgb *nxPEnd = nxP + d->newcols;
            fraccoltofill = SCALE;
            a = r = g = b = HALFSCALE;
            needcol = 0;
            for (col = 0, xP = tempxelrow; col < d->cols; ++col, ++xP) {
                fraccolleft = sxscale;
                while (fraccolleft >= fraccoltofill) {
                    if (needcol) {
                        ++nxP;
                        a = r = g = b = HALFSCALE;
                    }
                    if (as) {
                        r += fraccoltofill * qRed(*xP) * qAlpha(*xP) / 255;
                        g += fraccoltofill * qGreen(*xP) * qAlpha(*xP) / 255;
                        b += fraccoltofill * qBlue(*xP) * qAlpha(*xP) / 255;
                        a += fraccoltofill * qAlpha(*xP);
                        if (a) {
                            r = r * 255 / a * SCALE;
                            g = g * 255 / a * SCALE;
                            b = b * 255 / a * SCALE;
                        }
                    } else {
                        r += fraccoltofill * qRed(*xP);
                        g += fraccoltofill * qGreen(*xP);
                        b += fraccoltofill * qBlue(*xP);
                    }
                    r /= SCALE;
                    if (r > maxval)
                        r = maxval;
                    g /= SCALE;
                    if (g > maxval)
                        g = maxval;
                    b /= SCALE;
                    if (b > maxval)
                        b = maxval;
                    if (as) {
                        a /= SCALE;
                        if (a > maxval)
                            a = maxval;
                        *nxP = qRgba((int)r, (int)g, (int)b, (int)a);
                    } else {
                        *nxP = qRgb((int)r, (int)g, (int)b);
                    }
                    fraccolleft -= fraccoltofill;
                    fraccoltofill = SCALE;
                    needcol = 1;
                }
                if (fraccolleft > 0) {
                    if (needcol) {
                        ++nxP;
                        a = r = g = b = HALFSCALE;
                        needcol = 0;
                    }
                    if (as) {
                        a += fraccolleft * qAlpha(*xP);
                        r += fraccolleft * qRed(*xP) * qAlpha(*xP) / 255;
                        g += fraccolleft * qGreen(*xP) * qAlpha(*xP) / 255;
                        b += fraccolleft * qBlue(*xP) * qAlpha(*xP) / 255;
                    } else {
                        r += fraccolleft * qRed(*xP);
                        g += fraccolleft * qGreen(*xP);
                        b += fraccolleft * qBlue(*xP);
                    }
                    fraccoltofill -= fraccolleft;
                }
            }
            if (fraccoltofill > 0) {
                --xP;
                if (as) {
                    a += fraccolleft * qAlpha(*xP);
                    r += fraccoltofill * qRed(*xP) * qAlpha(*xP) / 255;
                    g += fraccoltofill * qGreen(*xP) * qAlpha(*xP) / 255;
                    b += fraccoltofill * qBlue(*xP) * qAlpha(*xP) / 255;
                    if (a) {
                        r = r * 255 / a * SCALE;
                        g = g * 255 / a * SCALE;
                        b = b * 255 / a * SCALE;
                    }
                } else {
                    r += fraccoltofill * qRed(*xP);
                    g += fraccoltofill * qGreen(*xP);
                    b += fraccoltofill * qBlue(*xP);
                }
            }
            if (nxP < nxPEnd) {
                r /= SCALE;
                if (r > maxval)
                    r = maxval;
                g /= SCALE;
                if (g > maxval)
                    g = maxval;
                b /= SCALE;
                if (b > maxval)
                    b = maxval;
                if (as) {
                    a /= SCALE;
                    if (a > maxval)
                        a = maxval;
                    *nxP = qRgba((int)r, (int)g, (int)b, (int)a);
                } else {
                    *nxP = qRgb((int)r, (int)g, (int)b);
                }
                while (++nxP != nxPEnd)
                    nxP[0] = nxP[-1];
            }
        }
    }

    if (d->newrows != d->rows && tempxelrow)// Robust, tempxelrow might be 0 1 day
        delete [] tempxelrow;
    if (as)				// Avoid purify complaint
        delete [] as;
    if (rs)				// Robust, rs might be 0 one day
        delete [] rs;
    if (gs)				// Robust, gs might be 0 one day
        delete [] gs;
    if (bs)				// Robust, bs might be 0 one day
        delete [] bs;

