|
1 /* |
|
2 * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved. |
|
3 * Copyright (C) 2005 Alexey Proskuryakov. |
|
4 * |
|
5 * Redistribution and use in source and binary forms, with or without |
|
6 * modification, are permitted provided that the following conditions |
|
7 * are met: |
|
8 * 1. Redistributions of source code must retain the above copyright |
|
9 * notice, this list of conditions and the following disclaimer. |
|
10 * 2. Redistributions in binary form must reproduce the above copyright |
|
11 * notice, this list of conditions and the following disclaimer in the |
|
12 * documentation and/or other materials provided with the distribution. |
|
13 * |
|
14 * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY |
|
15 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
17 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR |
|
18 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
19 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
|
22 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
25 */ |
|
26 |
|
27 #include "config.h" |
|
28 #include "TextIterator.h" |
|
29 |
|
30 #include "CharacterNames.h" |
|
31 #include "Document.h" |
|
32 #include "HTMLElement.h" |
|
33 #include "HTMLNames.h" |
|
34 #include "htmlediting.h" |
|
35 #include "InlineTextBox.h" |
|
36 #include "Range.h" |
|
37 #include "RenderTableCell.h" |
|
38 #include "RenderTableRow.h" |
|
39 #include "RenderTextControl.h" |
|
40 #include "VisiblePosition.h" |
|
41 #include "visible_units.h" |
|
42 |
|
43 #if USE(ICU_UNICODE) && !UCONFIG_NO_COLLATION |
|
44 #include "TextBreakIteratorInternalICU.h" |
|
45 #include <unicode/usearch.h> |
|
46 #endif |
|
47 |
|
48 using namespace WTF::Unicode; |
|
49 using namespace std; |
|
50 |
|
51 namespace WebCore { |
|
52 |
|
53 using namespace HTMLNames; |
|
54 |
|
55 // Buffer that knows how to compare with a search target. |
|
56 // Keeps enough of the previous text to be able to search in the future, but no more. |
|
57 // Non-breaking spaces are always equal to normal spaces. |
|
58 // Case folding is also done if <isCaseSensitive> is false. |
|
59 class SearchBuffer : public Noncopyable { |
|
60 public: |
|
61 SearchBuffer(const String& target, bool isCaseSensitive); |
|
62 ~SearchBuffer(); |
|
63 |
|
64 // Returns number of characters appended; guaranteed to be in the range [1, length]. |
|
65 size_t append(const UChar*, size_t length); |
|
66 void reachedBreak(); |
|
67 |
|
68 // Result is the size in characters of what was found. |
|
69 // And <startOffset> is the number of characters back to the start of what was found. |
|
70 size_t search(size_t& startOffset); |
|
71 bool atBreak() const; |
|
72 |
|
73 #if USE(ICU_UNICODE) && !UCONFIG_NO_COLLATION |
|
74 |
|
75 private: |
|
76 bool isBadMatch(const UChar*, size_t length) const; |
|
77 |
|
78 String m_target; |
|
79 Vector<UChar> m_buffer; |
|
80 size_t m_overlap; |
|
81 bool m_atBreak; |
|
82 |
|
83 bool m_targetRequiresKanaWorkaround; |
|
84 Vector<UChar> m_normalizedTarget; |
|
85 mutable Vector<UChar> m_normalizedMatch; |
|
86 |
|
87 #else |
|
88 |
|
89 private: |
|
90 void append(UChar, bool isCharacterStart); |
|
91 size_t length() const; |
|
92 |
|
93 String m_target; |
|
94 bool m_isCaseSensitive; |
|
95 |
|
96 Vector<UChar> m_buffer; |
|
97 Vector<bool> m_isCharacterStartBuffer; |
|
98 bool m_isBufferFull; |
|
99 size_t m_cursor; |
|
100 |
|
101 #endif |
|
102 }; |
|
103 |
|
104 // -------- |
|
105 |
|
106 static const unsigned bitsInWord = sizeof(unsigned) * 8; |
|
107 static const unsigned bitInWordMask = bitsInWord - 1; |
|
108 |
|
109 BitStack::BitStack() |
|
110 : m_size(0) |
|
111 { |
|
112 } |
|
113 |
|
114 void BitStack::push(bool bit) |
|
115 { |
|
116 unsigned index = m_size / bitsInWord; |
|
117 unsigned shift = m_size & bitInWordMask; |
|
118 if (!shift && index == m_words.size()) { |
|
119 m_words.grow(index + 1); |
|
120 m_words[index] = 0; |
|
121 } |
|
122 unsigned& word = m_words[index]; |
|
123 unsigned mask = 1U << shift; |
|
124 if (bit) |
|
125 word |= mask; |
|
126 else |
|
127 word &= ~mask; |
|
128 ++m_size; |
|
129 } |
|
130 |
|
131 void BitStack::pop() |
|
132 { |
|
133 if (m_size) |
|
134 --m_size; |
|
135 } |
|
136 |
|
137 bool BitStack::top() const |
|
138 { |
|
139 if (!m_size) |
|
140 return false; |
|
141 unsigned shift = (m_size - 1) & bitInWordMask; |
|
142 return m_words.last() & (1U << shift); |
|
143 } |
|
144 |
|
145 unsigned BitStack::size() const |
|
146 { |
|
147 return m_size; |
|
148 } |
|
149 |
|
150 // -------- |
|
151 |
|
152 static inline Node* parentCrossingShadowBoundaries(Node* node) |
|
153 { |
|
154 if (Node* parent = node->parentNode()) |
|
155 return parent; |
|
156 return node->shadowParentNode(); |
|
157 } |
|
158 |
|
159 #if !ASSERT_DISABLED |
|
160 |
|
161 static unsigned depthCrossingShadowBoundaries(Node* node) |
|
162 { |
|
163 unsigned depth = 0; |
|
164 for (Node* parent = parentCrossingShadowBoundaries(node); parent; parent = parentCrossingShadowBoundaries(parent)) |
|
165 ++depth; |
|
166 return depth; |
|
167 } |
|
168 |
|
169 #endif |
|
170 |
|
171 // This function is like Range::pastLastNode, except for the fact that it can climb up out of shadow trees. |
|
172 static Node* nextInPreOrderCrossingShadowBoundaries(Node* rangeEndContainer, int rangeEndOffset) |
|
173 { |
|
174 if (!rangeEndContainer) |
|
175 return 0; |
|
176 if (rangeEndOffset >= 0 && !rangeEndContainer->offsetInCharacters()) { |
|
177 if (Node* next = rangeEndContainer->childNode(rangeEndOffset)) |
|
178 return next; |
|
179 } |
|
180 for (Node* node = rangeEndContainer; node; node = parentCrossingShadowBoundaries(node)) { |
|
181 if (Node* next = node->nextSibling()) |
|
182 return next; |
|
183 } |
|
184 return 0; |
|
185 } |
|
186 |
|
187 static Node* previousInPostOrderCrossingShadowBoundaries(Node* rangeStartContainer, int rangeStartOffset) |
|
188 { |
|
189 if (!rangeStartContainer) |
|
190 return 0; |
|
191 if (rangeStartOffset > 0 && !rangeStartContainer->offsetInCharacters()) { |
|
192 if (Node* previous = rangeStartContainer->childNode(rangeStartOffset - 1)) |
|
193 return previous; |
|
194 } |
|
195 for (Node* node = rangeStartContainer; node; node = parentCrossingShadowBoundaries(node)) { |
|
196 if (Node* previous = node->previousSibling()) |
|
197 return previous; |
|
198 } |
|
199 return 0; |
|
200 } |
|
201 |
|
202 // -------- |
|
203 |
|
204 static inline bool fullyClipsContents(Node* node) |
|
205 { |
|
206 RenderObject* renderer = node->renderer(); |
|
207 if (!renderer || !renderer->isBox() || !renderer->hasOverflowClip()) |
|
208 return false; |
|
209 return toRenderBox(renderer)->size().isEmpty(); |
|
210 } |
|
211 |
|
212 static inline bool ignoresContainerClip(Node* node) |
|
213 { |
|
214 RenderObject* renderer = node->renderer(); |
|
215 if (!renderer || renderer->isText()) |
|
216 return false; |
|
217 EPosition position = renderer->style()->position(); |
|
218 return position == AbsolutePosition || position == FixedPosition; |
|
219 } |
|
220 |
|
221 static void pushFullyClippedState(BitStack& stack, Node* node) |
|
222 { |
|
223 ASSERT(stack.size() == depthCrossingShadowBoundaries(node)); |
|
224 |
|
225 // Push true if this node full clips its contents, or if a parent already has fully |
|
226 // clipped and this is not a node that ignores its container's clip. |
|
227 stack.push(fullyClipsContents(node) || (stack.top() && !ignoresContainerClip(node))); |
|
228 } |
|
229 |
|
230 static void setUpFullyClippedStack(BitStack& stack, Node* node) |
|
231 { |
|
232 // Put the nodes in a vector so we can iterate in reverse order. |
|
233 Vector<Node*, 100> ancestry; |
|
234 for (Node* parent = parentCrossingShadowBoundaries(node); parent; parent = parentCrossingShadowBoundaries(parent)) |
|
235 ancestry.append(parent); |
|
236 |
|
237 // Call pushFullyClippedState on each node starting with the earliest ancestor. |
|
238 size_t size = ancestry.size(); |
|
239 for (size_t i = 0; i < size; ++i) |
|
240 pushFullyClippedState(stack, ancestry[size - i - 1]); |
|
241 pushFullyClippedState(stack, node); |
|
242 |
|
243 ASSERT(stack.size() == 1 + depthCrossingShadowBoundaries(node)); |
|
244 } |
|
245 |
|
246 // -------- |
|
247 |
|
248 TextIterator::TextIterator() |
|
249 : m_startContainer(0) |
|
250 , m_startOffset(0) |
|
251 , m_endContainer(0) |
|
252 , m_endOffset(0) |
|
253 , m_positionNode(0) |
|
254 , m_textCharacters(0) |
|
255 , m_textLength(0) |
|
256 , m_lastCharacter(0) |
|
257 , m_emitsCharactersBetweenAllVisiblePositions(false) |
|
258 , m_entersTextControls(false) |
|
259 , m_emitsTextWithoutTranscoding(false) |
|
260 { |
|
261 } |
|
262 |
|
263 TextIterator::TextIterator(const Range* r, TextIteratorBehavior behavior) |
|
264 : m_startContainer(0) |
|
265 , m_startOffset(0) |
|
266 , m_endContainer(0) |
|
267 , m_endOffset(0) |
|
268 , m_positionNode(0) |
|
269 , m_textCharacters(0) |
|
270 , m_textLength(0) |
|
271 , m_emitsCharactersBetweenAllVisiblePositions(behavior & TextIteratorEmitsCharactersBetweenAllVisiblePositions) |
|
272 , m_entersTextControls(behavior & TextIteratorEntersTextControls) |
|
273 , m_emitsTextWithoutTranscoding(behavior & TextIteratorEmitsTextsWithoutTranscoding) |
|
274 { |
|
275 if (!r) |
|
276 return; |
|
277 |
|
278 // get and validate the range endpoints |
|
279 Node* startContainer = r->startContainer(); |
|
280 if (!startContainer) |
|
281 return; |
|
282 int startOffset = r->startOffset(); |
|
283 Node* endContainer = r->endContainer(); |
|
284 int endOffset = r->endOffset(); |
|
285 |
|
286 // Callers should be handing us well-formed ranges. If we discover that this isn't |
|
287 // the case, we could consider changing this assertion to an early return. |
|
288 ASSERT(r->boundaryPointsValid()); |
|
289 |
|
290 // remember range - this does not change |
|
291 m_startContainer = startContainer; |
|
292 m_startOffset = startOffset; |
|
293 m_endContainer = endContainer; |
|
294 m_endOffset = endOffset; |
|
295 |
|
296 // set up the current node for processing |
|
297 m_node = r->firstNode(); |
|
298 if (!m_node) |
|
299 return; |
|
300 setUpFullyClippedStack(m_fullyClippedStack, m_node); |
|
301 m_offset = m_node == m_startContainer ? m_startOffset : 0; |
|
302 m_handledNode = false; |
|
303 m_handledChildren = false; |
|
304 |
|
305 // calculate first out of bounds node |
|
306 m_pastEndNode = nextInPreOrderCrossingShadowBoundaries(endContainer, endOffset); |
|
307 |
|
308 // initialize node processing state |
|
309 m_needsAnotherNewline = false; |
|
310 m_textBox = 0; |
|
311 |
|
312 // initialize record of previous node processing |
|
313 m_hasEmitted = false; |
|
