|
1 /* |
|
2 ** 2004 April 6 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** $Id: btree.c,v 1.328 2006/08/16 16:42:48 drh Exp $ |
|
13 ** |
|
14 ** This file implements a external (disk-based) database using BTrees. |
|
15 ** For a detailed discussion of BTrees, refer to |
|
16 ** |
|
17 ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: |
|
18 ** "Sorting And Searching", pages 473-480. Addison-Wesley |
|
19 ** Publishing Company, Reading, Massachusetts. |
|
20 ** |
|
21 ** The basic idea is that each page of the file contains N database |
|
22 ** entries and N+1 pointers to subpages. |
|
23 ** |
|
24 ** ---------------------------------------------------------------- |
|
25 ** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) | |
|
26 ** ---------------------------------------------------------------- |
|
27 ** |
|
28 ** All of the keys on the page that Ptr(0) points to have values less |
|
29 ** than Key(0). All of the keys on page Ptr(1) and its subpages have |
|
30 ** values greater than Key(0) and less than Key(1). All of the keys |
|
31 ** on Ptr(N+1) and its subpages have values greater than Key(N). And |
|
32 ** so forth. |
|
33 ** |
|
34 ** Finding a particular key requires reading O(log(M)) pages from the |
|
35 ** disk where M is the number of entries in the tree. |
|
36 ** |
|
37 ** In this implementation, a single file can hold one or more separate |
|
38 ** BTrees. Each BTree is identified by the index of its root page. The |
|
39 ** key and data for any entry are combined to form the "payload". A |
|
40 ** fixed amount of payload can be carried directly on the database |
|
41 ** page. If the payload is larger than the preset amount then surplus |
|
42 ** bytes are stored on overflow pages. The payload for an entry |
|
43 ** and the preceding pointer are combined to form a "Cell". Each |
|
44 ** page has a small header which contains the Ptr(N+1) pointer and other |
|
45 ** information such as the size of key and data. |
|
46 ** |
|
47 ** FORMAT DETAILS |
|
48 ** |
|
49 ** The file is divided into pages. The first page is called page 1, |
|
50 ** the second is page 2, and so forth. A page number of zero indicates |
|
51 ** "no such page". The page size can be anything between 512 and 65536. |
|
52 ** Each page can be either a btree page, a freelist page or an overflow |
|
53 ** page. |
|
54 ** |
|
55 ** The first page is always a btree page. The first 100 bytes of the first |
|
56 ** page contain a special header (the "file header") that describes the file. |
|
57 ** The format of the file header is as follows: |
|
58 ** |
|
59 ** OFFSET SIZE DESCRIPTION |
|
60 ** 0 16 Header string: "SQLite format 3\000" |
|
61 ** 16 2 Page size in bytes. |
|
62 ** 18 1 File format write version |
|
63 ** 19 1 File format read version |
|
64 ** 20 1 Bytes of unused space at the end of each page |
|
65 ** 21 1 Max embedded payload fraction |
|
66 ** 22 1 Min embedded payload fraction |
|
67 ** 23 1 Min leaf payload fraction |
|
68 ** 24 4 File change counter |
|
69 ** 28 4 Reserved for future use |
|
70 ** 32 4 First freelist page |
|
71 ** 36 4 Number of freelist pages in the file |
|
72 ** 40 60 15 4-byte meta values passed to higher layers |
|
73 ** |
|
74 ** All of the integer values are big-endian (most significant byte first). |
|
75 ** |
|
76 ** The file change counter is incremented when the database is changed more |
|
77 ** than once within the same second. This counter, together with the |
|
78 ** modification time of the file, allows other processes to know |
|
79 ** when the file has changed and thus when they need to flush their |
|
80 ** cache. |
|
81 ** |
|
82 ** The max embedded payload fraction is the amount of the total usable |
|
83 ** space in a page that can be consumed by a single cell for standard |
|
84 ** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default |
|
85 ** is to limit the maximum cell size so that at least 4 cells will fit |
|
86 ** on one page. Thus the default max embedded payload fraction is 64. |
|
87 ** |
|
88 ** If the payload for a cell is larger than the max payload, then extra |
|
89 ** payload is spilled to overflow pages. Once an overflow page is allocated, |
|
90 ** as many bytes as possible are moved into the overflow pages without letting |
|
91 ** the cell size drop below the min embedded payload fraction. |
|
92 ** |
|
93 ** The min leaf payload fraction is like the min embedded payload fraction |
|
94 ** except that it applies to leaf nodes in a LEAFDATA tree. The maximum |
|
95 ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it |
|
96 ** not specified in the header. |
|
97 ** |
|
98 ** Each btree pages is divided into three sections: The header, the |
|
99 ** cell pointer array, and the cell area area. Page 1 also has a 100-byte |
|
100 ** file header that occurs before the page header. |
|
101 ** |
|
102 ** |----------------| |
|
103 ** | file header | 100 bytes. Page 1 only. |
|
104 ** |----------------| |
|
105 ** | page header | 8 bytes for leaves. 12 bytes for interior nodes |
|
106 ** |----------------| |
|
107 ** | cell pointer | | 2 bytes per cell. Sorted order. |
|
108 ** | array | | Grows downward |
|
109 ** | | v |
|
110 ** |----------------| |
|
111 ** | unallocated | |
|
112 ** | space | |
|
113 ** |----------------| ^ Grows upwards |
|
114 ** | cell content | | Arbitrary order interspersed with freeblocks. |
|
115 ** | area | | and free space fragments. |
|
116 ** |----------------| |
|
117 ** |
|
118 ** The page headers looks like this: |
|
119 ** |
|
120 ** OFFSET SIZE DESCRIPTION |
|
121 ** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf |
|
122 ** 1 2 byte offset to the first freeblock |
|
123 ** 3 2 number of cells on this page |
|
124 ** 5 2 first byte of the cell content area |
|
125 ** 7 1 number of fragmented free bytes |
|
126 ** 8 4 Right child (the Ptr(N+1) value). Omitted on leaves. |
|
127 ** |
|
128 ** The flags define the format of this btree page. The leaf flag means that |
|
129 ** this page has no children. The zerodata flag means that this page carries |
|
130 ** only keys and no data. The intkey flag means that the key is a integer |
|
131 ** which is stored in the key size entry of the cell header rather than in |
|
132 ** the payload area. |
|
133 ** |
|
134 ** The cell pointer array begins on the first byte after the page header. |
|
135 ** The cell pointer array contains zero or more 2-byte numbers which are |
|
136 ** offsets from the beginning of the page to the cell content in the cell |
|
137 ** content area. The cell pointers occur in sorted order. The system strives |
|
138 ** to keep free space after the last cell pointer so that new cells can |
|
139 ** be easily added without having to defragment the page. |
|
140 ** |
|
141 ** Cell content is stored at the very end of the page and grows toward the |
|
142 ** beginning of the page. |
|
143 ** |
|
144 ** Unused space within the cell content area is collected into a linked list of |
|
145 ** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset |
|
146 ** to the first freeblock is given in the header. Freeblocks occur in |
|
147 ** increasing order. Because a freeblock must be at least 4 bytes in size, |
|
148 ** any group of 3 or fewer unused bytes in the cell content area cannot |
|
149 ** exist on the freeblock chain. A group of 3 or fewer free bytes is called |
|
150 ** a fragment. The total number of bytes in all fragments is recorded. |
