diff -r 000000000000 -r 1918ee327afb src/gui/painting/qmatrix.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/gui/painting/qmatrix.cpp Mon Jan 11 14:00:40 2010 +0000 @@ -0,0 +1,1219 @@ +/**************************************************************************** +** +** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). +** All rights reserved. +** Contact: Nokia Corporation (qt-info@nokia.com) +** +** This file is part of the QtGui module of the Qt Toolkit. +** +** $QT_BEGIN_LICENSE:LGPL$ +** No Commercial Usage +** This file contains pre-release code and may not be distributed. +** You may use this file in accordance with the terms and conditions +** contained in the Technology Preview License Agreement accompanying +** this package. +** +** GNU Lesser General Public License Usage +** Alternatively, this file may be used under the terms of the GNU Lesser +** General Public License version 2.1 as published by the Free Software +** Foundation and appearing in the file LICENSE.LGPL included in the +** packaging of this file. Please review the following information to +** ensure the GNU Lesser General Public License version 2.1 requirements +** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. +** +** In addition, as a special exception, Nokia gives you certain additional +** rights. These rights are described in the Nokia Qt LGPL Exception +** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. +** +** If you have questions regarding the use of this file, please contact +** Nokia at qt-info@nokia.com. +** +** +** +** +** +** +** +** +** $QT_END_LICENSE$ +** +****************************************************************************/ + +#include "qdatastream.h" +#include "qdebug.h" +#include "qmatrix.h" +#include "qregion.h" +#include "qpainterpath.h" +#include "qvariant.h" +#include + +#include + +QT_BEGIN_NAMESPACE + +/*! + \class QMatrix + \brief The QMatrix class specifies 2D transformations of a + coordinate system. + \obsolete + + \ingroup painting + + A matrix specifies how to translate, scale, shear or rotate the + coordinate system, and is typically used when rendering graphics. + QMatrix, in contrast to QTransform, does not allow perspective + transformations. QTransform is the recommended transformation + class in Qt. + + A QMatrix object can be built using the setMatrix(), scale(), + rotate(), translate() and shear() functions. Alternatively, it + can be built by applying \l {QMatrix#Basic Matrix + Operations}{basic matrix operations}. The matrix can also be + defined when constructed, and it can be reset to the identity + matrix (the default) using the reset() function. + + The QMatrix class supports mapping of graphic primitives: A given + point, line, polygon, region, or painter path can be mapped to the + coordinate system defined by \e this matrix using the map() + function. In case of a rectangle, its coordinates can be + transformed using the mapRect() function. A rectangle can also be + transformed into a \e polygon (mapped to the coordinate system + defined by \e this matrix), using the mapToPolygon() function. + + QMatrix provides the isIdentity() function which returns true if + the matrix is the identity matrix, and the isInvertible() function + which returns true if the matrix is non-singular (i.e. AB = BA = + I). The inverted() function returns an inverted copy of \e this + matrix if it is invertible (otherwise it returns the identity + matrix). In addition, QMatrix provides the det() function + returning the matrix's determinant. + + Finally, the QMatrix class supports matrix multiplication, and + objects of the class can be streamed as well as compared. + + \tableofcontents + + \section1 Rendering Graphics + + When rendering graphics, the matrix defines the transformations + but the