    return dst;
}

class jpegSmoothScaler : public QImageSmoothScaler
{
public:
    jpegSmoothScaler(struct jpeg_decompress_struct *info, const QSize& dstSize, const QRect& clipRect)
        : QImageSmoothScaler(clipRect.width(), clipRect.height(),
                             dstSize.width(), dstSize.height())
    {
        cinfo = info;
        clip = clipRect;
        imageCache = QImage(info->output_width, 1, QImage::Format_RGB32);
    }

private:
    QRect   clip;
    QImage  imageCache;
    struct jpeg_decompress_struct *cinfo;

    QRgb *scanLine(const int line = 0, const QImage *src = 0)
    {
	QRgb    *out;
	uchar	*in;

	Q_UNUSED(line);
	Q_UNUSED(src);

        uchar* data = imageCache.bits();

        // Read ahead if we haven't reached the first clipped scanline yet.
        while (int(cinfo->output_scanline) < clip.y() &&
               cinfo->output_scanline < cinfo->output_height)
	    jpeg_read_scanlines(cinfo, &data, 1);

        // Read the next scanline.  We assume that "line"
        // will never be >= clip.height().
	jpeg_read_scanlines(cinfo, &data, 1);
        if (cinfo->output_scanline == cinfo->output_height)
            jpeg_finish_decompress(cinfo);

	out = ((QRgb*)data) + clip.x();

	//
	// The smooth scale algorithm only works on 32-bit images;
	// convert from (8|24) bits to 32.
	//
	if (cinfo->output_components == 1) {
	    in = data + clip.right();
	    for (int i = clip.width(); i--; ) {
		out[i] = qRgb(*in, *in, *in);
		in--;
	    }
        } else if (cinfo->out_color_space == JCS_CMYK) {
            in = data + clip.right() * 4;
            for (int i = clip.width(); i--; ) {
                int k = in[3];
                out[i] = qRgb(k * in[0] / 255, k * in[1] / 255, k * in[2] / 255);
                in -= 4;
            }
        } else {
	    in = data + clip.right() * 3;
	    for (int i = clip.width(); i--; ) {
		out[i] = qRgb(in[0], in[1], in[2]);
		in -= 3;
	    }
	}

	return out;
    }

};
#endif

struct my_error_mgr : public jpeg_error_mgr {
    jmp_buf setjmp_buffer;
};

#if defined(Q_C_CALLBACKS)
extern "C" {
#endif

static void my_error_exit (j_common_ptr cinfo)
{
    my_error_mgr* myerr = (my_error_mgr*) cinfo->err;
    char buffer[JMSG_LENGTH_MAX];
    (*cinfo->err->format_message)(cinfo, buffer);
    qWarning("%s", buffer);
    longjmp(myerr->setjmp_buffer, 1);
}

#if defined(Q_C_CALLBACKS)
}
#endif


static const int max_buf = 4096;

struct my_jpeg_source_mgr : public jpeg_source_mgr {
    // Nothing dynamic - cannot rely on destruction over longjump
    QIODevice *device;
    JOCTET buffer[max_buf];

public:
    my_jpeg_source_mgr(QIODevice *device);
};

#if defined(Q_C_CALLBACKS)
extern "C" {
#endif

static void qt_init_source(j_decompress_ptr)
{
}

static boolean qt_fill_input_buffer(j_decompress_ptr cinfo)
{
    int num_read;
    my_jpeg_source_mgr* src = (my_jpeg_source_mgr*)cinfo->src;
    src->next_input_byte = src->buffer;
    num_read = src->device->read((char*)src->buffer, max_buf);
    if (num_read <= 0) {
        // Insert a fake EOI marker - as per jpeglib recommendation
        src->buffer[0] = (JOCTET) 0xFF;
        src->buffer[1] = (JOCTET) JPEG_EOI;
        src->bytes_in_buffer = 2;
    } else {
        src->bytes_in_buffer = num_read;
    }
#if defined(Q_OS_UNIXWARE)
    return B_TRUE;
#else
    return true;
#endif
}

static void qt_skip_input_data(j_decompress_ptr cinfo, long num_bytes)
{
    my_jpeg_source_mgr* src = (my_jpeg_source_mgr*)cinfo->src;