|
151 ** in the page header at offset 7. |
|
152 ** |
|
153 ** SIZE DESCRIPTION |
|
154 ** 2 Byte offset of the next freeblock |
|
155 ** 2 Bytes in this freeblock |
|
156 ** |
|
157 ** Cells are of variable length. Cells are stored in the cell content area at |
|
158 ** the end of the page. Pointers to the cells are in the cell pointer array |
|
159 ** that immediately follows the page header. Cells is not necessarily |
|
160 ** contiguous or in order, but cell pointers are contiguous and in order. |
|
161 ** |
|
162 ** Cell content makes use of variable length integers. A variable |
|
163 ** length integer is 1 to 9 bytes where the lower 7 bits of each |
|
164 ** byte are used. The integer consists of all bytes that have bit 8 set and |
|
165 ** the first byte with bit 8 clear. The most significant byte of the integer |
|
166 ** appears first. A variable-length integer may not be more than 9 bytes long. |
|
167 ** As a special case, all 8 bytes of the 9th byte are used as data. This |
|
168 ** allows a 64-bit integer to be encoded in 9 bytes. |
|
169 ** |
|
170 ** 0x00 becomes 0x00000000 |
|
171 ** 0x7f becomes 0x0000007f |
|
172 ** 0x81 0x00 becomes 0x00000080 |
|
173 ** 0x82 0x00 becomes 0x00000100 |
|
174 ** 0x80 0x7f becomes 0x0000007f |
|
175 ** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678 |
|
176 ** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 |
|
177 ** |
|
178 ** Variable length integers are used for rowids and to hold the number of |
|
179 ** bytes of key and data in a btree cell. |
|
180 ** |
|
181 ** The content of a cell looks like this: |
|
182 ** |
|
183 ** SIZE DESCRIPTION |
|
184 ** 4 Page number of the left child. Omitted if leaf flag is set. |
|
185 ** var Number of bytes of data. Omitted if the zerodata flag is set. |
|
186 ** var Number of bytes of key. Or the key itself if intkey flag is set. |
|
187 ** * Payload |
|
188 ** 4 First page of the overflow chain. Omitted if no overflow |
|
189 ** |
|
190 ** Overflow pages form a linked list. Each page except the last is completely |
|
191 ** filled with data (pagesize - 4 bytes). The last page can have as little |
|
192 ** as 1 byte of data. |
|
193 ** |
|
194 ** SIZE DESCRIPTION |
|
195 ** 4 Page number of next overflow page |
|
196 ** * Data |
|
197 ** |
|
198 ** Freelist pages come in two subtypes: trunk pages and leaf pages. The |
|
199 ** file header points to first in a linked list of trunk page. Each trunk |
|
200 ** page points to multiple leaf pages. The content of a leaf page is |
|
201 ** unspecified. A trunk page looks like this: |
|
202 ** |
|
203 ** SIZE DESCRIPTION |
|
204 ** 4 Page number of next trunk page |
|
205 ** 4 Number of leaf pointers on this page |
|
206 ** * zero or more pages numbers of leaves |
|
207 */ |
|
208 #include "sqliteInt.h" |
|
209 #include "pager.h" |
|
210 #include "btree.h" |
|
211 #include "os.h" |
|
212 #include <assert.h> |
|
213 |
|
214 /* Round up a number to the next larger multiple of 8. This is used |
|
215 ** to force 8-byte alignment on 64-bit architectures. |
|
216 */ |
|
217 #define ROUND8(x) ((x+7)&~7) |
|
218 |
|
219 |
|
220 /* The following value is the maximum cell size assuming a maximum page |
|
221 ** size give above. |
|
222 */ |
|
223 #define MX_CELL_SIZE(pBt) (pBt->pageSize-8) |
|
224 |
|
225 /* The maximum number of cells on a single page of the database. This |
|
226 ** assumes a minimum cell size of 3 bytes. Such small cells will be |
|
227 ** exceedingly rare, but they are possible. |
|
228 */ |
|
229 #define MX_CELL(pBt) ((pBt->pageSize-8)/3) |
|
230 |
|
231 /* Forward declarations */ |
|
232 typedef struct MemPage MemPage; |
|
233 typedef struct BtLock BtLock; |
|
234 |
|
235 /* |
|
236 ** This is a magic string that appears at the beginning of every |
|
237 ** SQLite database in order to identify the file as a real database. |
|
238 ** |
|
239 ** You can change this value at compile-time by specifying a |
|
240 ** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The |
|
241 ** header must be exactly 16 bytes including the zero-terminator so |
|
242 ** the string itself should be 15 characters long. If you change |
|
243 ** the header, then your custom library will not be able to read |
|
244 ** databases generated by the standard tools and the standard tools |
|
245 ** will not be able to read databases created by your custom library. |
|
246 */ |
|
247 #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */ |
|
248 # define SQLITE_FILE_HEADER "SQLite format 3" |
|
249 #endif |
|
250 static const char zMagicHeader[] = SQLITE_FILE_HEADER; |
|
251 |
|
252 /* |
|
253 ** Page type flags. An ORed combination of these flags appear as the |
|
254 ** first byte of every BTree page. |
|
255 */ |
|
256 #define PTF_INTKEY 0x01 |
|
257 #define PTF_ZERODATA 0x02 |
|
258 #define PTF_LEAFDATA 0x04 |
|
259 #define PTF_LEAF 0x08 |
|
260 |
|
261 /* |
|
262 ** As each page of the file is loaded into memory, an instance of the following |
|
263 ** structure is appended and initialized to zero. This structure stores |
|
264 ** information about the page that is decoded from the raw file page. |
|
265 ** |
|
266 ** The pParent field points back to the parent page. This allows us to |
|
267 ** walk up the BTree from any leaf to the root. Care must be taken to |
|
268 ** unref() the parent page pointer when this page is no longer referenced. |
|
269 ** The pageDestructor() routine handles that chore. |
|
270 */ |
|
271 struct MemPage { |
|
272 u8 isInit; /* True if previously initialized. MUST BE FIRST! */ |
|
273 u8 idxShift; /* True if Cell indices have changed */ |
|
274 u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ |
|
275 u8 intKey; /* True if intkey flag is set */ |
|
276 u8 leaf; /* True if leaf flag is set */ |
|
277 u8 zeroData; /* True if table stores keys only */ |
|
278 u8 leafData; /* True if tables stores data on leaves only */ |
|
279 u8 hasData; /* True if this page stores data */ |
|
280 u8 hdrOffset; /* 100 for page 1. 0 otherwise */ |
|
281 u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ |
|
282 u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */ |
|
283 u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */ |
|
284 u16 cellOffset; /* Index in aData of first cell pointer */ |
|
285 u16 idxParent; /* Index in parent of this node */ |
|
286 u16 nFree; /* Number of free bytes on the page */ |
|
287 u16 nCell; /* Number of cells on this page, local and ovfl */ |
|
288 struct _OvflCell { /* Cells that will not fit on aData[] */ |
|
289 u8 *pCell; /* Pointers to the body of the overflow cell */ |
|
290 u16 idx; /* Insert this cell before idx-th non-overflow cell */ |
|
291 } aOvfl[5]; |
|
292 BtShared *pBt; /* Pointer back to BTree structure */ |
|
293 u8 *aData; /* Pointer back to the start of the page */ |
|
294 Pgno pgno; /* Page number for this page */ |
|
295 MemPage *pParent; /* The parent of this page. NULL for root */ |
|
296 }; |
|
297 |
|
298 /* |
|
299 ** The in-memory image of a disk page has the auxiliary information appended |
|
300 ** to the end. EXTRA_SIZE is the number of bytes of space needed to hold |
|
301 ** that extra information. |
|
302 */ |
|
303 #define EXTRA_SIZE sizeof(MemPage) |
|
304 |
|
305 /* Btree handle */ |
|
306 struct Btree { |
|
307 sqlite3 *pSqlite; |
|
308 BtShared *pBt; |
|
309 u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ |
|
310 }; |
|
311 |
|
312 /* |
|
