|
1 /* |
|
2 * Copyright (C) 2006, 2008 Apple Inc. All rights reserved. |
|
3 * Copyright (C) 2009 Google Inc. All rights reserved. |
|
4 * |
|
5 * Redistribution and use in source and binary forms, with or without |
|
6 * modification, are permitted provided that the following conditions |
|
7 * are met: |
|
8 * 1. Redistributions of source code must retain the above copyright |
|
9 * notice, this list of conditions and the following disclaimer. |
|
10 * 2. Redistributions in binary form must reproduce the above copyright |
|
11 * notice, this list of conditions and the following disclaimer in the |
|
12 * documentation and/or other materials provided with the distribution. |
|
13 * |
|
14 * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY |
|
15 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
17 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR |
|
18 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
19 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
|
22 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
25 */ |
|
26 |
|
27 #include "config.h" |
|
28 #include "Timer.h" |
|
29 |
|
30 #include "SharedTimer.h" |
|
31 #include "ThreadGlobalData.h" |
|
32 #include "ThreadTimers.h" |
|
33 #include <limits.h> |
|
34 #include <limits> |
|
35 #include <math.h> |
|
36 #include <wtf/CurrentTime.h> |
|
37 #include <wtf/HashSet.h> |
|
38 #include <wtf/Vector.h> |
|
39 |
|
40 using namespace std; |
|
41 |
|
42 namespace WebCore { |
|
43 |
|
44 // Timers are stored in a heap data structure, used to implement a priority queue. |
|
45 // This allows us to efficiently determine which timer needs to fire the soonest. |
|
46 // Then we set a single shared system timer to fire at that time. |
|
47 // |
|
48 // When a timer's "next fire time" changes, we need to move it around in the priority queue. |
|
49 |
|
50 // Simple accessors to thread-specific data. |
|
51 static Vector<TimerBase*>& timerHeap() |
|
52 { |
|
53 return threadGlobalData().threadTimers().timerHeap(); |
|
54 } |
|
55 |
|
56 // Class to represent elements in the heap when calling the standard library heap algorithms. |
|
57 // Maintains the m_heapIndex value in the timers themselves, which allows us to do efficient |
|
58 // modification of the heap. |
|
59 class TimerHeapElement { |
|
60 public: |
|
61 explicit TimerHeapElement(int i) |
|
62 : m_index(i) |
|
63 , m_timer(timerHeap()[m_index]) |
|
64 { |
|
65 checkConsistency(); |
|
66 } |
|
67 |
|
68 TimerHeapElement(const TimerHeapElement&); |
|
69 TimerHeapElement& operator=(const TimerHeapElement&); |
|
70 |
|
71 TimerBase* timer() const { return m_timer; } |
|
72 |
|
73 void checkConsistency() const |
|
74 { |
|
75 ASSERT(m_index >= 0); |
|
76 ASSERT(m_index < static_cast<int>(timerHeap().size())); |
|
77 } |
|
78 |
|
79 private: |
|
80 TimerHeapElement(); |
|
81 |
|
82 int m_index; |
|
83 TimerBase* m_timer; |
|
84 }; |
|
85 |
|
86 inline TimerHeapElement::TimerHeapElement(const TimerHeapElement& o) |
|
87 : m_index(-1), m_timer(o.timer()) |
|
88 { |
|
89 } |
|
90 |
|
91 inline TimerHeapElement& TimerHeapElement::operator=(const TimerHeapElement& o) |
|
92 { |
|
93 TimerBase* t = o.timer(); |
|
94 m_timer = t; |
|
95 if (m_index != -1) { |
|
96 checkConsistency(); |
|
97 timerHeap()[m_index] = t; |
|
98 t->m_heapIndex = m_index; |
|
99 } |
|
100 return *this; |
|
101 } |
|
102 |
|
103 inline bool operator<(const TimerHeapElement& a, const TimerHeapElement& b) |
|
104 { |
|
105 // The comparisons below are "backwards" because the heap puts the largest |
|
106 // element first and we want the lowest time to be the first one in the heap. |
|