    // `dumb' implementation from jpeglib

    /* Just a dumb implementation for now.  Could use fseek() except
     * it doesn't work on pipes.  Not clear that being smart is worth
     * any trouble anyway --- large skips are infrequent.
     */
    if (num_bytes > 0) {
        while (num_bytes > (long) src->bytes_in_buffer) {
            num_bytes -= (long) src->bytes_in_buffer;
            (void) qt_fill_input_buffer(cinfo);
            /* note we assume that qt_fill_input_buffer will never return false,
            * so suspension need not be handled.
            */
        }
        src->next_input_byte += (size_t) num_bytes;
        src->bytes_in_buffer -= (size_t) num_bytes;
    }
}

static void qt_term_source(j_decompress_ptr cinfo)
{
    my_jpeg_source_mgr* src = (my_jpeg_source_mgr*)cinfo->src;
    if (!src->device->isSequential())
        src->device->seek(src->device->pos() - src->bytes_in_buffer);
}

#if defined(Q_C_CALLBACKS)
}
#endif

inline my_jpeg_source_mgr::my_jpeg_source_mgr(QIODevice *device)
{
    jpeg_source_mgr::init_source = qt_init_source;
    jpeg_source_mgr::fill_input_buffer = qt_fill_input_buffer;
    jpeg_source_mgr::skip_input_data = qt_skip_input_data;
    jpeg_source_mgr::resync_to_restart = jpeg_resync_to_restart;
    jpeg_source_mgr::term_source = qt_term_source;
    this->device = device;
    bytes_in_buffer = 0;
    next_input_byte = buffer;
}


static bool read_jpeg_size(QIODevice *device, int &w, int &h)
{
    bool rt = false;
    struct jpeg_decompress_struct cinfo;

    struct my_jpeg_source_mgr *iod_src = new my_jpeg_source_mgr(device);
    struct my_error_mgr jerr;

    jpeg_create_decompress(&cinfo);

    cinfo.src = iod_src;

    cinfo.err = jpeg_std_error(&jerr);
    jerr.error_exit = my_error_exit;

    if (!setjmp(jerr.setjmp_buffer)) {
#if defined(Q_OS_UNIXWARE)
        (void) jpeg_read_header(&cinfo, B_TRUE);
#else
        (void) jpeg_read_header(&cinfo, true);
#endif
        (void) jpeg_calc_output_dimensions(&cinfo);

        w = cinfo.output_width;
        h = cinfo.output_height;
        rt = true;
    }
    jpeg_destroy_decompress(&cinfo);
    delete iod_src;
    return rt;
}

#define HIGH_QUALITY_THRESHOLD 50

static bool read_jpeg_format(QIODevice *device, QImage::Format &format)
{
    bool result = false;
    struct jpeg_decompress_struct cinfo;

    struct my_jpeg_source_mgr *iod_src = new my_jpeg_source_mgr(device);
    struct my_error_mgr jerr;

    jpeg_create_decompress(&cinfo);

    cinfo.src = iod_src;

    cinfo.err = jpeg_std_error(&jerr);
    jerr.error_exit = my_error_exit;

    if (!setjmp(jerr.setjmp_buffer)) {
#if defined(Q_OS_UNIXWARE)
        (void) jpeg_read_header(&cinfo, B_TRUE);
#else
        (void) jpeg_read_header(&cinfo, true);
#endif
        // This does not allocate memory for the whole image
        // or such, so we are safe.
        (void) jpeg_start_decompress(&cinfo);
        result = true;
        switch (cinfo.output_components) {
        case 1:
            format = QImage::Format_Indexed8;
            break;
        case 3:
        case 4:
            format = QImage::Format_RGB32;
            break;
        default:
            result = false;
            break;
        }
        cinfo.output_scanline = cinfo.output_height;
        (void) jpeg_finish_decompress(&cinfo);
    }
    jpeg_destroy_decompress(&cinfo);
    delete iod_src;
    return result;
}

