|
1 /**************************************************************** |
|
2 * |
|
3 * The author of this software is David M. Gay. |
|
4 * |
|
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
|
6 * Copyright (C) 2002, 2005, 2006, 2007, 2008 Apple Inc. All rights reserved. |
|
7 * |
|
8 * Permission to use, copy, modify, and distribute this software for any |
|
9 * purpose without fee is hereby granted, provided that this entire notice |
|
10 * is included in all copies of any software which is or includes a copy |
|
11 * or modification of this software and in all copies of the supporting |
|
12 * documentation for such software. |
|
13 * |
|
14 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
|
15 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
|
16 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
|
17 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
|
18 * |
|
19 ***************************************************************/ |
|
20 |
|
21 /* Please send bug reports to |
|
22 David M. Gay |
|
23 Bell Laboratories, Room 2C-463 |
|
24 600 Mountain Avenue |
|
25 Murray Hill, NJ 07974-0636 |
|
26 U.S.A. |
|
27 dmg@bell-labs.com |
|
28 */ |
|
29 |
|
30 /* On a machine with IEEE extended-precision registers, it is |
|
31 * necessary to specify double-precision (53-bit) rounding precision |
|
32 * before invoking strtod or dtoa. If the machine uses (the equivalent |
|
33 * of) Intel 80x87 arithmetic, the call |
|
34 * _control87(PC_53, MCW_PC); |
|
35 * does this with many compilers. Whether this or another call is |
|
36 * appropriate depends on the compiler; for this to work, it may be |
|
37 * necessary to #include "float.h" or another system-dependent header |
|
38 * file. |
|
39 */ |
|
40 |
|
41 /* strtod for IEEE-arithmetic machines. |
|
42 * |
|
43 * This strtod returns a nearest machine number to the input decimal |
|
44 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
|
45 * broken by the IEEE round-even rule. Otherwise ties are broken by |
|
46 * biased rounding (add half and chop). |
|
47 * |
|
48 * Inspired loosely by William D. Clinger's paper "How to Read Floating |
|
49 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
|
50 * |
|
51 * Modifications: |
|
52 * |
|
53 * 1. We only require IEEE. |
|
54 * 2. We get by with floating-point arithmetic in a case that |
|
55 * Clinger missed -- when we're computing d * 10^n |
|
56 * for a small integer d and the integer n is not too |
|
57 * much larger than 22 (the maximum integer k for which |
|
58 * we can represent 10^k exactly), we may be able to |
|
59 * compute (d*10^k) * 10^(e-k) with just one roundoff. |
|
60 * 3. Rather than a bit-at-a-time adjustment of the binary |
|
61 * result in the hard case, we use floating-point |
|
62 * arithmetic to determine the adjustment to within |
|
63 * one bit; only in really hard cases do we need to |
|
64 * compute a second residual. |
|
65 * 4. Because of 3., we don't need a large table of powers of 10 |
|
66 * for ten-to-e (just some small tables, e.g. of 10^k |
|
67 * for 0 <= k <= 22). |
|
68 */ |
|
69 |
|
70 /* |
|
71 * #define IEEE_8087 for IEEE-arithmetic machines where the least |
|
72 * significant byte has the lowest address. |
|
73 * #define IEEE_MC68k for IEEE-arithmetic machines where the most |
|
74 * significant byte has the lowest address. |
|
75 * #define No_leftright to omit left-right logic in fast floating-point |
|
76 * computation of dtoa. |
|
77 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
|
78 * and Honor_FLT_ROUNDS is not #defined. |
|
79 * #define Inaccurate_Divide for IEEE-format with correctly rounded |
|
80 * products but inaccurate quotients, e.g., for Intel i860. |
|
81 * #define USE_LONG_LONG on machines that have a "long long" |
|
82 * integer type (of >= 64 bits), and performance testing shows that |
|
83 * it is faster than 32-bit fallback (which is often not the case |
|
84 * on 32-bit machines). On such machines, you can #define Just_16 |
|
85 * to store 16 bits per 32-bit int32_t when doing high-precision integer |
|
86 * arithmetic. Whether this speeds things up or slows things down |
|
87 * depends on the machine and the number being converted. |
|
88 * #define Bad_float_h if your system lacks a float.h or if it does not |
|
89 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, |
|
90 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. |
|
91 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for |
|
92 * Infinity and NaN (case insensitively). On some systems (e.g., |
|
93 * some HP systems), it may be necessary to #define NAN_WORD0 |
|
94 * appropriately -- to the most significant word of a quiet NaN. |
|
95 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) |
|
96 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, |
|
97 * strtod also accepts (case insensitively) strings of the form |
|
98 * NaN(x), where x is a string of hexadecimal digits and spaces; |
|
99 * if there is only one string of hexadecimal digits, it is taken |
|
100 * for the 52 fraction bits of the resulting NaN; if there are two |
|
101 * or more strings of hex digits, the first is for the high 20 bits, |
|
102 * the second and subsequent for the low 32 bits, with intervening |
|
103 * white space ignored; but if this results in none of the 52 |
|
104 * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 |
|
105 * and NAN_WORD1 are used instead. |
|
106 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that |
|
107 * avoids underflows on inputs whose result does not underflow. |
|
108 * If you #define NO_IEEE_Scale on a machine that uses IEEE-format |
|
109 * floating-point numbers and flushes underflows to zero rather |
|
110 * than implementing gradual underflow, then you must also #define |
|
111 * Sudden_Underflow. |
|
112 * #define YES_ALIAS to permit aliasing certain double values with |
|
113 * arrays of ULongs. This leads to slightly better code with |
|
114 * some compilers and was always used prior to 19990916, but it |
|
115 * is not strictly legal and can cause trouble with aggressively |
|
116 * optimizing compilers (e.g., gcc 2.95.1 under -O2). |
|
117 * #define SET_INEXACT if IEEE arithmetic is being used and extra |
|
118 * computation should be done to set the inexact flag when the |
|
119 * result is inexact and avoid setting inexact when the result |
|
120 * is exact. In this case, dtoa.c must be compiled in |
|
121 * an environment, perhaps provided by #include "dtoa.c" in a |
|
122 * suitable wrapper, that defines two functions, |
|
123 * int get_inexact(void); |
|
124 * void clear_inexact(void); |
|
125 * such that get_inexact() returns a nonzero value if the |
|
126 * inexact bit is already set, and clear_inexact() sets the |
|
127 * inexact bit to 0. When SET_INEXACT is #defined, strtod |
|
128 * also does extra computations to set the underflow and overflow |
|
129 * flags when appropriate (i.e., when the result is tiny and |
|
130 * inexact or when it is a numeric value rounded to +-infinity). |
|
131 * #define NO_ERRNO if strtod should not assign errno = ERANGE when |
|
132 * the result overflows to +-Infinity or underflows to 0. |
|
133 */ |
|
134 |
|
135 #include "config.h" |
|
136 #include "dtoa.h" |
|
137 |
|
138 #if HAVE(ERRNO_H) |
|
139 #include <errno.h> |
|
140 #else |
|
141 #define NO_ERRNO |
|
142 #endif |
|
143 #include <math.h> |
|
144 #include <stdint.h> |
|
145 #include <stdio.h> |
|
146 #include <stdlib.h> |
|
147 #include <string.h> |
|
148 #include <wtf/AlwaysInline.h> |
|
149 #include <wtf/Assertions.h> |
|
150 #include <wtf/FastMalloc.h> |
|
151 #include <wtf/MathExtras.h> |
|
152 #include <wtf/Threading.h> |
|
153 #include <wtf/Vector.h> |
|
154 |
|
155 #if COMPILER(MSVC) |
|
156 #pragma warning(disable: 4244) |
|
157 #pragma warning(disable: 4245) |
|
158 #pragma warning(disable: 4554) |
|
159 #endif |
|
160 |
|
161 #if CPU(BIG_ENDIAN) |
|
162 #define IEEE_MC68k |
|
163 #elif CPU(MIDDLE_ENDIAN) |
|
164 #define IEEE_ARM |
|
165 #else |
|
166 #define IEEE_8087 |
|
167 #endif |
|
168 |
|
169 #define INFNAN_CHECK |
|
170 |
|
171 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_ARM) != 1 |
|
172 Exactly one of IEEE_8087, IEEE_ARM or IEEE_MC68k should be defined. |
|
173 #endif |
|
174 |
|
175 namespace WTF { |
|
176 |
|
177 #if ENABLE(JSC_MULTIPLE_THREADS) |
|
178 Mutex* s_dtoaP5Mutex; |
|
179 #endif |
|
180 |
|
181 typedef union { |
|
182 double d; |
|
183 uint32_t L[2]; |
|
184 } U; |
|
185 |
|
186 #ifdef YES_ALIAS |
|
187 #define dval(x) x |
|
188 #ifdef IEEE_8087 |
|
189 #define word0(x) ((uint32_t*)&x)[1] |
|
190 #define word1(x) ((uint32_t*)&x)[0] |
|
191 #else |
|
192 #define word0(x) ((uint32_t*)&x)[0] |
|
193 #define word1(x) ((uint32_t*)&x)[1] |
|
194 #endif |
|
195 #else |
|
196 #ifdef IEEE_8087 |