314 m_lastTextNode = 0; |
|
315 m_lastTextNodeEndedWithCollapsedSpace = false; |
|
316 m_lastCharacter = 0; |
|
317 |
|
318 #ifndef NDEBUG |
|
319 // need this just because of the assert in advance() |
|
320 m_positionNode = m_node; |
|
321 #endif |
|
322 |
|
323 // identify the first run |
|
324 advance(); |
|
325 } |
|
326 |
|
327 void TextIterator::advance() |
|
328 { |
|
329 // reset the run information |
|
330 m_positionNode = 0; |
|
331 m_textLength = 0; |
|
332 |
|
333 // handle remembered node that needed a newline after the text node's newline |
|
334 if (m_needsAnotherNewline) { |
|
335 // Emit the extra newline, and position it *inside* m_node, after m_node's |
|
336 // contents, in case it's a block, in the same way that we position the first |
|
337 // newline. The range for the emitted newline should start where the line |
|
338 // break begins. |
|
339 // FIXME: It would be cleaner if we emitted two newlines during the last |
|
340 // iteration, instead of using m_needsAnotherNewline. |
|
341 Node* baseNode = m_node->lastChild() ? m_node->lastChild() : m_node; |
|
342 emitCharacter('\n', baseNode->parentNode(), baseNode, 1, 1); |
|
343 m_needsAnotherNewline = false; |
|
344 return; |
|
345 } |
|
346 |
|
347 // handle remembered text box |
|
348 if (m_textBox) { |
|
349 handleTextBox(); |
|
350 if (m_positionNode) |
|
351 return; |
|
352 } |
|
353 |
|
354 while (m_node && m_node != m_pastEndNode) { |
|
355 // if the range ends at offset 0 of an element, represent the |
|
356 // position, but not the content, of that element e.g. if the |
|
357 // node is a blockflow element, emit a newline that |
|
358 // precedes the element |
|
359 if (m_node == m_endContainer && m_endOffset == 0) { |
|
360 representNodeOffsetZero(); |
|
361 m_node = 0; |
|
362 return; |
|
363 } |
|
364 |
|
365 RenderObject* renderer = m_node->renderer(); |
|
366 if (!renderer) { |
|
367 m_handledNode = true; |
|
368 m_handledChildren = true; |
|
369 } else { |
|
370 // handle current node according to its type |
|
371 if (!m_handledNode) { |
|
372 if (renderer->isText() && m_node->nodeType() == Node::TEXT_NODE) // FIXME: What about CDATA_SECTION_NODE? |
|
373 m_handledNode = handleTextNode(); |
|
374 else if (renderer && (renderer->isImage() || renderer->isWidget() || |
|
375 (renderer->node() && renderer->node()->isElementNode() && |
|
376 static_cast<Element*>(renderer->node())->isFormControlElement()))) |
|
377 m_handledNode = handleReplacedElement(); |
|
378 else |
|
379 m_handledNode = handleNonTextNode(); |
|
380 if (m_positionNode) |
|
381 return; |
|
382 } |
|
383 } |
|
384 |
|
385 // find a new current node to handle in depth-first manner, |
|
386 // calling exitNode() as we come back thru a parent node |
|
387 Node* next = m_handledChildren ? 0 : m_node->firstChild(); |
|
388 m_offset = 0; |
|
389 if (!next) { |
|
390 next = m_node->nextSibling(); |
|
391 if (!next) { |
|
392 bool pastEnd = m_node->traverseNextNode() == m_pastEndNode; |
|
393 Node* parentNode = parentCrossingShadowBoundaries(m_node); |
|
394 while (!next && parentNode) { |
|
395 if ((pastEnd && parentNode == m_endContainer) || m_endContainer->isDescendantOf(parentNode)) |
|
396 return; |
|
397 bool haveRenderer = m_node->renderer(); |
|
398 m_node = parentNode; |
|
399 m_fullyClippedStack.pop(); |
|
400 parentNode = parentCrossingShadowBoundaries(m_node); |
|
401 if (haveRenderer) |
|
402 exitNode(); |
|
403 if (m_positionNode) { |
|
404 m_handledNode = true; |
|
405 m_handledChildren = true; |
|
406 return; |
|
407 } |
|
408 next = m_node->nextSibling(); |
|
409 } |
|
410 } |
|
411 m_fullyClippedStack.pop(); |
|
412 } |
|
413 |
|
414 // set the new current node |
|
415 m_node = next; |
|
416 if (m_node) |
|
417 pushFullyClippedState(m_fullyClippedStack, m_node); |
|
418 m_handledNode = false; |
|
419 m_handledChildren = false; |
|
420 |
|
421 // how would this ever be? |
|
422 if (m_positionNode) |
|
423 return; |
|
424 } |
|
425 } |
|
426 |
|
427 static inline bool compareBoxStart(const InlineTextBox* first, const InlineTextBox* second) |
|
428 { |
|
429 return first->start() < second->start(); |
|
430 } |
|
431 |
|
432 bool TextIterator::handleTextNode() |
|
433 { |
|
434 if (m_fullyClippedStack.top()) |
|
435 return false; |
|
436 |
|
437 RenderText* renderer = toRenderText(m_node->renderer()); |
|
438 if (renderer->style()->visibility() != VISIBLE) |
|
439 return false; |
|
440 |
|
441 m_lastTextNode = m_node; |
|
442 String str = renderer->text(); |
|
443 |
|
444 // handle pre-formatted text |
|
445 if (!renderer->style()->collapseWhiteSpace()) { |
|
446 int runStart = m_offset; |
|
447 if (m_lastTextNodeEndedWithCollapsedSpace) { |
|
448 emitCharacter(' ', m_node, 0, runStart, runStart); |
|
449 return false; |
|
450 } |
|
451 int strLength = str.length(); |
|
452 int end = (m_node == m_endContainer) ? m_endOffset : INT_MAX; |
|
453 int runEnd = min(strLength, end); |
|
454 |
|
455 if (runStart >= runEnd) |
|
456 return true; |
|
457 |
|
458 emitText(m_node, runStart, runEnd); |
|
459 return true; |
|
460 } |
|
461 |
|
462 if (!renderer->firstTextBox() && str.length() > 0) { |
|
463 m_lastTextNodeEndedWithCollapsedSpace = true; // entire block is collapsed space |
|
464 return true; |
|
465 } |
|
466 |
|
467 // Used when text boxes are out of order (Hebrew/Arabic w/ embeded LTR text) |
|
468 if (renderer->containsReversedText()) { |
|
469 m_sortedTextBoxes.clear(); |
|
470 for (InlineTextBox* textBox = renderer->firstTextBox(); textBox; textBox = textBox->nextTextBox()) { |
|
471 m_sortedTextBoxes.append(textBox); |
|
472 } |
|
473 std::sort(m_sortedTextBoxes.begin(), m_sortedTextBoxes.end(), compareBoxStart); |
|
474 m_sortedTextBoxesPosition = 0; |
|
475 } |
|
476 |
|
477 m_textBox = renderer->containsReversedText() ? (m_sortedTextBoxes.isEmpty() ? 0 : m_sortedTextBoxes[0]) : renderer->firstTextBox(); |
|
478 handleTextBox(); |
|
479 return true; |
|
480 } |
|
481 |
|
482 void TextIterator::handleTextBox() |
|
483 { |
|
484 RenderText* renderer = toRenderText(m_node->renderer()); |
|
485 String str = renderer->text(); |
|
486 int start = m_offset; |
|
487 int end = (m_node == m_endContainer) ? m_endOffset : INT_MAX; |
|
488 while (m_textBox) { |
|
489 int textBoxStart = m_textBox->start(); |
|
490 int runStart = max(textBoxStart, start); |
|
491 |
|
492 // Check for collapsed space at the start of this run. |
|
493 InlineTextBox* firstTextBox = renderer->containsReversedText() ? m_sortedTextBoxes[0] : renderer->firstTextBox(); |
|
494 bool needSpace = m_lastTextNodeEndedWithCollapsedSpace |
|
495 || (m_textBox == firstTextBox && textBoxStart == runStart && runStart > 0); |
|
496 if (needSpace && !isCollapsibleWhitespace(m_lastCharacter) && m_lastCharacter) { |
|
497 if (m_lastTextNode == m_node && runStart > 0 && str[runStart - 1] == ' ') { |
|
498 unsigned spaceRunStart = runStart - 1; |
|
499 while (spaceRunStart > 0 && str[spaceRunStart - 1] == ' ') |
|
500 --spaceRunStart; |
|
501 emitText(m_node, spaceRunStart, spaceRunStart + 1); |
|
502 } else |
|
503 emitCharacter(' ', m_node, 0, runStart, runStart); |
|
504 return; |
|
505 } |
|
506 int textBoxEnd = textBoxStart + m_textBox->len(); |
|
507 int runEnd = min(textBoxEnd, end); |
|
508 |
|
509 // Determine what the next text box will be, but don't advance yet |
|
510 InlineTextBox* nextTextBox = 0; |
|
511 if (renderer->containsReversedText()) { |
|
512 if (m_sortedTextBoxesPosition + 1 < m_sortedTextBoxes.size()) |
|
513 nextTextBox = m_sortedTextBoxes[m_sortedTextBoxesPosition + 1]; |
|
514 } else |
|
515 nextTextBox = m_textBox->nextTextBox(); |
|
516 |
|
517 if (runStart < runEnd) { |
|
518 // Handle either a single newline character (which becomes a space), |
|
519 // or a run of characters that does not include a newline. |
|
520 // This effectively translates newlines to spaces without copying the text. |
|
521 if (str[runStart] == '\n') { |
|
522 emitCharacter(' ', m_node, 0, runStart, runStart + 1); |
|
523 m_offset = runStart + 1; |
|
524 } else { |
|
525 int subrunEnd = str.find('\n', runStart); |
|
526 if (subrunEnd == -1 || subrunEnd > runEnd) |
|
527 subrunEnd = runEnd; |
|
528 |
|
529 m_offset = subrunEnd; |
|
530 emitText(m_node, runStart, subrunEnd); |
|
531 } |
|
532 |
|
533 // If we are doing a subrun that doesn't go to the end of the text box, |
|
534 // come back again to finish handling this text box; don't advance to the next one. |
|
535 if (m_positionEndOffset < textBoxEnd) |
|
536 return; |
|
537 |
|
538 // Advance and return |
|
539 int nextRunStart = nextTextBox ? nextTextBox->start() : str.length(); |
|
540 if (nextRunStart > runEnd) |
|
541 m_lastTextNodeEndedWithCollapsedSpace = true; // collapsed space between runs or at the end |
|
542 m_textBox = nextTextBox; |
|
543 if (renderer->containsReversedText()) |
|
544 ++m_sortedTextBoxesPosition; |
|
545 return; |
|
546 } |
|
547 // Advance and continue |
|
548 m_textBox = nextTextBox; |
|
549 if (renderer->containsReversedText()) |
|
550 ++m_sortedTextBoxesPosition; |
|
551 } |
|
552 } |
|
553 |
|
554 bool TextIterator::handleReplacedElement() |
|
555 { |
|
556 if (m_fullyClippedStack.top()) |
|
557 return false; |
|
558 |
|
559 RenderObject* renderer = m_node->renderer(); |
|
560 if (renderer->style()->visibility() != VISIBLE) |
|
561 return false; |
|
562 |
|
563 if (m_lastTextNodeEndedWithCollapsedSpace) { |
|
564 emitCharacter(' ', m_lastTextNode->parentNode(), m_lastTextNode, 1, 1); |
|
565 return false; |
|
566 } |
|
567 |
|
568 if (m_entersTextControls && renderer->isTextControl()) { |
|
569 if (HTMLElement* innerTextElement = toRenderTextControl(renderer)->innerTextElement()) { |
|
570 m_node = innerTextElement->shadowTreeRootNode(); |
|
571 pushFullyClippedState(m_fullyClippedStack, m_node); |
|
572 m_offset = 0; |
|
573 return false; |
|
574 } |
|
575 } |
|
576 |
|
577 m_hasEmitted = true; |
|
578 |
|
579 if (m_emitsCharactersBetweenAllVisiblePositions) { |
|
580 // We want replaced elements to behave like punctuation for boundary |
|
581 // finding, and to simply take up space for the selection preservation |
|
582 // code in moveParagraphs, so we use a comma. |
|
583 emitCharacter(',', m_node->parentNode(), m_node, 0, 1); |
|
584 return true; |
|
585 } |
|
586 |
|
587 m_positionNode = m_node->parentNode(); |
|
588 m_positionOffsetBaseNode = m_node; |
|
589 m_positionStartOffset = 0; |
|
590 m_positionEndOffset = 1; |
|
591 |
|
592 m_textCharacters = 0; |
|
593 m_textLength = 0; |
|
594 |
|
595 m_lastCharacter = 0; |
|
596 |
|
597 return true; |
|
598 } |
|
599 |
|
600 static bool shouldEmitTabBeforeNode(Node* node) |
|
601 { |
|
602 RenderObject* r = node->renderer(); |