static bool ensureValidImage(QImage *dest, struct jpeg_decompress_struct *info,
                             const QSize& size)
{
    QImage::Format format;
    switch (info->output_components) {
    case 1:
        format = QImage::Format_Indexed8;
        break;
    case 3:
    case 4:
        format = QImage::Format_RGB32;
        break;
    default:
        return false; // unsupported format
    }

    if (dest->size() != size || dest->format() != format) {
        *dest = QImage(size, format);

        if (format == QImage::Format_Indexed8) {
            dest->setColorCount(256);
            for (int i = 0; i < 256; i++)
                dest->setColor(i, qRgb(i,i,i));
        }
    }

    return !dest->isNull();
}

static bool read_jpeg_image(QIODevice *device, QImage *outImage,
                            QSize scaledSize, QRect scaledClipRect,
                            QRect clipRect, int inQuality )
{
    struct jpeg_decompress_struct cinfo;

    struct my_jpeg_source_mgr *iod_src = new my_jpeg_source_mgr(device);
    struct my_error_mgr jerr;

    jpeg_create_decompress(&cinfo);

    cinfo.src = iod_src;

    cinfo.err = jpeg_std_error(&jerr);
    jerr.error_exit = my_error_exit;

    if (!setjmp(jerr.setjmp_buffer)) {
#if defined(Q_OS_UNIXWARE)
        (void) jpeg_read_header(&cinfo, B_TRUE);
#else
        (void) jpeg_read_header(&cinfo, true);
#endif

        // -1 means default quality.
        int quality = inQuality;
        if (quality < 0)
            quality = 75;

        // If possible, merge the scaledClipRect into either scaledSize
        // or clipRect to avoid doing a separate scaled clipping pass.
        // Best results are achieved by clipping before scaling, not after.
        if (!scaledClipRect.isEmpty()) {
            if (scaledSize.isEmpty() && clipRect.isEmpty()) {
                // No clipping or scaling before final clip.
                clipRect = scaledClipRect;
                scaledClipRect = QRect();
            } else if (scaledSize.isEmpty()) {
                // Clipping, but no scaling: combine the clip regions.
                scaledClipRect.translate(clipRect.topLeft());
                clipRect = scaledClipRect.intersected(clipRect);
                scaledClipRect = QRect();
            } else if (clipRect.isEmpty()) {
                // No clipping, but scaling: if we can map back to an
                // integer pixel boundary, then clip before scaling.
                if ((cinfo.image_width % scaledSize.width()) == 0 &&
                        (cinfo.image_height % scaledSize.height()) == 0) {
                    int x = scaledClipRect.x() * cinfo.image_width /
                            scaledSize.width();
                    int y = scaledClipRect.y() * cinfo.image_height /
                            scaledSize.height();
                    int width = (scaledClipRect.right() + 1) *
                                cinfo.image_width / scaledSize.width() - x;
                    int height = (scaledClipRect.bottom() + 1) *
                                 cinfo.image_height / scaledSize.height() - y;
                    clipRect = QRect(x, y, width, height);
                    scaledSize = scaledClipRect.size();
                    scaledClipRect = QRect();
                }
            } else {
                // Clipping and scaling: too difficult to figure out,
                // and not a likely use case, so do it the long way.
            }
        }

        // Determine the scale factor to pass to libjpeg for quick downscaling.
        if (!scaledSize.isEmpty()) {
            if (clipRect.isEmpty()) {
                cinfo.scale_denom =
                    qMin(cinfo.image_width / scaledSize.width(),
                         cinfo.image_height / scaledSize.height());
            } else {
                cinfo.scale_denom =
                    qMin(clipRect.width() / scaledSize.width(),
                         clipRect.height() / scaledSize.height());
            }
            if (cinfo.scale_denom < 2) {
                cinfo.scale_denom = 1;
            } else if (cinfo.scale_denom < 4) {
                cinfo.scale_denom = 2;
            } else if (cinfo.scale_denom < 8) {
                cinfo.scale_denom = 4;
            } else {
                cinfo.scale_denom = 8;
            }
            cinfo.scale_num = 1;
            if (!clipRect.isEmpty()) {
                // Correct the scale factor so that we clip accurately.
                // It is recommended that the clip rectangle be aligned
                // on an 8-pixel boundary for best performance.
                while (cinfo.scale_denom > 1 &&
                       ((clipRect.x() % cinfo.scale_denom) != 0 ||
                        (clipRect.y() % cinfo.scale_denom) != 0 ||
                        (clipRect.width() % cinfo.scale_denom) != 0 ||
                        (clipRect.height() % cinfo.scale_denom) != 0)) {
                    cinfo.scale_denom /= 2;
                }
            }
        }