|
197 #define word0(x) (x)->L[1] |
|
198 #define word1(x) (x)->L[0] |
|
199 #else |
|
200 #define word0(x) (x)->L[0] |
|
201 #define word1(x) (x)->L[1] |
|
202 #endif |
|
203 #define dval(x) (x)->d |
|
204 #endif |
|
205 |
|
206 /* The following definition of Storeinc is appropriate for MIPS processors. |
|
207 * An alternative that might be better on some machines is |
|
208 * *p++ = high << 16 | low & 0xffff; |
|
209 */ |
|
210 static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low) |
|
211 { |
|
212 uint16_t* p16 = reinterpret_cast<uint16_t*>(p); |
|
213 #if defined(IEEE_8087) || defined(IEEE_ARM) |
|
214 p16[1] = high; |
|
215 p16[0] = low; |
|
216 #else |
|
217 p16[0] = high; |
|
218 p16[1] = low; |
|
219 #endif |
|
220 return p + 1; |
|
221 } |
|
222 |
|
223 #define Exp_shift 20 |
|
224 #define Exp_shift1 20 |
|
225 #define Exp_msk1 0x100000 |
|
226 #define Exp_msk11 0x100000 |
|
227 #define Exp_mask 0x7ff00000 |
|
228 #define P 53 |
|
229 #define Bias 1023 |
|
230 #define Emin (-1022) |
|
231 #define Exp_1 0x3ff00000 |
|
232 #define Exp_11 0x3ff00000 |
|
233 #define Ebits 11 |
|
234 #define Frac_mask 0xfffff |
|
235 #define Frac_mask1 0xfffff |
|
236 #define Ten_pmax 22 |
|
237 #define Bletch 0x10 |
|
238 #define Bndry_mask 0xfffff |
|
239 #define Bndry_mask1 0xfffff |
|
240 #define LSB 1 |
|
241 #define Sign_bit 0x80000000 |
|
242 #define Log2P 1 |
|
243 #define Tiny0 0 |
|
244 #define Tiny1 1 |
|
245 #define Quick_max 14 |
|
246 #define Int_max 14 |
|
247 |
|
248 #if !defined(NO_IEEE_Scale) |
|
249 #undef Avoid_Underflow |
|
250 #define Avoid_Underflow |
|
251 #endif |
|
252 |
|
253 #if !defined(Flt_Rounds) |
|
254 #if defined(FLT_ROUNDS) |
|
255 #define Flt_Rounds FLT_ROUNDS |
|
256 #else |
|
257 #define Flt_Rounds 1 |
|
258 #endif |
|
259 #endif /* Flt_Rounds */ |
|
260 |
|
261 |
|
262 #define rounded_product(a, b) a *= b |
|
263 #define rounded_quotient(a, b) a /= b |
|
264 |
|
265 #define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) |
|
266 #define Big1 0xffffffff |
|
267 |
|
268 |
|
269 // FIXME: we should remove non-Pack_32 mode since it is unused and unmaintained |
|
270 #ifndef Pack_32 |
|
271 #define Pack_32 |
|
272 #endif |
|
273 |
|
274 #if CPU(PPC64) || CPU(X86_64) |
|
275 // FIXME: should we enable this on all 64-bit CPUs? |
|
276 // 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware. |
|
277 #define USE_LONG_LONG |
|
278 #endif |
|
279 |
|
280 #ifndef USE_LONG_LONG |
|
281 #ifdef Just_16 |
|
282 #undef Pack_32 |
|
283 /* When Pack_32 is not defined, we store 16 bits per 32-bit int32_t. |
|
284 * This makes some inner loops simpler and sometimes saves work |
|
285 * during multiplications, but it often seems to make things slightly |
|
286 * slower. Hence the default is now to store 32 bits per int32_t. |
|
287 */ |
|
288 #endif |
|
289 #endif |
|
290 |
|
291 #define Kmax 15 |
|
292 |
|
293 struct BigInt { |
|
294 BigInt() : sign(0) { } |
|
295 int sign; |
|
296 |
|
297 void clear() |
|
298 { |
|
299 sign = 0; |
|
300 m_words.clear(); |
|
301 } |
|
302 |
|
303 size_t size() const |
|
304 { |
|
305 return m_words.size(); |
|
306 } |
|
307 |
|
308 void resize(size_t s) |
|
309 { |
|
310 m_words.resize(s); |
|
311 } |
|
312 |
|
313 uint32_t* words() |
|
314 { |
|
315 return m_words.data(); |
|
316 } |
|
317 |
|
318 const uint32_t* words() const |
|
319 { |
|
320 return m_words.data(); |
|
321 } |
|
322 |
|
323 void append(uint32_t w) |
|
324 { |
|
325 m_words.append(w); |
|
326 } |
|
327 |
|
328 Vector<uint32_t, 16> m_words; |
|
329 }; |
|
330 |
|
331 static void multadd(BigInt& b, int m, int a) /* multiply by m and add a */ |
|
332 { |
|
333 #ifdef USE_LONG_LONG |
|
334 unsigned long long carry; |
|
335 #else |
|
336 uint32_t carry; |
|
337 #endif |
|
338 |
|
339 int wds = b.size(); |
|
340 uint32_t* x = b.words(); |
|
341 int i = 0; |
|
342 carry = a; |
|
343 do { |
|
344 #ifdef USE_LONG_LONG |
|
345 unsigned long long y = *x * (unsigned long long)m + carry; |
|
346 carry = y >> 32; |
|
347 *x++ = (uint32_t)y & 0xffffffffUL; |
|
348 #else |
|
349 #ifdef Pack_32 |
|
350 uint32_t xi = *x; |
|
351 uint32_t y = (xi & 0xffff) * m + carry; |
|
352 uint32_t z = (xi >> 16) * m + (y >> 16); |
|
353 carry = z >> 16; |
|
354 *x++ = (z << 16) + (y & 0xffff); |
|
355 #else |
|
356 uint32_t y = *x * m + carry; |
|
357 carry = y >> 16; |
|
358 *x++ = y & 0xffff; |
|
359 #endif |
|
360 #endif |
|
361 } while (++i < wds); |
|
362 |
|
363 if (carry) |
|
364 b.append((uint32_t)carry); |
|
365 } |
|
366 |
|
367 static void s2b(BigInt& b, const char* s, int nd0, int nd, uint32_t y9) |
|
368 { |
|
369 int k; |
|
370 int32_t y; |
|
371 int32_t x = (nd + 8) / 9; |
|
372 |
|
373 for (k = 0, y = 1; x > y; y <<= 1, k++) { } |
|
374 #ifdef Pack_32 |
|
375 b.sign = 0; |
|
376 b.resize(1); |
|
377 b.words()[0] = y9; |
|
378 #else |
|
379 b.sign = 0; |
|
380 b.resize((b->x[1] = y9 >> 16) ? 2 : 1); |
|
381 b.words()[0] = y9 & 0xffff; |
|
382 #endif |
|
383 |
|
384 int i = 9; |
|
385 if (9 < nd0) { |
|
386 s += 9; |
|
387 do { |
|
388 multadd(b, 10, *s++ - '0'); |
|
389 } while (++i < nd0); |
|
390 s++; |
|
391 } else |
|
392 s += 10; |
|
393 for (; i < nd; i++) |
|
394 multadd(b, 10, *s++ - '0'); |
|
395 } |
|
396 |
|
397 static int hi0bits(uint32_t x) |
|
398 { |
|
399 int k = 0; |
|
400 |
|
401 if (!(x & 0xffff0000)) { |
|
402 k = 16; |
|
403 x <<= 16; |
|
404 } |
|
405 if (!(x & 0xff000000)) { |
|
406 k += 8; |
|
407 x <<= 8; |
|
408 } |
|
409 if (!(x & 0xf0000000)) { |
|
410 k += 4; |
|
411 x <<= 4; |
|
412 } |
|
413 if (!(x & 0xc0000000)) { |
|
414 k += 2; |
|
415 x <<= 2; |
|
416 } |
|
417 if (!(x & 0x80000000)) { |
|
418 k++; |
|
419 if (!(x & 0x40000000)) |
|
420 return 32; |
|
421 } |
|
422 return k; |
|
423 } |
|
424 |
|
425 static int lo0bits(uint32_t* y) |
|
426 { |
|
427 int k; |
|
428 uint32_t x = *y; |
|
429 |
|
430 if (x & 7) { |
|
431 if (x & 1) |
|
432 return 0; |
|
433 if (x & 2) { |
|
434 *y = x >> 1; |
|
435 return 1; |
|
436 } |
|
437 *y = x >> 2; |
|
438 return 2; |
|
439 } |
|
440 k = 0; |
|
441 if (!(x & 0xffff)) { |
|
442 k = 16; |
|
443 x >>= 16; |
|
444 } |
|
445 if (!(x & 0xff)) { |
|
446 k += 8; |
|
447 x >>= 8; |
|
448 } |
|
449 if (!(x & 0xf)) { |
|
450 k += 4; |
|
451 x >>= 4; |
|
452 } |
|
453 if (!(x & 0x3)) { |
|
454 k += 2; |
|
455 x >>= 2; |
|
456 } |
|
457 if (!(x & 1)) { |
|
458 k++; |
|
459 x >>= 1; |
|
460 if (!x & 1) |
|
461 return 32; |
|
462 } |
|
463 *y = x; |
|
464 return k; |
|
465 } |
|
466 |
|
467 static void i2b(BigInt& b, int i) |
|
468 { |
|
469 b.sign = 0; |
|
470 b.resize(1); |
|
471 b.words()[0] = i; |
|
472 } |
|
473 |
|
474 static void mult(BigInt& aRef, const BigInt& bRef) |
|
475 { |
|
476 const BigInt* a = &aRef; |
|
477 const BigInt* b = &bRef; |
|
478 BigInt c; |
|
479 int wa, wb, wc; |
|
480 const uint32_t* x = 0; |
|
481 const uint32_t* xa; |
|
482 const uint32_t* xb; |
|
483 const uint32_t* xae; |
|
484 const uint32_t* xbe; |
|
485 uint32_t* xc; |
|
486 uint32_t* xc0; |
|
487 uint32_t y; |
|
488 #ifdef USE_LONG_LONG |
|
489 unsigned long long carry, z; |
|
490 #else |
|
491 uint32_t carry, z; |
|
492 #endif |
|
493 |
|
494 if (a->size() < b->size()) { |
|
495 const BigInt* tmp = a; |
|
496 a = b; |
|
497 b = tmp; |
|
498 } |
|
499 |
|
500 wa = a->size(); |
|
501 wb = b->size(); |
|
502 wc = wa + wb; |
|
503 c.resize(wc); |
|
504 |
|
505 for (xc = c.words(), xa = xc + wc; xc < xa; xc++) |
|
506 *xc = 0; |
|
507 xa = a->words(); |
|
508 xae = xa + wa; |
|
509 xb = b->words(); |
|
510 xbe = xb + wb; |
|
511 xc0 = c.words(); |
|
512 #ifdef USE_LONG_LONG |
|
513 for (; xb < xbe; xc0++) { |
|
514 if ((y = *xb++)) { |
|
515 x = xa; |
|
516 xc = xc0; |
|
517 carry = 0; |
|
518 do { |
|
519 z = *x++ * (unsigned long long)y + *xc + carry; |
|
520 carry = z >> 32; |
|
521 *xc++ = (uint32_t)z & 0xffffffffUL; |
|
522 } while (x < xae); |
|
523 *xc = (uint32_t)carry; |
|
524 } |
|
525 } |
|
526 #else |
|
527 #ifdef Pack_32 |
|
528 for (; xb < xbe; xb++, xc0++) { |
|
529 if ((y = *xb & 0xffff)) { |
|
530 x = xa; |
|
531 xc = xc0; |
|
532 carry = 0; |
|
533 do { |
|
534 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; |
|
535 carry = z >> 16; |
|
536 uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; |
|
537 carry = z2 >> 16; |
|
538 xc = storeInc(xc, z2, z); |
|
539 } while (x < xae); |
|
540 *xc = carry; |
|
541 } |
|
542 if ((y = *xb >> 16)) { |
|
543 x = xa; |
|
544 xc = xc0; |
|
545 carry = 0; |
|
546 uint32_t z2 = *xc; |
|
547 do { |
|
548 z = (*x & 0xffff) * y + (*xc >> 16) + carry; |
|
549 carry = z >> 16; |
|
550 xc = storeInc(xc, z, z2); |
|
551 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; |
|
552 carry = z2 >> 16; |
|
553 } while (x < xae); |
|
554 *xc = z2; |
|
555 } |
|
556 } |
|
557 #else |
|
558 for (; xb < xbe; xc0++) { |