|
603 |
|
604 // Table cells are delimited by tabs. |
|
605 if (!r || !isTableCell(node)) |
|
606 return false; |
|
607 |
|
608 // Want a tab before every cell other than the first one |
|
609 RenderTableCell* rc = toRenderTableCell(r); |
|
610 RenderTable* t = rc->table(); |
|
611 return t && (t->cellBefore(rc) || t->cellAbove(rc)); |
|
612 } |
|
613 |
|
614 static bool shouldEmitNewlineForNode(Node* node) |
|
615 { |
|
616 // br elements are represented by a single newline. |
|
617 RenderObject* r = node->renderer(); |
|
618 if (!r) |
|
619 return node->hasTagName(brTag); |
|
620 |
|
621 return r->isBR(); |
|
622 } |
|
623 |
|
624 static bool shouldEmitNewlinesBeforeAndAfterNode(Node* node) |
|
625 { |
|
626 // Block flow (versus inline flow) is represented by having |
|
627 // a newline both before and after the element. |
|
628 RenderObject* r = node->renderer(); |
|
629 if (!r) { |
|
630 return (node->hasTagName(blockquoteTag) |
|
631 || node->hasTagName(ddTag) |
|
632 || node->hasTagName(divTag) |
|
633 || node->hasTagName(dlTag) |
|
634 || node->hasTagName(dtTag) |
|
635 || node->hasTagName(h1Tag) |
|
636 || node->hasTagName(h2Tag) |
|
637 || node->hasTagName(h3Tag) |
|
638 || node->hasTagName(h4Tag) |
|
639 || node->hasTagName(h5Tag) |
|
640 || node->hasTagName(h6Tag) |
|
641 || node->hasTagName(hrTag) |
|
642 || node->hasTagName(liTag) |
|
643 || node->hasTagName(listingTag) |
|
644 || node->hasTagName(olTag) |
|
645 || node->hasTagName(pTag) |
|
646 || node->hasTagName(preTag) |
|
647 || node->hasTagName(trTag) |
|
648 || node->hasTagName(ulTag)); |
|
649 } |
|
650 |
|
651 // Need to make an exception for table cells, because they are blocks, but we |
|
652 // want them tab-delimited rather than having newlines before and after. |
|
653 if (isTableCell(node)) |
|
654 return false; |
|
655 |
|
656 // Need to make an exception for table row elements, because they are neither |
|
657 // "inline" or "RenderBlock", but we want newlines for them. |
|
658 if (r->isTableRow()) { |
|
659 RenderTable* t = toRenderTableRow(r)->table(); |
|
660 if (t && !t->isInline()) |
|
661 return true; |
|
662 } |
|
663 |
|
664 return !r->isInline() && r->isRenderBlock() && !r->isFloatingOrPositioned() && !r->isBody(); |
|
665 } |
|
666 |
|
667 static bool shouldEmitNewlineAfterNode(Node* node) |
|
668 { |
|
669 // FIXME: It should be better but slower to create a VisiblePosition here. |
|
670 if (!shouldEmitNewlinesBeforeAndAfterNode(node)) |
|
671 return false; |
|
672 // Check if this is the very last renderer in the document. |
|
673 // If so, then we should not emit a newline. |
|
674 while ((node = node->traverseNextSibling())) |
|
675 if (node->renderer()) |
|
676 return true; |
|
677 return false; |
|
678 } |
|
679 |
|
680 static bool shouldEmitNewlineBeforeNode(Node* node) |
|
681 { |
|
682 return shouldEmitNewlinesBeforeAndAfterNode(node); |
|
683 } |
|
684 |
|
685 static bool shouldEmitExtraNewlineForNode(Node* node) |
|
686 { |
|
687 // When there is a significant collapsed bottom margin, emit an extra |
|
688 // newline for a more realistic result. We end up getting the right |
|
689 // result even without margin collapsing. For example: <div><p>text</p></div> |
|
690 // will work right even if both the <div> and the <p> have bottom margins. |
|
691 RenderObject* r = node->renderer(); |
|
692 if (!r || !r->isBox()) |
|
693 return false; |
|
694 |
|
695 // NOTE: We only do this for a select set of nodes, and fwiw WinIE appears |
|
696 // not to do this at all |
|
697 if (node->hasTagName(h1Tag) |
|
698 || node->hasTagName(h2Tag) |
|
699 || node->hasTagName(h3Tag) |
|
700 || node->hasTagName(h4Tag) |
|
701 || node->hasTagName(h5Tag) |
|
702 || node->hasTagName(h6Tag) |
|
703 || node->hasTagName(pTag)) { |
|
704 RenderStyle* style = r->style(); |
|
705 if (style) { |
|
706 int bottomMargin = toRenderBox(r)->collapsedMarginBottom(); |
|
707 int fontSize = style->fontDescription().computedPixelSize(); |
|
708 if (bottomMargin * 2 >= fontSize) |
|
709 return true; |
|
710 } |
|
711 } |
|
712 |
|
713 return false; |
|
714 } |
|
715 |
|
716 static int collapsedSpaceLength(RenderText* renderer, int textEnd) |
|
717 { |
|
718 const UChar* characters = renderer->text()->characters(); |
|
719 int length = renderer->text()->length(); |
|
720 for (int i = textEnd; i < length; ++i) { |
|
721 if (!renderer->style()->isCollapsibleWhiteSpace(characters[i])) |
|
722 return i - textEnd; |
|
723 } |
|
724 |
|
725 return length - textEnd; |
|
726 } |
|
727 |
|
728 static int maxOffsetIncludingCollapsedSpaces(Node* node) |
|
729 { |
|
730 int offset = caretMaxOffset(node); |
|
731 |
|
732 if (node->renderer() && node->renderer()->isText()) |
|
733 offset += collapsedSpaceLength(toRenderText(node->renderer()), offset); |
|
734 |
|
735 return offset; |
|
736 } |
|
737 |
|
738 // Whether or not we should emit a character as we enter m_node (if it's a container) or as we hit it (if it's atomic). |
|
739 bool TextIterator::shouldRepresentNodeOffsetZero() |
|
740 { |
|
741 if (m_emitsCharactersBetweenAllVisiblePositions && m_node->renderer() && m_node->renderer()->isTable()) |
|
742 return true; |
|
743 |
|
744 // Leave element positioned flush with start of a paragraph |
|
745 // (e.g. do not insert tab before a table cell at the start of a paragraph) |
|
746 if (m_lastCharacter == '\n') |
|
747 return false; |
|
748 |
|
749 // Otherwise, show the position if we have emitted any characters |
|
750 if (m_hasEmitted) |
|
751 return true; |
|
752 |
|
753 // We've not emitted anything yet. Generally, there is no need for any positioning then. |
|
754 // The only exception is when the element is visually not in the same line as |
|
755 // the start of the range (e.g. the range starts at the end of the previous paragraph). |
|
756 // NOTE: Creating VisiblePositions and comparing them is relatively expensive, so we |
|
757 // make quicker checks to possibly avoid that. Another check that we could make is |
|
758 // is whether the inline vs block flow changed since the previous visible element. |
|
759 // I think we're already in a special enough case that that won't be needed, tho. |
|
760 |
|
761 // No character needed if this is the first node in the range. |
|
762 if (m_node == m_startContainer) |
|
763 return false; |
|
764 |
|
765 // If we are outside the start container's subtree, assume we need to emit. |
|
766 // FIXME: m_startContainer could be an inline block |
|
767 if (!m_node->isDescendantOf(m_startContainer)) |
|
768 return true; |
|
769 |
|
770 // If we started as m_startContainer offset 0 and the current node is a descendant of |
|
771 // the start container, we already had enough context to correctly decide whether to |
|
772 // emit after a preceding block. We chose not to emit (m_hasEmitted is false), |
|
773 // so don't second guess that now. |
|
774 // NOTE: Is this really correct when m_node is not a leftmost descendant? Probably |
|
775 // immaterial since we likely would have already emitted something by now. |
|
776 if (m_startOffset == 0) |
|
777 return false; |
|
778 |
|
779 // If this node is unrendered or invisible the VisiblePosition checks below won't have much meaning. |
|
780 // Additionally, if the range we are iterating over contains huge sections of unrendered content, |
|
781 // we would create VisiblePositions on every call to this function without this check. |
|
782 if (!m_node->renderer() || m_node->renderer()->style()->visibility() != VISIBLE) |
|
783 return false; |
|
784 |
|
785 // The startPos.isNotNull() check is needed because the start could be before the body, |
|
786 // and in that case we'll get null. We don't want to put in newlines at the start in that case. |
|
787 // The currPos.isNotNull() check is needed because positions in non-HTML content |
|
788 // (like SVG) do not have visible positions, and we don't want to emit for them either. |
|
789 VisiblePosition startPos = VisiblePosition(m_startContainer, m_startOffset, DOWNSTREAM); |
|
790 VisiblePosition currPos = VisiblePosition(m_node, 0, DOWNSTREAM); |
|
791 return startPos.isNotNull() && currPos.isNotNull() && !inSameLine(startPos, currPos); |
|
792 } |
|
793 |
|
794 bool TextIterator::shouldEmitSpaceBeforeAndAfterNode(Node* node) |
|
795 { |
|
796 return node->renderer() && node->renderer()->isTable() && (node->renderer()->isInline() || m_emitsCharactersBetweenAllVisiblePositions); |
|
797 } |
|
798 |
|
799 void TextIterator::representNodeOffsetZero() |
|
800 { |
|
801 // Emit a character to show the positioning of m_node. |
|
802 |
|
803 // When we haven't been emitting any characters, shouldRepresentNodeOffsetZero() can |
|
804 // create VisiblePositions, which is expensive. So, we perform the inexpensive checks |
|
805 // on m_node to see if it necessitates emitting a character first and will early return |
|
806 // before encountering shouldRepresentNodeOffsetZero()s worse case behavior. |
|
807 if (shouldEmitTabBeforeNode(m_node)) { |
|
808 if (shouldRepresentNodeOffsetZero()) |
|
809 emitCharacter('\t', m_node->parentNode(), m_node, 0, 0); |
|
810 } else if (shouldEmitNewlineBeforeNode(m_node)) { |
|
811 if (shouldRepresentNodeOffsetZero()) |
|
812 emitCharacter('\n', m_node->parentNode(), m_node, 0, 0); |
|
813 } else if (shouldEmitSpaceBeforeAndAfterNode(m_node)) { |
|
814 if (shouldRepresentNodeOffsetZero()) |
|
815 emitCharacter(' ', m_node->parentNode(), m_node, 0, 0); |
|
816 } |
|
817 } |
|
818 |
|
819 bool TextIterator::handleNonTextNode() |
|
820 { |
|
821 if (shouldEmitNewlineForNode(m_node)) |
|
822 emitCharacter('\n', m_node->parentNode(), m_node, 0, 1); |
|
823 else if (m_emitsCharactersBetweenAllVisiblePositions && m_node->renderer() && m_node->renderer()->isHR()) |
|
824 emitCharacter(' ', m_node->parentNode(), m_node, 0, 1); |
|
825 else |
|
826 representNodeOffsetZero(); |
|
827 |
|
828 return true; |
|
829 } |
|
830 |
|
831 void TextIterator::exitNode() |
|
832 { |
|
833 // prevent emitting a newline when exiting a collapsed block at beginning of the range |
|
834 // FIXME: !m_hasEmitted does not necessarily mean there was a collapsed block... it could |
|
835 // have been an hr (e.g.). Also, a collapsed block could have height (e.g. a table) and |
|
836 // therefore look like a blank line. |
|
837 if (!m_hasEmitted) |
|
838 return; |
|
839 |
|
840 // Emit with a position *inside* m_node, after m_node's contents, in |
|
841 // case it is a block, because the run should start where the |
|
842 // emitted character is positioned visually. |
|
843 Node* baseNode = m_node->lastChild() ? m_node->lastChild() : m_node; |
|