        // If high quality not required, use fast decompression
        if( quality < HIGH_QUALITY_THRESHOLD ) {
            cinfo.dct_method = JDCT_IFAST;
            cinfo.do_fancy_upsampling = FALSE;
        }

        (void) jpeg_calc_output_dimensions(&cinfo);

        // Determine the clip region to extract.
        QRect imageRect(0, 0, cinfo.output_width, cinfo.output_height);
        QRect clip;
        if (clipRect.isEmpty()) {
            clip = imageRect;
        } else if (cinfo.scale_denom == 1) {
            clip = clipRect.intersected(imageRect);
        } else {
            // The scale factor was corrected above to ensure that
            // we don't miss pixels when we scale the clip rectangle.
            clip = QRect(clipRect.x() / int(cinfo.scale_denom),
                         clipRect.y() / int(cinfo.scale_denom),
                         clipRect.width() / int(cinfo.scale_denom),
                         clipRect.height() / int(cinfo.scale_denom));
            clip = clip.intersected(imageRect);
        }

#ifndef QT_NO_IMAGE_SMOOTHSCALE
        if (scaledSize.isValid() && scaledSize != clip.size()
            && quality >= HIGH_QUALITY_THRESHOLD) {

            (void) jpeg_start_decompress(&cinfo);

            jpegSmoothScaler scaler(&cinfo, scaledSize, clip);
            *outImage = scaler.scale();
        } else
#endif
        {
            // Allocate memory for the clipped QImage.
            if (!ensureValidImage(outImage, &cinfo, clip.size()))
                longjmp(jerr.setjmp_buffer, 1);

            // Avoid memcpy() overhead if grayscale with no clipping.
            bool quickGray = (cinfo.output_components == 1 &&
                              clip == imageRect);
            if (!quickGray) {
                // Ask the jpeg library to allocate a temporary row.
                // The library will automatically delete it for us later.
                // The libjpeg docs say we should do this before calling
                // jpeg_start_decompress().  We can't use "new" here
                // because we are inside the setjmp() block and an error
                // in the jpeg input stream would cause a memory leak.
                JSAMPARRAY rows = (cinfo.mem->alloc_sarray)
                    ((j_common_ptr)&cinfo, JPOOL_IMAGE,
                     cinfo.output_width * cinfo.output_components, 1);

                (void) jpeg_start_decompress(&cinfo);

                while (cinfo.output_scanline < cinfo.output_height) {
                    int y = int(cinfo.output_scanline) - clip.y();
                    if (y >= clip.height())
                        break;      // We've read the entire clip region, so abort.

                    (void) jpeg_read_scanlines(&cinfo, rows, 1);

                    if (y < 0)
                        continue;   // Haven't reached the starting line yet.

                    if (cinfo.output_components == 3) {
                        // Expand 24->32 bpp.
                        uchar *in = rows[0] + clip.x() * 3;
                        QRgb *out = (QRgb*)outImage->scanLine(y);
                        for (int i = 0; i < clip.width(); ++i) {
                            *out++ = qRgb(in[0], in[1], in[2]);
                            in += 3;
                        }
                    } else if (cinfo.out_color_space == JCS_CMYK) {
                        // Convert CMYK->RGB.
                        uchar *in = rows[0] + clip.x() * 4;
                        QRgb *out = (QRgb*)outImage->scanLine(y);
                        for (int i = 0; i < clip.width(); ++i) {
                            int k = in[3];
                            *out++ = qRgb(k * in[0] / 255, k * in[1] / 255,
                                          k * in[2] / 255);
                            in += 4;
                        }
                    } else if (cinfo.output_components == 1) {
                        // Grayscale.
                        memcpy(outImage->scanLine(y),
                               rows[0] + clip.x(), clip.width());
                    }
                }
            } else {
                // Load unclipped grayscale data directly into the QImage.
                (void) jpeg_start_decompress(&cinfo);
                while (cinfo.output_scanline < cinfo.output_height) {
                    uchar *row = outImage->scanLine(cinfo.output_scanline);
                    (void) jpeg_read_scanlines(&cinfo, &row, 1);
                }
            }