|
559 if ((y = *xb++)) { |
|
560 x = xa; |
|
561 xc = xc0; |
|
562 carry = 0; |
|
563 do { |
|
564 z = *x++ * y + *xc + carry; |
|
565 carry = z >> 16; |
|
566 *xc++ = z & 0xffff; |
|
567 } while (x < xae); |
|
568 *xc = carry; |
|
569 } |
|
570 } |
|
571 #endif |
|
572 #endif |
|
573 for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { } |
|
574 c.resize(wc); |
|
575 aRef = c; |
|
576 } |
|
577 |
|
578 struct P5Node : Noncopyable { |
|
579 BigInt val; |
|
580 P5Node* next; |
|
581 }; |
|
582 |
|
583 static P5Node* p5s; |
|
584 static int p5sCount; |
|
585 |
|
586 static ALWAYS_INLINE void pow5mult(BigInt& b, int k) |
|
587 { |
|
588 static int p05[3] = { 5, 25, 125 }; |
|
589 |
|
590 if (int i = k & 3) |
|
591 multadd(b, p05[i - 1], 0); |
|
592 |
|
593 if (!(k >>= 2)) |
|
594 return; |
|
595 |
|
596 #if ENABLE(JSC_MULTIPLE_THREADS) |
|
597 s_dtoaP5Mutex->lock(); |
|
598 #endif |
|
599 P5Node* p5 = p5s; |
|
600 |
|
601 if (!p5) { |
|
602 /* first time */ |
|
603 p5 = new P5Node; |
|
604 i2b(p5->val, 625); |
|
605 p5->next = 0; |
|
606 p5s = p5; |
|
607 p5sCount = 1; |
|
608 } |
|
609 |
|
610 int p5sCountLocal = p5sCount; |
|
611 #if ENABLE(JSC_MULTIPLE_THREADS) |
|
612 s_dtoaP5Mutex->unlock(); |
|
613 #endif |
|
614 int p5sUsed = 0; |
|
615 |
|
616 for (;;) { |
|
617 if (k & 1) |
|
618 mult(b, p5->val); |
|
619 |
|
620 if (!(k >>= 1)) |
|
621 break; |
|
622 |
|
623 if (++p5sUsed == p5sCountLocal) { |
|
624 #if ENABLE(JSC_MULTIPLE_THREADS) |
|
625 s_dtoaP5Mutex->lock(); |
|
626 #endif |
|
627 if (p5sUsed == p5sCount) { |
|
628 ASSERT(!p5->next); |
|
629 p5->next = new P5Node; |
|
630 p5->next->next = 0; |
|
631 p5->next->val = p5->val; |
|
632 mult(p5->next->val, p5->next->val); |
|
633 ++p5sCount; |
|
634 } |
|
635 |
|
636 p5sCountLocal = p5sCount; |
|
637 #if ENABLE(JSC_MULTIPLE_THREADS) |
|
638 s_dtoaP5Mutex->unlock(); |
|
639 #endif |
|
640 } |
|
641 p5 = p5->next; |
|
642 } |
|
643 } |
|
644 |
|
645 static ALWAYS_INLINE void lshift(BigInt& b, int k) |
|
646 { |
|
647 #ifdef Pack_32 |
|
648 int n = k >> 5; |
|
649 #else |
|
650 int n = k >> 4; |
|
651 #endif |
|
652 |
|
653 int origSize = b.size(); |
|
654 int n1 = n + origSize + 1; |
|
655 |
|
656 if (k &= 0x1f) |
|
657 b.resize(b.size() + n + 1); |
|
658 else |
|
659 b.resize(b.size() + n); |
|
660 |
|
661 const uint32_t* srcStart = b.words(); |
|
662 uint32_t* dstStart = b.words(); |
|
663 const uint32_t* src = srcStart + origSize - 1; |
|
664 uint32_t* dst = dstStart + n1 - 1; |
|
665 #ifdef Pack_32 |
|
666 if (k) { |
|
667 uint32_t hiSubword = 0; |
|
668 int s = 32 - k; |
|
669 for (; src >= srcStart; --src) { |
|
670 *dst-- = hiSubword | *src >> s; |
|
671 hiSubword = *src << k; |
|
672 } |
|
673 *dst = hiSubword; |
|
674 ASSERT(dst == dstStart + n); |
|
675 |
|
676 b.resize(origSize + n + !!b.words()[n1 - 1]); |
|
677 } |
|
678 #else |
|
679 if (k &= 0xf) { |
|
680 uint32_t hiSubword = 0; |
|
681 int s = 16 - k; |
|
682 for (; src >= srcStart; --src) { |
|
683 *dst-- = hiSubword | *src >> s; |
|
684 hiSubword = (*src << k) & 0xffff; |
|
685 } |
|
686 *dst = hiSubword; |
|
687 ASSERT(dst == dstStart + n); |
|
688 result->wds = b->wds + n + !!result->x[n1 - 1]; |
|
689 } |
|
690 #endif |
|
691 else { |
|
692 do { |
|
693 *--dst = *src--; |
|
694 } while (src >= srcStart); |
|
695 } |
|
696 for (dst = dstStart + n; dst != dstStart; ) |
|
697 *--dst = 0; |
|
698 |
|
699 ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); |
|
700 } |
|
701 |
|
702 static int cmp(const BigInt& a, const BigInt& b) |
|
703 { |
|
704 const uint32_t *xa, *xa0, *xb, *xb0; |
|
705 int i, j; |
|
706 |
|
707 i = a.size(); |
|
708 j = b.size(); |
|
709 ASSERT(i <= 1 || a.words()[i - 1]); |
|
710 ASSERT(j <= 1 || b.words()[j - 1]); |
|
711 if (i -= j) |
|
712 return i; |
|
713 xa0 = a.words(); |
|
714 xa = xa0 + j; |
|
715 xb0 = b.words(); |
|
716 xb = xb0 + j; |
|
717 for (;;) { |
|
718 if (*--xa != *--xb) |
|
719 return *xa < *xb ? -1 : 1; |
|
720 if (xa <= xa0) |
|
721 break; |
|
722 } |
|
723 return 0; |
|
724 } |
|
725 |
|
726 static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef) |
|
727 { |
|
728 const BigInt* a = &aRef; |
|
729 const BigInt* b = &bRef; |
|
730 int i, wa, wb; |
|
731 uint32_t* xc; |
|
732 |
|
733 i = cmp(*a, *b); |
|
734 if (!i) { |
|
735 c.sign = 0; |
|
736 c.resize(1); |
|
737 c.words()[0] = 0; |
|
738 return; |
|
739 } |
|
740 if (i < 0) { |
|
741 const BigInt* tmp = a; |
|
742 a = b; |
|
743 b = tmp; |
|
744 i = 1; |
|
745 } else |
|
746 i = 0; |
|
747 |
|
748 wa = a->size(); |
|
749 const uint32_t* xa = a->words(); |
|
750 const uint32_t* xae = xa + wa; |
|
751 wb = b->size(); |
|
752 const uint32_t* xb = b->words(); |
|
753 const uint32_t* xbe = xb + wb; |
|
754 |
|
755 c.resize(wa); |
|
756 c.sign = i; |
|
757 xc = c.words(); |
|
758 #ifdef USE_LONG_LONG |
|
759 unsigned long long borrow = 0; |
|
760 do { |
|
761 unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow; |
|
762 borrow = y >> 32 & (uint32_t)1; |
|
763 *xc++ = (uint32_t)y & 0xffffffffUL; |
|
764 } while (xb < xbe); |
|
765 while (xa < xae) { |
|
766 unsigned long long y = *xa++ - borrow; |
|
767 borrow = y >> 32 & (uint32_t)1; |
|
768 *xc++ = (uint32_t)y & 0xffffffffUL; |
|
769 } |
|
770 #else |
|
771 uint32_t borrow = 0; |
|
772 #ifdef Pack_32 |
|
773 do { |
|
774 uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; |
|
775 borrow = (y & 0x10000) >> 16; |
|
776 uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; |
|
777 borrow = (z & 0x10000) >> 16; |
|
778 xc = storeInc(xc, z, y); |
|
779 } while (xb < xbe); |
|
780 while (xa < xae) { |
|
781 uint32_t y = (*xa & 0xffff) - borrow; |
|
782 borrow = (y & 0x10000) >> 16; |
|
783 uint32_t z = (*xa++ >> 16) - borrow; |
|
784 borrow = (z & 0x10000) >> 16; |
|
785 xc = storeInc(xc, z, y); |
|
786 } |
|
787 #else |
|
788 do { |
|
789 uint32_t y = *xa++ - *xb++ - borrow; |
|
790 borrow = (y & 0x10000) >> 16; |
|
791 *xc++ = y & 0xffff; |
|
792 } while (xb < xbe); |
|
793 while (xa < xae) { |
|
794 uint32_t y = *xa++ - borrow; |
|
795 borrow = (y & 0x10000) >> 16; |
|
796 *xc++ = y & 0xffff; |
|
797 } |
|
798 #endif |
|
799 #endif |
|
800 while (!*--xc) |
|
801 wa--; |
|
802 c.resize(wa); |
|
803 } |
|
804 |
|
805 static double ulp(U *x) |
|
806 { |
|
807 register int32_t L; |
|
808 U u; |
|
809 |
|
810 L = (word0(x) & Exp_mask) - (P - 1) * Exp_msk1; |
|
811 #ifndef Avoid_Underflow |
|
812 #ifndef Sudden_Underflow |
|
813 if (L > 0) { |
|
814 #endif |
|
815 #endif |
|
816 word0(&u) = L; |
|
817 word1(&u) = 0; |
|
818 #ifndef Avoid_Underflow |
|
819 #ifndef Sudden_Underflow |
|
820 } else { |
|
821 L = -L >> Exp_shift; |
|
822 if (L < Exp_shift) { |
|
823 word0(&u) = 0x80000 >> L; |
|
824 word1(&u) = 0; |
|
825 } else { |
|
826 word0(&u) = 0; |
|
827 L -= Exp_shift; |
|
828 word1(&u) = L >= 31 ? 1 : 1 << 31 - L; |
|
829 } |
|
830 } |
|
831 #endif |
|
832 #endif |
|
833 return dval(&u); |
|
834 } |
|
835 |
|
836 static double b2d(const BigInt& a, int* e) |
|
837 { |
|
838 const uint32_t* xa; |
|
839 const uint32_t* xa0; |
|
840 uint32_t w; |
|
841 uint32_t y; |
|
842 uint32_t z; |
|
843 int k; |
|
844 U d; |
|
845 |
|
846 #define d0 word0(&d) |
|
847 #define d1 word1(&d) |
|
848 |
|
849 xa0 = a.words(); |
|
850 xa = xa0 + a.size(); |
|
851 y = *--xa; |
|
852 ASSERT(y); |
|
853 k = hi0bits(y); |
|
854 *e = 32 - k; |
|
855 #ifdef Pack_32 |
|
856 if (k < Ebits) { |
|
857 d0 = Exp_1 | (y >> (Ebits - k)); |
|
858 w = xa > xa0 ? *--xa : 0; |
|
859 d1 = (y << (32 - Ebits + k)) | (w >> (Ebits - k)); |
|
860 goto returnD; |
|
861 } |
|
862 z = xa > xa0 ? *--xa : 0; |
|
863 if (k -= Ebits) { |
|
864 d0 = Exp_1 | (y << k) | (z >> (32 - k)); |
|
865 y = xa > xa0 ? *--xa : 0; |
|
866 d1 = (z << k) | (y >> (32 - k)); |
|
867 } else { |
|
868 d0 = Exp_1 | y; |
|
869 d1 = z; |
|
870 } |
|
871 #else |
|
872 if (k < Ebits + 16) { |
|
873 z = xa > xa0 ? *--xa : 0; |
|
874 d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; |
|
875 w = xa > xa0 ? *--xa : 0; |
|
876 y = xa > xa0 ? *--xa : 0; |
|
877 d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; |
|
878 goto returnD; |
|
879 } |
|
880 z = xa > xa0 ? *--xa : 0; |
|
881 w = xa > xa0 ? *--xa : 0; |
|
882 k -= Ebits + 16; |
|
883 d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; |
|
884 y = xa > xa0 ? *--xa : 0; |
|
885 d1 = w << k + 16 | y << k; |
|
886 #endif |
|
887 returnD: |
|
888 #undef d0 |
|
889 #undef d1 |
|
890 return dval(&d); |
|
891 } |
|
892 |
|
893 static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits) |
|
894 { |
|
895 int de, k; |
|
896 uint32_t* x; |
|
897 uint32_t y, z; |
|
898 #ifndef Sudden_Underflow |
|
899 int i; |
|
900 #endif |
|
901 #define d0 word0(d) |
|
902 #define d1 word1(d) |
|
903 |
|
904 b.sign = 0; |
|
905 #ifdef Pack_32 |
|