313 ** Btree.inTrans may take one of the following values. |
|
314 ** |
|
315 ** If the shared-data extension is enabled, there may be multiple users |
|
316 ** of the Btree structure. At most one of these may open a write transaction, |
|
317 ** but any number may have active read transactions. Variable Btree.pDb |
|
318 ** points to the handle that owns any current write-transaction. |
|
319 */ |
|
320 #define TRANS_NONE 0 |
|
321 #define TRANS_READ 1 |
|
322 #define TRANS_WRITE 2 |
|
323 |
|
324 /* |
|
325 ** Everything we need to know about an open database |
|
326 */ |
|
327 struct BtShared { |
|
328 Pager *pPager; /* The page cache */ |
|
329 BtCursor *pCursor; /* A list of all open cursors */ |
|
330 MemPage *pPage1; /* First page of the database */ |
|
331 u8 inStmt; /* True if we are in a statement subtransaction */ |
|
332 u8 readOnly; /* True if the underlying file is readonly */ |
|
333 u8 maxEmbedFrac; /* Maximum payload as % of total page size */ |
|
334 u8 minEmbedFrac; /* Minimum payload as % of total page size */ |
|
335 u8 minLeafFrac; /* Minimum leaf payload as % of total page size */ |
|
336 u8 pageSizeFixed; /* True if the page size can no longer be changed */ |
|
337 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
338 u8 autoVacuum; /* True if database supports auto-vacuum */ |
|
339 #endif |
|
340 u16 pageSize; /* Total number of bytes on a page */ |
|
341 u16 usableSize; /* Number of usable bytes on each page */ |
|
342 int maxLocal; /* Maximum local payload in non-LEAFDATA tables */ |
|
343 int minLocal; /* Minimum local payload in non-LEAFDATA tables */ |
|
344 int maxLeaf; /* Maximum local payload in a LEAFDATA table */ |
|
345 int minLeaf; /* Minimum local payload in a LEAFDATA table */ |
|
346 BusyHandler *pBusyHandler; /* Callback for when there is lock contention */ |
|
347 u8 inTransaction; /* Transaction state */ |
|
348 int nRef; /* Number of references to this structure */ |
|
349 int nTransaction; /* Number of open transactions (read + write) */ |
|
350 void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */ |
|
351 void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */ |
|
352 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
353 BtLock *pLock; /* List of locks held on this shared-btree struct */ |
|
354 BtShared *pNext; /* Next in ThreadData.pBtree linked list */ |
|
355 #endif |
|
356 }; |
|
357 |
|
358 /* |
|
359 ** An instance of the following structure is used to hold information |
|
360 ** about a cell. The parseCellPtr() function fills in this structure |
|
361 ** based on information extract from the raw disk page. |
|
362 */ |
|
363 typedef struct CellInfo CellInfo; |
|
364 struct CellInfo { |
|
365 u8 *pCell; /* Pointer to the start of cell content */ |
|
366 i64 nKey; /* The key for INTKEY tables, or number of bytes in key */ |
|
367 u32 nData; /* Number of bytes of data */ |
|
368 u16 nHeader; /* Size of the cell content header in bytes */ |
|
369 u16 nLocal; /* Amount of payload held locally */ |
|
370 u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */ |
|
371 u16 nSize; /* Size of the cell content on the main b-tree page */ |
|
372 }; |
|
373 |
|
374 /* |
|
375 ** A cursor is a pointer to a particular entry in the BTree. |
|
376 ** The entry is identified by its MemPage and the index in |
|
377 ** MemPage.aCell[] of the entry. |
|
378 */ |
|
379 struct BtCursor { |
|
380 Btree *pBtree; /* The Btree to which this cursor belongs */ |
|
381 BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ |
|
382 int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */ |
|
383 void *pArg; /* First arg to xCompare() */ |
|
384 Pgno pgnoRoot; /* The root page of this tree */ |
|
385 MemPage *pPage; /* Page that contains the entry */ |
|
386 int idx; /* Index of the entry in pPage->aCell[] */ |
|
387 CellInfo info; /* A parse of the cell we are pointing at */ |
|
388 u8 wrFlag; /* True if writable */ |
|
389 u8 eState; /* One of the CURSOR_XXX constants (see below) */ |
|
390 void *pKey; /* Saved key that was cursor's last known position */ |
|
391 i64 nKey; /* Size of pKey, or last integer key */ |
|
392 int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */ |
|
393 }; |
|
394 |
|
395 /* |
|
396 ** Potential values for BtCursor.eState. |
|
397 ** |
|
398 ** CURSOR_VALID: |
|
399 ** Cursor points to a valid entry. getPayload() etc. may be called. |
|
400 ** |
|
401 ** CURSOR_INVALID: |
|
402 ** Cursor does not point to a valid entry. This can happen (for example) |
|
403 ** because the table is empty or because BtreeCursorFirst() has not been |
|
404 ** called. |
|
405 ** |
|
406 ** CURSOR_REQUIRESEEK: |
|
407 ** The table that this cursor was opened on still exists, but has been |
|
408 ** modified since the cursor was last used. The cursor position is saved |
|
409 ** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in |
|
410 ** this state, restoreOrClearCursorPosition() can be called to attempt to |
|
411 ** seek the cursor to the saved position. |
|
412 */ |
|
413 #define CURSOR_INVALID 0 |
|
414 #define CURSOR_VALID 1 |
|
415 #define CURSOR_REQUIRESEEK 2 |
|
416 |
|
417 /* |
|
418 ** The TRACE macro will print high-level status information about the |
|
419 ** btree operation when the global variable sqlite3_btree_trace is |
|
420 ** enabled. |
|
421 */ |
|
422 #if SQLITE_TEST |
|
423 # define TRACE(X) if( sqlite3_btree_trace )\ |
|
424 { sqlite3DebugPrintf X; fflush(stdout); } |
|
425 int sqlite3_btree_trace=0; /* True to enable tracing */ |
|
426 #else |
|
427 # define TRACE(X) |
|
428 #endif |
|
429 |
|
430 /* |
|
431 ** Forward declaration |
|
432 */ |
|
433 static int checkReadLocks(Btree*,Pgno,BtCursor*); |
|
434 |
|
435 /* |
|
436 ** Read or write a two- and four-byte big-endian integer values. |
|
437 */ |
|
438 static u32 get2byte(unsigned char *p){ |
|
439 return (p[0]<<8) | p[1]; |
|
440 } |
|
441 static u32 get4byte(unsigned char *p){ |
|
442 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; |
|
443 } |
|
444 static void put2byte(unsigned char *p, u32 v){ |
|
445 p[0] = v>>8; |
|
446 p[1] = v; |
|
447 } |
|
448 static void put4byte(unsigned char *p, u32 v){ |
|
449 p[0] = v>>24; |
|
450 p[1] = v>>16; |
|
451 p[2] = v>>8; |
|
452 p[3] = v; |
|
453 } |
|
454 |
|
455 /* |
|
456 ** Routines to read and write variable-length integers. These used to |
|
457 ** be defined locally, but now we use the varint routines in the util.c |
|
458 ** file. |
|
459 */ |
|
460 #define getVarint sqlite3GetVarint |
|
461 /* #define getVarint32 sqlite3GetVarint32 */ |
|
462 #define getVarint32(A,B) ((*B=*(A))<=0x7f?1:sqlite3GetVarint32(A,B)) |
|
463 #define putVarint sqlite3PutVarint |
|
464 |
|
465 /* The database page the PENDING_BYTE occupies. This page is never used. |
|
466 ** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They |
|
467 ** should possibly be consolidated (presumably in pager.h). |
|
468 ** |
|
469 ** If disk I/O is omitted (meaning that the database is stored purely |
|
470 ** in memory) then there is no pending byte. |
|
471 */ |
|
472 #ifdef SQLITE_OMIT_DISKIO |
|
473 # define PENDING_BYTE_PAGE(pBt) 0x7fffffff |
|
474 #else |
|
475 # define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1) |
|
476 #endif |
|
477 |
|
478 /* |
|
479 ** A linked list of the following structures is stored at BtShared.pLock. |
|
480 ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor |
|