            if (cinfo.output_scanline == cinfo.output_height)
                (void) jpeg_finish_decompress(&cinfo);

            if (cinfo.density_unit == 1) {
                outImage->setDotsPerMeterX(int(100. * cinfo.X_density / 2.54));
                outImage->setDotsPerMeterY(int(100. * cinfo.Y_density / 2.54));
            } else if (cinfo.density_unit == 2) {
                outImage->setDotsPerMeterX(int(100. * cinfo.X_density));
                outImage->setDotsPerMeterY(int(100. * cinfo.Y_density));
            }

            if (scaledSize.isValid() && scaledSize != clip.size())
                *outImage = outImage->scaled(scaledSize, Qt::IgnoreAspectRatio, Qt::FastTransformation);
        }
    }

    jpeg_destroy_decompress(&cinfo);
    delete iod_src;
    if (!scaledClipRect.isEmpty())
        *outImage = outImage->copy(scaledClipRect);
    return !outImage->isNull();
}


struct my_jpeg_destination_mgr : public jpeg_destination_mgr {
    // Nothing dynamic - cannot rely on destruction over longjump
    QIODevice *device;
    JOCTET buffer[max_buf];

public:
    my_jpeg_destination_mgr(QIODevice *);
};


#if defined(Q_C_CALLBACKS)
extern "C" {
#endif

static void qt_init_destination(j_compress_ptr)
{
}

static boolean qt_empty_output_buffer(j_compress_ptr cinfo)
{
    my_jpeg_destination_mgr* dest = (my_jpeg_destination_mgr*)cinfo->dest;

    int written = dest->device->write((char*)dest->buffer, max_buf);
    if (written == -1)
        (*cinfo->err->error_exit)((j_common_ptr)cinfo);

    dest->next_output_byte = dest->buffer;
    dest->free_in_buffer = max_buf;

#if defined(Q_OS_UNIXWARE)
    return B_TRUE;
#else
    return true;
#endif
}

static void qt_term_destination(j_compress_ptr cinfo)
{
    my_jpeg_destination_mgr* dest = (my_jpeg_destination_mgr*)cinfo->dest;
    qint64 n = max_buf - dest->free_in_buffer;

    qint64 written = dest->device->write((char*)dest->buffer, n);
    if (written == -1)
        (*cinfo->err->error_exit)((j_common_ptr)cinfo);
}

#if defined(Q_C_CALLBACKS)
}
#endif

inline my_jpeg_destination_mgr::my_jpeg_destination_mgr(QIODevice *device)
{
    jpeg_destination_mgr::init_destination = qt_init_destination;
    jpeg_destination_mgr::empty_output_buffer = qt_empty_output_buffer;
    jpeg_destination_mgr::term_destination = qt_term_destination;
    this->device = device;
    next_output_byte = buffer;
    free_in_buffer = max_buf;
}


static bool write_jpeg_image(const QImage &sourceImage, QIODevice *device, int sourceQuality)
{
    bool success = false;
    const QImage image = sourceImage;
    const QVector<QRgb> cmap = image.colorTable();

    struct jpeg_compress_struct cinfo;
    JSAMPROW row_pointer[1];
    row_pointer[0] = 0;

    struct my_jpeg_destination_mgr *iod_dest = new my_jpeg_destination_mgr(device);
    struct my_error_mgr jerr;

    cinfo.err = jpeg_std_error(&jerr);
    jerr.error_exit = my_error_exit;

    if (!setjmp(jerr.setjmp_buffer)) {
        // WARNING:
        // this if loop is inside a setjmp/longjmp branch
        // do not create C++ temporaries here because the destructor may never be called
        // if you allocate memory, make sure that you can free it (row_pointer[0])
        jpeg_create_compress(&cinfo);