actual transformation is performed by the drawing routines + in QPainter. + + By default, QPainter operates on the associated device's own + coordinate system. The standard coordinate system of a + QPaintDevice has its origin located at the top-left position. The + \e x values increase to the right; \e y values increase + downward. For a complete description, see the \l {The Coordinate + System}{coordinate system} documentation. + + QPainter has functions to translate, scale, shear and rotate the + coordinate system without using a QMatrix. For example: + + \table 100% + \row + \o \inlineimage qmatrix-simpletransformation.png + \o + \snippet doc/src/snippets/matrix/matrix.cpp 0 + \endtable + + Although these functions are very convenient, it can be more + efficient to build a QMatrix and call QPainter::setMatrix() if you + want to perform more than a single transform operation. For + example: + + \table 100% + \row + \o \inlineimage qmatrix-combinedtransformation.png + \o + \snippet doc/src/snippets/matrix/matrix.cpp 1 + \endtable + + \section1 Basic Matrix Operations + + \image qmatrix-representation.png + + A QMatrix object contains a 3 x 3 matrix. The \c dx and \c dy + elements specify horizontal and vertical translation. The \c m11 + and \c m22 elements specify horizontal and vertical scaling. And + finally, the \c m21 and \c m12 elements specify horizontal and + vertical \e shearing. + + QMatrix transforms a point in the plane to another point using the + following formulas: + + \snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 0 + + The point \e (x, y) is the original point, and \e (x', y') is the + transformed point. \e (x', y') can be transformed back to \e (x, + y) by performing the same operation on the inverted() matrix. + + The various matrix elements can be set when constructing the + matrix, or by using the setMatrix() function later on. They can also + be manipulated using the translate(), rotate(), scale() and + shear() convenience functions, The currently set values can be + retrieved using the m11(), m12(), m21(), m22(), dx() and dy() + functions. + + Translation is the simplest transformation. Setting \c dx and \c + dy will move the coordinate system \c dx units along the X axis + and \c dy units along the Y axis. Scaling can be done by setting + \c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to + 1.5 will double the height and increase the width by 50%. The + identity matrix has \c m11 and \c m22 set to 1 (all others are set + to 0) mapping a point to itself. Shearing is controlled by \c m12 + and \c m21. Setting these elements to values different from zero + will twist the coordinate system. Rotation is achieved by + carefully setting both the shearing factors and the scaling + factors. + + Here's the combined transformations example using basic matrix + operations: + + \table 100% + \row + \o \inlineimage qmatrix-combinedtransformation.png + \o + \snippet doc/src/snippets/matrix/matrix.cpp 2 + \endtable + + \sa QPainter, QTransform, {The Coordinate System}, + {demos/affine}{Affine Transformations Demo}, {Transformations Example} +*/ + + +// some defines to inline some code +#define MAPDOUBLE(x, y, nx, ny) \ +{ \ + qreal fx = x; \ + qreal fy = y; \ + nx = _m11*fx + _m21*fy + _dx; \ + ny = _m12*fx + _m22*fy + _dy; \ +} + +#define MAPINT(x, y, nx, ny) \ +{ \ + qreal fx = x; \ + qreal fy = y; \ + nx = qRound(_m11*fx + _m21*fy + _dx); \ + ny = qRound(_m12*fx + _m22*fy + _dy); \ +} + +/***************************************************************************** + QMatrix member functions + *****************************************************************************/ +/*! + \fn QMatrix::QMatrix(Qt::Initialization) + \internal +*/ + +/*! + Constructs an identity matrix. + + All elements are set to