481 ** is opened on the table with root page BtShared.iTable. Locks are removed |
|
482 ** from this list when a transaction is committed or rolled back, or when |
|
483 ** a btree handle is closed. |
|
484 */ |
|
485 struct BtLock { |
|
486 Btree *pBtree; /* Btree handle holding this lock */ |
|
487 Pgno iTable; /* Root page of table */ |
|
488 u8 eLock; /* READ_LOCK or WRITE_LOCK */ |
|
489 BtLock *pNext; /* Next in BtShared.pLock list */ |
|
490 }; |
|
491 |
|
492 /* Candidate values for BtLock.eLock */ |
|
493 #define READ_LOCK 1 |
|
494 #define WRITE_LOCK 2 |
|
495 |
|
496 #ifdef SQLITE_OMIT_SHARED_CACHE |
|
497 /* |
|
498 ** The functions queryTableLock(), lockTable() and unlockAllTables() |
|
499 ** manipulate entries in the BtShared.pLock linked list used to store |
|
500 ** shared-cache table level locks. If the library is compiled with the |
|
501 ** shared-cache feature disabled, then there is only ever one user |
|
502 ** of each BtShared structure and so this locking is not necessary. |
|
503 ** So define the lock related functions as no-ops. |
|
504 */ |
|
505 #define queryTableLock(a,b,c) SQLITE_OK |
|
506 #define lockTable(a,b,c) SQLITE_OK |
|
507 #define unlockAllTables(a) |
|
508 #else |
|
509 |
|
510 |
|
511 /* |
|
512 ** Query to see if btree handle p may obtain a lock of type eLock |
|
513 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return |
|
514 ** SQLITE_OK if the lock may be obtained (by calling lockTable()), or |
|
515 ** SQLITE_LOCKED if not. |
|
516 */ |
|
517 static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){ |
|
518 BtShared *pBt = p->pBt; |
|
519 BtLock *pIter; |
|
520 |
|
521 /* This is a no-op if the shared-cache is not enabled */ |
|
522 if( 0==sqlite3ThreadDataReadOnly()->useSharedData ){ |
|
523 return SQLITE_OK; |
|
524 } |
|
525 |
|
526 /* This (along with lockTable()) is where the ReadUncommitted flag is |
|
527 ** dealt with. If the caller is querying for a read-lock and the flag is |
|
528 ** set, it is unconditionally granted - even if there are write-locks |
|
529 ** on the table. If a write-lock is requested, the ReadUncommitted flag |
|
530 ** is not considered. |
|
531 ** |
|
532 ** In function lockTable(), if a read-lock is demanded and the |
|
533 ** ReadUncommitted flag is set, no entry is added to the locks list |
|
534 ** (BtShared.pLock). |
|
535 ** |
|
536 ** To summarize: If the ReadUncommitted flag is set, then read cursors do |
|
537 ** not create or respect table locks. The locking procedure for a |
|
538 ** write-cursor does not change. |
|
539 */ |
|
540 if( |
|
541 !p->pSqlite || |
|
542 0==(p->pSqlite->flags&SQLITE_ReadUncommitted) || |
|
543 eLock==WRITE_LOCK || |
|
544 iTab==MASTER_ROOT |
|
545 ){ |
|
546 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
|
547 if( pIter->pBtree!=p && pIter->iTable==iTab && |
|
548 (pIter->eLock!=eLock || eLock!=READ_LOCK) ){ |
|
549 return SQLITE_LOCKED; |
|
550 } |
|
551 } |
|
552 } |
|
553 return SQLITE_OK; |
|
554 } |
|
555 |
|
556 /* |
|
557 ** Add a lock on the table with root-page iTable to the shared-btree used |
|
558 ** by Btree handle p. Parameter eLock must be either READ_LOCK or |
|
559 ** WRITE_LOCK. |
|
560 ** |
|
561 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and |
|
562 ** SQLITE_NOMEM may also be returned. |
|
563 */ |
|
564 static int lockTable(Btree *p, Pgno iTable, u8 eLock){ |
|
565 BtShared *pBt = p->pBt; |
|
566 BtLock *pLock = 0; |
|
567 BtLock *pIter; |
|
568 |
|
569 /* This is a no-op if the shared-cache is not enabled */ |
|
570 if( 0==sqlite3ThreadDataReadOnly()->useSharedData ){ |
|
571 return SQLITE_OK; |
|
572 } |
|
573 |
|
574 assert( SQLITE_OK==queryTableLock(p, iTable, eLock) ); |
|
575 |
|
576 /* If the read-uncommitted flag is set and a read-lock is requested, |
|
577 ** return early without adding an entry to the BtShared.pLock list. See |
|
578 ** comment in function queryTableLock() for more info on handling |
|
579 ** the ReadUncommitted flag. |
|
580 */ |
|
581 if( |
|
582 (p->pSqlite) && |
|
583 (p->pSqlite->flags&SQLITE_ReadUncommitted) && |
|
584 (eLock==READ_LOCK) && |
|
585 iTable!=MASTER_ROOT |
|
586 ){ |
|
587 return SQLITE_OK; |
|
588 } |
|
589 |
|
590 /* First search the list for an existing lock on this table. */ |
|
591 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
|
592 if( pIter->iTable==iTable && pIter->pBtree==p ){ |
|
593 pLock = pIter; |
|
594 break; |
|
595 } |
|
596 } |
|
597 |
|
598 /* If the above search did not find a BtLock struct associating Btree p |
|
599 ** with table iTable, allocate one and link it into the list. |
|
600 */ |
|
601 if( !pLock ){ |
|
602 pLock = (BtLock *)sqliteMalloc(sizeof(BtLock)); |
|
603 if( !pLock ){ |
|
604 return SQLITE_NOMEM; |
|
605 } |
|
606 pLock->iTable = iTable; |
|
607 pLock->pBtree = p; |
|
608 pLock->pNext = pBt->pLock; |
|
609 pBt->pLock = pLock; |
|
610 } |
|
611 |
|
612 /* Set the BtLock.eLock variable to the maximum of the current lock |
|
613 ** and the requested lock. This means if a write-lock was already held |
|
614 ** and a read-lock requested, we don't incorrectly downgrade the lock. |
|
615 */ |
|
616 assert( WRITE_LOCK>READ_LOCK ); |
|
617 if( eLock>pLock->eLock ){ |
|
618 pLock->eLock = eLock; |
|
619 } |
|
620 |
|
621 return SQLITE_OK; |
|
622 } |
|
623 |
|
624 /* |
|
625 ** Release all the table locks (locks obtained via calls to the lockTable() |
|
626 ** procedure) held by Btree handle p. |
|
627 */ |
|
628 static void unlockAllTables(Btree *p){ |
|
629 BtLock **ppIter = &p->pBt->pLock; |
|
630 |
|
631 /* If the shared-cache extension is not enabled, there should be no |
|
632 ** locks in the BtShared.pLock list, making this procedure a no-op. Assert |
|
633 ** that this is the case. |
|
634 */ |
|
635 assert( sqlite3ThreadDataReadOnly()->useSharedData || 0==*ppIter ); |
|
636 |
|
637 while( *ppIter ){ |
|
638 BtLock *pLock = *ppIter; |
|
639 if( pLock->pBtree==p ){ |
|
640 *ppIter = pLock->pNext; |
|
641 sqliteFree(pLock); |
|
642 }else{ |
|
643 ppIter = &pLock->pNext; |
|
644 } |
|
645 } |
|
646 } |
|
647 #endif /* SQLITE_OMIT_SHARED_CACHE */ |
|
648 |
|
649 static void releasePage(MemPage *pPage); /* Forward reference */ |
|
650 |
|
651 /* |
|
652 ** Save the current cursor position in the variables BtCursor.nKey |
|
653 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. |
|
654 */ |
|
655 static int saveCursorPosition(BtCursor *pCur){ |
|
656 int rc; |
|
657 |
|
658 assert( CURSOR_VALID==pCur->eState ); |
|
659 assert( 0==pCur->pKey ); |
|
660 |
|
661 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); |
|
662 |
|
663 /* If this is an intKey table, then the above call to BtreeKeySize() |
|
664 ** stores the integer key in pCur->nKey. In this case this value is |
|
665 ** all that is required. Otherwise, if pCur is not open on an intKey |
|
666 ** table, then malloc space for and store the pCur->nKey bytes of key |
|
667 ** data. |
|
668 */ |
|
669 if( rc==SQLITE_OK && 0==pCur->pPage->intKey){ |
|
670 void *pKey = sqliteMalloc(pCur->nKey); |
|
671 if( pKey ){ |
|
672 rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey); |
|
673 if( rc==SQLITE_OK ){ |
|
674 pCur->pKey = pKey; |
|
675 }else{ |
|
676 sqliteFree(pKey); |
|
677 } |
|
678 }else{ |
|
679 rc = SQLITE_NOMEM; |
|
680 } |
|
681 } |
|
682 assert( !pCur->pPage->intKey || !pCur->pKey ); |
|
683 |
|
684 if( rc==SQLITE_OK ){ |
|
685 releasePage(pCur->pPage); |
|
686 pCur->pPage = 0; |
|
687 pCur->eState = CURSOR_REQUIRESEEK; |