107 double aFireTime = a.timer()->m_nextFireTime; |
|
108 double bFireTime = b.timer()->m_nextFireTime; |
|
109 if (bFireTime != aFireTime) |
|
110 return bFireTime < aFireTime; |
|
111 |
|
112 // We need to look at the difference of the insertion orders instead of comparing the two |
|
113 // outright in case of overflow. |
|
114 unsigned difference = a.timer()->m_heapInsertionOrder - b.timer()->m_heapInsertionOrder; |
|
115 return difference < UINT_MAX / 2; |
|
116 } |
|
117 |
|
118 // ---------------- |
|
119 |
|
120 // Class to represent iterators in the heap when calling the standard library heap algorithms. |
|
121 // Returns TimerHeapElement for elements in the heap rather than the TimerBase pointers themselves. |
|
122 class TimerHeapIterator : public iterator<random_access_iterator_tag, TimerHeapElement, int> { |
|
123 public: |
|
124 TimerHeapIterator() : m_index(-1) { } |
|
125 TimerHeapIterator(int i) : m_index(i) { checkConsistency(); } |
|
126 |
|
127 TimerHeapIterator& operator++() { checkConsistency(); ++m_index; checkConsistency(); return *this; } |
|
128 TimerHeapIterator operator++(int) { checkConsistency(); checkConsistency(1); return m_index++; } |
|
129 |
|
130 TimerHeapIterator& operator--() { checkConsistency(); --m_index; checkConsistency(); return *this; } |
|
131 TimerHeapIterator operator--(int) { checkConsistency(); checkConsistency(-1); return m_index--; } |
|
132 |
|
133 TimerHeapIterator& operator+=(int i) { checkConsistency(); m_index += i; checkConsistency(); return *this; } |
|
134 TimerHeapIterator& operator-=(int i) { checkConsistency(); m_index -= i; checkConsistency(); return *this; } |
|
135 |
|
136 TimerHeapElement operator*() const { return TimerHeapElement(m_index); } |
|
137 TimerHeapElement operator[](int i) const { return TimerHeapElement(m_index + i); } |
|
138 |
|
139 int index() const { return m_index; } |
|
140 |
|
141 void checkConsistency(int offset = 0) const |
|
142 { |
|
143 ASSERT_UNUSED(offset, m_index + offset >= 0); |
|
144 ASSERT_UNUSED(offset, m_index + offset <= static_cast<int>(timerHeap().size())); |
|
145 } |
|
146 |
|
147 private: |
|
148 int m_index; |
|
149 }; |
|
150 |
|
151 inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.index() == b.index(); } |
|
152 inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.index() != b.index(); } |
|
153 inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.index() < b.index(); } |
|
154 |
|
155 inline TimerHeapIterator operator+(TimerHeapIterator a, int b) { return a.index() + b; } |
|
156 inline TimerHeapIterator operator+(int a, TimerHeapIterator b) { return a + b.index(); } |
|
157 |
|
158 inline TimerHeapIterator operator-(TimerHeapIterator a, int b) { return a.index() - b; } |
|
159 inline int operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.index() - b.index(); } |
|
160 |
|
161 // ---------------- |
|
162 |
|
163 TimerBase::TimerBase() |
|
164 : m_nextFireTime(0) |
|
165 , m_repeatInterval(0) |
|
166 , m_heapIndex(-1) |
|
167 #ifndef NDEBUG |
|
168 , m_thread(currentThread()) |
|
169 #endif |
|
170 { |
|
171 } |
|
172 |
|
173 TimerBase::~TimerBase() |
|
174 { |
|
175 stop(); |
|
176 ASSERT(!inHeap()); |
|
177 } |
|
178 |
|
179 void TimerBase::start(double nextFireInterval, double repeatInterval) |
|
180 { |
|
181 ASSERT(m_thread == currentThread()); |
|
182 |
|
183 m_repeatInterval = repeatInterval; |
|
184 setNextFireTime(currentTime() + nextFireInterval); |
|
185 } |
|
186 |
|
187 void TimerBase::stop() |
|
188 { |
|
189 ASSERT(m_thread == currentThread()); |
|
190 |
|
191 m_repeatInterval = 0; |
|
192 setNextFireTime(0); |
|
193 |
|
194 ASSERT(m_nextFireTime == 0); |