zero except \c m11 and \c m22 (specifying + the scale), which are set to 1. + + \sa reset() +*/ + +QMatrix::QMatrix() + : _m11(1.) + , _m12(0.) + , _m21(0.) + , _m22(1.) + , _dx(0.) + , _dy(0.) +{ +} + +/*! + Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a + m22, \a dx and \a dy. + + \sa setMatrix() +*/ + +QMatrix::QMatrix(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy) + : _m11(m11) + , _m12(m12) + , _m21(m21) + , _m22(m22) + , _dx(dx) + , _dy(dy) +{ +} + + +/*! + Constructs a matrix that is a copy of the given \a matrix. + */ +QMatrix::QMatrix(const QMatrix &matrix) + : _m11(matrix._m11) + , _m12(matrix._m12) + , _m21(matrix._m21) + , _m22(matrix._m22) + , _dx(matrix._dx) + , _dy(matrix._dy) +{ +} + +/*! + Sets the matrix elements to the specified values, \a m11, \a m12, + \a m21, \a m22, \a dx and \a dy. + + Note that this function replaces the previous values. QMatrix + provide the translate(), rotate(), scale() and shear() convenience + functions to manipulate the various matrix elements based on the + currently defined coordinate system. + + \sa QMatrix() +*/ + +void QMatrix::setMatrix(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy) +{ + _m11 = m11; + _m12 = m12; + _m21 = m21; + _m22 = m22; + _dx = dx; + _dy = dy; +} + + +/*! + \fn qreal QMatrix::m11() const + + Returns the horizontal scaling factor. + + \sa scale(), {QMatrix#Basic Matrix Operations}{Basic Matrix + Operations} +*/ + +/*! + \fn qreal QMatrix::m12() const + + Returns the vertical shearing factor. + + \sa shear(), {QMatrix#Basic Matrix Operations}{Basic Matrix + Operations} +*/ + +/*! + \fn qreal QMatrix::m21() const + + Returns the horizontal shearing factor. + + \sa shear(), {QMatrix#Basic Matrix Operations}{Basic Matrix + Operations} +*/ + +/*! + \fn qreal QMatrix::m22() const + + Returns the vertical scaling factor. + + \sa scale(), {QMatrix#Basic Matrix Operations}{Basic Matrix + Operations} +*/ + +/*! + \fn qreal QMatrix::dx() const + + Returns the horizontal translation factor. + + \sa translate(), {QMatrix#Basic Matrix Operations}{Basic Matrix + Operations} +*/ + +/*! + \fn qreal QMatrix::dy() const + + Returns the vertical translation factor. + + \sa translate(), {QMatrix#Basic Matrix Operations}{Basic Matrix + Operations} +*/ + + +/*! + Maps the given coordinates \a x and \a y into the coordinate + system defined by this matrix. The resulting values are put in *\a + tx and *\a ty, respectively. + + The coordinates are transformed using the following formulas: + + \snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 1 + + The point (x, y) is the original point, and (x', y') is the + transformed point. + + \sa {QMatrix#Basic Matrix Operations}{Basic Matrix Operations} +*/ + +void QMatrix::map(qreal x, qreal y, qreal *tx, qreal *ty) const +{ + MAPDOUBLE(x, y, *tx, *ty); +} + + + +/*! + \overload + + Maps the given coordinates \a x and \a y into the coordinate + system defined by this matrix. The resulting values are put in *\a + tx and *\a ty, respectively. Note that the transformed coordinates + are rounded to the nearest integer. +*/ + +void QMatrix::map(int x, int y, int *tx, int *ty) const +{ + MAPINT(x, y, *tx, *ty); +} + +QRect QMatrix::mapRect(const QRect &rect) const +{ + QRect result; + if (_m12 == 0.0F && _m21 == 0.0F) { + int x = qRound(_m11*rect.x() + _dx); + int y = qRound(_m22*rect.y() + _dy); + int w = qRound(_m11*rect.width()); + int h = qRound(_m22*rect.height()); + if (w < 0) { + w = -w; + x -= w; + } + if (h < 0) { + h = -h; + y -= h; + } + result = QRect(x, y, w, h); + } else { + // see mapToPolygon for explanations of the algorithm. + qreal x0, y0; + qreal x, y; + MAPDOUBLE(rect.left(), rect.top(), x0, y0); + qreal xmin = x0; + qreal ymin = y0; + qreal xmax = x0; + qreal ymax = y0; + MAPDOUBLE(rect.right() + 