|
688 } |
|
689 |
|
690 return rc; |
|
691 } |
|
692 |
|
693 /* |
|
694 ** Save the positions of all cursors except pExcept open on the table |
|
695 ** with root-page iRoot. Usually, this is called just before cursor |
|
696 ** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()). |
|
697 */ |
|
698 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ |
|
699 BtCursor *p; |
|
700 for(p=pBt->pCursor; p; p=p->pNext){ |
|
701 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && |
|
702 p->eState==CURSOR_VALID ){ |
|
703 int rc = saveCursorPosition(p); |
|
704 if( SQLITE_OK!=rc ){ |
|
705 return rc; |
|
706 } |
|
707 } |
|
708 } |
|
709 return SQLITE_OK; |
|
710 } |
|
711 |
|
712 /* |
|
713 ** Restore the cursor to the position it was in (or as close to as possible) |
|
714 ** when saveCursorPosition() was called. Note that this call deletes the |
|
715 ** saved position info stored by saveCursorPosition(), so there can be |
|
716 ** at most one effective restoreOrClearCursorPosition() call after each |
|
717 ** saveCursorPosition(). |
|
718 ** |
|
719 ** If the second argument argument - doSeek - is false, then instead of |
|
720 ** returning the cursor to it's saved position, any saved position is deleted |
|
721 ** and the cursor state set to CURSOR_INVALID. |
|
722 */ |
|
723 static int restoreOrClearCursorPositionX(BtCursor *pCur, int doSeek){ |
|
724 int rc = SQLITE_OK; |
|
725 assert( pCur->eState==CURSOR_REQUIRESEEK ); |
|
726 pCur->eState = CURSOR_INVALID; |
|
727 if( doSeek ){ |
|
728 rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, &pCur->skip); |
|
729 } |
|
730 if( rc==SQLITE_OK ){ |
|
731 sqliteFree(pCur->pKey); |
|
732 pCur->pKey = 0; |
|
733 assert( CURSOR_VALID==pCur->eState || CURSOR_INVALID==pCur->eState ); |
|
734 } |
|
735 return rc; |
|
736 } |
|
737 |
|
738 #define restoreOrClearCursorPosition(p,x) \ |
|
739 (p->eState==CURSOR_REQUIRESEEK?restoreOrClearCursorPositionX(p,x):SQLITE_OK) |
|
740 |
|
741 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
742 /* |
|
743 ** These macros define the location of the pointer-map entry for a |
|
744 ** database page. The first argument to each is the number of usable |
|
745 ** bytes on each page of the database (often 1024). The second is the |
|
746 ** page number to look up in the pointer map. |
|
747 ** |
|
748 ** PTRMAP_PAGENO returns the database page number of the pointer-map |
|
749 ** page that stores the required pointer. PTRMAP_PTROFFSET returns |
|
750 ** the offset of the requested map entry. |
|
751 ** |
|
752 ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page, |
|
753 ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be |
|
754 ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements |
|
755 ** this test. |
|
756 */ |
|
757 #define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno) |
|
758 #define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1)) |
|
759 #define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno)) |
|
760 |
|
761 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ |
|
762 int nPagesPerMapPage = (pBt->usableSize/5)+1; |
|
763 int iPtrMap = (pgno-2)/nPagesPerMapPage; |
|
764 int ret = (iPtrMap*nPagesPerMapPage) + 2; |
|
765 if( ret==PENDING_BYTE_PAGE(pBt) ){ |
|
766 ret++; |
|
767 } |
|
768 return ret; |
|
769 } |
|
770 |
|
771 /* |
|
772 ** The pointer map is a lookup table that identifies the parent page for |
|
773 ** each child page in the database file. The parent page is the page that |
|
774 ** contains a pointer to the child. Every page in the database contains |
|
775 ** 0 or 1 parent pages. (In this context 'database page' refers |
|
776 ** to any page that is not part of the pointer map itself.) Each pointer map |
|
777 ** entry consists of a single byte 'type' and a 4 byte parent page number. |
|
778 ** The PTRMAP_XXX identifiers below are the valid types. |
|
779 ** |
|
780 ** The purpose of the pointer map is to facility moving pages from one |
|
781 ** position in the file to another as part of autovacuum. When a page |
|
782 ** is moved, the pointer in its parent must be updated to point to the |
|
783 ** new location. The pointer map is used to locate the parent page quickly. |
|
784 ** |
|
785 ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not |
|
786 ** used in this case. |
|
787 ** |
|
788 ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number |
|
789 ** is not used in this case. |
|
790 ** |
|
791 ** PTRMAP_OVERFLOW1: The database page is the first page in a list of |
|
792 ** overflow pages. The page number identifies the page that |
|
793 ** contains the cell with a pointer to this overflow page. |
|
794 ** |
|
795 ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of |
|
796 ** overflow pages. The page-number identifies the previous |
|
797 ** page in the overflow page list. |
|
798 ** |
|
799 ** PTRMAP_BTREE: The database page is a non-root btree page. The page number |
|
800 ** identifies the parent page in the btree. |
|
801 */ |
|
802 #define PTRMAP_ROOTPAGE 1 |
|
803 #define PTRMAP_FREEPAGE 2 |
|
804 #define PTRMAP_OVERFLOW1 3 |
|
805 #define PTRMAP_OVERFLOW2 4 |
|
806 #define PTRMAP_BTREE 5 |
|
807 |
|
808 /* |
|
809 ** Write an entry into the pointer map. |
|
810 ** |
|
811 ** This routine updates the pointer map entry for page number 'key' |
|
812 ** so that it maps to type 'eType' and parent page number 'pgno'. |
|
813 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. |
|
814 */ |
|
815 static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){ |
|
816 u8 *pPtrmap; /* The pointer map page */ |
|
817 Pgno iPtrmap; /* The pointer map page number */ |
|
818 int offset; /* Offset in pointer map page */ |
|
819 int rc; |
|
820 |
|
821 /* The master-journal page number must never be used as a pointer map page */ |
|
822 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); |
|
823 |
|
824 assert( pBt->autoVacuum ); |
|
825 if( key==0 ){ |
|
826 return SQLITE_CORRUPT_BKPT; |
|
827 } |
|
828 iPtrmap = PTRMAP_PAGENO(pBt, key); |
|
829 rc = sqlite3pager_get(pBt->pPager, iPtrmap, (void **)&pPtrmap); |
|
830 if( rc!=SQLITE_OK ){ |
|
831 return rc; |
|
832 } |
|
833 offset = PTRMAP_PTROFFSET(pBt, key); |
|
834 |
|
835 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ |
|
836 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); |
|
837 rc = sqlite3pager_write(pPtrmap); |
|
838 if( rc==SQLITE_OK ){ |
|
839 pPtrmap[offset] = eType; |
|
840 put4byte(&pPtrmap[offset+1], parent); |
|
841 } |
|
842 } |
|
843 |
|
844 sqlite3pager_unref(pPtrmap); |
|
845 return rc; |
|
846 } |
|
847 |
|
848 /* |
|
849 ** Read an entry from the pointer map. |
|
850 ** |
|
851 ** This routine retrieves the pointer map entry for page 'key', writing |
|
852 ** the type and parent page number to *pEType and *pPgno respectively. |
|
853 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. |
|
854 */ |
|
855 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ |
|
856 int iPtrmap; /* Pointer map page index */ |
|
857 u8 *pPtrmap; /* Pointer map page data */ |
|
858 int offset; /* Offset of entry in pointer map */ |
|
859 int rc; |
|
860 |
|
861 iPtrmap = PTRMAP_PAGENO(pBt, key); |
|
862 rc = sqlite3pager_get(pBt->pPager, iPtrmap, (void **)&pPtrmap); |
|
863 if( rc!=0 ){ |
|
864 return rc; |
|
865 } |
|
866 |
|
867 offset = PTRMAP_PTROFFSET(pBt, key); |
|
868 assert( pEType!=0 ); |
|
869 *pEType = pPtrmap[offset]; |
|