844 // FIXME: This shouldn't require the m_lastTextNode to be true, but we can't change that without making |
|
845 // the logic in _web_attributedStringFromRange match. We'll get that for free when we switch to use |
|
846 // TextIterator in _web_attributedStringFromRange. |
|
847 // See <rdar://problem/5428427> for an example of how this mismatch will cause problems. |
|
848 if (m_lastTextNode && shouldEmitNewlineAfterNode(m_node)) { |
|
849 // use extra newline to represent margin bottom, as needed |
|
850 bool addNewline = shouldEmitExtraNewlineForNode(m_node); |
|
851 |
|
852 // FIXME: We need to emit a '\n' as we leave an empty block(s) that |
|
853 // contain a VisiblePosition when doing selection preservation. |
|
854 if (m_lastCharacter != '\n') { |
|
855 // insert a newline with a position following this block's contents. |
|
856 emitCharacter('\n', baseNode->parentNode(), baseNode, 1, 1); |
|
857 // remember whether to later add a newline for the current node |
|
858 ASSERT(!m_needsAnotherNewline); |
|
859 m_needsAnotherNewline = addNewline; |
|
860 } else if (addNewline) |
|
861 // insert a newline with a position following this block's contents. |
|
862 emitCharacter('\n', baseNode->parentNode(), baseNode, 1, 1); |
|
863 } |
|
864 |
|
865 // If nothing was emitted, see if we need to emit a space. |
|
866 if (!m_positionNode && shouldEmitSpaceBeforeAndAfterNode(m_node)) |
|
867 emitCharacter(' ', baseNode->parentNode(), baseNode, 1, 1); |
|
868 } |
|
869 |
|
870 void TextIterator::emitCharacter(UChar c, Node* textNode, Node* offsetBaseNode, int textStartOffset, int textEndOffset) |
|
871 { |
|
872 m_hasEmitted = true; |
|
873 |
|
874 // remember information with which to construct the TextIterator::range() |
|
875 // NOTE: textNode is often not a text node, so the range will specify child nodes of positionNode |
|
876 m_positionNode = textNode; |
|
877 m_positionOffsetBaseNode = offsetBaseNode; |
|
878 m_positionStartOffset = textStartOffset; |
|
879 m_positionEndOffset = textEndOffset; |
|
880 |
|
881 // remember information with which to construct the TextIterator::characters() and length() |
|
882 m_singleCharacterBuffer = c; |
|
883 m_textCharacters = &m_singleCharacterBuffer; |
|
884 m_textLength = 1; |
|
885 |
|
886 // remember some iteration state |
|
887 m_lastTextNodeEndedWithCollapsedSpace = false; |
|
888 m_lastCharacter = c; |
|
889 } |
|
890 |
|
891 void TextIterator::emitText(Node* textNode, int textStartOffset, int textEndOffset) |
|
892 { |
|
893 RenderText* renderer = toRenderText(m_node->renderer()); |
|
894 m_text = m_emitsTextWithoutTranscoding ? renderer->textWithoutTranscoding() : renderer->text(); |
|
895 ASSERT(m_text.characters()); |
|
896 |
|
897 m_positionNode = textNode; |
|
898 m_positionOffsetBaseNode = 0; |
|
899 m_positionStartOffset = textStartOffset; |
|
900 m_positionEndOffset = textEndOffset; |
|
901 m_textCharacters = m_text.characters() + textStartOffset; |
|
902 m_textLength = textEndOffset - textStartOffset; |
|
903 m_lastCharacter = m_text[textEndOffset - 1]; |
|
904 |
|
905 m_lastTextNodeEndedWithCollapsedSpace = false; |
|
906 m_hasEmitted = true; |
|
907 } |
|
908 |
|
909 PassRefPtr<Range> TextIterator::range() const |
|
910 { |
|
911 // use the current run information, if we have it |
|
912 if (m_positionNode) { |
|
913 if (m_positionOffsetBaseNode) { |
|
914 int index = m_positionOffsetBaseNode->nodeIndex(); |
|
915 m_positionStartOffset += index; |
|
916 m_positionEndOffset += index; |
|
917 m_positionOffsetBaseNode = 0; |
|
918 } |
|
919 return Range::create(m_positionNode->document(), m_positionNode, m_positionStartOffset, m_positionNode, m_positionEndOffset); |
|
920 } |
|
921 |
|
922 // otherwise, return the end of the overall range we were given |
|
923 if (m_endContainer) |
|
924 return Range::create(m_endContainer->document(), m_endContainer, m_endOffset, m_endContainer, m_endOffset); |
|
925 |
|
926 return 0; |
|
927 } |
|
928 |
|
929 Node* TextIterator::node() const |
|
930 { |
|
931 RefPtr<Range> textRange = range(); |
|
932 if (!textRange) |
|
933 return 0; |
|
934 |
|
935 Node* node = textRange->startContainer(); |
|
936 if (!node) |
|
937 return 0; |
|
938 if (node->offsetInCharacters()) |
|
939 return node; |
|
940 |
|
941 return node->childNode(textRange->startOffset()); |
|
942 } |
|
943 |
|
944 // -------- |
|
945 |
|
946 SimplifiedBackwardsTextIterator::SimplifiedBackwardsTextIterator() |
|
947 : m_positionNode(0) |
|
948 { |
|
949 } |
|
950 |
|
951 SimplifiedBackwardsTextIterator::SimplifiedBackwardsTextIterator(const Range* r) |
|
952 : m_positionNode(0) |
|
953 { |
|
954 if (!r) |
|
955 return; |
|
956 |
|
957 Node* startNode = r->startContainer(); |
|
958 if (!startNode) |
|
959 return; |
|
960 Node* endNode = r->endContainer(); |
|
961 int startOffset = r->startOffset(); |
|
962 int endOffset = r->endOffset(); |
|
963 |
|
964 if (!startNode->offsetInCharacters()) { |
|
965 if (startOffset >= 0 && startOffset < static_cast<int>(startNode->childNodeCount())) { |
|
966 startNode = startNode->childNode(startOffset); |
|
967 startOffset = 0; |
|
968 } |
|
969 } |
|
970 if (!endNode->offsetInCharacters()) { |
|
971 if (endOffset > 0 && endOffset <= static_cast<int>(endNode->childNodeCount())) { |
|
972 endNode = endNode->childNode(endOffset - 1); |
|
973 endOffset = lastOffsetInNode(endNode); |
|
974 } |
|
975 } |
|
976 |
|
977 m_node = endNode; |
|
978 setUpFullyClippedStack(m_fullyClippedStack, m_node); |
|
979 m_offset = endOffset; |
|
980 m_handledNode = false; |
|
981 m_handledChildren = endOffset == 0; |
|
982 |
|
983 m_startNode = startNode; |
|
984 m_startOffset = startOffset; |
|
985 m_endNode = endNode; |
|
986 m_endOffset = endOffset; |
|
987 |
|
988 #ifndef NDEBUG |
|
989 // Need this just because of the assert. |
|
990 m_positionNode = endNode; |
|
991 #endif |
|
992 |
|
993 m_lastTextNode = 0; |
|
994 m_lastCharacter = '\n'; |
|
995 |
|
996 m_pastStartNode = previousInPostOrderCrossingShadowBoundaries(startNode, startOffset); |
|
997 |
|
998 advance(); |
|
999 } |
|
1000 |
|
1001 void SimplifiedBackwardsTextIterator::advance() |
|
1002 { |
|
1003 ASSERT(m_positionNode); |
|
1004 |
|
1005 m_positionNode = 0; |
|
1006 m_textLength = 0; |
|
1007 |
|
1008 while (m_node && m_node != m_pastStartNode) { |
|
1009 // Don't handle node if we start iterating at [node, 0]. |
|
1010 if (!m_handledNode && !(m_node == m_endNode && m_endOffset == 0)) { |
|
1011 RenderObject* renderer = m_node->renderer(); |
|
1012 if (renderer && renderer->isText() && m_node->nodeType() == Node::TEXT_NODE) { |
|
1013 // FIXME: What about CDATA_SECTION_NODE? |
|
1014 if (renderer->style()->visibility() == VISIBLE && m_offset > 0) |
|
1015 m_handledNode = handleTextNode(); |
|
1016 } else if (renderer && (renderer->isImage() || renderer->isWidget())) { |
|
1017 if (renderer->style()->visibility() == VISIBLE && m_offset > 0) |
|
1018 m_handledNode = handleReplacedElement(); |
|
1019 } else |
|
1020 m_handledNode = handleNonTextNode(); |
|
1021 if (m_positionNode) |
|
1022 return; |
|
1023 } |
|
1024 |
|
1025 Node* next = m_handledChildren ? 0 : m_node->lastChild(); |
|
1026 if (!next) { |
|
1027 // Exit empty containers as we pass over them or containers |
|
1028 // where [container, 0] is where we started iterating. |
|
1029 if (!m_handledNode && |
|
1030 canHaveChildrenForEditing(m_node) && |
|
1031 m_node->parentNode() && |
|
1032 (!m_node->lastChild() || (m_node == m_endNode && m_endOffset == 0))) { |
|
1033 exitNode(); |
|
1034 if (m_positionNode) { |
|
1035 m_handledNode = true; |
|
1036 m_handledChildren = true; |
|
1037 return; |
|
1038 } |
|
1039 } |
|
1040 // Exit all other containers. |
|
1041 next = m_node->previousSibling(); |
|
1042 while (!next) { |
|
1043 Node* parentNode = parentCrossingShadowBoundaries(m_node); |
|
1044 if (!parentNode) |
|
1045 break; |
|
1046 m_node = parentNode; |
|
1047 m_fullyClippedStack.pop(); |
|
1048 exitNode(); |
|
1049 if (m_positionNode) { |
|
1050 m_handledNode = true; |
|
1051 m_handledChildren = true; |
|
1052 return; |
|
1053 } |
|
1054 next = m_node->previousSibling(); |
|
1055 } |
|
1056 m_fullyClippedStack.pop(); |
|
1057 } |
|
1058 |
|
1059 m_node = next; |
|
1060 if (m_node) |
|
1061 pushFullyClippedState(m_fullyClippedStack, m_node); |
|
1062 // For the purpose of word boundary detection, |
|
1063 // we should iterate all visible text and trailing (collapsed) whitespaces. |
|
1064 m_offset = m_node ? maxOffsetIncludingCollapsedSpaces(m_node) : 0; |
|
1065 m_handledNode = false; |
|
1066 m_handledChildren = false; |
|
1067 |
|
1068 if (m_positionNode) |
|
1069 return; |
|
1070 } |
|
1071 } |
|
1072 |
|
1073 bool SimplifiedBackwardsTextIterator::handleTextNode() |
|
1074 { |
|
1075 m_lastTextNode = m_node; |
|
1076 |
|
1077 RenderText* renderer = toRenderText(m_node->renderer()); |
|
1078 String str = renderer->text(); |
|
1079 |
|
1080 if (!renderer->firstTextBox() && str.length() > 0) |
|
1081 return true; |
|
1082 |
|
1083 m_positionEndOffset = m_offset; |
|
1084 |
|
1085 m_offset = (m_node == m_startNode) ? m_startOffset : 0; |
|
1086 m_positionNode = m_node; |
|
1087 m_positionStartOffset = m_offset; |
|
1088 m_textLength = m_positionEndOffset - m_positionStartOffset; |
|
1089 m_textCharacters = str.characters() + m_positionStartOffset; |
|
1090 |
|
1091 m_lastCharacter = str[m_positionEndOffset - 1]; |
|
1092 |
|
1093 return true; |
|
1094 } |
|
1095 |
|
1096 bool SimplifiedBackwardsTextIterator::handleReplacedElement() |
|
1097 { |
|
1098 unsigned index = m_node->nodeIndex(); |
|
1099 // We want replaced elements to behave like punctuation for boundary |
|
1100 // finding, and to simply take up space for the selection preservation |
|
1101 // code in moveParagraphs, so we use a comma. Unconditionally emit |
|
1102 // here because this iterator is only used for boundary finding. |
|
1103 emitCharacter(',', m_node->parentNode(), index, index + 1); |
|
1104 return true; |
|
1105 } |
|
1106 |
|
1107 bool SimplifiedBackwardsTextIterator::handleNonTextNode() |
|
1108 { |
|
1109 // We can use a linefeed in place of a tab because this simple iterator is only used to |
|
1110 // find boundaries, not actual content. A linefeed breaks words, sentences, and paragraphs. |
|
1111 if (shouldEmitNewlineForNode(m_node) || shouldEmitNewlineAfterNode(m_node) || shouldEmitTabBeforeNode(m_node)) { |
|
1112 unsigned index = m_node->nodeIndex(); |
|
1113 // The start of this emitted range is wrong. Ensuring correctness would require |
|
1114 // VisiblePositions and so would be slow. previousBoundary expects this. |
|
1115 emitCharacter('\n', m_node->parentNode(), index + 1, index + 1); |
|
1116 } |
|
1117 return true; |
|
1118 } |
|