1, rect.top(), x, y); + xmin = qMin(xmin, x); + ymin = qMin(ymin, y); + xmax = qMax(xmax, x); + ymax = qMax(ymax, y); + MAPDOUBLE(rect.right() + 1, rect.bottom() + 1, x, y); + xmin = qMin(xmin, x); + ymin = qMin(ymin, y); + xmax = qMax(xmax, x); + ymax = qMax(ymax, y); + MAPDOUBLE(rect.left(), rect.bottom() + 1, x, y); + xmin = qMin(xmin, x); + ymin = qMin(ymin, y); + xmax = qMax(xmax, x); + ymax = qMax(ymax, y); + result = QRect(qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin), qRound(ymax)-qRound(ymin)); + } + return result; +} + +/*! + \fn QRectF QMatrix::mapRect(const QRectF &rectangle) const + + Creates and returns a QRectF object that is a copy of the given \a + rectangle, mapped into the coordinate system defined by this + matrix. + + The rectangle's coordinates are transformed using the following + formulas: + + \snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 2 + + If rotation or shearing has been specified, this function returns + the \e bounding rectangle. To retrieve the exact region the given + \a rectangle maps to, use the mapToPolygon() function instead. + + \sa mapToPolygon(), {QMatrix#Basic Matrix Operations}{Basic Matrix + Operations} +*/ +QRectF QMatrix::mapRect(const QRectF &rect) const +{ + QRectF result; + if (_m12 == 0.0F && _m21 == 0.0F) { + qreal x = _m11*rect.x() + _dx; + qreal y = _m22*rect.y() + _dy; + qreal w = _m11*rect.width(); + qreal h = _m22*rect.height(); + if (w < 0) { + w = -w; + x -= w; + } + if (h < 0) { + h = -h; + y -= h; + } + result = QRectF(x, y, w, h); + } else { + qreal x0, y0; + qreal x, y; + MAPDOUBLE(rect.x(), rect.y(), x0, y0); + qreal xmin = x0; + qreal ymin = y0; + qreal xmax = x0; + qreal ymax = y0; + MAPDOUBLE(rect.x() + rect.width(), rect.y(), x, y); + xmin = qMin(xmin, x); + ymin = qMin(ymin, y); + xmax = qMax(xmax, x); + ymax = qMax(ymax, y); + MAPDOUBLE(rect.x() + rect.width(), rect.y() + rect.height(), x, y); + xmin = qMin(xmin, x); + ymin = qMin(ymin, y); + xmax = qMax(xmax, x); + ymax = qMax(ymax, y); + MAPDOUBLE(rect.x(), rect.y() + rect.height(), x, y); + xmin = qMin(xmin, x); + ymin = qMin(ymin, y); + xmax = qMax(xmax, x); + ymax = qMax(ymax, y); + result = QRectF(xmin, ymin, xmax-xmin, ymax - ymin); + } + return result; +} + +/*! + \fn QRect QMatrix::mapRect(const QRect &rectangle) const + \overload + + Creates and returns a QRect object that is a copy of the given \a + rectangle, mapped into the coordinate system defined by this + matrix. Note that the transformed coordinates are rounded to the + nearest integer. +*/ + + +/*! + \fn QPoint operator*(const QPoint &point, const QMatrix &matrix) + \relates QMatrix + + This is the same as \a{matrix}.map(\a{point}). + + \sa QMatrix::map() +*/ + +QPoint QMatrix::map(const QPoint &p) const +{ + qreal fx = p.x(); + qreal fy = p.y(); + return QPoint(qRound(_m11*fx + _m21*fy + _dx), + qRound(_m12*fx + _m22*fy + _dy)); +} + +/*! + \fn QPointF operator*(const QPointF &point, const QMatrix &matrix) + \relates QMatrix + + Same as \a{matrix}.map(\a{point}). + + \sa QMatrix::map() +*/ + +/*! + \overload + + Creates and returns a QPointF object that is a copy of the given + \a point, mapped into the coordinate system defined by this + matrix. +*/ +QPointF QMatrix::map(const QPointF &point) const +{ + qreal fx = point.x(); + qreal fy = point.y(); + return QPointF(_m11*fx + _m21*fy + _dx, _m12*fx + _m22*fy + _dy); +} + +/*! + \fn QPoint QMatrix::map(const QPoint &point) const + \overload + + Creates and returns a QPoint object that is a copy of the given \a + point, mapped into the coordinate system defined by this + matrix. Note that the transformed coordinates are rounded to the + nearest integer. +*/ + +/*! + \fn QLineF operator*(const QLineF &line, const QMatrix &matrix) + \relates QMatrix + + This is the