906 b.resize(1); |
|
907 #else |
|
908 b.resize(2); |
|
909 #endif |
|
910 x = b.words(); |
|
911 |
|
912 z = d0 & Frac_mask; |
|
913 d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ |
|
914 #ifdef Sudden_Underflow |
|
915 de = (int)(d0 >> Exp_shift); |
|
916 #else |
|
917 if ((de = (int)(d0 >> Exp_shift))) |
|
918 z |= Exp_msk1; |
|
919 #endif |
|
920 #ifdef Pack_32 |
|
921 if ((y = d1)) { |
|
922 if ((k = lo0bits(&y))) { |
|
923 x[0] = y | (z << (32 - k)); |
|
924 z >>= k; |
|
925 } else |
|
926 x[0] = y; |
|
927 if (z) { |
|
928 b.resize(2); |
|
929 x[1] = z; |
|
930 } |
|
931 |
|
932 #ifndef Sudden_Underflow |
|
933 i = b.size(); |
|
934 #endif |
|
935 } else { |
|
936 k = lo0bits(&z); |
|
937 x[0] = z; |
|
938 #ifndef Sudden_Underflow |
|
939 i = 1; |
|
940 #endif |
|
941 b.resize(1); |
|
942 k += 32; |
|
943 } |
|
944 #else |
|
945 if ((y = d1)) { |
|
946 if ((k = lo0bits(&y))) { |
|
947 if (k >= 16) { |
|
948 x[0] = y | z << 32 - k & 0xffff; |
|
949 x[1] = z >> k - 16 & 0xffff; |
|
950 x[2] = z >> k; |
|
951 i = 2; |
|
952 } else { |
|
953 x[0] = y & 0xffff; |
|
954 x[1] = y >> 16 | z << 16 - k & 0xffff; |
|
955 x[2] = z >> k & 0xffff; |
|
956 x[3] = z >> k + 16; |
|
957 i = 3; |
|
958 } |
|
959 } else { |
|
960 x[0] = y & 0xffff; |
|
961 x[1] = y >> 16; |
|
962 x[2] = z & 0xffff; |
|
963 x[3] = z >> 16; |
|
964 i = 3; |
|
965 } |
|
966 } else { |
|
967 k = lo0bits(&z); |
|
968 if (k >= 16) { |
|
969 x[0] = z; |
|
970 i = 0; |
|
971 } else { |
|
972 x[0] = z & 0xffff; |
|
973 x[1] = z >> 16; |
|
974 i = 1; |
|
975 } |
|
976 k += 32; |
|
977 } while (!x[i]) |
|
978 --i; |
|
979 b->resize(i + 1); |
|
980 #endif |
|
981 #ifndef Sudden_Underflow |
|
982 if (de) { |
|
983 #endif |
|
984 *e = de - Bias - (P - 1) + k; |
|
985 *bits = P - k; |
|
986 #ifndef Sudden_Underflow |
|
987 } else { |
|
988 *e = de - Bias - (P - 1) + 1 + k; |
|
989 #ifdef Pack_32 |
|
990 *bits = (32 * i) - hi0bits(x[i - 1]); |
|
991 #else |
|
992 *bits = (i + 2) * 16 - hi0bits(x[i]); |
|
993 #endif |
|
994 } |
|
995 #endif |
|
996 } |
|
997 #undef d0 |
|
998 #undef d1 |
|
999 |
|
1000 static double ratio(const BigInt& a, const BigInt& b) |
|
1001 { |
|
1002 U da, db; |
|
1003 int k, ka, kb; |
|
1004 |
|
1005 dval(&da) = b2d(a, &ka); |
|
1006 dval(&db) = b2d(b, &kb); |
|
1007 #ifdef Pack_32 |
|
1008 k = ka - kb + 32 * (a.size() - b.size()); |
|
1009 #else |
|
1010 k = ka - kb + 16 * (a.size() - b.size()); |
|
1011 #endif |
|
1012 if (k > 0) |
|
1013 word0(&da) += k * Exp_msk1; |
|
1014 else { |
|
1015 k = -k; |
|
1016 word0(&db) += k * Exp_msk1; |
|
1017 } |
|
1018 return dval(&da) / dval(&db); |
|
1019 } |
|
1020 |
|
1021 static const double tens[] = { |
|
1022 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
|
1023 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
|
1024 1e20, 1e21, 1e22 |
|
1025 }; |
|
1026 |
|
1027 static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
|
1028 static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, |
|
1029 #ifdef Avoid_Underflow |
|
1030 9007199254740992. * 9007199254740992.e-256 |
|
1031 /* = 2^106 * 1e-53 */ |
|
1032 #else |
|
1033 1e-256 |
|
1034 #endif |
|
1035 }; |
|
1036 |
|
1037 /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
|
1038 /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
|
1039 #define Scale_Bit 0x10 |
|
1040 #define n_bigtens 5 |
|
1041 |
|
1042 #if defined(INFNAN_CHECK) |
|
1043 |
|
1044 #ifndef NAN_WORD0 |
|
1045 #define NAN_WORD0 0x7ff80000 |
|
1046 #endif |
|
1047 |
|
1048 #ifndef NAN_WORD1 |
|
1049 #define NAN_WORD1 0 |
|
1050 #endif |
|
1051 |
|
1052 static int match(const char** sp, const char* t) |
|
1053 { |
|
1054 int c, d; |
|
1055 const char* s = *sp; |
|
1056 |
|
1057 while ((d = *t++)) { |
|
1058 if ((c = *++s) >= 'A' && c <= 'Z') |
|
1059 c += 'a' - 'A'; |
|
1060 if (c != d) |
|
1061 return 0; |
|
1062 } |
|
1063 *sp = s + 1; |
|
1064 return 1; |
|
1065 } |
|
1066 |
|
1067 #ifndef No_Hex_NaN |
|
1068 static void hexnan(U* rvp, const char** sp) |
|
1069 { |
|
1070 uint32_t c, x[2]; |
|
1071 const char* s; |
|
1072 int havedig, udx0, xshift; |
|
1073 |
|
1074 x[0] = x[1] = 0; |
|
1075 havedig = xshift = 0; |
|
1076 udx0 = 1; |
|
1077 s = *sp; |
|
1078 while ((c = *(const unsigned char*)++s)) { |
|
1079 if (c >= '0' && c <= '9') |
|
1080 c -= '0'; |
|
1081 else if (c >= 'a' && c <= 'f') |
|
1082 c += 10 - 'a'; |
|
1083 else if (c >= 'A' && c <= 'F') |
|
1084 c += 10 - 'A'; |
|
1085 else if (c <= ' ') { |
|
1086 if (udx0 && havedig) { |
|
1087 udx0 = 0; |
|
1088 xshift = 1; |
|
1089 } |
|
1090 continue; |
|
1091 } else if (/*(*/ c == ')' && havedig) { |
|
1092 *sp = s + 1; |
|
1093 break; |
|
1094 } else |
|
1095 return; /* invalid form: don't change *sp */ |
|
1096 havedig = 1; |
|
1097 if (xshift) { |
|
1098 xshift = 0; |
|
1099 x[0] = x[1]; |
|
1100 x[1] = 0; |
|
1101 } |
|
1102 if (udx0) |
|
1103 x[0] = (x[0] << 4) | (x[1] >> 28); |
|
1104 x[1] = (x[1] << 4) | c; |
|
1105 } |
|
1106 if ((x[0] &= 0xfffff) || x[1]) { |
|
1107 word0(rvp) = Exp_mask | x[0]; |
|
1108 word1(rvp) = x[1]; |
|
1109 } |
|
1110 } |
|
1111 #endif /*No_Hex_NaN*/ |
|
1112 #endif /* INFNAN_CHECK */ |
|
1113 |
|
1114 double strtod(const char* s00, char** se) |
|
1115 { |
|
1116 #ifdef Avoid_Underflow |
|
1117 int scale; |
|
1118 #endif |
|
1119 int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, |
|
1120 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; |
|
1121 const char *s, *s0, *s1; |
|
1122 double aadj, aadj1; |
|
1123 U aadj2, adj, rv, rv0; |
|
1124 int32_t L; |
|
1125 uint32_t y, z; |
|
1126 BigInt bb, bb1, bd, bd0, bs, delta; |
|
1127 #ifdef SET_INEXACT |
|
1128 int inexact, oldinexact; |
|
1129 #endif |
|
1130 |
|
1131 sign = nz0 = nz = 0; |
|
1132 dval(&rv) = 0; |
|
1133 for (s = s00; ; s++) { |
|
1134 switch (*s) { |
|
1135 case '-': |
|
1136 sign = 1; |
|
1137 /* no break */ |
|
1138 case '+': |
|
1139 if (*++s) |
|
1140 goto break2; |
|
1141 /* no break */ |
|
1142 case 0: |
|
1143 goto ret0; |
|
1144 case '\t': |
|
1145 case '\n': |
|
1146 case '\v': |
|
1147 case '\f': |
|
1148 case '\r': |
|
1149 case ' ': |
|
1150 continue; |
|
1151 default: |
|
1152 goto break2; |
|
1153 } |
|
1154 } |
|
1155 break2: |
|
1156 if (*s == '0') { |
|
1157 nz0 = 1; |
|
1158 while (*++s == '0') { } |
|
1159 if (!*s) |
|
1160 goto ret; |
|
1161 } |
|
1162 s0 = s; |
|
1163 y = z = 0; |
|
1164 for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) |
|
1165 if (nd < 9) |
|
1166 y = (10 * y) + c - '0'; |
|
1167 else if (nd < 16) |
|
1168 z = (10 * z) + c - '0'; |
|
1169 nd0 = nd; |
|
1170 if (c == '.') { |
|
1171 c = *++s; |
|
1172 if (!nd) { |
|
1173 for (; c == '0'; c = *++s) |
|
1174 nz++; |
|
1175 if (c > '0' && c <= '9') { |
|
1176 s0 = s; |
|
1177 nf += nz; |
|
1178 nz = 0; |
|
1179 goto haveDig; |
|
1180 } |
|
1181 goto digDone; |
|
1182 } |
|
1183 for (; c >= '0' && c <= '9'; c = *++s) { |
|
1184 haveDig: |
|
1185 nz++; |
|
1186 if (c -= '0') { |
|
1187 nf += nz; |
|
1188 for (i = 1; i < nz; i++) |
|
1189 if (nd++ < 9) |
|
1190 y *= 10; |
|
1191 else if (nd <= DBL_DIG + 1) |
|
1192 z *= 10; |
|
1193 if (nd++ < 9) |
|
1194 y = (10 * y) + c; |
|
1195 else if (nd <= DBL_DIG + 1) |
|
1196 z = (10 * z) + c; |
|
1197 nz = 0; |
|
1198 } |
|
1199 } |
|
1200 } |
|
1201 digDone: |
|
1202 e = 0; |
|
1203 if (c == 'e' || c == 'E') { |
|
1204 if (!nd && !nz && !nz0) |
|
1205 goto ret0; |
|
1206 s00 = s; |
|
1207 esign = 0; |
|
1208 switch (c = *++s) { |
|
1209 case '-': |
|
1210 esign = 1; |
|
1211 case '+': |
|
1212 c = *++s; |
|
1213 } |
|
1214 if (c >= '0' && c <= '9') { |
|
1215 while (c == '0') |
|
1216 c = *++s; |
|
1217 if (c > '0' && c <= '9') { |
|
1218 L = c - '0'; |
|
1219 s1 = s; |
|
1220 while ((c = *++s) >= '0' && c <= '9') |
|
1221 L = (10 * L) + c - '0'; |
|
1222 if (s - s1 > 8 || L > 19999) |
|
1223 /* Avoid confusion from exponents |
|
1224 * so large that e might overflow. |
|
1225 */ |
|
1226 e = 19999; /* safe for 16 bit ints */ |
|
1227 else |
|
1228 e = (int)L; |
|
1229 if (esign) |
|
1230 e = -e; |
|
1231 } else |
|
1232 e = 0; |
|
1233 } else |
|
1234 s = s00; |
|
1235 } |
|
1236 if (!nd) { |
|
1237 if (!nz && !nz0) { |
|
1238 #ifdef INFNAN_CHECK |
|
1239 /* Check for Nan and Infinity */ |
|
1240 switch (c) { |
|
1241 case 'i': |
|
1242 case 'I': |
|
1243 if (match(&s, "nf")) { |
|
1244 --s; |
|
1245 if (!match(&s, "inity")) |
|
1246 ++s; |
|
1247 word0(&rv) = 0x7ff00000; |
|
1248 word1(&rv) = 0; |
|
1249 goto ret; |
|
1250 } |
|
1251 break; |
|
1252 case 'n': |
|
1253 case 'N': |
|
1254 if (match(&s, "an")) { |
|
1255 word0(&rv) = NAN_WORD0; |
|
1256 word1(&rv) = NAN_WORD1; |
|
1257 #ifndef No_Hex_NaN |
|
1258 if (*s == '(') /*)*/ |
|
1259 hexnan(&rv, &s); |
|
1260 #endif |
|
1261 goto ret; |
|
1262 } |
|
1263 } |
|
1264 #endif /* INFNAN_CHECK */ |
|