870 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); |
|
871 |
|
872 sqlite3pager_unref(pPtrmap); |
|
873 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; |
|
874 return SQLITE_OK; |
|
875 } |
|
876 |
|
877 #endif /* SQLITE_OMIT_AUTOVACUUM */ |
|
878 |
|
879 /* |
|
880 ** Given a btree page and a cell index (0 means the first cell on |
|
881 ** the page, 1 means the second cell, and so forth) return a pointer |
|
882 ** to the cell content. |
|
883 ** |
|
884 ** This routine works only for pages that do not contain overflow cells. |
|
885 */ |
|
886 static u8 *findCell(MemPage *pPage, int iCell){ |
|
887 u8 *data = pPage->aData; |
|
888 assert( iCell>=0 ); |
|
889 assert( iCell<get2byte(&data[pPage->hdrOffset+3]) ); |
|
890 return data + get2byte(&data[pPage->cellOffset+2*iCell]); |
|
891 } |
|
892 |
|
893 /* |
|
894 ** This a more complex version of findCell() that works for |
|
895 ** pages that do contain overflow cells. See insert |
|
896 */ |
|
897 static u8 *findOverflowCell(MemPage *pPage, int iCell){ |
|
898 int i; |
|
899 for(i=pPage->nOverflow-1; i>=0; i--){ |
|
900 int k; |
|
901 struct _OvflCell *pOvfl; |
|
902 pOvfl = &pPage->aOvfl[i]; |
|
903 k = pOvfl->idx; |
|
904 if( k<=iCell ){ |
|
905 if( k==iCell ){ |
|
906 return pOvfl->pCell; |
|
907 } |
|
908 iCell--; |
|
909 } |
|
910 } |
|
911 return findCell(pPage, iCell); |
|
912 } |
|
913 |
|
914 /* |
|
915 ** Parse a cell content block and fill in the CellInfo structure. There |
|
916 ** are two versions of this function. parseCell() takes a cell index |
|
917 ** as the second argument and parseCellPtr() takes a pointer to the |
|
918 ** body of the cell as its second argument. |
|
919 */ |
|
920 static void parseCellPtr( |
|
921 MemPage *pPage, /* Page containing the cell */ |
|
922 u8 *pCell, /* Pointer to the cell text. */ |
|
923 CellInfo *pInfo /* Fill in this structure */ |
|
924 ){ |
|
925 int n; /* Number bytes in cell content header */ |
|
926 u32 nPayload; /* Number of bytes of cell payload */ |
|
927 |
|
928 pInfo->pCell = pCell; |
|
929 assert( pPage->leaf==0 || pPage->leaf==1 ); |
|
930 n = pPage->childPtrSize; |
|
931 assert( n==4-4*pPage->leaf ); |
|
932 if( pPage->hasData ){ |
|
933 n += getVarint32(&pCell[n], &nPayload); |
|
934 }else{ |
|
935 nPayload = 0; |
|
936 } |
|
937 pInfo->nData = nPayload; |
|
938 if( pPage->intKey ){ |
|
939 n += getVarint(&pCell[n], (u64 *)&pInfo->nKey); |
|
940 }else{ |
|
941 u32 x; |
|
942 n += getVarint32(&pCell[n], &x); |
|
943 pInfo->nKey = x; |
|
944 nPayload += x; |
|
945 } |
|
946 pInfo->nHeader = n; |
|
947 if( nPayload<=pPage->maxLocal ){ |
|
948 /* This is the (easy) common case where the entire payload fits |
|
949 ** on the local page. No overflow is required. |
|
950 */ |
|
951 int nSize; /* Total size of cell content in bytes */ |
|
952 pInfo->nLocal = nPayload; |
|
953 pInfo->iOverflow = 0; |
|
954 nSize = nPayload + n; |
|
955 if( nSize<4 ){ |
|
956 nSize = 4; /* Minimum cell size is 4 */ |
|
957 } |
|
958 pInfo->nSize = nSize; |
|
959 }else{ |
|
960 /* If the payload will not fit completely on the local page, we have |
|
961 ** to decide how much to store locally and how much to spill onto |
|
962 ** overflow pages. The strategy is to minimize the amount of unused |
|
963 ** space on overflow pages while keeping the amount of local storage |
|
964 ** in between minLocal and maxLocal. |
|
965 ** |
|
966 ** Warning: changing the way overflow payload is distributed in any |
|
967 ** way will result in an incompatible file format. |
|
968 */ |
|
969 int minLocal; /* Minimum amount of payload held locally */ |
|
970 int maxLocal; /* Maximum amount of payload held locally */ |
|
971 int surplus; /* Overflow payload available for local storage */ |
|
972 |
|
973 minLocal = pPage->minLocal; |
|
974 maxLocal = pPage->maxLocal; |
|
975 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4); |
|
976 if( surplus <= maxLocal ){ |
|
977 pInfo->nLocal = surplus; |
|
978 }else{ |
|
979 pInfo->nLocal = minLocal; |
|
980 } |
|
981 pInfo->iOverflow = pInfo->nLocal + n; |
|
982 pInfo->nSize = pInfo->iOverflow + 4; |
|
983 } |
|
984 } |
|
985 static void parseCell( |
|
986 MemPage *pPage, /* Page containing the cell */ |
|
987 int iCell, /* The cell index. First cell is 0 */ |
|
988 CellInfo *pInfo /* Fill in this structure */ |
|
989 ){ |
|
990 parseCellPtr(pPage, findCell(pPage, iCell), pInfo); |
|
991 } |
|
992 |
|
993 /* |
|
994 ** Compute the total number of bytes that a Cell needs in the cell |
|
995 ** data area of the btree-page. The return number includes the cell |
|
996 ** data header and the local payload, but not any overflow page or |
|
997 ** the space used by the cell pointer. |
|
998 */ |
|
999 #ifndef NDEBUG |
|
1000 static int cellSize(MemPage *pPage, int iCell){ |
|
1001 CellInfo info; |
|
1002 parseCell(pPage, iCell, &info); |
|
1003 return info.nSize; |
|
1004 } |
|
1005 #endif |
|
1006 static int cellSizePtr(MemPage *pPage, u8 *pCell){ |
|
1007 CellInfo info; |
|
1008 parseCellPtr(pPage, pCell, &info); |
|
1009 return info.nSize; |
|
1010 } |
|
1011 |
|
1012 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
1013 /* |
|
1014 ** If the cell pCell, part of page pPage contains a pointer |
|
1015 ** to an overflow page, insert an entry into the pointer-map |
|
1016 ** for the overflow page. |
|
1017 */ |
|
1018 static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){ |
|
1019 if( pCell ){ |
|
1020 CellInfo info; |
|
1021 parseCellPtr(pPage, pCell, &info); |
|
1022 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){ |
|
1023 Pgno ovfl = get4byte(&pCell[info.iOverflow]); |
|
1024 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno); |
|
1025 } |
|
1026 } |
|
1027 return SQLITE_OK; |
|
1028 } |
|
1029 /* |
|
1030 ** If the cell with index iCell on page pPage contains a pointer |
|
1031 ** to an overflow page, insert an entry into the pointer-map |
|
1032 ** for the overflow page. |
|
1033 */ |
|
1034 static int ptrmapPutOvfl(MemPage *pPage, int iCell){ |
|
1035 u8 *pCell; |
|
1036 pCell = findOverflowCell(pPage, iCell); |
|
1037 return ptrmapPutOvflPtr(pPage, pCell); |
|
1038 } |
|
1039 #endif |
|
1040 |
|
1041 |
|
1042 /* |
|
1043 ** Do sanity checking on a page. Throw an exception if anything is |
|
1044 ** not right. |
|
1045 ** |
|
1046 ** This routine is used for internal error checking only. It is omitted |
|
1047 ** from most builds. |
|
1048 */ |
|
1049 #if defined(BTREE_DEBUG) && !defined(NDEBUG) && 0 |
|
1050 static void _pageIntegrity(MemPage *pPage){ |
|
1051 int usableSize; |
|
1052 u8 *data; |
|
1053 int i, j, idx, c, pc, hdr, nFree; |
|
1054 int cellOffset; |
|
1055 int nCell, cellLimit; |
|
1056 u8 *used; |
|
1057 |
|
1058 used = sqliteMallocRaw( pPage->pBt->pageSize ); |
|
1059 if( used==0 ) return; |
|
1060 usableSize = pPage->pBt->usableSize; |
|
1061 assert( pPage->aData==&((unsigned char*)pPage)[-pPage->pBt->pageSize] ); |
|
1062 hdr = pPage->hdrOffset; |
|
1063 assert( hdr==(pPage->pgno==1 ? 100 : 0) ); |
|
1064 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) ); |
|
1065 c = pPage->aData[hdr]; |
|
1066 if( pPage->isInit ){ |
|
1067 assert( pPage->leaf == ((c & PTF_LEAF)!=0) ); |
|
1068 assert( pPage->zeroData == ((c & PTF_ZERODATA)!=0) ); |
|
1069 assert( pPage->leafData == ((c & PTF_LEAFDATA)!=0) ); |
|
1070 assert( pPage->intKey == ((c & (PTF_INTKEY|PTF_LEAFDATA))!=0) ); |
|
1071 assert( pPage->hasData == |
|
1072 !(pPage->zeroData || (!pPage->leaf && pPage->leafData)) ); |