|
195 ASSERT(m_repeatInterval == 0); |
|
196 ASSERT(!inHeap()); |
|
197 } |
|
198 |
|
199 double TimerBase::nextFireInterval() const |
|
200 { |
|
201 ASSERT(isActive()); |
|
202 double current = currentTime(); |
|
203 if (m_nextFireTime < current) |
|
204 return 0; |
|
205 return m_nextFireTime - current; |
|
206 } |
|
207 |
|
208 inline void TimerBase::checkHeapIndex() const |
|
209 { |
|
210 ASSERT(!timerHeap().isEmpty()); |
|
211 ASSERT(m_heapIndex >= 0); |
|
212 ASSERT(m_heapIndex < static_cast<int>(timerHeap().size())); |
|
213 ASSERT(timerHeap()[m_heapIndex] == this); |
|
214 } |
|
215 |
|
216 inline void TimerBase::checkConsistency() const |
|
217 { |
|
218 // Timers should be in the heap if and only if they have a non-zero next fire time. |
|
219 ASSERT(inHeap() == (m_nextFireTime != 0)); |
|
220 if (inHeap()) |
|
221 checkHeapIndex(); |
|
222 } |
|
223 |
|
224 void TimerBase::heapDecreaseKey() |
|
225 { |
|
226 ASSERT(m_nextFireTime != 0); |
|
227 checkHeapIndex(); |
|
228 push_heap(TimerHeapIterator(0), TimerHeapIterator(m_heapIndex + 1)); |
|
229 checkHeapIndex(); |
|
230 } |
|
231 |
|
232 inline void TimerBase::heapDelete() |
|
233 { |
|
234 ASSERT(m_nextFireTime == 0); |
|
235 heapPop(); |
|
236 timerHeap().removeLast(); |
|
237 m_heapIndex = -1; |
|
238 } |
|
239 |
|
240 void TimerBase::heapDeleteMin() |
|
241 { |
|
242 ASSERT(m_nextFireTime == 0); |
|
243 heapPopMin(); |
|
244 timerHeap().removeLast(); |
|
245 m_heapIndex = -1; |
|
246 } |
|
247 |
|
248 inline void TimerBase::heapIncreaseKey() |
|
249 { |
|
250 ASSERT(m_nextFireTime != 0); |
|
251 heapPop(); |
|
252 heapDecreaseKey(); |
|
253 } |
|
254 |
|
255 inline void TimerBase::heapInsert() |
|
256 { |
|
257 ASSERT(!inHeap()); |
|
258 timerHeap().append(this); |
|
259 m_heapIndex = timerHeap().size() - 1; |
|
260 heapDecreaseKey(); |
|
261 } |
|
262 |
|
263 inline void TimerBase::heapPop() |
|
264 { |
|
265 // Temporarily force this timer to have the minimum key so we can pop it. |
|
266 double fireTime = m_nextFireTime; |
|
267 m_nextFireTime = -numeric_limits<double>::infinity(); |
|
268 heapDecreaseKey(); |
|
269 heapPopMin(); |
|
270 m_nextFireTime = fireTime; |
|
271 } |
|
272 |
|
273 void TimerBase::heapPopMin() |
|
274 { |
|
275 ASSERT(this == timerHeap().first()); |
|
276 checkHeapIndex(); |
|
277 pop_heap(TimerHeapIterator(0), TimerHeapIterator(timerHeap().size())); |
|
278 checkHeapIndex(); |
|
279 ASSERT(this == timerHeap().last()); |
|
280 } |
|
281 |
|
282 void TimerBase::setNextFireTime(double newTime) |
|
283 { |
|
284 ASSERT(m_thread == currentThread()); |
|
285 |
|
286 // Keep heap valid while changing the next-fire time. |
|
287 double oldTime = m_nextFireTime; |
|
288 if (oldTime != newTime) { |
|
289 m_nextFireTime = newTime; |
|
290 static unsigned currentHeapInsertionOrder; |
|
291 m_heapInsertionOrder = currentHeapInsertionOrder++; |
|
292 |
|
293 bool wasFirstTimerInHeap = m_heapIndex == 0; |
|
294 |
|
295 if (oldTime == 0) |
|
296 heapInsert(); |
|
297 else if (newTime == 0) |
|
298 heapDelete(); |
|
299 else if (newTime < oldTime) |
|
300 heapDecreaseKey(); |
|
301 else |
|
302 heapIncreaseKey(); |
|
303 |
|
304 bool isFirstTimerInHeap = m_heapIndex == 0; |
|
305 |
|
306 if (wasFirstTimerInHeap || isFirstTimerInHeap) |
|
307 threadGlobalData().threadTimers().updateSharedTimer(); |
|
308 } |
|
309 |
|
310 checkConsistency(); |
|
311 } |
|
312 |
|
313 void TimerBase::fireTimersInNestedEventLoop() |
|
314 { |
|
315 // Redirect to ThreadTimers. |
|
316 threadGlobalData().threadTimers().fireTimersInNestedEventLoop(); |
|
317 } |
|
318 |
|
319 } // namespace WebCore |
|
320 |