1265 ret0: |
|
1266 s = s00; |
|
1267 sign = 0; |
|
1268 } |
|
1269 goto ret; |
|
1270 } |
|
1271 e1 = e -= nf; |
|
1272 |
|
1273 /* Now we have nd0 digits, starting at s0, followed by a |
|
1274 * decimal point, followed by nd-nd0 digits. The number we're |
|
1275 * after is the integer represented by those digits times |
|
1276 * 10**e */ |
|
1277 |
|
1278 if (!nd0) |
|
1279 nd0 = nd; |
|
1280 k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
|
1281 dval(&rv) = y; |
|
1282 if (k > 9) { |
|
1283 #ifdef SET_INEXACT |
|
1284 if (k > DBL_DIG) |
|
1285 oldinexact = get_inexact(); |
|
1286 #endif |
|
1287 dval(&rv) = tens[k - 9] * dval(&rv) + z; |
|
1288 } |
|
1289 if (nd <= DBL_DIG && Flt_Rounds == 1) { |
|
1290 if (!e) |
|
1291 goto ret; |
|
1292 if (e > 0) { |
|
1293 if (e <= Ten_pmax) { |
|
1294 /* rv = */ rounded_product(dval(&rv), tens[e]); |
|
1295 goto ret; |
|
1296 } |
|
1297 i = DBL_DIG - nd; |
|
1298 if (e <= Ten_pmax + i) { |
|
1299 /* A fancier test would sometimes let us do |
|
1300 * this for larger i values. |
|
1301 */ |
|
1302 e -= i; |
|
1303 dval(&rv) *= tens[i]; |
|
1304 /* rv = */ rounded_product(dval(&rv), tens[e]); |
|
1305 goto ret; |
|
1306 } |
|
1307 } |
|
1308 #ifndef Inaccurate_Divide |
|
1309 else if (e >= -Ten_pmax) { |
|
1310 /* rv = */ rounded_quotient(dval(&rv), tens[-e]); |
|
1311 goto ret; |
|
1312 } |
|
1313 #endif |
|
1314 } |
|
1315 e1 += nd - k; |
|
1316 |
|
1317 #ifdef SET_INEXACT |
|
1318 inexact = 1; |
|
1319 if (k <= DBL_DIG) |
|
1320 oldinexact = get_inexact(); |
|
1321 #endif |
|
1322 #ifdef Avoid_Underflow |
|
1323 scale = 0; |
|
1324 #endif |
|
1325 |
|
1326 /* Get starting approximation = rv * 10**e1 */ |
|
1327 |
|
1328 if (e1 > 0) { |
|
1329 if ((i = e1 & 15)) |
|
1330 dval(&rv) *= tens[i]; |
|
1331 if (e1 &= ~15) { |
|
1332 if (e1 > DBL_MAX_10_EXP) { |
|
1333 ovfl: |
|
1334 #ifndef NO_ERRNO |
|
1335 errno = ERANGE; |
|
1336 #endif |
|
1337 /* Can't trust HUGE_VAL */ |
|
1338 word0(&rv) = Exp_mask; |
|
1339 word1(&rv) = 0; |
|
1340 #ifdef SET_INEXACT |
|
1341 /* set overflow bit */ |
|
1342 dval(&rv0) = 1e300; |
|
1343 dval(&rv0) *= dval(&rv0); |
|
1344 #endif |
|
1345 goto ret; |
|
1346 } |
|
1347 e1 >>= 4; |
|
1348 for (j = 0; e1 > 1; j++, e1 >>= 1) |
|
1349 if (e1 & 1) |
|
1350 dval(&rv) *= bigtens[j]; |
|
1351 /* The last multiplication could overflow. */ |
|
1352 word0(&rv) -= P * Exp_msk1; |
|
1353 dval(&rv) *= bigtens[j]; |
|
1354 if ((z = word0(&rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - P)) |
|
1355 goto ovfl; |
|
1356 if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) { |
|
1357 /* set to largest number */ |
|
1358 /* (Can't trust DBL_MAX) */ |
|
1359 word0(&rv) = Big0; |
|
1360 word1(&rv) = Big1; |
|
1361 } else |
|
1362 word0(&rv) += P * Exp_msk1; |
|
1363 } |
|
1364 } else if (e1 < 0) { |
|
1365 e1 = -e1; |
|
1366 if ((i = e1 & 15)) |
|
1367 dval(&rv) /= tens[i]; |
|
1368 if (e1 >>= 4) { |
|
1369 if (e1 >= 1 << n_bigtens) |
|
1370 goto undfl; |
|
1371 #ifdef Avoid_Underflow |
|
1372 if (e1 & Scale_Bit) |
|
1373 scale = 2 * P; |
|
1374 for (j = 0; e1 > 0; j++, e1 >>= 1) |
|
1375 if (e1 & 1) |
|
1376 dval(&rv) *= tinytens[j]; |
|
1377 if (scale && (j = (2 * P) + 1 - ((word0(&rv) & Exp_mask) >> Exp_shift)) > 0) { |
|
1378 /* scaled rv is denormal; zap j low bits */ |
|
1379 if (j >= 32) { |
|
1380 word1(&rv) = 0; |
|
1381 if (j >= 53) |
|
1382 word0(&rv) = (P + 2) * Exp_msk1; |
|
1383 else |
|
1384 word0(&rv) &= 0xffffffff << (j - 32); |
|
1385 } else |
|
1386 word1(&rv) &= 0xffffffff << j; |
|
1387 } |
|
1388 #else |
|
1389 for (j = 0; e1 > 1; j++, e1 >>= 1) |
|
1390 if (e1 & 1) |
|
1391 dval(&rv) *= tinytens[j]; |
|
1392 /* The last multiplication could underflow. */ |
|
1393 dval(&rv0) = dval(&rv); |
|
1394 dval(&rv) *= tinytens[j]; |
|
1395 if (!dval(&rv)) { |
|
1396 dval(&rv) = 2. * dval(&rv0); |
|
1397 dval(&rv) *= tinytens[j]; |
|
1398 #endif |
|
1399 if (!dval(&rv)) { |
|
1400 undfl: |
|
1401 dval(&rv) = 0.; |
|
1402 #ifndef NO_ERRNO |
|
1403 errno = ERANGE; |
|
1404 #endif |
|
1405 goto ret; |
|
1406 } |
|
1407 #ifndef Avoid_Underflow |
|
1408 word0(&rv) = Tiny0; |
|
1409 word1(&rv) = Tiny1; |
|
1410 /* The refinement below will clean |
|
1411 * this approximation up. |
|
1412 */ |
|
1413 } |
|
1414 #endif |
|
1415 } |
|
1416 } |
|
1417 |
|
1418 /* Now the hard part -- adjusting rv to the correct value.*/ |
|
1419 |
|
1420 /* Put digits into bd: true value = bd * 10^e */ |
|
1421 |
|
1422 s2b(bd0, s0, nd0, nd, y); |
|
1423 |
|
1424 for (;;) { |
|
1425 bd = bd0; |
|
1426 d2b(bb, &rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ |
|
1427 i2b(bs, 1); |
|
1428 |
|
1429 if (e >= 0) { |
|
1430 bb2 = bb5 = 0; |
|
1431 bd2 = bd5 = e; |
|
1432 } else { |
|
1433 bb2 = bb5 = -e; |
|
1434 bd2 = bd5 = 0; |
|
1435 } |
|
1436 if (bbe >= 0) |
|
1437 bb2 += bbe; |
|
1438 else |
|
1439 bd2 -= bbe; |
|
1440 bs2 = bb2; |
|
1441 #ifdef Avoid_Underflow |
|
1442 j = bbe - scale; |
|
1443 i = j + bbbits - 1; /* logb(rv) */ |
|
1444 if (i < Emin) /* denormal */ |
|
1445 j += P - Emin; |
|
1446 else |
|
1447 j = P + 1 - bbbits; |
|
1448 #else /*Avoid_Underflow*/ |
|
1449 #ifdef Sudden_Underflow |
|
1450 j = P + 1 - bbbits; |
|
1451 #else /*Sudden_Underflow*/ |
|
1452 j = bbe; |
|
1453 i = j + bbbits - 1; /* logb(rv) */ |
|
1454 if (i < Emin) /* denormal */ |
|
1455 j += P - Emin; |
|
1456 else |
|
1457 j = P + 1 - bbbits; |
|
1458 #endif /*Sudden_Underflow*/ |
|
1459 #endif /*Avoid_Underflow*/ |
|
1460 bb2 += j; |
|
1461 bd2 += j; |
|
1462 #ifdef Avoid_Underflow |
|
1463 bd2 += scale; |
|
1464 #endif |
|
1465 i = bb2 < bd2 ? bb2 : bd2; |
|
1466 if (i > bs2) |
|
1467 i = bs2; |
|
1468 if (i > 0) { |
|
1469 bb2 -= i; |
|
1470 bd2 -= i; |
|
1471 bs2 -= i; |
|
1472 } |
|
1473 if (bb5 > 0) { |
|
1474 pow5mult(bs, bb5); |
|
1475 mult(bb, bs); |
|
1476 } |
|
1477 if (bb2 > 0) |
|
1478 lshift(bb, bb2); |
|
1479 if (bd5 > 0) |
|
1480 pow5mult(bd, bd5); |
|
1481 if (bd2 > 0) |
|
1482 lshift(bd, bd2); |
|
1483 if (bs2 > 0) |
|
1484 lshift(bs, bs2); |
|
1485 diff(delta, bb, bd); |
|
1486 dsign = delta.sign; |
|
1487 delta.sign = 0; |
|
1488 i = cmp(delta, bs); |
|
1489 |
|
1490 if (i < 0) { |
|
1491 /* Error is less than half an ulp -- check for |
|
1492 * special case of mantissa a power of two. |
|
1493 */ |
|
1494 if (dsign || word1(&rv) || word0(&rv) & Bndry_mask |
|
1495 #ifdef Avoid_Underflow |
|
1496 || (word0(&rv) & Exp_mask) <= (2 * P + 1) * Exp_msk1 |
|
1497 #else |
|
1498 || (word0(&rv) & Exp_mask) <= Exp_msk1 |
|
1499 #endif |
|
1500 ) { |
|
1501 #ifdef SET_INEXACT |
|
1502 if (!delta->words()[0] && delta->size() <= 1) |
|
1503 inexact = 0; |
|
1504 #endif |
|
1505 break; |
|
1506 } |
|
1507 if (!delta.words()[0] && delta.size() <= 1) { |
|
1508 /* exact result */ |
|
1509 #ifdef SET_INEXACT |
|
1510 inexact = 0; |
|
1511 #endif |
|
1512 break; |
|
1513 } |
|
1514 lshift(delta, Log2P); |
|
1515 if (cmp(delta, bs) > 0) |
|
1516 goto dropDown; |
|
1517 break; |
|
1518 } |
|
1519 if (!i) { |
|
1520 /* exactly half-way between */ |
|
1521 if (dsign) { |
|
1522 if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 |
|
1523 && word1(&rv) == ( |
|
1524 #ifdef Avoid_Underflow |
|
1525 (scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) |
|
1526 ? (0xffffffff & (0xffffffff << (2 * P + 1 - (y >> Exp_shift)))) : |
|
1527 #endif |
|
1528 0xffffffff)) { |
|
1529 /*boundary case -- increment exponent*/ |
|
1530 word0(&rv) = (word0(&rv) & Exp_mask) + Exp_msk1; |
|
1531 word1(&rv) = 0; |
|
1532 #ifdef Avoid_Underflow |
|
1533 dsign = 0; |
|
1534 #endif |
|
1535 break; |
|
1536 } |
|
1537 } else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { |
|
1538 dropDown: |
|
1539 /* boundary case -- decrement exponent */ |
|
1540 #ifdef Sudden_Underflow /*{{*/ |
|
1541 L = word0(&rv) & Exp_mask; |
|
1542 #ifdef Avoid_Underflow |
|
1543 if (L <= (scale ? (2 * P + 1) * Exp_msk1 : Exp_msk1)) |
|
1544 #else |
|
1545 if (L <= Exp_msk1) |
|
1546 #endif /*Avoid_Underflow*/ |
|
1547 goto undfl; |
|
1548 L -= Exp_msk1; |
|
1549 #else /*Sudden_Underflow}{*/ |
|
1550 #ifdef Avoid_Underflow |
|
1551 if (scale) { |
|
1552 L = word0(&rv) & Exp_mask; |
|
1553 if (L <= (2 * P + 1) * Exp_msk1) { |
|
1554 if (L > (P + 2) * Exp_msk1) |
|
1555 /* round even ==> */ |
|
1556 /* accept rv */ |
|
1557 break; |
|
1558 /* rv = smallest denormal */ |
|
1559 goto undfl; |
|
1560 } |
|
1561 } |
|
1562 #endif /*Avoid_Underflow*/ |
|
1563 L = (word0(&rv) & Exp_mask) - Exp_msk1; |
|
1564 #endif /*Sudden_Underflow}}*/ |
|
1565 word0(&rv) = L | Bndry_mask1; |
|
1566 word1(&rv) = 0xffffffff; |
|
1567 break; |
|
1568 } |
|
1569 if (!(word1(&rv) & LSB)) |
|
1570 break; |
|
1571 if (dsign) |
|
1572 dval(&rv) += ulp(&rv); |
|
1573 else { |
|
1574 dval(&rv) -= ulp(&rv); |
|
1575 #ifndef Sudden_Underflow |