same as \a{matrix}.map(\a{line}). + + \sa QMatrix::map() +*/ + +/*! + \fn QLine operator*(const QLine &line, const QMatrix &matrix) + \relates QMatrix + + This is the same as \a{matrix}.map(\a{line}). + + \sa QMatrix::map() +*/ + +/*! + \overload + + Creates and returns a QLineF object that is a copy of the given \a + line, mapped into the coordinate system defined by this matrix. +*/ +QLineF QMatrix::map(const QLineF &line) const +{ + return QLineF(map(line.p1()), map(line.p2())); +} + +/*! + \overload + + Creates and returns a QLine object that is a copy of the given \a + line, mapped into the coordinate system defined by this matrix. + Note that the transformed coordinates are rounded to the nearest + integer. +*/ +QLine QMatrix::map(const QLine &line) const +{ + return QLine(map(line.p1()), map(line.p2())); +} + +/*! + \fn QPolygonF operator *(const QPolygonF &polygon, const QMatrix &matrix) + \relates QMatrix + + This is the same as \a{matrix}.map(\a{polygon}). + + \sa QMatrix::map() +*/ + +/*! + \fn QPolygon operator*(const QPolygon &polygon, const QMatrix &matrix) + \relates QMatrix + + This is the same as \a{matrix}.map(\a{polygon}). + + \sa QMatrix::map() +*/ + +QPolygon QMatrix::map(const QPolygon &a) const +{ + int size = a.size(); + int i; + QPolygon p(size); + const QPoint *da = a.constData(); + QPoint *dp = p.data(); + for(i = 0; i < size; i++) { + MAPINT(da[i].x(), da[i].y(), dp[i].rx(), dp[i].ry()); + } + return p; +} + +/*! + \fn QPolygonF QMatrix::map(const QPolygonF &polygon) const + \overload + + Creates and returns a QPolygonF object that is a copy of the given + \a polygon, mapped into the coordinate system defined by this + matrix. +*/ +QPolygonF QMatrix::map(const QPolygonF &a) const +{ + int size = a.size(); + int i; + QPolygonF p(size); + const QPointF *da = a.constData(); + QPointF *dp = p.data(); + for(i = 0; i < size; i++) { + MAPDOUBLE(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp); + } + return p; +} + +/*! + \fn QPolygon QMatrix::map(const QPolygon &polygon) const + \overload + + Creates and returns a QPolygon object that is a copy of the given + \a polygon, mapped into the coordinate system defined by this + matrix. Note that the transformed coordinates are rounded to the + nearest integer. +*/ + +/*! + \fn QRegion operator*(const QRegion ®ion, const QMatrix &matrix) + \relates QMatrix + + This is the same as \a{matrix}.map(\a{region}). + + \sa QMatrix::map() +*/ + +extern QPainterPath qt_regionToPath(const QRegion ®ion); + +/*! + \fn QRegion QMatrix::map(const QRegion ®ion) const + \overload + + Creates and returns a QRegion object that is a copy of the given + \a region, mapped into the coordinate system defined by this matrix. + + Calling this method can be rather expensive if rotations or + shearing are used. +*/ +QRegion QMatrix::map(const QRegion &r) const +{ + if (_m11 == 1.0 && _m22 == 1.0 && _m12 == 0.0 && _m21 == 0.0) { // translate or identity + if (_dx == 0.0 && _dy == 0.0) // Identity + return r; + QRegion copy(r); + copy.translate(qRound(_dx), qRound(_dy)); + return copy; + } + + QPainterPath p = map(qt_regionToPath(r)); + return p.toFillPolygon().toPolygon(); +} + +/*! + \fn QPainterPath operator *(const QPainterPath &path, const QMatrix &matrix) + \relates QMatrix + + This is the same as \a{matrix}.map(\a{path}). + + \sa QMatrix::map() +*/ + +/*! + \overload + + Creates and returns a QPainterPath object that is a copy of the + given \a path, mapped into the coordinate system defined by this + matrix. +*/ +QPainterPath QMatrix::map(const QPainterPath &path) const +{ + if (path.isEmpty()) + return QPainterPath(); + + QPainterPath copy = path; + + // Translate or identity + if (_m11 == 1.0 && _m22 == 1.0 && _m12 == 0.0 && _m21 == 0.0) { + + // Translate + if (_dx != 0.0 || _dy != 0.0) { + copy.detach(); + for (int i=0; ielements[i]; + e.x += _dx; + e.y += _dy; + } + } + + // Full xform + } else { + copy.detach(); + for (int i=0; ielements[i]; + qreal fx = e.x, fy = e.y; + e.x = _m11*fx + _m21*fy + _dx; + e.y = _m12*fx + _m22*fy + _dy; + } + } + + return copy; +} + +/*! + \fn QRegion QMatrix::mapToRegion(const QRect &rectangle) const + + Returns the transformed rectangle \a rectangle as a QRegion + object. A rectangle which has been rotated or sheared may result + in a non-rectangular region being returned. + + Use the mapToPolygon() or map() function instead. +*/ +#ifdef QT3_SUPPORT +QRegion QMatrix::mapToRegion(const QRect &rect) const +{ + QRegion result; + if (isIdentity()) { + result = rect; + } else if (m12() == 0.0F && m21() == 0.0F) { + int x = qRound(m11()*rect.x() + dx()); + int y = qRound(m22()*rect.y() + dy()); + int w = qRound(m11()*rect.width()); + int h = qRound(m22()*rect.height()); + if (w < 0) { + w = -w; + x -= w - 1; + } + if (h < 0) { + h = -h; + y -= h - 1; + } + result = QRect(x, y, w, h); + } else { + result = QRegion(mapToPolygon(rect)); + } + return result; + +} +#endif +/*! + \fn QPolygon QMatrix::mapToPolygon(const QRect &rectangle) const + + Creates and returns a QPolygon representation of the given \a + rectangle, mapped into the coordinate system defined by this + matrix. + + The rectangle's coordinates are transformed using the following + formulas: + + \snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 3 + + Polygons and rectangles behave slightly differently when + transformed (due to integer rounding), so + \c{matrix.map(QPolygon(rectangle))} is not always the same as + \c{matrix.mapToPolygon(rectangle)}. + + \sa mapRect(), {QMatrix#Basic Matrix Operations}{Basic Matrix + Operations} +*/ +QPolygon QMatrix::mapToPolygon(const QRect &rect) const +{ + QPolygon a(4); + qreal x[4], y[4]; + if (_m12 == 0.0F && _m21 == 0.0F) { + x[0] = _m11*rect.x() + _dx; + y[0] = _m22*rect.y() + _dy; + qreal w = _m11*rect.width(); + qreal h = _m22*rect.height(); + if (w < 0) { + w = -w; + x[0] -= w; + } + if (h < 0) { + h = -h; + y[0] -= h; + } + x[1] = x[0]+w; + x[2] = x[1]; + x[3] = x[0]; + y[1] = y[0]; + y[2] = y[0]+h; + y[3] = y[2]; + } else { + qreal right = rect.x() + rect.width(); + qreal bottom = rect.y() + rect.height(); + MAPDOUBLE(rect.x(), rect.y(), x[0], y[0]); + MAPDOUBLE(right, rect.y(), x[1], y[1]); + MAPDOUBLE(right, bottom, x[2], y[2]); + MAPDOUBLE(rect.x(), bottom, x[3], y[3]); + } +#if 0 + int i; + for(i = 0; i< 4; i++) + qDebug("coords(%d) = (%f/%f) (%d/%d)", i, x[i], y[i], qRound(x[i]), qRound(y[i])); + qDebug("width=%f, height=%f", qSqrt((x[1]-x[0])*(x[1]-x[0]) + (y[1]-y[0])*(y[1]-y[0])), + qSqrt((x[0]-x[3])*(x[0]-x[3]) + (y[0]-y[3])*(y[0]-y[3]))); +#endif + // all coordinates are correctly, tranform to a pointarray + // (rounding to the next integer) + a.setPoints(4, qRound(x[0]), qRound(y[0]), + qRound(x[1]), qRound(y[1]), + qRound(x[2]), qRound(y[2]), + qRound(x[3]), qRound(y[3])); + return a; +} + +/*! + Resets the matrix to an identity matrix, i.e. all elements are set + to zero, except \c m11 and \c m22 (specifying the scale) which are + set to 1. + + \sa QMatrix(), isIdentity(), {QMatrix#Basic Matrix + Operations}{Basic Matrix Operations} +*/ + +void QMatrix::reset() +{ + _m11 = _m22 = 1.0; + _m12 = _m21 = _dx = _dy = 0.0; +} + +/*! + \fn bool QMatrix::isIdentity() const + + Returns true if the matrix is the identity matrix, otherwise + returns false. + + \sa reset() +*/ + +/*! + Moves the coordinate system \a dx along the x axis and \a dy along + the y axis, and returns a reference to the matrix. + + \sa setMatrix() +*/ + +QMatrix &QMatrix::translate(qreal dx, qreal dy) +{ + _dx += dx*_m11 + dy*_m21; + _dy += dy*_m22 + dx*_m12; + return *this; +} + +/*! + \fn