1119 |
|
1120 void SimplifiedBackwardsTextIterator::exitNode() |
|
1121 { |
|
1122 if (shouldEmitNewlineForNode(m_node) || shouldEmitNewlineBeforeNode(m_node) || shouldEmitTabBeforeNode(m_node)) { |
|
1123 // The start of this emitted range is wrong. Ensuring correctness would require |
|
1124 // VisiblePositions and so would be slow. previousBoundary expects this. |
|
1125 emitCharacter('\n', m_node, 0, 0); |
|
1126 } |
|
1127 } |
|
1128 |
|
1129 void SimplifiedBackwardsTextIterator::emitCharacter(UChar c, Node* node, int startOffset, int endOffset) |
|
1130 { |
|
1131 m_singleCharacterBuffer = c; |
|
1132 m_positionNode = node; |
|
1133 m_positionStartOffset = startOffset; |
|
1134 m_positionEndOffset = endOffset; |
|
1135 m_textCharacters = &m_singleCharacterBuffer; |
|
1136 m_textLength = 1; |
|
1137 m_lastCharacter = c; |
|
1138 } |
|
1139 |
|
1140 PassRefPtr<Range> SimplifiedBackwardsTextIterator::range() const |
|
1141 { |
|
1142 if (m_positionNode) |
|
1143 return Range::create(m_positionNode->document(), m_positionNode, m_positionStartOffset, m_positionNode, m_positionEndOffset); |
|
1144 |
|
1145 return Range::create(m_startNode->document(), m_startNode, m_startOffset, m_startNode, m_startOffset); |
|
1146 } |
|
1147 |
|
1148 // -------- |
|
1149 |
|
1150 CharacterIterator::CharacterIterator() |
|
1151 : m_offset(0) |
|
1152 , m_runOffset(0) |
|
1153 , m_atBreak(true) |
|
1154 { |
|
1155 } |
|
1156 |
|
1157 CharacterIterator::CharacterIterator(const Range* r, TextIteratorBehavior behavior) |
|
1158 : m_offset(0) |
|
1159 , m_runOffset(0) |
|
1160 , m_atBreak(true) |
|
1161 , m_textIterator(r, behavior) |
|
1162 { |
|
1163 while (!atEnd() && m_textIterator.length() == 0) |
|
1164 m_textIterator.advance(); |
|
1165 } |
|
1166 |
|
1167 PassRefPtr<Range> CharacterIterator::range() const |
|
1168 { |
|
1169 RefPtr<Range> r = m_textIterator.range(); |
|
1170 if (!m_textIterator.atEnd()) { |
|
1171 if (m_textIterator.length() <= 1) { |
|
1172 ASSERT(m_runOffset == 0); |
|
1173 } else { |
|
1174 Node* n = r->startContainer(); |
|
1175 ASSERT(n == r->endContainer()); |
|
1176 int offset = r->startOffset() + m_runOffset; |
|
1177 ExceptionCode ec = 0; |
|
1178 r->setStart(n, offset, ec); |
|
1179 r->setEnd(n, offset + 1, ec); |
|
1180 ASSERT(!ec); |
|
1181 } |
|
1182 } |
|
1183 return r.release(); |
|
1184 } |
|
1185 |
|
1186 void CharacterIterator::advance(int count) |
|
1187 { |
|
1188 if (count <= 0) { |
|
1189 ASSERT(count == 0); |
|
1190 return; |
|
1191 } |
|
1192 |
|
1193 m_atBreak = false; |
|
1194 |
|
1195 // easy if there is enough left in the current m_textIterator run |
|
1196 int remaining = m_textIterator.length() - m_runOffset; |
|
1197 if (count < remaining) { |
|
1198 m_runOffset += count; |
|
1199 m_offset += count; |
|
1200 return; |
|
1201 } |
|
1202 |
|
1203 // exhaust the current m_textIterator run |
|
1204 count -= remaining; |
|
1205 m_offset += remaining; |
|
1206 |
|
1207 // move to a subsequent m_textIterator run |
|
1208 for (m_textIterator.advance(); !atEnd(); m_textIterator.advance()) { |
|
1209 int runLength = m_textIterator.length(); |
|
1210 if (runLength == 0) |
|
1211 m_atBreak = true; |
|
1212 else { |
|
1213 // see whether this is m_textIterator to use |
|
1214 if (count < runLength) { |
|
1215 m_runOffset = count; |
|
1216 m_offset += count; |
|
1217 return; |
|
1218 } |
|
1219 |
|
1220 // exhaust this m_textIterator run |
|
1221 count -= runLength; |
|
1222 m_offset += runLength; |
|
1223 } |
|
1224 } |
|
1225 |
|
1226 // ran to the end of the m_textIterator... no more runs left |
|
1227 m_atBreak = true; |
|
1228 m_runOffset = 0; |
|
1229 } |
|
1230 |
|
1231 String CharacterIterator::string(int numChars) |
|
1232 { |
|
1233 Vector<UChar> result; |
|
1234 result.reserveInitialCapacity(numChars); |
|
1235 while (numChars > 0 && !atEnd()) { |
|
1236 int runSize = min(numChars, length()); |
|
1237 result.append(characters(), runSize); |
|
1238 numChars -= runSize; |
|
1239 advance(runSize); |
|
1240 } |
|
1241 return String::adopt(result); |
|
1242 } |
|
1243 |
|
1244 static PassRefPtr<Range> characterSubrange(CharacterIterator& it, int offset, int length) |
|
1245 { |
|
1246 it.advance(offset); |
|
1247 RefPtr<Range> start = it.range(); |
|
1248 |
|
1249 if (length > 1) |
|
1250 it.advance(length - 1); |
|
1251 RefPtr<Range> end = it.range(); |
|
1252 |
|
1253 return Range::create(start->startContainer()->document(), |
|
1254 start->startContainer(), start->startOffset(), |
|
1255 end->endContainer(), end->endOffset()); |
|
1256 } |
|
1257 |
|
1258 BackwardsCharacterIterator::BackwardsCharacterIterator() |
|
1259 : m_offset(0) |
|
1260 , m_runOffset(0) |
|
1261 , m_atBreak(true) |
|
1262 { |
|
1263 } |
|
1264 |
|
1265 BackwardsCharacterIterator::BackwardsCharacterIterator(const Range* range) |
|
1266 : m_offset(0) |
|
1267 , m_runOffset(0) |
|
1268 , m_atBreak(true) |
|
1269 , m_textIterator(range) |
|
1270 { |
|
1271 while (!atEnd() && !m_textIterator.length()) |
|
1272 m_textIterator.advance(); |
|
1273 } |
|
1274 |
|
1275 PassRefPtr<Range> BackwardsCharacterIterator::range() const |
|
1276 { |
|
1277 RefPtr<Range> r = m_textIterator.range(); |
|
1278 if (!m_textIterator.atEnd()) { |
|
1279 if (m_textIterator.length() <= 1) |
|
1280 ASSERT(m_runOffset == 0); |
|
1281 else { |
|
1282 Node* n = r->startContainer(); |
|
1283 ASSERT(n == r->endContainer()); |
|
1284 int offset = r->endOffset() - m_runOffset; |
|
1285 ExceptionCode ec = 0; |
|
1286 r->setStart(n, offset - 1, ec); |
|
1287 r->setEnd(n, offset, ec); |
|
1288 ASSERT(!ec); |
|
1289 } |
|
1290 } |
|
1291 return r.release(); |
|
1292 } |
|
1293 |
|
1294 void BackwardsCharacterIterator::advance(int count) |
|
1295 { |
|
1296 if (count <= 0) { |
|
1297 ASSERT(!count); |
|
1298 return; |
|
1299 } |
|
1300 |
|
1301 m_atBreak = false; |
|
1302 |
|
1303 int remaining = m_textIterator.length() - m_runOffset; |
|
1304 if (count < remaining) { |
|
1305 m_runOffset += count; |
|
1306 m_offset += count; |
|
1307 return; |
|
1308 } |
|
1309 |
|
1310 count -= remaining; |
|
1311 m_offset += remaining; |
|
1312 |
|
1313 for (m_textIterator.advance(); !atEnd(); m_textIterator.advance()) { |
|
1314 int runLength = m_textIterator.length(); |
|
1315 if (runLength == 0) |
|
1316 m_atBreak = true; |
|
1317 else { |
|
1318 if (count < runLength) { |
|
1319 m_runOffset = count; |
|
1320 m_offset += count; |
|
1321 return; |
|
1322 } |
|
1323 |
|
1324 count -= runLength; |
|
1325 m_offset += runLength; |
|
1326 } |
|
1327 } |
|
1328 |
|
1329 m_atBreak = true; |
|
1330 m_runOffset = 0; |
|
1331 } |
|
1332 |
|
1333 // -------- |
|
1334 |
|
1335 WordAwareIterator::WordAwareIterator() |
|
1336 : m_previousText(0) |
|
1337 , m_didLookAhead(false) |
|
1338 { |
|
1339 } |
|
1340 |
|
1341 WordAwareIterator::WordAwareIterator(const Range* r) |
|
1342 : m_previousText(0) |
|
1343 , m_didLookAhead(true) // so we consider the first chunk from the text iterator |
|
1344 , m_textIterator(r) |
|
1345 { |
|
1346 advance(); // get in position over the first chunk of text |
|
1347 } |
|
1348 |
|
1349 // We're always in one of these modes: |
|
1350 // - The current chunk in the text iterator is our current chunk |
|
1351 // (typically its a piece of whitespace, or text that ended with whitespace) |
|
1352 // - The previous chunk in the text iterator is our current chunk |
|
1353 // (we looked ahead to the next chunk and found a word boundary) |
|
1354 // - We built up our own chunk of text from many chunks from the text iterator |
|
1355 |
|
1356 // FIXME: Performance could be bad for huge spans next to each other that don't fall on word boundaries. |
|
1357 |
|
1358 void WordAwareIterator::advance() |
|
1359 { |
|
1360 m_previousText = 0; |
|
1361 m_buffer.clear(); // toss any old buffer we built up |
|
1362 |
|
1363 // If last time we did a look-ahead, start with that looked-ahead chunk now |
|
1364 if (!m_didLookAhead) { |
|
1365 ASSERT(!m_textIterator.atEnd()); |
|
1366 m_textIterator.advance(); |
|
1367 } |
|
1368 m_didLookAhead = false; |
|
1369 |
|
1370 // Go to next non-empty chunk |
|
1371 while (!m_textIterator.atEnd() && m_textIterator.length() == 0) |
|
1372 m_textIterator.advance(); |
|
1373 m_range = m_textIterator.range(); |
|
1374 |
|
1375 if (m_textIterator.atEnd()) |
|
1376 return; |
|
1377 |
|
1378 while (1) { |
|
1379 // If this chunk ends in whitespace we can just use it as our chunk. |
|
1380 if (isSpaceOrNewline(m_textIterator.characters()[m_textIterator.length() - 1])) |
|
1381 return; |
|
1382 |
|
1383 // If this is the first chunk that failed, save it in previousText before look ahead |
|
1384 if (m_buffer.isEmpty()) { |
|
1385 m_previousText = m_textIterator.characters(); |
|
1386 m_previousLength = m_textIterator.length(); |
|
1387 } |
|
1388 |
|
1389 // Look ahead to next chunk. If it is whitespace or a break, we can use the previous stuff |
|
1390 m_textIterator.advance(); |
|
1391 if (m_textIterator.atEnd() || m_textIterator.length() == 0 || isSpaceOrNewline(m_textIterator.characters()[0])) { |
|
1392 m_didLookAhead = true; |
|
1393 return; |
|
1394 } |
|
1395 |
|
1396 if (m_buffer.isEmpty()) { |
|
1397 // Start gobbling chunks until we get to a suitable stopping point |
|
1398 m_buffer.append(m_previousText, m_previousLength); |
|
1399 m_previousText = 0; |
|
1400 } |
|
1401 m_buffer.append(m_textIterator.characters(), m_textIterator.length()); |
|
1402 int exception = 0; |
|
1403 m_range->setEnd(m_textIterator.range()->endContainer(), m_textIterator.range()->endOffset(), exception); |
|
1404 } |
|
1405 } |
|
1406 |
|
1407 int WordAwareIterator::length() const |
|
1408 { |
|
1409 if (!m_buffer.isEmpty()) |
|
1410 return m_buffer.size(); |
|
1411 if (m_previousText) |
|
1412 return m_previousLength; |
|
1413 return m_textIterator.length(); |
|
1414 } |
|
1415 |
|
1416 const UChar* WordAwareIterator::characters() const |
|
1417 { |
|
1418 if (!m_buffer.isEmpty()) |
|
1419 return m_buffer.data(); |
|
1420 if (m_previousText) |
|
1421 return m_previousText; |
|
1422 return m_textIterator.characters(); |
|
1423 } |
|
1424 |
|
1425 // -------- |
|
1426 |
|
1427 static inline UChar foldQuoteMark(UChar c) |
|
1428 { |
|
1429 switch (c) { |
|
1430 case hebrewPunctuationGershayim: |
|
1431 case leftDoubleQuotationMark: |
|
1432 case rightDoubleQuotationMark: |
|
1433 return '"'; |
|
1434 case hebrewPunctuationGeresh: |
|
1435 case leftSingleQuotationMark: |
|
1436 case rightSingleQuotationMark: |
|
1437 return '\''; |
|
1438 default: |
|
1439 return c; |
|
1440 } |
|
1441 } |
|
1442 |
|
1443 static inline void foldQuoteMarks(String& s) |
|
1444 { |
|
1445 s.replace(hebrewPunctuationGeresh, '\''); |
|