|
1576 if (!dval(&rv)) |
|
1577 goto undfl; |
|
1578 #endif |
|
1579 } |
|
1580 #ifdef Avoid_Underflow |
|
1581 dsign = 1 - dsign; |
|
1582 #endif |
|
1583 break; |
|
1584 } |
|
1585 if ((aadj = ratio(delta, bs)) <= 2.) { |
|
1586 if (dsign) |
|
1587 aadj = aadj1 = 1.; |
|
1588 else if (word1(&rv) || word0(&rv) & Bndry_mask) { |
|
1589 #ifndef Sudden_Underflow |
|
1590 if (word1(&rv) == Tiny1 && !word0(&rv)) |
|
1591 goto undfl; |
|
1592 #endif |
|
1593 aadj = 1.; |
|
1594 aadj1 = -1.; |
|
1595 } else { |
|
1596 /* special case -- power of FLT_RADIX to be */ |
|
1597 /* rounded down... */ |
|
1598 |
|
1599 if (aadj < 2. / FLT_RADIX) |
|
1600 aadj = 1. / FLT_RADIX; |
|
1601 else |
|
1602 aadj *= 0.5; |
|
1603 aadj1 = -aadj; |
|
1604 } |
|
1605 } else { |
|
1606 aadj *= 0.5; |
|
1607 aadj1 = dsign ? aadj : -aadj; |
|
1608 #ifdef Check_FLT_ROUNDS |
|
1609 switch (Rounding) { |
|
1610 case 2: /* towards +infinity */ |
|
1611 aadj1 -= 0.5; |
|
1612 break; |
|
1613 case 0: /* towards 0 */ |
|
1614 case 3: /* towards -infinity */ |
|
1615 aadj1 += 0.5; |
|
1616 } |
|
1617 #else |
|
1618 if (!Flt_Rounds) |
|
1619 aadj1 += 0.5; |
|
1620 #endif /*Check_FLT_ROUNDS*/ |
|
1621 } |
|
1622 y = word0(&rv) & Exp_mask; |
|
1623 |
|
1624 /* Check for overflow */ |
|
1625 |
|
1626 if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) { |
|
1627 dval(&rv0) = dval(&rv); |
|
1628 word0(&rv) -= P * Exp_msk1; |
|
1629 adj.d = aadj1 * ulp(&rv); |
|
1630 dval(&rv) += adj.d; |
|
1631 if ((word0(&rv) & Exp_mask) >= Exp_msk1 * (DBL_MAX_EXP + Bias - P)) { |
|
1632 if (word0(&rv0) == Big0 && word1(&rv0) == Big1) |
|
1633 goto ovfl; |
|
1634 word0(&rv) = Big0; |
|
1635 word1(&rv) = Big1; |
|
1636 goto cont; |
|
1637 } |
|
1638 word0(&rv) += P * Exp_msk1; |
|
1639 } else { |
|
1640 #ifdef Avoid_Underflow |
|
1641 if (scale && y <= 2 * P * Exp_msk1) { |
|
1642 if (aadj <= 0x7fffffff) { |
|
1643 if ((z = (uint32_t)aadj) <= 0) |
|
1644 z = 1; |
|
1645 aadj = z; |
|
1646 aadj1 = dsign ? aadj : -aadj; |
|
1647 } |
|
1648 dval(&aadj2) = aadj1; |
|
1649 word0(&aadj2) += (2 * P + 1) * Exp_msk1 - y; |
|
1650 aadj1 = dval(&aadj2); |
|
1651 } |
|
1652 adj.d = aadj1 * ulp(&rv); |
|
1653 dval(&rv) += adj.d; |
|
1654 #else |
|
1655 #ifdef Sudden_Underflow |
|
1656 if ((word0(&rv) & Exp_mask) <= P * Exp_msk1) { |
|
1657 dval(&rv0) = dval(&rv); |
|
1658 word0(&rv) += P * Exp_msk1; |
|
1659 adj.d = aadj1 * ulp(&rv); |
|
1660 dval(&rv) += adj.d; |
|
1661 if ((word0(&rv) & Exp_mask) <= P * Exp_msk1) { |
|
1662 if (word0(&rv0) == Tiny0 && word1(&rv0) == Tiny1) |
|
1663 goto undfl; |
|
1664 word0(&rv) = Tiny0; |
|
1665 word1(&rv) = Tiny1; |
|
1666 goto cont; |
|
1667 } |
|
1668 word0(&rv) -= P * Exp_msk1; |
|
1669 } else { |
|
1670 adj.d = aadj1 * ulp(&rv); |
|
1671 dval(&rv) += adj.d; |
|
1672 } |
|
1673 #else /*Sudden_Underflow*/ |
|
1674 /* Compute adj so that the IEEE rounding rules will |
|
1675 * correctly round rv + adj in some half-way cases. |
|
1676 * If rv * ulp(rv) is denormalized (i.e., |
|
1677 * y <= (P - 1) * Exp_msk1), we must adjust aadj to avoid |
|
1678 * trouble from bits lost to denormalization; |
|
1679 * example: 1.2e-307 . |
|
1680 */ |
|
1681 if (y <= (P - 1) * Exp_msk1 && aadj > 1.) { |
|
1682 aadj1 = (double)(int)(aadj + 0.5); |
|
1683 if (!dsign) |
|
1684 aadj1 = -aadj1; |
|
1685 } |
|
1686 adj.d = aadj1 * ulp(&rv); |
|
1687 dval(&rv) += adj.d; |
|
1688 #endif /*Sudden_Underflow*/ |
|
1689 #endif /*Avoid_Underflow*/ |
|
1690 } |
|
1691 z = word0(&rv) & Exp_mask; |
|
1692 #ifndef SET_INEXACT |
|
1693 #ifdef Avoid_Underflow |
|
1694 if (!scale) |
|
1695 #endif |
|
1696 if (y == z) { |
|
1697 /* Can we stop now? */ |
|
1698 L = (int32_t)aadj; |
|
1699 aadj -= L; |
|
1700 /* The tolerances below are conservative. */ |
|
1701 if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { |
|
1702 if (aadj < .4999999 || aadj > .5000001) |
|
1703 break; |
|
1704 } else if (aadj < .4999999 / FLT_RADIX) |
|
1705 break; |
|
1706 } |
|
1707 #endif |
|
1708 cont: |
|
1709 {} |
|
1710 } |
|
1711 #ifdef SET_INEXACT |
|
1712 if (inexact) { |
|
1713 if (!oldinexact) { |
|
1714 word0(&rv0) = Exp_1 + (70 << Exp_shift); |
|
1715 word1(&rv0) = 0; |
|
1716 dval(&rv0) += 1.; |
|
1717 } |
|
1718 } else if (!oldinexact) |
|
1719 clear_inexact(); |
|
1720 #endif |
|
1721 #ifdef Avoid_Underflow |
|
1722 if (scale) { |
|
1723 word0(&rv0) = Exp_1 - 2 * P * Exp_msk1; |
|
1724 word1(&rv0) = 0; |
|
1725 dval(&rv) *= dval(&rv0); |
|
1726 #ifndef NO_ERRNO |
|
1727 /* try to avoid the bug of testing an 8087 register value */ |
|
1728 if (!word0(&rv) && !word1(&rv)) |
|
1729 errno = ERANGE; |
|
1730 #endif |
|
1731 } |
|
1732 #endif /* Avoid_Underflow */ |
|
1733 #ifdef SET_INEXACT |
|
1734 if (inexact && !(word0(&rv) & Exp_mask)) { |
|
1735 /* set underflow bit */ |
|
1736 dval(&rv0) = 1e-300; |
|
1737 dval(&rv0) *= dval(&rv0); |
|
1738 } |
|
1739 #endif |
|
1740 ret: |
|
1741 if (se) |
|
1742 *se = const_cast<char*>(s); |
|
1743 return sign ? -dval(&rv) : dval(&rv); |
|
1744 } |
|
1745 |
|
1746 static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S) |
|
1747 { |
|
1748 size_t n; |
|
1749 uint32_t* bx; |
|
1750 uint32_t* bxe; |
|
1751 uint32_t q; |
|
1752 uint32_t* sx; |
|
1753 uint32_t* sxe; |
|
1754 #ifdef USE_LONG_LONG |
|
1755 unsigned long long borrow, carry, y, ys; |
|
1756 #else |
|
1757 uint32_t borrow, carry, y, ys; |
|
1758 #ifdef Pack_32 |
|
1759 uint32_t si, z, zs; |
|
1760 #endif |
|
1761 #endif |
|
1762 ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); |
|
1763 ASSERT(S.size() <= 1 || S.words()[S.size() - 1]); |
|
1764 |
|
1765 n = S.size(); |
|
1766 ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem"); |
|
1767 if (b.size() < n) |
|
1768 return 0; |
|
1769 sx = S.words(); |
|
1770 sxe = sx + --n; |
|
1771 bx = b.words(); |
|
1772 bxe = bx + n; |
|
1773 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
|
1774 ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem"); |
|
1775 if (q) { |
|
1776 borrow = 0; |
|
1777 carry = 0; |
|
1778 do { |
|
1779 #ifdef USE_LONG_LONG |
|
1780 ys = *sx++ * (unsigned long long)q + carry; |
|
1781 carry = ys >> 32; |
|
1782 y = *bx - (ys & 0xffffffffUL) - borrow; |
|
1783 borrow = y >> 32 & (uint32_t)1; |
|
1784 *bx++ = (uint32_t)y & 0xffffffffUL; |
|
1785 #else |
|
1786 #ifdef Pack_32 |
|
1787 si = *sx++; |
|
1788 ys = (si & 0xffff) * q + carry; |
|
1789 zs = (si >> 16) * q + (ys >> 16); |
|
1790 carry = zs >> 16; |
|
1791 y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
|
1792 borrow = (y & 0x10000) >> 16; |
|
1793 z = (*bx >> 16) - (zs & 0xffff) - borrow; |
|
1794 borrow = (z & 0x10000) >> 16; |
|
1795 bx = storeInc(bx, z, y); |
|
1796 #else |
|
1797 ys = *sx++ * q + carry; |
|
1798 carry = ys >> 16; |
|
1799 y = *bx - (ys & 0xffff) - borrow; |
|
1800 borrow = (y & 0x10000) >> 16; |
|
1801 *bx++ = y & 0xffff; |
|
1802 #endif |
|
1803 #endif |
|
1804 } while (sx <= sxe); |
|
1805 if (!*bxe) { |
|
1806 bx = b.words(); |
|
1807 while (--bxe > bx && !*bxe) |
|
1808 --n; |
|
1809 b.resize(n); |
|
1810 } |
|
1811 } |
|
1812 if (cmp(b, S) >= 0) { |
|
1813 q++; |
|
1814 borrow = 0; |
|
1815 carry = 0; |
|
1816 bx = b.words(); |
|
1817 sx = S.words(); |
|
1818 do { |
|
1819 #ifdef USE_LONG_LONG |
|
1820 ys = *sx++ + carry; |
|
1821 carry = ys >> 32; |
|
1822 y = *bx - (ys & 0xffffffffUL) - borrow; |
|
1823 borrow = y >> 32 & (uint32_t)1; |
|
1824 *bx++ = (uint32_t)y & 0xffffffffUL; |
|
1825 #else |
|
1826 #ifdef Pack_32 |
|
1827 si = *sx++; |
|
1828 ys = (si & 0xffff) + carry; |
|
1829 zs = (si >> 16) + (ys >> 16); |
|
1830 carry = zs >> 16; |
|
1831 y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
|
1832 borrow = (y & 0x10000) >> 16; |
|
1833 z = (*bx >> 16) - (zs & 0xffff) - borrow; |
|
1834 borrow = (z & 0x10000) >> 16; |
|
1835 bx = storeInc(bx, z, y); |
|
1836 #else |
|
1837 ys = *sx++ + carry; |
|
1838 carry = ys >> 16; |
|
1839 y = *bx - (ys & 0xffff) - borrow; |
|
1840 borrow = (y & 0x10000) >> 16; |
|
1841 *bx++ = y & 0xffff; |
|
1842 #endif |
|
1843 #endif |
|
1844 } while (sx <= sxe); |
|
1845 bx = b.words(); |
|
1846 bxe = bx + n; |
|
1847 if (!*bxe) { |
|
1848 while (--bxe > bx && !*bxe) |
|
1849 --n; |
|
1850 b.resize(n); |
|
1851 } |
|
1852 } |
|
1853 return q; |
|
1854 } |
|
1855 |
|
1856 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
|
1857 * |
|
1858 * Inspired by "How to Print Floating-Point Numbers Accurately" by |
|
1859 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. |
|
1860 * |
|
1861 * Modifications: |
|
1862 * 1. Rather than iterating, we use a simple numeric overestimate |
|
1863 * to determine k = floor(log10(d)). We scale relevant |
|
1864 * quantities using O(log2(k)) rather than O(k) multiplications. |
|
1865 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