        cinfo.dest = iod_dest;

        cinfo.image_width = image.width();
        cinfo.image_height = image.height();

        bool gray=false;
        switch (image.format()) {
        case QImage::Format_Mono:
        case QImage::Format_MonoLSB:
        case QImage::Format_Indexed8:
            gray = true;
            for (int i = image.colorCount(); gray && i--;) {
                gray = gray & (qRed(cmap[i]) == qGreen(cmap[i]) &&
                               qRed(cmap[i]) == qBlue(cmap[i]));
            }
            cinfo.input_components = gray ? 1 : 3;
            cinfo.in_color_space = gray ? JCS_GRAYSCALE : JCS_RGB;
            break;
        default:
            cinfo.input_components = 3;
            cinfo.in_color_space = JCS_RGB;
        }

        jpeg_set_defaults(&cinfo);

        qreal diffInch = qAbs(image.dotsPerMeterX()*2.54/100. - qRound(image.dotsPerMeterX()*2.54/100.))
                         + qAbs(image.dotsPerMeterY()*2.54/100. - qRound(image.dotsPerMeterY()*2.54/100.));
        qreal diffCm = (qAbs(image.dotsPerMeterX()/100. - qRound(image.dotsPerMeterX()/100.))
                        + qAbs(image.dotsPerMeterY()/100. - qRound(image.dotsPerMeterY()/100.)))*2.54;
        if (diffInch < diffCm) {
            cinfo.density_unit = 1; // dots/inch
            cinfo.X_density = qRound(image.dotsPerMeterX()*2.54/100.);
            cinfo.Y_density = qRound(image.dotsPerMeterY()*2.54/100.);
        } else {
            cinfo.density_unit = 2; // dots/cm
            cinfo.X_density = (image.dotsPerMeterX()+50) / 100;
            cinfo.Y_density = (image.dotsPerMeterY()+50) / 100;
        }


        int quality = sourceQuality >= 0 ? qMin(sourceQuality,100) : 75;
#if defined(Q_OS_UNIXWARE)
        jpeg_set_quality(&cinfo, quality, B_TRUE /* limit to baseline-JPEG values */);
        jpeg_start_compress(&cinfo, B_TRUE);
#else
        jpeg_set_quality(&cinfo, quality, true /* limit to baseline-JPEG values */);
        jpeg_start_compress(&cinfo, true);
#endif

        row_pointer[0] = new uchar[cinfo.image_width*cinfo.input_components];
        int w = cinfo.image_width;
        while (cinfo.next_scanline < cinfo.image_height) {
            uchar *row = row_pointer[0];
            switch (image.format()) {
            case QImage::Format_Mono:
            case QImage::Format_MonoLSB:
                if (gray) {
                    const uchar* data = image.scanLine(cinfo.next_scanline);
                    if (image.format() == QImage::Format_MonoLSB) {
                        for (int i=0; i<w; i++) {
                            bool bit = !!(*(data + (i >> 3)) & (1 << (i & 7)));
                            row[i] = qRed(cmap[bit]);
                        }
                    } else {
                        for (int i=0; i<w; i++) {
                            bool bit = !!(*(data + (i >> 3)) & (1 << (7 -(i & 7))));
                            row[i] = qRed(cmap[bit]);
                        }
                    }
                } else {
                    const uchar* data = image.scanLine(cinfo.next_scanline);
                    if (image.format() == QImage::Format_MonoLSB) {
                        for (int i=0; i<w; i++) {
                            bool bit = !!(*(data + (i >> 3)) & (1 << (i & 7)));
                            *row++ = qRed(cmap[bit]);
                            *row++ = qGreen(cmap[bit]);
                            *row++ = qBlue(cmap[bit]);
                        }
                    } else {
                        for (int i=0; i<w; i++) {
                            bool bit = !!(*(data + (i >> 3)) & (1 << (7 -(i & 7))));
                            *row++ = qRed(cmap[bit]);
                            *row++ = qGreen(cmap[bit]);
                            *row++ = qBlue(cmap[bit]);
                        }
                    }
                }
                break;
            case QImage::Format_Indexed8:
                if (gray) {
                    const uchar* pix = image.scanLine(cinfo.next_scanline);
                    for (int i=0; i<w; i++) {
                        *row = qRed(cmap[*pix]);
                        ++row; ++pix;
                    }
                } else {
                    const uchar* pix = image.scanLine(cinfo.next_scanline);
                    for (int i=0; i<w; i++) {
                        *row++ = qRed(cmap[*pix]);
                        *row++ = qGreen(cmap[*pix]);
                        *row++ = qBlue(cmap[*pix]);
                        ++pix;
                    }
                }
                break;
            case QImage::Format_RGB888:
                memcpy(row, image.scanLine(cinfo.next_scanline), w * 3);
                break;
            case QImage::Format_RGB32:
            case QImage::Format_ARGB32:
            case QImage::Format_ARGB32_Premultiplied: {
                QRgb* rgb = (QRgb*)image.scanLine(cinfo.next_scanline);
                for (int i=0; i<w; i++) {
                    *row++ = qRed(*rgb);
                    *row++ = qGreen(*rgb);
                    *row++ = qBlue(*rgb);
                    ++rgb;
                }
                break;
            }
            default:
                qWarning("QJpegHandler: unable to write image of format %i",
                         image.format());
                break;
            }
            jpeg_write_scanlines(&cinfo, row_pointer, 1);
        }

