diff -r 41300fa6a67c -r f7bc934e204c src/gui/painting/qdrawhelper_sse2.cpp --- a/src/gui/painting/qdrawhelper_sse2.cpp Tue Feb 02 00:43:10 2010 +0200 +++ b/src/gui/painting/qdrawhelper_sse2.cpp Wed Mar 31 11:06:36 2010 +0300 @@ -1,6 +1,6 @@ /**************************************************************************** ** -** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). +** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). ** All rights reserved. ** Contact: Nokia Corporation (qt-info@nokia.com) ** @@ -57,6 +57,217 @@ QT_BEGIN_NAMESPACE +/* + * Multiply the components of pixelVector by alphaChannel + * Each 32bits components of alphaChannel must be in the form 0x00AA00AA + * colorMask must have 0x00ff00ff on each 32 bits component + * half must have the value 128 (0x80) for each 32 bits compnent + */ +#define BYTE_MUL_SSE2(result, pixelVector, alphaChannel, colorMask, half) \ +{ \ + /* 1. separate the colors in 2 vectors so each color is on 16 bits \ + (in order to be multiplied by the alpha \ + each 32 bit of dstVectorAG are in the form 0x00AA00GG \ + each 32 bit of dstVectorRB are in the form 0x00RR00BB */\ + __m128i pixelVectorAG = _mm_srli_epi16(pixelVector, 8); \ + __m128i pixelVectorRB = _mm_and_si128(pixelVector, colorMask); \ + \ + /* 2. multiply the vectors by the alpha channel */\ + pixelVectorAG = _mm_mullo_epi16(pixelVectorAG, alphaChannel); \ + pixelVectorRB = _mm_mullo_epi16(pixelVectorRB, alphaChannel); \ + \ + /* 3. devide by 255, that's the tricky part. \ + we do it like for BYTE_MUL(), with bit shift: X/255 ~= (X + X/256 + rounding)/256 */ \ + /** so first (X + X/256 + rounding) */\ + pixelVectorRB = _mm_add_epi16(pixelVectorRB, _mm_srli_epi16(pixelVectorRB, 8)); \ + pixelVectorRB = _mm_add_epi16(pixelVectorRB, half); \ + pixelVectorAG = _mm_add_epi16(pixelVectorAG, _mm_srli_epi16(pixelVectorAG, 8)); \ + pixelVectorAG = _mm_add_epi16(pixelVectorAG, half); \ + \ + /** second devide by 256 */\ + pixelVectorRB = _mm_srli_epi16(pixelVectorRB, 8); \ + /** for AG, we could >> 8 to divide followed by << 8 to put the \ + bytes in the correct position. By masking instead, we execute \ + only one instruction */\ + pixelVectorAG = _mm_andnot_si128(colorMask, pixelVectorAG); \ + \ + /* 4. combine the 2 pairs of colors */ \ + result = _mm_or_si128(pixelVectorAG, pixelVectorRB); \ +} + +/* + * Each 32bits components of alphaChannel must be in the form 0x00AA00AA + * oneMinusAlphaChannel must be 255 - alpha for each 32 bits component + * colorMask must have 0x00ff00ff on each 32 bits component + * half must have the value 128 (0x80) for each 32 bits compnent + */ +#define INTERPOLATE_PIXEL_255_SSE2(result, srcVector, dstVector, alphaChannel, oneMinusAlphaChannel, colorMask, half) { \ + /* interpolate AG */\ + __m128i srcVectorAG = _mm_srli_epi16(srcVector, 8); \ + __m128i dstVectorAG = _mm_srli_epi16(dstVector, 8); \ + __m128i srcVectorAGalpha = _mm_mullo_epi16(srcVectorAG, alphaChannel); \ + __m128i dstVectorAGoneMinusAlphalpha = _mm_mullo_epi16(dstVectorAG, oneMinusAlphaChannel); \ + __m128i finalAG = _mm_add_epi16(srcVectorAGalpha, dstVectorAGoneMinusAlphalpha); \ + finalAG = _mm_add_epi16(finalAG, _mm_srli_epi16(finalAG, 8)); \ + finalAG = _mm_add_epi16(finalAG, half); \ + finalAG = _mm_andnot_si128(colorMask, finalAG); \ + \ + /* interpolate RB */\ + __m128i srcVectorRB = _mm_and_si128(srcVector, colorMask); \ + __m128i dstVectorRB = _mm_and_si128(dstVector, colorMask); \ + __m128i srcVectorRBalpha = _mm_mullo_epi16(srcVectorRB, alphaChannel); \ + __m128i dstVectorRBoneMinusAlphalpha = _mm_mullo_epi16(dstVectorRB, oneMinusAlphaChannel); \ + __m128i finalRB = _mm_add_epi16(srcVectorRBalpha, dstVectorRBoneMinusAlphalpha); \ + finalRB = _mm_add_epi16(finalRB, _mm_srli_epi16(finalRB, 8)); \ + finalRB = _mm_add_epi16(finalRB, half); \ + finalRB = _mm_srli_epi16(finalRB, 8); \ + \ + /* combine */\ + result = _mm_or_si128(finalAG, finalRB); \ +} + +void qt_blend_argb32_on_argb32_sse2(uchar *destPixels, int dbpl, + const uchar *srcPixels, int sbpl, + int w, int h, + int const_alpha) +{ + const quint32 *src = (const quint32 *) srcPixels; + quint32 *dst = (uint *) destPixels; + if (const_alpha == 256) { + const __m128i alphaMask = _mm_set1_epi32(0xff000000); + const __m128i nullVector = _mm_set1_epi32(0); + const __m128i half = _mm_set1_epi16(0x80); + const __m128i one = _mm_set1_epi16(0xff); + const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); + for (int y = 0; y < h; ++y) { + int x = 0; + for (; x < w-3; x += 4) { + const __m128i srcVector = _mm_loadu_si128((__m128i *)&src[x]); + const __m128i srcVectorAlpha = _mm_and_si128(srcVector, alphaMask); + if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, alphaMask)) == 0xffff) { + // all opaque + _mm_storeu_si128((__m128i *)&dst[x], srcVector); + } else if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, nullVector)) != 0xffff) { + // not fully transparent + // result = s + d * (1-alpha) + + // extract the alpha channel on 2 x 16 bits + // so we have room for the multiplication + // each 32 bits will be in the form 0x00AA00AA + // with A being the 1 - alpha + __m128i alphaChannel = _mm_srli_epi32(srcVector, 24); + alphaChannel = _mm_or_si128(alphaChannel, _mm_slli_epi32(alphaChannel, 16)); + alphaChannel = _mm_sub_epi16(one, alphaChannel); + + const __m128i dstVector = _mm_loadu_si128((__m128i *)&dst[x]); + __m128i destMultipliedByOneMinusAlpha; + BYTE_MUL_SSE2(destMultipliedByOneMinusAlpha, dstVector, alphaChannel, colorMask, half); + + // result = s + d * (1-alpha) + const __m128i result = _mm_add_epi8(srcVector, destMultipliedByOneMinusAlpha); + _mm_storeu_si128((__m128i *)&dst[x], result); + } + } + for (; x= 0xff000000) + dst[x] = s; + else if (s != 0) + dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s)); + } + dst = (quint32 *)(((uchar *) dst) + dbpl); + src = (const quint32 *)(((const uchar *) src) + sbpl); + } + } else if (const_alpha != 0) { + // dest = (s + d * sia) * ca + d * cia + // = s * ca + d * (sia * ca + cia) + // = s * ca + d * (1 - sa*ca) + const_alpha = (const_alpha * 255) >> 8; + const __m128i nullVector = _mm_set1_epi32(0); + const __m128i half = _mm_set1_epi16(0x80); + const __m128i one = _mm_set1_epi16(0xff); + const __m128i colorMask = _mm_set1_epi32(0x00ff00ff); + const __m128i constAlphaVector = _mm_set1_epi16(const_alpha); + for (int y = 0; y < h; ++y) { + int x = 0; + for (; x < w-3; x += 4) { + __m128i srcVector = _mm_loadu_si128((__m128i *)&src[x]); + if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVector, nullVector)) != 0xffff) { + BYTE_MUL_SSE2(srcVector, srcVector, constAlphaVector, colorMask, half); + + __m128i alphaChannel = _mm_srli_epi32(srcVector, 24); + alphaChannel = _mm_or_si128(alphaChannel, _mm_slli_epi32(alphaChannel, 16)); + alphaChannel = _mm_sub_epi16(one, alphaChannel); + + const __m128i dstVector = _mm_loadu_si128((__m128i *)&dst[x]); + __m128i destMultipliedByOneMinusAlpha; + BYTE_MUL_SSE2(destMultipliedByOneMinusAlpha, dstVector, alphaChannel, colorMask, half); + + const __m128i result = _mm_add_epi8(srcVector, destMultipliedByOneMinusAlpha); + _mm_storeu_si128((__m128i *)&dst[x], result); + } + } + for (; x> 8; + int one_minus_const_alpha = 255 - const_alpha; + const __m128i constAlphaVector = _mm_set1_epi16(const_alpha); + const __m128i oneMinusConstAlpha = _mm_set1_epi16(one_minus_const_alpha); + for (int y = 0; y < h; ++y) { + int x = 0; + for (; x < w-3; x += 4) { + __m128i srcVector = _mm_loadu_si128((__m128i *)&src[x]); + if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVector, nullVector)) != 0xffff) { + const __m128i dstVector = _mm_loadu_si128((__m128i *)&dst[x]); + __m128i result; + INTERPOLATE_PIXEL_255_SSE2(result, srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half); + _mm_storeu_si128((__m128i *)&dst[x], result); + } + } + for (; x