|
1866 * try to generate digits strictly left to right. Instead, we |
|
1867 * compute with fewer bits and propagate the carry if necessary |
|
1868 * when rounding the final digit up. This is often faster. |
|
1869 * 3. Under the assumption that input will be rounded nearest, |
|
1870 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
|
1871 * That is, we allow equality in stopping tests when the |
|
1872 * round-nearest rule will give the same floating-point value |
|
1873 * as would satisfaction of the stopping test with strict |
|
1874 * inequality. |
|
1875 * 4. We remove common factors of powers of 2 from relevant |
|
1876 * quantities. |
|
1877 * 5. When converting floating-point integers less than 1e16, |
|
1878 * we use floating-point arithmetic rather than resorting |
|
1879 * to multiple-precision integers. |
|
1880 * 6. When asked to produce fewer than 15 digits, we first try |
|
1881 * to get by with floating-point arithmetic; we resort to |
|
1882 * multiple-precision integer arithmetic only if we cannot |
|
1883 * guarantee that the floating-point calculation has given |
|
1884 * the correctly rounded result. For k requested digits and |
|
1885 * "uniformly" distributed input, the probability is |
|
1886 * something like 10^(k-15) that we must resort to the int32_t |
|
1887 * calculation. |
|
1888 */ |
|
1889 |
|
1890 void dtoa(DtoaBuffer result, double dd, int ndigits, int* decpt, int* sign, char** rve) |
|
1891 { |
|
1892 /* |
|
1893 Arguments ndigits, decpt, sign are similar to those |
|
1894 of ecvt and fcvt; trailing zeros are suppressed from |
|
1895 the returned string. If not null, *rve is set to point |
|
1896 to the end of the return value. If d is +-Infinity or NaN, |
|
1897 then *decpt is set to 9999. |
|
1898 |
|
1899 */ |
|
1900 |
|
1901 int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, |
|
1902 j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
|
1903 spec_case, try_quick; |
|
1904 int32_t L; |
|
1905 #ifndef Sudden_Underflow |
|
1906 int denorm; |
|
1907 uint32_t x; |
|
1908 #endif |
|
1909 BigInt b, b1, delta, mlo, mhi, S; |
|
1910 U d2, eps, u; |
|
1911 double ds; |
|
1912 char* s; |
|
1913 char* s0; |
|
1914 #ifdef SET_INEXACT |
|
1915 int inexact, oldinexact; |
|
1916 #endif |
|
1917 |
|
1918 u.d = dd; |
|
1919 if (word0(&u) & Sign_bit) { |
|
1920 /* set sign for everything, including 0's and NaNs */ |
|
1921 *sign = 1; |
|
1922 word0(&u) &= ~Sign_bit; /* clear sign bit */ |
|
1923 } else |
|
1924 *sign = 0; |
|
1925 |
|
1926 if ((word0(&u) & Exp_mask) == Exp_mask) { |
|
1927 /* Infinity or NaN */ |
|
1928 *decpt = 9999; |
|
1929 if (!word1(&u) && !(word0(&u) & 0xfffff)) { |
|
1930 strcpy(result, "Infinity"); |
|
1931 if (rve) |
|
1932 *rve = result + 8; |
|
1933 } else { |
|
1934 strcpy(result, "NaN"); |
|
1935 if (rve) |
|
1936 *rve = result + 3; |
|
1937 } |
|
1938 return; |
|
1939 } |
|
1940 if (!dval(&u)) { |
|
1941 *decpt = 1; |
|
1942 result[0] = '0'; |
|
1943 result[1] = '\0'; |
|
1944 if (rve) |
|
1945 *rve = result + 1; |
|
1946 return; |
|
1947 } |
|
1948 |
|
1949 #ifdef SET_INEXACT |
|
1950 try_quick = oldinexact = get_inexact(); |
|
1951 inexact = 1; |
|
1952 #endif |
|
1953 |
|
1954 d2b(b, &u, &be, &bbits); |
|
1955 #ifdef Sudden_Underflow |
|
1956 i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)); |
|
1957 #else |
|
1958 if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) { |
|
1959 #endif |
|
1960 dval(&d2) = dval(&u); |
|
1961 word0(&d2) &= Frac_mask1; |
|
1962 word0(&d2) |= Exp_11; |
|
1963 |
|
1964 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
|
1965 * log10(x) = log(x) / log(10) |
|
1966 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
|
1967 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
|
1968 * |
|
1969 * This suggests computing an approximation k to log10(d) by |
|
1970 * |
|
1971 * k = (i - Bias)*0.301029995663981 |
|
1972 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
|
1973 * |
|
1974 * We want k to be too large rather than too small. |
|
1975 * The error in the first-order Taylor series approximation |
|
1976 * is in our favor, so we just round up the constant enough |
|
1977 * to compensate for any error in the multiplication of |
|
1978 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
|
1979 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
|
1980 * adding 1e-13 to the constant term more than suffices. |
|
1981 * Hence we adjust the constant term to 0.1760912590558. |
|
1982 * (We could get a more accurate k by invoking log10, |
|
1983 * but this is probably not worthwhile.) |
|
1984 */ |
|
1985 |
|
1986 i -= Bias; |
|
1987 #ifndef Sudden_Underflow |
|
1988 denorm = 0; |
|
1989 } else { |
|
1990 /* d is denormalized */ |
|
1991 |
|
1992 i = bbits + be + (Bias + (P - 1) - 1); |
|
1993 x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32)) |
|
1994 : word1(&u) << (32 - i); |
|
1995 dval(&d2) = x; |
|
1996 word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */ |
|
1997 i -= (Bias + (P - 1) - 1) + 1; |
|
1998 denorm = 1; |
|
1999 } |
|
2000 #endif |
|
2001 ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981); |
|
2002 k = (int)ds; |
|
2003 if (ds < 0. && ds != k) |
|
2004 k--; /* want k = floor(ds) */ |
|
2005 k_check = 1; |
|
2006 if (k >= 0 && k <= Ten_pmax) { |
|
2007 if (dval(&u) < tens[k]) |
|
2008 k--; |
|
2009 k_check = 0; |
|
2010 } |
|
2011 j = bbits - i - 1; |
|
2012 if (j >= 0) { |
|
2013 b2 = 0; |
|
2014 s2 = j; |
|
2015 } else { |
|
2016 b2 = -j; |
|
2017 s2 = 0; |
|
2018 } |
|
2019 if (k >= 0) { |
|
2020 b5 = 0; |
|
2021 s5 = k; |
|
2022 s2 += k; |
|
2023 } else { |
|
2024 b2 -= k; |
|
2025 b5 = -k; |
|
2026 s5 = 0; |
|
2027 } |
|
2028 |
|
2029 #ifndef SET_INEXACT |
|
2030 #ifdef Check_FLT_ROUNDS |
|
2031 try_quick = Rounding == 1; |
|
2032 #else |
|
2033 try_quick = 1; |
|
2034 #endif |
|
2035 #endif /*SET_INEXACT*/ |
|
2036 |
|
2037 leftright = 1; |
|
2038 ilim = ilim1 = -1; |
|
2039 i = 18; |
|
2040 ndigits = 0; |
|
2041 s = s0 = result; |
|
2042 |
|
2043 if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
|
2044 |
|
2045 /* Try to get by with floating-point arithmetic. */ |
|
2046 |
|
2047 i = 0; |
|
2048 dval(&d2) = dval(&u); |
|
2049 k0 = k; |
|
2050 ilim0 = ilim; |
|
2051 ieps = 2; /* conservative */ |
|
2052 if (k > 0) { |
|
2053 ds = tens[k & 0xf]; |
|
2054 j = k >> 4; |
|
2055 if (j & Bletch) { |
|
2056 /* prevent overflows */ |
|
2057 j &= Bletch - 1; |
|
2058 dval(&u) /= bigtens[n_bigtens - 1]; |
|
2059 ieps++; |
|
2060 } |
|
2061 for (; j; j >>= 1, i++) { |
|
2062 if (j & 1) { |
|
2063 ieps++; |
|
2064 ds *= bigtens[i]; |
|
2065 } |
|
2066 } |
|
2067 dval(&u) /= ds; |
|
2068 } else if ((j1 = -k)) { |
|
2069 dval(&u) *= tens[j1 & 0xf]; |
|
2070 for (j = j1 >> 4; j; j >>= 1, i++) { |
|
2071 if (j & 1) { |
|
2072 ieps++; |
|
2073 dval(&u) *= bigtens[i]; |
|
2074 } |
|
2075 } |
|
2076 } |
|
2077 if (k_check && dval(&u) < 1. && ilim > 0) { |
|
2078 if (ilim1 <= 0) |
|
2079 goto fastFailed; |
|
2080 ilim = ilim1; |
|
2081 k--; |
|
2082 dval(&u) *= 10.; |
|
2083 ieps++; |
|
2084 } |
|
2085 dval(&eps) = (ieps * dval(&u)) + 7.; |
|
2086 word0(&eps) -= (P - 1) * Exp_msk1; |
|
2087 if (!ilim) { |
|
2088 S.clear(); |
|
2089 mhi.clear(); |
|
2090 dval(&u) -= 5.; |
|
2091 if (dval(&u) > dval(&eps)) |
|
2092 goto oneDigit; |
|
2093 if (dval(&u) < -dval(&eps)) |
|
2094 goto noDigits; |
|
2095 goto fastFailed; |
|
2096 } |
|
2097 #ifndef No_leftright |
|
2098 if (leftright) { |
|
2099 /* Use Steele & White method of only |
|
2100 * generating digits needed. |
|
2101 */ |
|
2102 dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps); |
|
2103 for (i = 0;;) { |
|
2104 L = (long int)dval(&u); |
|
2105 dval(&u) -= L; |
|
2106 *s++ = '0' + (int)L; |
|
2107 if (dval(&u) < dval(&eps)) |
|
2108 goto ret; |
|
2109 if (1. - dval(&u) < dval(&eps)) |
|
2110 goto bumpUp; |
|
2111 if (++i >= ilim) |
|
2112 break; |
|
2113 dval(&eps) *= 10.; |
|
2114 dval(&u) *= 10.; |
|
2115 } |
|
2116 } else { |
|
2117 #endif |
|
2118 /* Generate ilim digits, then fix them up. */ |
|
2119 dval(&eps) *= tens[ilim - 1]; |
|
2120 for (i = 1;; i++, dval(&u) *= 10.) { |
|
2121 L = (int32_t)(dval(&u)); |
|
2122 if (!(dval(&u) -= L)) |
|
2123 ilim = i; |
|
2124 *s++ = '0' + (int)L; |
|
2125 if (i == ilim) { |
|
2126 if (dval(&u) > 0.5 + dval(&eps)) |
|
2127 goto bumpUp; |
|
2128 if (dval(&u) < 0.5 - dval(&eps)) { |
|
2129 while (*--s == '0') { } |
|
2130 s++; |
|
2131 goto ret; |
|
2132 } |
|
2133 break; |
|
2134 } |
|
2135 } |
|
2136 #ifndef No_leftright |
|
2137 } |
|
2138 #endif |
|
2139 fastFailed: |
|
2140 s = s0; |
|
2141 dval(&u) = dval(&d2); |
|
2142 k = k0; |
|
2143 ilim = ilim0; |
|
2144 } |
|
2145 |
|
2146 /* Do we have a "small" integer? */ |
|
2147 |
|
2148 if (be >= 0 && k <= Int_max) { |