1446 s.replace(hebrewPunctuationGershayim, '"'); |
|
1447 s.replace(leftDoubleQuotationMark, '"'); |
|
1448 s.replace(leftSingleQuotationMark, '\''); |
|
1449 s.replace(rightDoubleQuotationMark, '"'); |
|
1450 s.replace(rightSingleQuotationMark, '\''); |
|
1451 } |
|
1452 |
|
1453 #if USE(ICU_UNICODE) && !UCONFIG_NO_COLLATION |
|
1454 |
|
1455 static inline void foldQuoteMarks(UChar* data, size_t length) |
|
1456 { |
|
1457 for (size_t i = 0; i < length; ++i) |
|
1458 data[i] = foldQuoteMark(data[i]); |
|
1459 } |
|
1460 |
|
1461 static const size_t minimumSearchBufferSize = 8192; |
|
1462 |
|
1463 #ifndef NDEBUG |
|
1464 static bool searcherInUse; |
|
1465 #endif |
|
1466 |
|
1467 static UStringSearch* createSearcher() |
|
1468 { |
|
1469 // Provide a non-empty pattern and non-empty text so usearch_open will not fail, |
|
1470 // but it doesn't matter exactly what it is, since we don't perform any searches |
|
1471 // without setting both the pattern and the text. |
|
1472 UErrorCode status = U_ZERO_ERROR; |
|
1473 UStringSearch* searcher = usearch_open(&newlineCharacter, 1, &newlineCharacter, 1, currentSearchLocaleID(), 0, &status); |
|
1474 ASSERT(status == U_ZERO_ERROR || status == U_USING_FALLBACK_WARNING || status == U_USING_DEFAULT_WARNING); |
|
1475 return searcher; |
|
1476 } |
|
1477 |
|
1478 static UStringSearch* searcher() |
|
1479 { |
|
1480 static UStringSearch* searcher = createSearcher(); |
|
1481 return searcher; |
|
1482 } |
|
1483 |
|
1484 static inline void lockSearcher() |
|
1485 { |
|
1486 #ifndef NDEBUG |
|
1487 ASSERT(!searcherInUse); |
|
1488 searcherInUse = true; |
|
1489 #endif |
|
1490 } |
|
1491 |
|
1492 static inline void unlockSearcher() |
|
1493 { |
|
1494 #ifndef NDEBUG |
|
1495 ASSERT(searcherInUse); |
|
1496 searcherInUse = false; |
|
1497 #endif |
|
1498 } |
|
1499 |
|
1500 // ICU's search ignores the distinction between small kana letters and ones |
|
1501 // that are not small, and also characters that differ only in the voicing |
|
1502 // marks when considering only primary collation strength diffrences. |
|
1503 // This is not helpful for end users, since these differences make words |
|
1504 // distinct, so for our purposes we need these to be considered. |
|
1505 // The Unicode folks do not think the collation algorithm should be |
|
1506 // changed. To work around this, we would like to tailor the ICU searcher, |
|
1507 // but we can't get that to work yet. So instead, we check for cases where |
|
1508 // these differences occur, and skip those matches. |
|
1509 |
|
1510 // We refer to the above technique as the "kana workaround". The next few |
|
1511 // functions are helper functinos for the kana workaround. |
|
1512 |
|
1513 static inline bool isKanaLetter(UChar character) |
|
1514 { |
|
1515 // Hiragana letters. |
|
1516 if (character >= 0x3041 && character <= 0x3096) |
|
1517 return true; |
|
1518 |
|
1519 // Katakana letters. |
|
1520 if (character >= 0x30A1 && character <= 0x30FA) |
|
1521 return true; |
|
1522 if (character >= 0x31F0 && character <= 0x31FF) |
|
1523 return true; |
|
1524 |
|
1525 // Halfwidth katakana letters. |
|
1526 if (character >= 0xFF66 && character <= 0xFF9D && character != 0xFF70) |
|
1527 return true; |
|
1528 |
|
1529 return false; |
|
1530 } |
|
1531 |
|
1532 static inline bool isSmallKanaLetter(UChar character) |
|
1533 { |
|
1534 ASSERT(isKanaLetter(character)); |
|
1535 |
|
1536 switch (character) { |
|
1537 case 0x3041: // HIRAGANA LETTER SMALL A |
|
1538 case 0x3043: // HIRAGANA LETTER SMALL I |
|
1539 case 0x3045: // HIRAGANA LETTER SMALL U |
|
1540 case 0x3047: // HIRAGANA LETTER SMALL E |
|
1541 case 0x3049: // HIRAGANA LETTER SMALL O |
|
1542 case 0x3063: // HIRAGANA LETTER SMALL TU |
|
1543 case 0x3083: // HIRAGANA LETTER SMALL YA |
|
1544 case 0x3085: // HIRAGANA LETTER SMALL YU |
|
1545 case 0x3087: // HIRAGANA LETTER SMALL YO |
|
1546 case 0x308E: // HIRAGANA LETTER SMALL WA |
|
1547 case 0x3095: // HIRAGANA LETTER SMALL KA |
|
1548 case 0x3096: // HIRAGANA LETTER SMALL KE |
|
1549 case 0x30A1: // KATAKANA LETTER SMALL A |
|
1550 case 0x30A3: // KATAKANA LETTER SMALL I |
|
1551 case 0x30A5: // KATAKANA LETTER SMALL U |
|
1552 case 0x30A7: // KATAKANA LETTER SMALL E |
|
1553 case 0x30A9: // KATAKANA LETTER SMALL O |
|
1554 case 0x30C3: // KATAKANA LETTER SMALL TU |
|
1555 case 0x30E3: // KATAKANA LETTER SMALL YA |
|
1556 case 0x30E5: // KATAKANA LETTER SMALL YU |
|
1557 case 0x30E7: // KATAKANA LETTER SMALL YO |
|
1558 case 0x30EE: // KATAKANA LETTER SMALL WA |
|
1559 case 0x30F5: // KATAKANA LETTER SMALL KA |
|
1560 case 0x30F6: // KATAKANA LETTER SMALL KE |
|
1561 case 0x31F0: // KATAKANA LETTER SMALL KU |
|
1562 case 0x31F1: // KATAKANA LETTER SMALL SI |
|
1563 case 0x31F2: // KATAKANA LETTER SMALL SU |
|
1564 case 0x31F3: // KATAKANA LETTER SMALL TO |
|
1565 case 0x31F4: // KATAKANA LETTER SMALL NU |
|
1566 case 0x31F5: // KATAKANA LETTER SMALL HA |
|
1567 case 0x31F6: // KATAKANA LETTER SMALL HI |
|
1568 case 0x31F7: // KATAKANA LETTER SMALL HU |
|
1569 case 0x31F8: // KATAKANA LETTER SMALL HE |
|
1570 case 0x31F9: // KATAKANA LETTER SMALL HO |
|
1571 case 0x31FA: // KATAKANA LETTER SMALL MU |
|
1572 case 0x31FB: // KATAKANA LETTER SMALL RA |
|
1573 case 0x31FC: // KATAKANA LETTER SMALL RI |
|
1574 case 0x31FD: // KATAKANA LETTER SMALL RU |
|
1575 case 0x31FE: // KATAKANA LETTER SMALL RE |
|
1576 case 0x31FF: // KATAKANA LETTER SMALL RO |
|
1577 case 0xFF67: // HALFWIDTH KATAKANA LETTER SMALL A |
|
1578 case 0xFF68: // HALFWIDTH KATAKANA LETTER SMALL I |
|
1579 case 0xFF69: // HALFWIDTH KATAKANA LETTER SMALL U |
|
1580 case 0xFF6A: // HALFWIDTH KATAKANA LETTER SMALL E |
|
1581 case 0xFF6B: // HALFWIDTH KATAKANA LETTER SMALL O |
|
1582 case 0xFF6C: // HALFWIDTH KATAKANA LETTER SMALL YA |
|
1583 case 0xFF6D: // HALFWIDTH KATAKANA LETTER SMALL YU |
|
1584 case 0xFF6E: // HALFWIDTH KATAKANA LETTER SMALL YO |
|
1585 case 0xFF6F: // HALFWIDTH KATAKANA LETTER SMALL TU |
|
1586 return true; |
|
1587 } |
|
1588 return false; |
|
1589 } |
|
1590 |
|
1591 enum VoicedSoundMarkType { NoVoicedSoundMark, VoicedSoundMark, SemiVoicedSoundMark }; |
|
1592 |
|
1593 static inline VoicedSoundMarkType composedVoicedSoundMark(UChar character) |
|
1594 { |
|
1595 ASSERT(isKanaLetter(character)); |
|
1596 |
|
1597 switch (character) { |
|
1598 case 0x304C: // HIRAGANA LETTER GA |
|
1599 case 0x304E: // HIRAGANA LETTER GI |
|
1600 case 0x3050: // HIRAGANA LETTER GU |
|
1601 case 0x3052: // HIRAGANA LETTER GE |
|
1602 case 0x3054: // HIRAGANA LETTER GO |
|
1603 case 0x3056: // HIRAGANA LETTER ZA |
|
1604 case 0x3058: // HIRAGANA LETTER ZI |
|
1605 case 0x305A: // HIRAGANA LETTER ZU |
|
1606 case 0x305C: // HIRAGANA LETTER ZE |
|
1607 case 0x305E: // HIRAGANA LETTER ZO |
|
1608 case 0x3060: // HIRAGANA LETTER DA |
|
1609 case 0x3062: // HIRAGANA LETTER DI |
|
1610 case 0x3065: // HIRAGANA LETTER DU |
|
1611 case 0x3067: // HIRAGANA LETTER DE |
|
1612 case 0x3069: // HIRAGANA LETTER DO |
|
1613 case 0x3070: // HIRAGANA LETTER BA |
|
1614 case 0x3073: // HIRAGANA LETTER BI |
|
1615 case 0x3076: // HIRAGANA LETTER BU |
|
1616 case 0x3079: // HIRAGANA LETTER BE |
|
1617 case 0x307C: // HIRAGANA LETTER BO |
|
1618 case 0x3094: // HIRAGANA LETTER VU |
|
1619 case 0x30AC: // KATAKANA LETTER GA |
|
1620 case 0x30AE: // KATAKANA LETTER GI |
|
1621 case 0x30B0: // KATAKANA LETTER GU |
|
1622 case 0x30B2: // KATAKANA LETTER GE |
|
1623 case 0x30B4: // KATAKANA LETTER GO |
|
1624 case 0x30B6: // KATAKANA LETTER ZA |
|
1625 case 0x30B8: // KATAKANA LETTER ZI |
|
1626 case 0x30BA: // KATAKANA LETTER ZU |
|
1627 case 0x30BC: // KATAKANA LETTER ZE |
|
1628 case 0x30BE: // KATAKANA LETTER ZO |
|
1629 case 0x30C0: // KATAKANA LETTER DA |
|
1630 case 0x30C2: // KATAKANA LETTER DI |
|
1631 case 0x30C5: // KATAKANA LETTER DU |
|
1632 case 0x30C7: // KATAKANA LETTER DE |
|
1633 case 0x30C9: // KATAKANA LETTER DO |
|
1634 case 0x30D0: // KATAKANA LETTER BA |
|
1635 case 0x30D3: // KATAKANA LETTER BI |
|
1636 case 0x30D6: // KATAKANA LETTER BU |
|
1637 case 0x30D9: // KATAKANA LETTER BE |
|
1638 case 0x30DC: // KATAKANA LETTER BO |
|
1639 case 0x30F4: // KATAKANA LETTER VU |
|
1640 case 0x30F7: // KATAKANA LETTER VA |
|
1641 case 0x30F8: // KATAKANA LETTER VI |
|
1642 case 0x30F9: // KATAKANA LETTER VE |
|
1643 case 0x30FA: // KATAKANA LETTER VO |
|
1644 return VoicedSoundMark; |
|
1645 case 0x3071: // HIRAGANA LETTER PA |
|
1646 case 0x3074: // HIRAGANA LETTER PI |
|
1647 case 0x3077: // HIRAGANA LETTER PU |
|
1648 case 0x307A: // HIRAGANA LETTER PE |
|
1649 case 0x307D: // HIRAGANA LETTER PO |
|
1650 case 0x30D1: // KATAKANA LETTER PA |
|
1651 case 0x30D4: // KATAKANA LETTER PI |
|
1652 case 0x30D7: // KATAKANA LETTER PU |
|
1653 case 0x30DA: // KATAKANA LETTER PE |
|
1654 case 0x30DD: // KATAKANA LETTER PO |
|
1655 return SemiVoicedSoundMark; |
|
1656 } |
|
1657 return NoVoicedSoundMark; |
|
1658 } |
|
1659 |
|
1660 static inline bool isCombiningVoicedSoundMark(UChar character) |
|
1661 { |
|
1662 switch (character) { |
|
1663 case 0x3099: // COMBINING KATAKANA-HIRAGANA VOICED SOUND MARK |
|
1664 case 0x309A: // COMBINING KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK |
|
1665 return true; |
|
1666 } |
|
1667 return false; |
|
1668 } |
|
1669 |
|
1670 static inline bool containsKanaLetters(const String& pattern) |
|
1671 { |
|
1672 const UChar* characters = pattern.characters(); |
|
1673 unsigned length = pattern.length(); |
|
1674 for (unsigned i = 0; i < length; ++i) { |
|
1675 if (isKanaLetter(characters[i])) |
|
1676 return true; |
|
1677 } |
|
1678 return false; |
|
1679 } |
|
1680 |
|
1681 static void normalizeCharacters(const UChar* characters, unsigned length, Vector<UChar>& buffer) |
|
1682 { |
|
1683 ASSERT(length); |
|
1684 |
|
1685 buffer.resize(length); |
|
1686 |
|
1687 UErrorCode status = U_ZERO_ERROR; |
|
1688 size_t bufferSize = unorm_normalize(characters, length, UNORM_NFC, 0, buffer.data(), length, &status); |
|
1689 ASSERT(status == U_ZERO_ERROR || status == U_STRING_NOT_TERMINATED_WARNING || status == U_BUFFER_OVERFLOW_ERROR); |
|
1690 ASSERT(bufferSize); |
|
1691 |
|
1692 buffer.resize(bufferSize); |
|
1693 |
|
1694 if (status == U_ZERO_ERROR || status == U_STRING_NOT_TERMINATED_WARNING) |
|
1695 return; |
|
1696 |
|
1697 status = U_ZERO_ERROR; |
|
1698 unorm_normalize(characters, length, UNORM_NFC, 0, buffer.data(), bufferSize, &status); |
|
1699 ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); |
|
1700 } |
|
1701 |
|
1702 inline SearchBuffer::SearchBuffer(const String& target, bool isCaseSensitive) |
|
1703 : m_target(target) |
|
1704 , m_atBreak(true) |
|