|
1073 assert( pPage->cellOffset==pPage->hdrOffset+12-4*pPage->leaf ); |
|
1074 assert( pPage->nCell = get2byte(&pPage->aData[hdr+3]) ); |
|
1075 } |
|
1076 data = pPage->aData; |
|
1077 memset(used, 0, usableSize); |
|
1078 for(i=0; i<hdr+10-pPage->leaf*4; i++) used[i] = 1; |
|
1079 nFree = 0; |
|
1080 pc = get2byte(&data[hdr+1]); |
|
1081 while( pc ){ |
|
1082 int size; |
|
1083 assert( pc>0 && pc<usableSize-4 ); |
|
1084 size = get2byte(&data[pc+2]); |
|
1085 assert( pc+size<=usableSize ); |
|
1086 nFree += size; |
|
1087 for(i=pc; i<pc+size; i++){ |
|
1088 assert( used[i]==0 ); |
|
1089 used[i] = 1; |
|
1090 } |
|
1091 pc = get2byte(&data[pc]); |
|
1092 } |
|
1093 idx = 0; |
|
1094 nCell = get2byte(&data[hdr+3]); |
|
1095 cellLimit = get2byte(&data[hdr+5]); |
|
1096 assert( pPage->isInit==0 |
|
1097 || pPage->nFree==nFree+data[hdr+7]+cellLimit-(cellOffset+2*nCell) ); |
|
1098 cellOffset = pPage->cellOffset; |
|
1099 for(i=0; i<nCell; i++){ |
|
1100 int size; |
|
1101 pc = get2byte(&data[cellOffset+2*i]); |
|
1102 assert( pc>0 && pc<usableSize-4 ); |
|
1103 size = cellSize(pPage, &data[pc]); |
|
1104 assert( pc+size<=usableSize ); |
|
1105 for(j=pc; j<pc+size; j++){ |
|
1106 assert( used[j]==0 ); |
|
1107 used[j] = 1; |
|
1108 } |
|
1109 } |
|
1110 for(i=cellOffset+2*nCell; i<cellimit; i++){ |
|
1111 assert( used[i]==0 ); |
|
1112 used[i] = 1; |
|
1113 } |
|
1114 nFree = 0; |
|
1115 for(i=0; i<usableSize; i++){ |
|
1116 assert( used[i]<=1 ); |
|
1117 if( used[i]==0 ) nFree++; |
|
1118 } |
|
1119 assert( nFree==data[hdr+7] ); |
|
1120 sqliteFree(used); |
|
1121 } |
|
1122 #define pageIntegrity(X) _pageIntegrity(X) |
|
1123 #else |
|
1124 # define pageIntegrity(X) |
|
1125 #endif |
|
1126 |
|
1127 /* A bunch of assert() statements to check the transaction state variables |
|
1128 ** of handle p (type Btree*) are internally consistent. |
|
1129 */ |
|
1130 #define btreeIntegrity(p) \ |
|
1131 assert( p->inTrans!=TRANS_NONE || p->pBt->nTransaction<p->pBt->nRef ); \ |
|
1132 assert( p->pBt->nTransaction<=p->pBt->nRef ); \ |
|
1133 assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \ |
|
1134 assert( p->pBt->inTransaction>=p->inTrans ); |
|
1135 |
|
1136 /* |
|
1137 ** Defragment the page given. All Cells are moved to the |
|
1138 ** end of the page and all free space is collected into one |
|
1139 ** big FreeBlk that occurs in between the header and cell |
|
1140 ** pointer array and the cell content area. |
|
1141 */ |
|
1142 static int defragmentPage(MemPage *pPage){ |
|
1143 int i; /* Loop counter */ |
|
1144 int pc; /* Address of a i-th cell */ |
|
1145 int addr; /* Offset of first byte after cell pointer array */ |
|
1146 int hdr; /* Offset to the page header */ |
|
1147 int size; /* Size of a cell */ |
|
1148 int usableSize; /* Number of usable bytes on a page */ |
|
1149 int cellOffset; /* Offset to the cell pointer array */ |
|
1150 int brk; /* Offset to the cell content area */ |
|
1151 int nCell; /* Number of cells on the page */ |
|
1152 unsigned char *data; /* The page data */ |
|
1153 unsigned char *temp; /* Temp area for cell content */ |
|
1154 |
|
1155 assert( sqlite3pager_iswriteable(pPage->aData) ); |
|
1156 assert( pPage->pBt!=0 ); |
|
1157 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); |
|
1158 assert( pPage->nOverflow==0 ); |
|
1159 temp = sqliteMalloc( pPage->pBt->pageSize ); |
|
1160 if( temp==0 ) return SQLITE_NOMEM; |
|
1161 data = pPage->aData; |
|
1162 hdr = pPage->hdrOffset; |
|
1163 cellOffset = pPage->cellOffset; |
|
1164 nCell = pPage->nCell; |
|
1165 assert( nCell==get2byte(&data[hdr+3]) ); |
|
1166 usableSize = pPage->pBt->usableSize; |
|
1167 brk = get2byte(&data[hdr+5]); |
|
1168 memcpy(&temp[brk], &data[brk], usableSize - brk); |
|
1169 brk = usableSize; |
|
1170 for(i=0; i<nCell; i++){ |
|
1171 u8 *pAddr; /* The i-th cell pointer */ |
|
1172 pAddr = &data[cellOffset + i*2]; |
|
1173 pc = get2byte(pAddr); |
|
1174 assert( pc<pPage->pBt->usableSize ); |
|
1175 size = cellSizePtr(pPage, &temp[pc]); |
|
1176 brk -= size; |
|
1177 memcpy(&data[brk], &temp[pc], size); |
|
1178 put2byte(pAddr, brk); |
|
1179 } |
|
1180 assert( brk>=cellOffset+2*nCell ); |
|
1181 put2byte(&data[hdr+5], brk); |
|
1182 data[hdr+1] = 0; |
|
1183 data[hdr+2] = 0; |
|
1184 data[hdr+7] = 0; |
|
1185 addr = cellOffset+2*nCell; |
|
1186 memset(&data[addr], 0, brk-addr); |
|
1187 sqliteFree(temp); |
|
1188 return SQLITE_OK; |
|
1189 } |
|
1190 |
|
1191 /* |
|
1192 ** Allocate nByte bytes of space on a page. |
|
1193 ** |
|
1194 ** Return the index into pPage->aData[] of the first byte of |
|
1195 ** the new allocation. Or return 0 if there is not enough free |
|
1196 ** space on the page to satisfy the allocation request. |
|
1197 ** |
|
1198 ** If the page contains nBytes of free space but does not contain |
|
1199 ** nBytes of contiguous free space, then this routine automatically |
|
1200 ** calls defragementPage() to consolidate all free space before |
|
1201 ** allocating the new chunk. |
|
1202 */ |
|
1203 static int allocateSpace(MemPage *pPage, int nByte){ |
|
1204 int addr, pc, hdr; |
|
1205 int size; |
|
1206 int nFrag; |
|
1207 int top; |
|
1208 int nCell; |
|
1209 int cellOffset; |
|
1210 unsigned char *data; |
|
1211 |
|
1212 data = pPage->aData; |
|
1213 assert( sqlite3pager_iswriteable(data) ); |
|
1214 assert( pPage->pBt ); |
|
1215 if( nByte<4 ) nByte = 4; |
|
1216 if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0; |
|
1217 pPage->nFree -= nByte; |
|
1218 hdr = pPage->hdrOffset; |
|
1219 |
|
1220 nFrag = data[hdr+7]; |
|
1221 if( nFrag<60 ){ |
|
1222 /* Search the freelist looking for a slot big enough to satisfy the |
|
1223 ** space request. */ |
|
1224 addr = hdr+1; |
|
1225 while( (pc = get2byte(&data[addr]))>0 ){ |
|
1226 size = get2byte(&data[pc+2]); |
|
1227 if( size>=nByte ){ |
|
1228 if( size<nByte+4 ){ |
|
1229 memcpy(&data[addr], &data[pc], 2); |
|
1230 data[hdr+7] = nFrag + size - nByte; |
|
1231 return pc; |
|
1232 }else{ |
|
1233 put2byte(&data[pc+2], size-nByte); |
|
1234 return pc + size - nByte; |
|
1235 } |
|
1236 } |
|
1237 addr = pc; |
|
1238 } |
|
1239 } |
|
1240 |
|
1241 /* Allocate memory from the gap in between the cell pointer array |
|
1242 ** and the cell content area. |
|
1243 */ |
|
1244 top = get2byte(&data[hdr+5]); |
|
1245 nCell = get2byte(&data[hdr+3]); |
|
1246 cellOffset = pPage->cellOffset; |
|
1247 if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){ |
|
1248 if( defragmentPage(pPage) ) return 0; |
|
1249 top = get2byte(&data[hdr+5]); |
|
1250 } |
|
1251 top -= nByte; |
|
1252 assert( cellOffset + 2*nCell <= top ); |
|
1253 put2byte(&data[hdr+5], top); |
|
1254 return top; |
|
1255 } |
|
1256 |
|
1257 /* |
|
1258 ** Return a section of the pPage->aData to the freelist. |
|
1259 ** The first byte of the new free block is pPage->aDisk[start] |
|
1260 ** and the size of the block is "size" bytes. |
|
1261 ** |
|
1262 ** Most of the effort here is involved in coalesing adjacent |
|
1263 ** free blocks into a single big free block. |
|
1264 */ |
|
1265 static void freeSpace(MemPage *pPage, int start, int size){ |
|
1266 int addr, pbegin, hdr; |
|
1267 unsigned char *data = pPage->aData; |
|
1268 |
|
1269 assert( pPage->pBt!=0 ); |
|
1270 assert( sqlite3pager_iswriteable(data) ); |
|
1271 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) ); |
|
1272 assert( (start + size)<=pPage->pBt->usableSize ); |
