/*
* Copyright (c) 2004-2008 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description: Inverts bitmap channels.
*
*/
// INCLUDE FILES
#include "AknsRlEffectPluginInvert.h"
#include "AknsRlEffectUtil.h"
// ==================TEMPLATE IMPL. OF INVERT ==================================
/**
* Template implementation of Invert. Type defines the used data type for
* iterating over the bitmap data. X, R, G and B define the used pixel color bit
* layout.
*/
template<class Type,TInt X, TInt R, TInt G, TInt B>
class AknsRlEffectInvert
{
public:
//------------------------------------------------------------------------
static void Process( const CFbsBitmap& aTarget,
const CFbsBitmap& aSource,
const TUint8 aChannelMask,
const TInt aBlendFactor )
{
// ScanLineLength returns bytes, but width must match the Type
TInt width = CFbsBitmap::ScanLineLength( aSource.SizeInPixels().iWidth,
aSource.DisplayMode() ) / sizeof(Type);
TInt height = aSource.SizeInPixels().iHeight;
TInt pixelCount = width * height;
TInt r,g,b;
aTarget.LockHeap( ETrue ); // Lock the global bitmap heap
Type* dataT = reinterpret_cast<Type*>( aTarget.DataAddress() );
Type* dataS = reinterpret_cast<Type*>( aSource.DataAddress() );
for( TInt index = 0; index < pixelCount; ++index )
{
r = AknsRlRgb<Type,X,R,G,B>::R8(*dataS);
g = AknsRlRgb<Type,X,R,G,B>::G8(*dataS);
b = AknsRlRgb<Type,X,R,G,B>::B8(*dataS);
if( CAknsRlEffectPluginInvert::EMaskR & aChannelMask )
r = 255 - r;
if( CAknsRlEffectPluginInvert::EMaskG & aChannelMask )
g = 255 - g;
if( CAknsRlEffectPluginInvert::EMaskB & aChannelMask )
b = 255 - b;
// Exposure blending
// Note: It is assumed that arithmetic shifting is supported
// -> negative values are shifted correctly
r = ( r * aBlendFactor + (255 - aBlendFactor) * AknsRlRgb<Type,X,R,G,B>::R8(*dataS) ) >> 8;
g = ( g * aBlendFactor + (255 - aBlendFactor) * AknsRlRgb<Type,X,R,G,B>::G8(*dataS) ) >> 8;
b = ( b * aBlendFactor + (255 - aBlendFactor) * AknsRlRgb<Type,X,R,G,B>::B8(*dataS) ) >> 8;
if( r < 0 ) r = 0; else if( r > 255 ) r = 255;
if( g < 0 ) g = 0; else if( g > 255 ) g = 255;
if( b < 0 ) b = 0; else if( b > 255 ) b = 255;
AknsRlRgb<Type,X,R,G,B>::SetRgb8( dataT, TUint8(r), TUint8(g), TUint8(b) );
dataT++;
dataS++;
}
aTarget.UnlockHeap( ETrue ); // Unlock the global bitmap heap
}
};
// ================== GRAYSCALE IMPL. OF INVERT ================================
class AknsRlEffectInvertGray
{
public:
//------------------------------------------------------------------------
static void Process( const CFbsBitmap& aTarget,
const CFbsBitmap& aSource,
const TInt aBlendFactor )
{
TInt width = CFbsBitmap::ScanLineLength( aSource.SizeInPixels().iWidth,
aSource.DisplayMode() );
TInt height = aSource.SizeInPixels().iHeight;
TInt pixelCount = width * height;
TInt shade;
aTarget.LockHeap( ETrue ); // Lock the global bitmap heap
TUint8* dataT = reinterpret_cast<TUint8*>( aTarget.DataAddress() );
TUint8* dataS = reinterpret_cast<TUint8*>( aSource.DataAddress() );
for( TInt index = 0; index < pixelCount; ++index )
{
shade = 255 - (*dataS);
// Exposure blending
// Note: It is assumed that arithmetic shifting is supported
// -> negative values are shifted correctly
shade = ( shade * aBlendFactor + (255 - aBlendFactor) * (*dataS) ) >> 8; //lint !e702 Arithmetic shifting assumed
if( shade < 0 ) shade = 0;
else if( shade > 255 ) shade = 255;
*dataT = TUint8(shade);
dataT++;
dataS++;
}
aTarget.UnlockHeap( ETrue ); // Unlock the global bitmap heap
}
};
// ============================ MEMBER FUNCTIONS ===============================
// -----------------------------------------------------------------------------
// CAknsRlEffectPluginInvert::CAknsRlEffectPluginInvert
// C++ default constructor can NOT contain any code, that
// might leave.