1705 , m_targetRequiresKanaWorkaround(containsKanaLetters(m_target)) |
|
1706 { |
|
1707 ASSERT(!m_target.isEmpty()); |
|
1708 |
|
1709 // FIXME: We'd like to tailor the searcher to fold quote marks for us instead |
|
1710 // of doing it in a separate replacement pass here, but ICU doesn't offer a way |
|
1711 // to add tailoring on top of the locale-specific tailoring as of this writing. |
|
1712 foldQuoteMarks(m_target); |
|
1713 |
|
1714 size_t targetLength = m_target.length(); |
|
1715 m_buffer.reserveInitialCapacity(max(targetLength * 8, minimumSearchBufferSize)); |
|
1716 m_overlap = m_buffer.capacity() / 4; |
|
1717 |
|
1718 // Grab the single global searcher. |
|
1719 // If we ever have a reason to do more than once search buffer at once, we'll have |
|
1720 // to move to multiple searchers. |
|
1721 lockSearcher(); |
|
1722 |
|
1723 UStringSearch* searcher = WebCore::searcher(); |
|
1724 UCollator* collator = usearch_getCollator(searcher); |
|
1725 |
|
1726 UCollationStrength strength = isCaseSensitive ? UCOL_TERTIARY : UCOL_PRIMARY; |
|
1727 if (ucol_getStrength(collator) != strength) { |
|
1728 ucol_setStrength(collator, strength); |
|
1729 usearch_reset(searcher); |
|
1730 } |
|
1731 |
|
1732 UErrorCode status = U_ZERO_ERROR; |
|
1733 usearch_setPattern(searcher, m_target.characters(), targetLength, &status); |
|
1734 ASSERT(status == U_ZERO_ERROR); |
|
1735 |
|
1736 // The kana workaround requires a normalized copy of the target string. |
|
1737 if (m_targetRequiresKanaWorkaround) |
|
1738 normalizeCharacters(m_target.characters(), m_target.length(), m_normalizedTarget); |
|
1739 } |
|
1740 |
|
1741 inline SearchBuffer::~SearchBuffer() |
|
1742 { |
|
1743 unlockSearcher(); |
|
1744 } |
|
1745 |
|
1746 inline size_t SearchBuffer::append(const UChar* characters, size_t length) |
|
1747 { |
|
1748 ASSERT(length); |
|
1749 |
|
1750 if (m_atBreak) { |
|
1751 m_buffer.shrink(0); |
|
1752 m_atBreak = false; |
|
1753 } else if (m_buffer.size() == m_buffer.capacity()) { |
|
1754 memcpy(m_buffer.data(), m_buffer.data() + m_buffer.size() - m_overlap, m_overlap * sizeof(UChar)); |
|
1755 m_buffer.shrink(m_overlap); |
|
1756 } |
|
1757 |
|
1758 size_t oldLength = m_buffer.size(); |
|
1759 size_t usableLength = min(m_buffer.capacity() - oldLength, length); |
|
1760 ASSERT(usableLength); |
|
1761 m_buffer.append(characters, usableLength); |
|
1762 foldQuoteMarks(m_buffer.data() + oldLength, usableLength); |
|
1763 return usableLength; |
|
1764 } |
|
1765 |
|
1766 inline bool SearchBuffer::atBreak() const |
|
1767 { |
|
1768 return m_atBreak; |
|
1769 } |
|
1770 |
|
1771 inline void SearchBuffer::reachedBreak() |
|
1772 { |
|
1773 m_atBreak = true; |
|
1774 } |
|
1775 |
|
1776 inline bool SearchBuffer::isBadMatch(const UChar* match, size_t matchLength) const |
|
1777 { |
|
1778 // This function implements the kana workaround. If usearch treats |
|
1779 // it as a match, but we do not want to, then it's a "bad match". |
|
1780 if (!m_targetRequiresKanaWorkaround) |
|
1781 return false; |
|
1782 |
|
1783 // Normalize into a match buffer. We reuse a single buffer rather than |
|
1784 // creating a new one each time. |
|
1785 normalizeCharacters(match, matchLength, m_normalizedMatch); |
|
1786 |
|
1787 const UChar* a = m_normalizedTarget.begin(); |
|
1788 const UChar* aEnd = m_normalizedTarget.end(); |
|
1789 |
|
1790 const UChar* b = m_normalizedMatch.begin(); |
|
1791 const UChar* bEnd = m_normalizedMatch.end(); |
|
1792 |
|
1793 while (true) { |
|
1794 // Skip runs of non-kana-letter characters. This is necessary so we can |
|
1795 // correctly handle strings where the target and match have different-length |
|
1796 // runs of characters that match, while still double checking the correctness |
|
1797 // of matches of kana letters with other kana letters. |
|
1798 while (a != aEnd && !isKanaLetter(*a)) |
|
1799 ++a; |
|
1800 while (b != bEnd && !isKanaLetter(*b)) |
|
1801 ++b; |
|
1802 |
|
1803 // If we reached the end of either the target or the match, we should have |
|
1804 // reached the end of both; both should have the same number of kana letters. |
|
1805 if (a == aEnd || b == bEnd) { |
|
1806 ASSERT(a == aEnd); |
|
1807 ASSERT(b == bEnd); |
|
1808 return false; |
|
1809 } |
|
1810 |
|
1811 // Check for differences in the kana letter character itself. |
|
1812 if (isSmallKanaLetter(*a) != isSmallKanaLetter(*b)) |
|
1813 return true; |
|
1814 if (composedVoicedSoundMark(*a) != composedVoicedSoundMark(*b)) |
|
1815 return true; |
|
1816 ++a; |
|
1817 ++b; |
|
1818 |
|
1819 // Check for differences in combining voiced sound marks found after the letter. |
|
1820 while (1) { |
|
1821 if (!(a != aEnd && isCombiningVoicedSoundMark(*a))) { |
|
1822 if (b != bEnd && isCombiningVoicedSoundMark(*b)) |
|
1823 return true; |
|
1824 break; |
|
1825 } |
|
1826 if (!(b != bEnd && isCombiningVoicedSoundMark(*b))) |
|
1827 return true; |
|
1828 if (*a != *b) |
|
1829 return true; |
|
1830 ++a; |
|
1831 ++b; |
|
1832 } |
|
1833 } |
|
1834 } |
|
1835 |
|
1836 inline size_t SearchBuffer::search(size_t& start) |
|
1837 { |
|
1838 size_t size = m_buffer.size(); |
|
1839 if (m_atBreak) { |
|
1840 if (!size) |
|
1841 return 0; |
|
1842 } else { |
|
1843 if (size != m_buffer.capacity()) |
|
1844 return 0; |
|
1845 } |
|
1846 |
|
1847 UStringSearch* searcher = WebCore::searcher(); |
|
1848 |
|
1849 UErrorCode status = U_ZERO_ERROR; |
|
1850 usearch_setText(searcher, m_buffer.data(), size, &status); |
|
1851 ASSERT(status == U_ZERO_ERROR); |
|
1852 |
|
1853 int matchStart = usearch_first(searcher, &status); |
|
1854 ASSERT(status == U_ZERO_ERROR); |
|
1855 |
|
1856 nextMatch: |
|
1857 if (!(matchStart >= 0 && static_cast<size_t>(matchStart) < size)) { |
|
1858 ASSERT(matchStart == USEARCH_DONE); |
|
1859 return 0; |
|
1860 } |
|
1861 |
|
1862 // Matches that start in the overlap area are only tentative. |
|
1863 // The same match may appear later, matching more characters, |
|
1864 // possibly including a combining character that's not yet in the buffer. |
|
1865 if (!m_atBreak && static_cast<size_t>(matchStart) >= size - m_overlap) { |
|
1866 memcpy(m_buffer.data(), m_buffer.data() + size - m_overlap, m_overlap * sizeof(UChar)); |
|
1867 m_buffer.shrink(m_overlap); |
|
1868 return 0; |
|
1869 } |
|
1870 |
|
1871 size_t matchedLength = usearch_getMatchedLength(searcher); |
|
1872 ASSERT(matchStart + matchedLength <= size); |
|
1873 |
|
1874 // If this match is "bad", move on to the next match. |
|
1875 if (isBadMatch(m_buffer.data() + matchStart, matchedLength)) { |
|
1876 matchStart = usearch_next(searcher, &status); |
|
1877 ASSERT(status == U_ZERO_ERROR); |
|
1878 goto nextMatch; |
|
1879 } |
|
1880 |
|
1881 size_t newSize = size - (matchStart + 1); |
|
1882 memmove(m_buffer.data(), m_buffer.data() + matchStart + 1, newSize * sizeof(UChar)); |
|
1883 m_buffer.shrink(newSize); |
|
1884 |
|
1885 start = size - matchStart; |
|
1886 return matchedLength; |
|
1887 } |
|
1888 |
|
1889 #else // !ICU_UNICODE |
|
1890 |
|
1891 inline SearchBuffer::SearchBuffer(const String& target, bool isCaseSensitive) |
|
1892 : m_target(isCaseSensitive ? target : target.foldCase()) |
|
1893 , m_isCaseSensitive(isCaseSensitive) |
|
1894 , m_buffer(m_target.length()) |
|
1895 , m_isCharacterStartBuffer(m_target.length()) |
|
1896 , m_isBufferFull(false) |
|
1897 , m_cursor(0) |
|
1898 { |
|
1899 ASSERT(!m_target.isEmpty()); |
|
1900 m_target.replace(noBreakSpace, ' '); |
|
1901 foldQuoteMarks(m_target); |
|
1902 } |
|
1903 |
|
1904 inline SearchBuffer::~SearchBuffer() |
|
1905 { |
|
1906 } |
|
1907 |
|
1908 inline void SearchBuffer::reachedBreak() |
|
1909 { |
|
1910 m_cursor = 0; |
|
1911 m_isBufferFull = false; |
|
1912 } |
|
1913 |
|
1914 inline bool SearchBuffer::atBreak() const |
|
1915 { |
|
1916 return !m_cursor && !m_isBufferFull; |
|
1917 } |
|
1918 |
|
1919 inline void SearchBuffer::append(UChar c, bool isStart) |
|
1920 { |
|
1921 m_buffer[m_cursor] = c == noBreakSpace ? ' ' : foldQuoteMark(c); |
|
1922 m_isCharacterStartBuffer[m_cursor] = isStart; |
|
1923 if (++m_cursor == m_target.length()) { |
|
1924 m_cursor = 0; |
|
1925 m_isBufferFull = true; |
|
1926 } |
|
1927 } |
|
1928 |
|
1929 inline size_t SearchBuffer::append(const UChar* characters, size_t length) |
|
1930 { |
|
1931 ASSERT(length); |
|
1932 if (m_isCaseSensitive) { |
|
1933 append(characters[0], true); |
|
1934 return 1; |
|
1935 } |
|
1936 const int maxFoldedCharacters = 16; // sensible maximum is 3, this should be more than enough |
|
1937 UChar foldedCharacters[maxFoldedCharacters]; |
|
1938 bool error; |
|
1939 int numFoldedCharacters = foldCase(foldedCharacters, maxFoldedCharacters, characters, 1, &error); |
|
1940 ASSERT(!error); |
|
1941 ASSERT(numFoldedCharacters); |
|
1942 ASSERT(numFoldedCharacters <= maxFoldedCharacters); |
|
1943 if (!error && numFoldedCharacters) { |
|
1944 numFoldedCharacters = min(numFoldedCharacters, maxFoldedCharacters); |
|
1945 append(foldedCharacters[0], true); |
|
1946 for (int i = 1; i < numFoldedCharacters; ++i) |
|
1947 append(foldedCharacters[i], false); |
|
1948 } |
|
1949 return 1; |
|
1950 } |
|
1951 |
|
1952 inline size_t SearchBuffer::search(size_t& start) |
|
1953 { |
|
1954 if (!m_isBufferFull) |
|
1955 return 0; |
|
1956 if (!m_isCharacterStartBuffer[m_cursor]) |
|
1957 return 0; |
|
1958 |
|
1959 size_t tailSpace = m_target.length() - m_cursor; |
|
1960 if (memcmp(&m_buffer[m_cursor], m_target.characters(), tailSpace * sizeof(UChar)) != 0) |
|
1961 return 0; |
|
1962 if (memcmp(&m_buffer[0], m_target.characters() + tailSpace, m_cursor * sizeof(UChar)) != 0) |
|
1963 return 0; |
|
1964 |
|
1965 start = length(); |
|
1966 |
|
1967 // Now that we've found a match once, we don't want to find it again, because those |
|
1968 // are the SearchBuffer semantics, allowing for a buffer where you append more than one |
|
1969 // character at a time. To do this we take advantage of m_isCharacterStartBuffer, but if |
|
1970 // we want to get rid of that in the future we could track this with a separate boolean |
|
1971 // or even move the characters to the start of the buffer and set m_isBufferFull to false. |
|
1972 m_isCharacterStartBuffer[m_cursor] = false; |
|
1973 |
|
1974 return start; |
|
1975 } |
|
1976 |
|
1977 // Returns the number of characters that were appended to the buffer (what we are searching in). |
|
1978 // That's not necessarily the same length as the passed-in target string, because case folding |
|
1979 // can make two strings match even though they're not the same length. |
|
1980 size_t SearchBuffer::length() const |
|
1981 { |
|
1982 size_t bufferSize = m_target.length(); |
|
1983 size_t length = 0; |
|