QMatrix &QMatrix::scale(qreal sx, qreal sy) + + Scales the coordinate system by \a sx horizontally and \a sy + vertically, and returns a reference to the matrix. + + \sa setMatrix() +*/ + +QMatrix &QMatrix::scale(qreal sx, qreal sy) +{ + _m11 *= sx; + _m12 *= sx; + _m21 *= sy; + _m22 *= sy; + return *this; +} + +/*! + Shears the coordinate system by \a sh horizontally and \a sv + vertically, and returns a reference to the matrix. + + \sa setMatrix() +*/ + +QMatrix &QMatrix::shear(qreal sh, qreal sv) +{ + qreal tm11 = sv*_m21; + qreal tm12 = sv*_m22; + qreal tm21 = sh*_m11; + qreal tm22 = sh*_m12; + _m11 += tm11; + _m12 += tm12; + _m21 += tm21; + _m22 += tm22; + return *this; +} + +const qreal deg2rad = qreal(0.017453292519943295769); // pi/180 + +/*! + \fn QMatrix &QMatrix::rotate(qreal degrees) + + Rotates the coordinate system the given \a degrees + counterclockwise. + + Note that if you apply a QMatrix to a point defined in widget + coordinates, the direction of the rotation will be clockwise + because the y-axis points downwards. + + Returns a reference to the matrix. + + \sa setMatrix() +*/ + +QMatrix &QMatrix::rotate(qreal a) +{ + qreal sina = 0; + qreal cosa = 0; + if (a == 90. || a == -270.) + sina = 1.; + else if (a == 270. || a == -90.) + sina = -1.; + else if (a == 180.) + cosa = -1.; + else{ + qreal b = deg2rad*a; // convert to radians + sina = qSin(b); // fast and convenient + cosa = qCos(b); + } + qreal tm11 = cosa*_m11 + sina*_m21; + qreal tm12 = cosa*_m12 + sina*_m22; + qreal tm21 = -sina*_m11 + cosa*_m21; + qreal tm22 = -sina*_m12 + cosa*_m22; + _m11 = tm11; _m12 = tm12; + _m21 = tm21; _m22 = tm22; + return *this; +} + +/*! + \fn bool QMatrix::isInvertible() const + + Returns true if the matrix is invertible, otherwise returns false. + + \sa inverted() +*/ + +/*! + \fn qreal QMatrix::det() const + + Returns the matrix's determinant. +*/ + +/*! + \fn QMatrix QMatrix::invert(bool *invertible) const + + Returns an inverted copy of this matrix. + + Use the inverted() function instead. +*/ + +/*! + Returns an inverted copy of this matrix. + + If the matrix is singular (not invertible), the returned matrix is + the identity matrix. If \a invertible is valid (i.e. not 0), its + value is set to true if the matrix is invertible, otherwise it is + set to false. + + \sa isInvertible() +*/ + +QMatrix QMatrix::inverted(bool *invertible) const +{ + qreal determinant = det(); + if (determinant == 0.0) { + if (invertible) + *invertible = false; // singular matrix + return QMatrix(true); + } + else { // invertible matrix + if (invertible) + *invertible = true; + qreal dinv = 1.0/determinant; + return QMatrix((_m22*dinv), (-_m12*dinv), + (-_m21*dinv), (_m11*dinv), + ((_m21*_dy - _m22*_dx)*dinv), + ((_m12*_dx - _m11*_dy)*dinv), + true); + } +} + + +/*! + \fn bool QMatrix::operator==(const QMatrix &matrix) const + + Returns true if this matrix is equal to the given \a matrix, + otherwise returns false. +*/ + +bool QMatrix::operator==(const QMatrix &m) const +{ + return _m11 == m._m11 && + _m12 == m._m12 && + _m21 == m._m21 && + _m22 == m._m22 && + _dx == m._dx && + _dy == m._dy; +} + +/*! + \fn bool QMatrix::operator!=(const QMatrix &matrix) const + + Returns true if this matrix is not equal to the given \a matrix, + otherwise returns false. +*/ + +bool QMatrix::operator!