|
2149 /* Yes. */ |
|
2150 ds = tens[k]; |
|
2151 if (ndigits < 0 && ilim <= 0) { |
|
2152 S.clear(); |
|
2153 mhi.clear(); |
|
2154 if (ilim < 0 || dval(&u) <= 5 * ds) |
|
2155 goto noDigits; |
|
2156 goto oneDigit; |
|
2157 } |
|
2158 for (i = 1;; i++, dval(&u) *= 10.) { |
|
2159 L = (int32_t)(dval(&u) / ds); |
|
2160 dval(&u) -= L * ds; |
|
2161 #ifdef Check_FLT_ROUNDS |
|
2162 /* If FLT_ROUNDS == 2, L will usually be high by 1 */ |
|
2163 if (dval(&u) < 0) { |
|
2164 L--; |
|
2165 dval(&u) += ds; |
|
2166 } |
|
2167 #endif |
|
2168 *s++ = '0' + (int)L; |
|
2169 if (!dval(&u)) { |
|
2170 #ifdef SET_INEXACT |
|
2171 inexact = 0; |
|
2172 #endif |
|
2173 break; |
|
2174 } |
|
2175 if (i == ilim) { |
|
2176 dval(&u) += dval(&u); |
|
2177 if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) { |
|
2178 bumpUp: |
|
2179 while (*--s == '9') |
|
2180 if (s == s0) { |
|
2181 k++; |
|
2182 *s = '0'; |
|
2183 break; |
|
2184 } |
|
2185 ++*s++; |
|
2186 } |
|
2187 break; |
|
2188 } |
|
2189 } |
|
2190 goto ret; |
|
2191 } |
|
2192 |
|
2193 m2 = b2; |
|
2194 m5 = b5; |
|
2195 mhi.clear(); |
|
2196 mlo.clear(); |
|
2197 if (leftright) { |
|
2198 i = |
|
2199 #ifndef Sudden_Underflow |
|
2200 denorm ? be + (Bias + (P - 1) - 1 + 1) : |
|
2201 #endif |
|
2202 1 + P - bbits; |
|
2203 b2 += i; |
|
2204 s2 += i; |
|
2205 i2b(mhi, 1); |
|
2206 } |
|
2207 if (m2 > 0 && s2 > 0) { |
|
2208 i = m2 < s2 ? m2 : s2; |
|
2209 b2 -= i; |
|
2210 m2 -= i; |
|
2211 s2 -= i; |
|
2212 } |
|
2213 if (b5 > 0) { |
|
2214 if (leftright) { |
|
2215 if (m5 > 0) { |
|
2216 pow5mult(mhi, m5); |
|
2217 mult(b, mhi); |
|
2218 } |
|
2219 if ((j = b5 - m5)) |
|
2220 pow5mult(b, j); |
|
2221 } else |
|
2222 pow5mult(b, b5); |
|
2223 } |
|
2224 i2b(S, 1); |
|
2225 if (s5 > 0) |
|
2226 pow5mult(S, s5); |
|
2227 |
|
2228 /* Check for special case that d is a normalized power of 2. */ |
|
2229 |
|
2230 spec_case = 0; |
|
2231 if (!word1(&u) && !(word0(&u) & Bndry_mask) |
|
2232 #ifndef Sudden_Underflow |
|
2233 && word0(&u) & (Exp_mask & ~Exp_msk1) |
|
2234 #endif |
|
2235 ) { |
|
2236 /* The special case */ |
|
2237 b2 += Log2P; |
|
2238 s2 += Log2P; |
|
2239 spec_case = 1; |
|
2240 } |
|
2241 |
|
2242 /* Arrange for convenient computation of quotients: |
|
2243 * shift left if necessary so divisor has 4 leading 0 bits. |
|
2244 * |
|
2245 * Perhaps we should just compute leading 28 bits of S once |
|
2246 * and for all and pass them and a shift to quorem, so it |
|
2247 * can do shifts and ors to compute the numerator for q. |
|
2248 */ |
|
2249 #ifdef Pack_32 |
|
2250 if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f)) |
|
2251 i = 32 - i; |
|
2252 #else |
|
2253 if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0xf)) |
|
2254 i = 16 - i; |
|
2255 #endif |
|
2256 if (i > 4) { |
|
2257 i -= 4; |
|
2258 b2 += i; |
|
2259 m2 += i; |
|
2260 s2 += i; |
|
2261 } else if (i < 4) { |
|
2262 i += 28; |
|
2263 b2 += i; |
|
2264 m2 += i; |
|
2265 s2 += i; |
|
2266 } |
|
2267 if (b2 > 0) |
|
2268 lshift(b, b2); |
|
2269 if (s2 > 0) |
|
2270 lshift(S, s2); |
|
2271 if (k_check) { |
|
2272 if (cmp(b, S) < 0) { |
|
2273 k--; |
|
2274 multadd(b, 10, 0); /* we botched the k estimate */ |
|
2275 if (leftright) |
|
2276 multadd(mhi, 10, 0); |
|
2277 ilim = ilim1; |
|
2278 } |
|
2279 } |
|
2280 |
|
2281 if (leftright) { |
|
2282 if (m2 > 0) |
|
2283 lshift(mhi, m2); |
|
2284 |
|
2285 /* Compute mlo -- check for special case |
|
2286 * that d is a normalized power of 2. |
|
2287 */ |
|
2288 |
|
2289 mlo = mhi; |
|
2290 if (spec_case) { |
|
2291 mhi = mlo; |
|
2292 lshift(mhi, Log2P); |
|
2293 } |
|
2294 |
|
2295 for (i = 1;;i++) { |
|
2296 dig = quorem(b, S) + '0'; |
|
2297 /* Do we yet have the shortest decimal string |
|
2298 * that will round to d? |
|
2299 */ |
|
2300 j = cmp(b, mlo); |
|
2301 diff(delta, S, mhi); |
|
2302 j1 = delta.sign ? 1 : cmp(b, delta); |
|
2303 if (!j1 && !(word1(&u) & 1)) { |
|
2304 if (dig == '9') |
|
2305 goto round9up; |
|
2306 if (j > 0) |
|
2307 dig++; |
|
2308 #ifdef SET_INEXACT |
|
2309 else if (!b->x[0] && b->wds <= 1) |
|
2310 inexact = 0; |
|
2311 #endif |
|
2312 *s++ = dig; |
|
2313 goto ret; |
|
2314 } |
|
2315 if (j < 0 || (!j && !(word1(&u) & 1))) { |
|
2316 if (!b.words()[0] && b.size() <= 1) { |
|
2317 #ifdef SET_INEXACT |
|
2318 inexact = 0; |
|
2319 #endif |
|
2320 goto acceptDig; |
|
2321 } |
|
2322 if (j1 > 0) { |
|
2323 lshift(b, 1); |
|
2324 j1 = cmp(b, S); |
|
2325 if ((j1 > 0 || (!j1 && (dig & 1))) && dig++ == '9') |
|
2326 goto round9up; |
|
2327 } |
|
2328 acceptDig: |
|
2329 *s++ = dig; |
|
2330 goto ret; |
|
2331 } |
|
2332 if (j1 > 0) { |
|
2333 if (dig == '9') { /* possible if i == 1 */ |
|
2334 round9up: |
|
2335 *s++ = '9'; |
|
2336 goto roundoff; |
|
2337 } |
|
2338 *s++ = dig + 1; |
|
2339 goto ret; |
|
2340 } |
|
2341 *s++ = dig; |
|
2342 if (i == ilim) |
|
2343 break; |
|
2344 multadd(b, 10, 0); |
|
2345 multadd(mlo, 10, 0); |
|
2346 multadd(mhi, 10, 0); |
|
2347 } |
|
2348 } else |
|
2349 for (i = 1;; i++) { |
|
2350 *s++ = dig = quorem(b, S) + '0'; |
|
2351 if (!b.words()[0] && b.size() <= 1) { |
|
2352 #ifdef SET_INEXACT |
|
2353 inexact = 0; |
|
2354 #endif |
|
2355 goto ret; |
|
2356 } |
|
2357 if (i >= ilim) |
|
2358 break; |
|
2359 multadd(b, 10, 0); |
|
2360 } |
|
2361 |
|
2362 /* Round off last digit */ |
|
2363 |
|
2364 lshift(b, 1); |
|
2365 j = cmp(b, S); |
|
2366 if (j > 0 || (!j && (dig & 1))) { |
|
2367 roundoff: |
|
2368 while (*--s == '9') |
|
2369 if (s == s0) { |
|
2370 k++; |
|
2371 *s++ = '1'; |
|
2372 goto ret; |
|
2373 } |
|
2374 ++*s++; |
|
2375 } else { |
|
2376 while (*--s == '0') { } |
|
2377 s++; |
|
2378 } |
|
2379 goto ret; |
|
2380 noDigits: |
|
2381 k = -1 - ndigits; |
|
2382 goto ret; |
|
2383 oneDigit: |
|
2384 *s++ = '1'; |
|
2385 k++; |
|
2386 goto ret; |
|
2387 ret: |
|
2388 #ifdef SET_INEXACT |
|
2389 if (inexact) { |
|
2390 if (!oldinexact) { |
|
2391 word0(&u) = Exp_1 + (70 << Exp_shift); |
|
2392 word1(&u) = 0; |
|
2393 dval(&u) += 1.; |
|
2394 } |
|
2395 } else if (!oldinexact) |
|
2396 clear_inexact(); |
|
2397 #endif |
|
2398 *s = 0; |
|
2399 *decpt = k + 1; |
|
2400 if (rve) |
|
2401 *rve = s; |
|
2402 } |
|
2403 |
|
2404 static ALWAYS_INLINE void append(char*& next, const char* src, unsigned size) |
|
2405 { |
|
2406 for (unsigned i = 0; i < size; ++i) |
|
2407 *next++ = *src++; |
|
2408 } |
|
2409 |
|
2410 void doubleToStringInJavaScriptFormat(double d, DtoaBuffer buffer, unsigned* resultLength) |
|
2411 { |
|
2412 ASSERT(buffer); |
|
2413 |
|
2414 // avoid ever printing -NaN, in JS conceptually there is only one NaN value |
|
2415 if (isnan(d)) { |
|
2416 append(buffer, "NaN", 3); |
|
2417 if (resultLength) |
|
2418 *resultLength = 3; |
|
2419 return; |
|
2420 } |
|
2421 // -0 -> "0" |
|
2422 if (!d) { |
|
2423 buffer[0] = '0'; |
|
2424 if (resultLength) |
|
2425 *resultLength = 1; |
|
2426 return; |
|
2427 } |
|
2428 |
|
2429 int decimalPoint; |
|
2430 int sign; |
|
2431 |
|
2432 DtoaBuffer result; |
|
2433 char* resultEnd = 0; |
|
2434 WTF::dtoa(result, d, 0, &decimalPoint, &sign, &resultEnd); |
|
2435 int length = resultEnd - result; |
|
2436 |
|
2437 char* next = buffer; |
|
2438 if (sign) |
|
2439 *next++ = '-'; |
|
2440 |
|
2441 if (decimalPoint <= 0 && decimalPoint > -6) { |
|
2442 *next++ = '0'; |
|
2443 *next++ = '.'; |
|
2444 for (int j = decimalPoint; j < 0; j++) |
|
2445 *next++ = '0'; |
|
2446 append(next, result, length); |
|
2447 } else if (decimalPoint <= 21 && decimalPoint > 0) { |
|
2448 if (length <= decimalPoint) { |
|
2449 append(next, result, length); |
|
2450 for (int j = 0; j < decimalPoint - length; j++) |
|
2451 *next++ = '0'; |
|
2452 } else { |
|
2453 append(next, result, decimalPoint); |
|
2454 *next++ = '.'; |
|
2455 append(next, result + decimalPoint, length - decimalPoint); |
|
2456 } |
|
2457 } else if (result[0] < '0' || result[0] > '9') |
|
2458 append(next, result, length); |
|
2459 else { |
|
2460 *next++ = result[0]; |
|
2461 if (length > 1) { |
|
2462 *next++ = '.'; |
|
2463 append(next, result + 1, length - 1); |
|
2464 } |
|
2465 |
|
2466 *next++ = 'e'; |
|
2467 *next++ = (decimalPoint >= 0) ? '+' : '-'; |
|
2468 // decimalPoint can't be more than 3 digits decimal given the |
|
2469 // nature of float representation |
|
2470 int exponential = decimalPoint - 1; |
|
2471 if (exponential < 0) |
|
2472 exponential = -exponential; |
|
2473 if (exponential >= 100) |
|
2474 *next++ = static_cast<char>('0' + exponential / 100); |
|
2475 if (exponential >= 10) |
|
2476 *next++ = static_cast<char>('0' + (exponential % 100) / 10); |
|
2477 *next++ = static_cast<char>('0' + exponential % 10); |
|
2478 } |
|
2479 if (resultLength) |
|
2480 *resultLength = next - buffer; |
|
2481 } |
|
2482 |
|
2483 } // namespace WTF |