1984 for (size_t i = 0; i < bufferSize; ++i) |
|
1985 length += m_isCharacterStartBuffer[i]; |
|
1986 return length; |
|
1987 } |
|
1988 |
|
1989 #endif // !ICU_UNICODE |
|
1990 |
|
1991 // -------- |
|
1992 |
|
1993 int TextIterator::rangeLength(const Range* r, bool forSelectionPreservation) |
|
1994 { |
|
1995 int length = 0; |
|
1996 for (TextIterator it(r, forSelectionPreservation ? TextIteratorEmitsCharactersBetweenAllVisiblePositions : TextIteratorDefaultBehavior); !it.atEnd(); it.advance()) |
|
1997 length += it.length(); |
|
1998 |
|
1999 return length; |
|
2000 } |
|
2001 |
|
2002 PassRefPtr<Range> TextIterator::subrange(Range* entireRange, int characterOffset, int characterCount) |
|
2003 { |
|
2004 CharacterIterator entireRangeIterator(entireRange); |
|
2005 return characterSubrange(entireRangeIterator, characterOffset, characterCount); |
|
2006 } |
|
2007 |
|
2008 PassRefPtr<Range> TextIterator::rangeFromLocationAndLength(Element* scope, int rangeLocation, int rangeLength, bool forSelectionPreservation) |
|
2009 { |
|
2010 RefPtr<Range> resultRange = scope->document()->createRange(); |
|
2011 |
|
2012 int docTextPosition = 0; |
|
2013 int rangeEnd = rangeLocation + rangeLength; |
|
2014 bool startRangeFound = false; |
|
2015 |
|
2016 RefPtr<Range> textRunRange; |
|
2017 |
|
2018 TextIterator it(rangeOfContents(scope).get(), forSelectionPreservation ? TextIteratorEmitsCharactersBetweenAllVisiblePositions : TextIteratorDefaultBehavior); |
|
2019 |
|
2020 // FIXME: the atEnd() check shouldn't be necessary, workaround for <http://bugs.webkit.org/show_bug.cgi?id=6289>. |
|
2021 if (rangeLocation == 0 && rangeLength == 0 && it.atEnd()) { |
|
2022 textRunRange = it.range(); |
|
2023 |
|
2024 ExceptionCode ec = 0; |
|
2025 resultRange->setStart(textRunRange->startContainer(), 0, ec); |
|
2026 ASSERT(!ec); |
|
2027 resultRange->setEnd(textRunRange->startContainer(), 0, ec); |
|
2028 ASSERT(!ec); |
|
2029 |
|
2030 return resultRange.release(); |
|
2031 } |
|
2032 |
|
2033 for (; !it.atEnd(); it.advance()) { |
|
2034 int len = it.length(); |
|
2035 textRunRange = it.range(); |
|
2036 |
|
2037 bool foundStart = rangeLocation >= docTextPosition && rangeLocation <= docTextPosition + len; |
|
2038 bool foundEnd = rangeEnd >= docTextPosition && rangeEnd <= docTextPosition + len; |
|
2039 |
|
2040 // Fix textRunRange->endPosition(), but only if foundStart || foundEnd, because it is only |
|
2041 // in those cases that textRunRange is used. |
|
2042 if (foundEnd) { |
|
2043 // FIXME: This is a workaround for the fact that the end of a run is often at the wrong |
|
2044 // position for emitted '\n's. |
|
2045 if (len == 1 && it.characters()[0] == '\n') { |
|
2046 scope->document()->updateLayoutIgnorePendingStylesheets(); |
|
2047 it.advance(); |
|
2048 if (!it.atEnd()) { |
|
2049 RefPtr<Range> range = it.range(); |
|
2050 ExceptionCode ec = 0; |
|
2051 textRunRange->setEnd(range->startContainer(), range->startOffset(), ec); |
|
2052 ASSERT(!ec); |
|
2053 } else { |
|
2054 Position runStart = textRunRange->startPosition(); |
|
2055 Position runEnd = VisiblePosition(runStart).next().deepEquivalent(); |
|
2056 if (runEnd.isNotNull()) { |
|
2057 ExceptionCode ec = 0; |
|
2058 textRunRange->setEnd(runEnd.node(), runEnd.deprecatedEditingOffset(), ec); |
|
2059 ASSERT(!ec); |
|
2060 } |
|
2061 } |
|
2062 } |
|
2063 } |
|
2064 |
|
2065 if (foundStart) { |
|
2066 startRangeFound = true; |
|
2067 int exception = 0; |
|
2068 if (textRunRange->startContainer()->isTextNode()) { |
|
2069 int offset = rangeLocation - docTextPosition; |
|
2070 resultRange->setStart(textRunRange->startContainer(), offset + textRunRange->startOffset(), exception); |
|
2071 } else { |
|
2072 if (rangeLocation == docTextPosition) |
|
2073 resultRange->setStart(textRunRange->startContainer(), textRunRange->startOffset(), exception); |
|
2074 else |
|
2075 resultRange->setStart(textRunRange->endContainer(), textRunRange->endOffset(), exception); |
|
2076 } |
|
2077 } |
|
2078 |
|
2079 if (foundEnd) { |
|
2080 int exception = 0; |
|
2081 if (textRunRange->startContainer()->isTextNode()) { |
|
2082 int offset = rangeEnd - docTextPosition; |
|
2083 resultRange->setEnd(textRunRange->startContainer(), offset + textRunRange->startOffset(), exception); |
|
2084 } else { |
|
2085 if (rangeEnd == docTextPosition) |
|
2086 resultRange->setEnd(textRunRange->startContainer(), textRunRange->startOffset(), exception); |
|
2087 else |
|
2088 resultRange->setEnd(textRunRange->endContainer(), textRunRange->endOffset(), exception); |
|
2089 } |
|
2090 docTextPosition += len; |
|
2091 break; |
|
2092 } |
|
2093 docTextPosition += len; |
|
2094 } |
|
2095 |
|
2096 if (!startRangeFound) |
|
2097 return 0; |
|
2098 |
|
2099 if (rangeLength != 0 && rangeEnd > docTextPosition) { // rangeEnd is out of bounds |
|
2100 int exception = 0; |
|
2101 resultRange->setEnd(textRunRange->endContainer(), textRunRange->endOffset(), exception); |
|
2102 } |
|
2103 |
|
2104 return resultRange.release(); |
|
2105 } |
|
2106 |
|
2107 // -------- |
|
2108 |
|
2109 UChar* plainTextToMallocAllocatedBuffer(const Range* r, unsigned& bufferLength, bool isDisplayString) |
|
2110 { |
|
2111 UChar* result = 0; |
|
2112 |
|
2113 // Do this in pieces to avoid massive reallocations if there is a large amount of text. |
|
2114 // Use system malloc for buffers since they can consume lots of memory and current TCMalloc is unable return it back to OS. |
|
2115 static const unsigned cMaxSegmentSize = 1 << 16; |
|
2116 bufferLength = 0; |
|
2117 typedef pair<UChar*, unsigned> TextSegment; |
|
2118 Vector<TextSegment>* textSegments = 0; |
|
2119 Vector<UChar> textBuffer; |
|
2120 textBuffer.reserveInitialCapacity(cMaxSegmentSize); |
|
2121 for (TextIterator it(r, isDisplayString ? TextIteratorDefaultBehavior : TextIteratorEmitsTextsWithoutTranscoding); !it.atEnd(); it.advance()) { |
|
2122 if (textBuffer.size() && textBuffer.size() + it.length() > cMaxSegmentSize) { |
|
2123 UChar* newSegmentBuffer = static_cast<UChar*>(malloc(textBuffer.size() * sizeof(UChar))); |
|
2124 if (!newSegmentBuffer) |
|
2125 goto exit; |
|
2126 memcpy(newSegmentBuffer, textBuffer.data(), textBuffer.size() * sizeof(UChar)); |
|
2127 if (!textSegments) |
|
2128 textSegments = new Vector<TextSegment>; |
|
2129 textSegments->append(make_pair(newSegmentBuffer, (unsigned)textBuffer.size())); |
|
2130 textBuffer.clear(); |
|
2131 } |
|
2132 textBuffer.append(it.characters(), it.length()); |
|
2133 bufferLength += it.length(); |
|
2134 } |
|
2135 |
|
2136 if (!bufferLength) |
|
2137 return 0; |
|
2138 |
|
2139 // Since we know the size now, we can make a single buffer out of the pieces with one big alloc |
|
2140 result = static_cast<UChar*>(malloc(bufferLength * sizeof(UChar))); |
|
2141 if (!result) |
|
2142 goto exit; |
|
2143 |
|
2144 { |
|
2145 UChar* resultPos = result; |
|
2146 if (textSegments) { |
|
2147 unsigned size = textSegments->size(); |
|
2148 for (unsigned i = 0; i < size; ++i) { |
|
2149 const TextSegment& segment = textSegments->at(i); |
|
2150 memcpy(resultPos, segment.first, segment.second * sizeof(UChar)); |
|
2151 resultPos += segment.second; |
|
2152 } |
|
2153 } |
|
2154 memcpy(resultPos, textBuffer.data(), textBuffer.size() * sizeof(UChar)); |
|
2155 } |
|
2156 |
|
2157 exit: |
|
2158 if (textSegments) { |
|
2159 unsigned size = textSegments->size(); |
|
2160 for (unsigned i = 0; i < size; ++i) |
|
2161 free(textSegments->at(i).first); |
|
2162 delete textSegments; |
|
2163 } |
|
2164 |
|
2165 if (isDisplayString && r->ownerDocument()) |
|
2166 r->ownerDocument()->displayBufferModifiedByEncoding(result, bufferLength); |
|
2167 |
|
2168 return result; |
|
2169 } |
|
2170 |
|
2171 String plainText(const Range* r) |
|
2172 { |
|
2173 unsigned length; |
|
2174 UChar* buf = plainTextToMallocAllocatedBuffer(r, length, false); |
|
2175 if (!buf) |
|
2176 return ""; |
|
2177 String result(buf, length); |
|
2178 free(buf); |
|
2179 return result; |
|
2180 } |
|
2181 |
|
2182 static inline bool isAllCollapsibleWhitespace(const String& string) |
|
2183 { |
|
2184 const UChar* characters = string.characters(); |
|
2185 unsigned length = string.length(); |
|
2186 for (unsigned i = 0; i < length; ++i) { |
|
2187 if (!isCollapsibleWhitespace(characters[i])) |
|
2188 return false; |
|
2189 } |
|
2190 return true; |
|
2191 } |
|
2192 |
|
2193 static PassRefPtr<Range> collapsedToBoundary(const Range* range, bool forward) |
|
2194 { |
|
2195 ExceptionCode ec = 0; |
|
2196 RefPtr<Range> result = range->cloneRange(ec); |
|
2197 ASSERT(!ec); |
|
2198 result->collapse(!forward, ec); |
|
2199 ASSERT(!ec); |
|
2200 return result.release(); |
|
2201 } |
|
2202 |
|
2203 static size_t findPlainText(CharacterIterator& it, const String& target, bool forward, bool caseSensitive, size_t& matchStart) |
|
2204 { |
|
2205 matchStart = 0; |
|
2206 size_t matchLength = 0; |
|
2207 |
|
2208 SearchBuffer buffer(target, caseSensitive); |
|
2209 |
|
2210 while (!it.atEnd()) { |
|
2211 it.advance(buffer.append(it.characters(), it.length())); |
|
2212 tryAgain: |
|
2213 size_t matchStartOffset; |
|
2214 if (size_t newMatchLength = buffer.search(matchStartOffset)) { |
|
2215 // Note that we found a match, and where we found it. |
|
2216 size_t lastCharacterInBufferOffset = it.characterOffset(); |
|
2217 ASSERT(lastCharacterInBufferOffset >= matchStartOffset); |
|
2218 matchStart = lastCharacterInBufferOffset - matchStartOffset; |
|
2219 matchLength = newMatchLength; |
|
2220 // If searching forward, stop on the first match. |
|
2221 // If searching backward, don't stop, so we end up with the last match. |
|
2222 if (forward) |
|
2223 break; |
|
2224 goto tryAgain; |
|
2225 } |
|
2226 if (it.atBreak() && !buffer.atBreak()) { |
|
2227 buffer.reachedBreak(); |
|
2228 goto tryAgain; |
|
2229 } |
|
2230 } |
|
2231 |
|
2232 return matchLength; |
|
2233 } |
|
2234 |
|
2235 PassRefPtr<Range> findPlainText(const Range* range, const String& target, bool forward, bool caseSensitive) |
|
2236 { |
|
2237 // First, find the text. |
|
2238 size_t matchStart; |
|
2239 size_t matchLength; |
|
2240 { |
|
2241 CharacterIterator findIterator(range, TextIteratorEntersTextControls); |
|
2242 matchLength = findPlainText(findIterator, target, forward, caseSensitive, matchStart); |
|
2243 if (!matchLength) |
|
2244 return collapsedToBoundary(range, forward); |
|
2245 } |
|
2246 |
|
2247 // Then, find the document position of the start and the end of the text. |
|
2248 CharacterIterator computeRangeIterator(range, TextIteratorEntersTextControls); |
|
2249 return characterSubrange(computeRangeIterator, matchStart, matchLength); |
|
2250 } |
|
2251 |
|
2252 } |