// -----------------------------------------------------------------------------
//
CAknsRlEffectPluginInvert::CAknsRlEffectPluginInvert()
{
}
// -----------------------------------------------------------------------------
// Destructor
// -----------------------------------------------------------------------------
//
CAknsRlEffectPluginInvert::~CAknsRlEffectPluginInvert()
{
iContext = NULL; // Removes lint nag
}
// -----------------------------------------------------------------------------
// CAknsRlEffectPluginInvert::EffectUid
// -----------------------------------------------------------------------------
//
TUid CAknsRlEffectPluginInvert::EffectUid() const
{
return TUid::Uid( KAknsRlEffectPluginInvertUID );
}
// -----------------------------------------------------------------------------
// CAknsRlEffectPluginInvert::Effect
// -----------------------------------------------------------------------------
//
MAknsRlEffect* CAknsRlEffectPluginInvert::Effect( const TInt aInterface )
{
if( aInterface == KAknsRlEffectPluginInterfaceEffect )
return this;
return NULL;
}
// -----------------------------------------------------------------------------
// CAknsRlEffectPluginInvert::InitializeL
// -----------------------------------------------------------------------------
//
void CAknsRlEffectPluginInvert::InitializeL()
{
iContext = NULL;
}
// -----------------------------------------------------------------------------
// CAknsRlEffectPluginInvert::Release
// -----------------------------------------------------------------------------
//
void CAknsRlEffectPluginInvert::Release()
{
}
// -----------------------------------------------------------------------------
// CAknsRlEffectPluginInvert::ActivateL
// -----------------------------------------------------------------------------
//
void CAknsRlEffectPluginInvert::ActivateL( MAknsRlEffectContext* aContext )
{
if( !aContext ) // We absolutely need the context
{
User::Leave( KErrArgument );
}
iContext = aContext;
iChannelMask = EMaskR | EMaskG | EMaskB;
iBlendFactor = 255;
}
// -----------------------------------------------------------------------------
// CAknsRlEffectPluginInvert::Deactivate
// -----------------------------------------------------------------------------
//
void CAknsRlEffectPluginInvert::Deactivate()
{
}
// -----------------------------------------------------------------------------
// CAknsRlEffectPluginInvert::SetParametersL
// -----------------------------------------------------------------------------
//
void CAknsRlEffectPluginInvert::SetParametersL( MAknsRlParameterIterator& aParameters )
{
// Iterate over available parameters
while( aParameters.HasNext() )
{
const TAknsRlParameterData* param = aParameters.NextL();
// Fetch channel mask value
if( param->iName->Compare( KAknsRlEffectInvertChannels ) == 0 )
{
if( param->iType != EAknsRlParameterTypeNumber )
User::Leave( KErrArgument );
iChannelMask = TUint8(param->iNumber);
}
// Fetch blend factor value
else if( param->iName->Compare( KAknsRlEffectInvertBlendFactor ) == 0 )
{
if( param->iType != EAknsRlParameterTypeNumber )
User::Leave( KErrArgument );
iBlendFactor = param->iNumber;
}
}
}
// -----------------------------------------------------------------------------
// CAknsRlEffectPluginInvert::GetCapabilities
// -----------------------------------------------------------------------------
//
void CAknsRlEffectPluginInvert::GetCapabilities( TAknsRlEffectCaps& aCaps )
{
aCaps.iOutputLayerSupport = KAknsRlLayerRGBOnly;
aCaps.iInputLayerASupport = KAknsRlLayerRGBOnly;
aCaps.iInputLayerBSupport = KAknsRlLayerNone;
}
// -----------------------------------------------------------------------------
// CAknsRlEffectPluginInvert::Render
// -----------------------------------------------------------------------------
//
TInt CAknsRlEffectPluginInvert::Render( const TAknsRlRenderOpParam& aParam )
{
if( !iContext ) // We absolutely need the context
{
return KErrBadHandle;
}
// To do anything we need both, the output layer and input layer
if( ( aParam.iOutputLayerStatus & KAknsRlLayerRGBOnly ) &&
( aParam.iInputLayerAStatus & KAknsRlLayerRGBOnly ) )
{
// Query the layers, uninitialized because we process the whole image
TAknsRlLayerData dataTarget;
TRAPD( err, iContext->GetLayerDataL( dataTarget, aParam.iOutputLayerIndex,
aParam.iOutputLayerStatus, EFalse ) );
if( KErrNone != err )
return KErrArgument;
TAknsRlLayerData dataSource;
TRAP( err, iContext->GetLayerDataL( dataSource, aParam.iInputLayerAIndex,
aParam.iInputLayerAStatus, EFalse ) );
if( KErrNone != err )
return KErrArgument;
if( !dataTarget.iRGBBitmap ) // We need the target bitmap
return KErrBadHandle;
if( !dataSource.iRGBBitmap ) // We need the source bitmap
return KErrBadHandle;
TDisplayMode modeT = dataTarget.iRGBBitmap->DisplayMode();
TDisplayMode modeS = dataSource.iRGBBitmap->DisplayMode();
// Rgb -> Rgb modes
if( EColor64K == modeS && EColor64K == modeT )
{
AknsRlEffectInvert<TUint16,0,5,6,5>::Process(
*dataTarget.iRGBBitmap,
*dataSource.iRGBBitmap,
iChannelMask,
iBlendFactor );
}
else if( EColor16MU == modeS && EColor16MU == modeT )
{
AknsRlEffectInvert<TUint32,8,8,8,8>::Process(
*dataTarget.iRGBBitmap,
*dataSource.iRGBBitmap,
iChannelMask,
iBlendFactor );
}
// Gray -> Gray mode
else if( EGray256 == modeS && EGray256 == modeT )
{
AknsRlEffectInvertGray::Process(
*dataTarget.iRGBBitmap,
*dataSource.iRGBBitmap,
iBlendFactor );
}
else
{
// Provided layers have illegal display mode combination
return KErrArgument;
}
}
else
{
// Required layers were not provided
return KErrArgument;
}
return KErrNone;
}
// End of File