        jpeg_finish_compress(&cinfo);
        jpeg_destroy_compress(&cinfo);
        success = true;
    } else {
        jpeg_destroy_compress(&cinfo);
        success = false;
    }

    delete iod_dest;
    delete [] row_pointer[0];
    return success;
}

QJpegHandler::QJpegHandler()
{
    quality = 75;
}

bool QJpegHandler::canRead() const
{
    if (canRead(device())) {
        setFormat("jpeg");
        return true;
    }
    return false;
}

bool QJpegHandler::canRead(QIODevice *device)
{
    if (!device) {
        qWarning("QJpegHandler::canRead() called with no device");
        return false;
    }

    char buffer[2];
    if (device->peek(buffer, 2) != 2)
        return false;

    return uchar(buffer[0]) == 0xff && uchar(buffer[1]) == 0xd8;
}

bool QJpegHandler::read(QImage *image)
{
    if (!canRead())
        return false;
    return read_jpeg_image(device(), image, scaledSize, scaledClipRect, clipRect, quality);
}

bool QJpegHandler::write(const QImage &image)
{
    return write_jpeg_image(image, device(), quality);
}

bool QJpegHandler::supportsOption(ImageOption option) const
{
    return option == Quality
        || option == ScaledSize
        || option == ScaledClipRect
        || option == ClipRect
        || option == Size
        || option == ImageFormat;
}

QVariant QJpegHandler::option(ImageOption option) const
{
    if (option == Quality) {
        return quality;
    } else if  (option == ScaledSize) {
        return scaledSize;
    } else if  (option == ScaledClipRect) {
        return scaledClipRect;
    } else if  (option == ClipRect) {
        return clipRect;
    } else if (option == Size) {
        if (canRead() && !device()->isSequential()) {
            qint64 pos = device()->pos();
            int width = 0;
            int height = 0;
            read_jpeg_size(device(), width, height);
            device()->seek(pos);
            return QSize(width, height);
        }
    } else if (option == ImageFormat) {
        if (canRead() && !device()->isSequential()) {
            qint64 pos = device()->pos();
            QImage::Format format = QImage::Format_Invalid;
            read_jpeg_format(device(), format);
            device()->seek(pos);
            return format;
        }
        return QImage::Format_Invalid;
    }
    return QVariant();
}

void QJpegHandler::setOption(ImageOption option, const QVariant &value)
{
    if (option == Quality)
        quality = value.toInt();
    else if ( option == ScaledSize )
        scaledSize = value.toSize();
    else if ( option == ScaledClipRect )
        scaledClipRect = value.toRect();
    else if ( option == ClipRect )
        clipRect = value.toRect();
}

QByteArray QJpegHandler::name() const
{
    return "jpeg";
}

QT_END_NAMESPACE