=(const QMatrix &m) const +{ + return _m11 != m._m11 || + _m12 != m._m12 || + _m21 != m._m21 || + _m22 != m._m22 || + _dx != m._dx || + _dy != m._dy; +} + +/*! + \fn QMatrix &QMatrix::operator *=(const QMatrix &matrix) + \overload + + Returns the result of multiplying this matrix by the given \a + matrix. +*/ + +QMatrix &QMatrix::operator *=(const QMatrix &m) +{ + qreal tm11 = _m11*m._m11 + _m12*m._m21; + qreal tm12 = _m11*m._m12 + _m12*m._m22; + qreal tm21 = _m21*m._m11 + _m22*m._m21; + qreal tm22 = _m21*m._m12 + _m22*m._m22; + + qreal tdx = _dx*m._m11 + _dy*m._m21 + m._dx; + qreal tdy = _dx*m._m12 + _dy*m._m22 + m._dy; + + _m11 = tm11; _m12 = tm12; + _m21 = tm21; _m22 = tm22; + _dx = tdx; _dy = tdy; + return *this; +} + +/*! + \fn QMatrix QMatrix::operator *(const QMatrix &matrix) const + + Returns the result of multiplying this matrix by the given \a + matrix. + + Note that matrix multiplication is not commutative, i.e. a*b != + b*a. +*/ + +QMatrix QMatrix::operator *(const QMatrix &m) const +{ + qreal tm11 = _m11*m._m11 + _m12*m._m21; + qreal tm12 = _m11*m._m12 + _m12*m._m22; + qreal tm21 = _m21*m._m11 + _m22*m._m21; + qreal tm22 = _m21*m._m12 + _m22*m._m22; + + qreal tdx = _dx*m._m11 + _dy*m._m21 + m._dx; + qreal tdy = _dx*m._m12 + _dy*m._m22 + m._dy; + return QMatrix(tm11, tm12, tm21, tm22, tdx, tdy, true); +} + +/*! + Assigns the given \a matrix's values to this matrix. +*/ +QMatrix &QMatrix::operator=(const QMatrix &matrix) +{ + _m11 = matrix._m11; + _m12 = matrix._m12; + _m21 = matrix._m21; + _m22 = matrix._m22; + _dx = matrix._dx; + _dy = matrix._dy; + return *this; +} + +/*! + \since 4.2 + + Returns the matrix as a QVariant. +*/ +QMatrix::operator QVariant() const +{ + return QVariant(QVariant::Matrix, this); +} + +Q_GUI_EXPORT QPainterPath operator *(const QPainterPath &p, const QMatrix &m) +{ + return m.map(p); +} + + +/***************************************************************************** + QMatrix stream functions + *****************************************************************************/ +#ifndef QT_NO_DATASTREAM +/*! + \fn QDataStream &operator<<(QDataStream &stream, const QMatrix &matrix) + \relates QMatrix + + Writes the given \a matrix to the given \a stream and returns a + reference to the stream. + + \sa {Format of the QDataStream Operators} +*/ + +QDataStream &operator<<(QDataStream &s, const QMatrix &m) +{ + if (s.version() == 1) { + s << (float)m.m11() << (float)m.m12() << (float)m.m21() + << (float)m.m22() << (float)m.dx() << (float)m.dy(); + } else { + s << double(m.m11()) + << double(m.m12()) + << double(m.m21()) + << double(m.m22()) + << double(m.dx()) + << double(m.dy()); + } + return s; +} + +/*! + \fn QDataStream &operator>>(QDataStream &stream, QMatrix &matrix) + \relates QMatrix + + Reads the given \a matrix from the given \a stream and returns a + reference to the stream. + + \sa {Format of the QDataStream Operators} +*/ + +QDataStream &operator>>(QDataStream &s, QMatrix &m) +{ + if (s.version() == 1) { + float m11, m12, m21, m22, dx, dy; + s >> m11; s >> m12; s >> m21; s >> m22; + s >> dx; s >> dy; + m.setMatrix(m11, m12, m21, m22, dx, dy); + } + else { + double m11, m12, m21, m22, dx, dy; + s >> m11; + s >> m12; + s >> m21; + s >> m22; + s >> dx; + s >> dy; + m.setMatrix(m11, m12, m21, m22, dx, dy); + } + return s; +} +#endif // QT_NO_DATASTREAM + +#ifndef QT_NO_DEBUG_STREAM +QDebug operator<<(QDebug dbg, const QMatrix &m) +{ + dbg.nospace() << "QMatrix(" + << "11=" << m.m11() + << " 12=" << m.m12() + << " 21=" << m.m21() + << " 22=" << m.m22() + << " dx=" << m.dx() + << " dy=" << m.dy() + << ')'; + return dbg.space(); +} +#endif + +/*! + \fn QRect QMatrix::map(const QRect &rect) const + \compat + + Creates and returns a QRect object that is a copy of the given + rectangle, mapped into the coordinate system defined by this + matrix. + + Use the mapRect() function instead. +*/ + + +/*! + \fn bool qFuzzyCompare(const QMatrix& m1, const QMatrix& m2) + + \relates QMatrix + \since 4.6 + + \brief The qFuzzyCompare function is for comparing two matrices + using a fuzziness factor. + + Returns true if \a m1 and \a m2 are equal, allowing for a small + fuzziness factor for floating-point comparisons; false otherwise. +*/ + +QT_END_NAMESPACE