|
1273 if( size<4 ) size = 4; |
|
1274 |
|
1275 #ifdef SQLITE_SECURE_DELETE |
|
1276 /* Overwrite deleted information with zeros when the SECURE_DELETE |
|
1277 ** option is enabled at compile-time */ |
|
1278 memset(&data[start], 0, size); |
|
1279 #endif |
|
1280 |
|
1281 /* Add the space back into the linked list of freeblocks */ |
|
1282 hdr = pPage->hdrOffset; |
|
1283 addr = hdr + 1; |
|
1284 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){ |
|
1285 assert( pbegin<=pPage->pBt->usableSize-4 ); |
|
1286 assert( pbegin>addr ); |
|
1287 addr = pbegin; |
|
1288 } |
|
1289 assert( pbegin<=pPage->pBt->usableSize-4 ); |
|
1290 assert( pbegin>addr || pbegin==0 ); |
|
1291 put2byte(&data[addr], start); |
|
1292 put2byte(&data[start], pbegin); |
|
1293 put2byte(&data[start+2], size); |
|
1294 pPage->nFree += size; |
|
1295 |
|
1296 /* Coalesce adjacent free blocks */ |
|
1297 addr = pPage->hdrOffset + 1; |
|
1298 while( (pbegin = get2byte(&data[addr]))>0 ){ |
|
1299 int pnext, psize; |
|
1300 assert( pbegin>addr ); |
|
1301 assert( pbegin<=pPage->pBt->usableSize-4 ); |
|
1302 pnext = get2byte(&data[pbegin]); |
|
1303 psize = get2byte(&data[pbegin+2]); |
|
1304 if( pbegin + psize + 3 >= pnext && pnext>0 ){ |
|
1305 int frag = pnext - (pbegin+psize); |
|
1306 assert( frag<=data[pPage->hdrOffset+7] ); |
|
1307 data[pPage->hdrOffset+7] -= frag; |
|
1308 put2byte(&data[pbegin], get2byte(&data[pnext])); |
|
1309 put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin); |
|
1310 }else{ |
|
1311 addr = pbegin; |
|
1312 } |
|
1313 } |
|
1314 |
|
1315 /* If the cell content area begins with a freeblock, remove it. */ |
|
1316 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){ |
|
1317 int top; |
|
1318 pbegin = get2byte(&data[hdr+1]); |
|
1319 memcpy(&data[hdr+1], &data[pbegin], 2); |
|
1320 top = get2byte(&data[hdr+5]); |
|
1321 put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2])); |
|
1322 } |
|
1323 } |
|
1324 |
|
1325 /* |
|
1326 ** Decode the flags byte (the first byte of the header) for a page |
|
1327 ** and initialize fields of the MemPage structure accordingly. |
|
1328 */ |
|
1329 static void decodeFlags(MemPage *pPage, int flagByte){ |
|
1330 BtShared *pBt; /* A copy of pPage->pBt */ |
|
1331 |
|
1332 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); |
|
1333 pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0; |
|
1334 pPage->zeroData = (flagByte & PTF_ZERODATA)!=0; |
|
1335 pPage->leaf = (flagByte & PTF_LEAF)!=0; |
|
1336 pPage->childPtrSize = 4*(pPage->leaf==0); |
|
1337 pBt = pPage->pBt; |
|
1338 if( flagByte & PTF_LEAFDATA ){ |
|
1339 pPage->leafData = 1; |
|
1340 pPage->maxLocal = pBt->maxLeaf; |
|
1341 pPage->minLocal = pBt->minLeaf; |
|
1342 }else{ |
|
1343 pPage->leafData = 0; |
|
1344 pPage->maxLocal = pBt->maxLocal; |
|
1345 pPage->minLocal = pBt->minLocal; |
|
1346 } |
|
1347 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); |
|
1348 } |
|
1349 |
|
1350 /* |
|
1351 ** Initialize the auxiliary information for a disk block. |
|
1352 ** |
|
1353 ** The pParent parameter must be a pointer to the MemPage which |
|
1354 ** is the parent of the page being initialized. The root of a |
|
1355 ** BTree has no parent and so for that page, pParent==NULL. |
|
1356 ** |
|
1357 ** Return SQLITE_OK on success. If we see that the page does |
|
1358 ** not contain a well-formed database page, then return |
|
1359 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not |
|
1360 ** guarantee that the page is well-formed. It only shows that |
|
1361 ** we failed to detect any corruption. |
|
1362 */ |
|
1363 static int initPage( |
|
1364 MemPage *pPage, /* The page to be initialized */ |
|
1365 MemPage *pParent /* The parent. Might be NULL */ |
|
1366 ){ |
|
1367 int pc; /* Address of a freeblock within pPage->aData[] */ |
|
1368 int hdr; /* Offset to beginning of page header */ |
|
1369 u8 *data; /* Equal to pPage->aData */ |
|
1370 BtShared *pBt; /* The main btree structure */ |
|
1371 int usableSize; /* Amount of usable space on each page */ |
|
1372 int cellOffset; /* Offset from start of page to first cell pointer */ |
|
1373 int nFree; /* Number of unused bytes on the page */ |
|
1374 int top; /* First byte of the cell content area */ |
|
1375 |
|
1376 pBt = pPage->pBt; |
|
1377 assert( pBt!=0 ); |
|
1378 assert( pParent==0 || pParent->pBt==pBt ); |
|
1379 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) ); |
|
1380 assert( pPage->aData == &((unsigned char*)pPage)[-pBt->pageSize] ); |
|
1381 if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){ |
|
1382 /* The parent page should never change unless the file is corrupt */ |
|
1383 return SQLITE_CORRUPT_BKPT; |
|
1384 } |
|
1385 if( pPage->isInit ) return SQLITE_OK; |
|
1386 if( pPage->pParent==0 && pParent!=0 ){ |
|
1387 pPage->pParent = pParent; |
|
1388 sqlite3pager_ref(pParent->aData); |
|
1389 } |
|
1390 hdr = pPage->hdrOffset; |
|
1391 data = pPage->aData; |
|
1392 decodeFlags(pPage, data[hdr]); |
|
1393 pPage->nOverflow = 0; |
|
1394 pPage->idxShift = 0; |
|
1395 usableSize = pBt->usableSize; |
|
1396 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; |
|
1397 top = get2byte(&data[hdr+5]); |
|
1398 pPage->nCell = get2byte(&data[hdr+3]); |
|
1399 if( pPage->nCell>MX_CELL(pBt) ){ |
|
1400 /* To many cells for a single page. The page must be corrupt */ |
|
1401 return SQLITE_CORRUPT_BKPT; |
|
1402 } |
|
1403 if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){ |
|
1404 /* All pages must have at least one cell, except for root pages */ |
|
1405 return SQLITE_CORRUPT_BKPT; |
|
1406 } |
|
1407 |
|
1408 /* Compute the total free space on the page */ |
|
1409 pc = get2byte(&data[hdr+1]); |
|
1410 nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell); |
|
1411 while( pc>0 ){ |
|
1412 int next, size; |
|
1413 if( pc>usableSize-4 ){ |
|
1414 /* Free block is off the page */ |
|
1415 return SQLITE_CORRUPT_BKPT; |
|
1416 } |
|
1417 next = get2byte(&data[pc]); |
|
1418 size = get2byte(&data[pc+2]); |
|
1419 if( next>0 && next<=pc+size+3 ){ |
|
1420 /* Free blocks must be in accending order */ |
|
1421 return SQLITE_CORRUPT_BKPT; |
|
1422 } |
|
1423 nFree += size; |
|
1424 pc = next; |
|
1425 } |
|
1426 pPage->nFree = nFree; |
|
1427 if( nFree>=usableSize ){ |
|
1428 /* Free space cannot exceed total page size */ |
|
1429 return SQLITE_CORRUPT_BKPT; |
|
1430 } |
|
1431 |
|
1432 pPage->isInit = 1; |
|
1433 pageIntegrity(pPage); |
|
1434 return SQLITE_OK; |
|
1435 } |
|
1436 |
|
1437 /* |
|
1438 ** Set up a raw page so that it looks like a database page holding |
|
1439 ** no entries. |
|
1440 */ |
|
1441 static void zeroPage(MemPage *pPage, int flags){ |
|
1442 unsigned char *data = pPage->aData; |
|
1443 BtShared *pBt = pPage->pBt; |
|
1444 int hdr = pPage->hdrOffset; |
|
1445 int first; |
|
1446 |
|
1447 assert( sqlite3pager_pagenumber(data)==pPage->pgno ); |
|
1448 assert( &data[pBt->pageSize] == (unsigned char*)pPage ); |
|
1449 assert( sqlite3pager_iswriteable(data) ); |
|
1450 memset(&data[hdr], 0, pBt->usableSize - hdr); |
|
1451 data[hdr] = flags; |
|
1452 first = hdr + 8 + 4*((flags&PTF_LEAF)==0); |
|
1453 memset(&data[hdr+1], 0, 4); |
|
1454 data[hdr+7] = 0; |
|
1455 put2byte(&data[hdr+5], pBt->usableSize); |
|
1456 pPage->nFree = pBt->usableSize - first; |
|
1457 decodeFlags(pPage, flags); |
|
1458 pPage->hdrOffset = hdr; |
|
1459 pPage->cellOffset = first; |
|
1460 pPage->nOverflow = 0; |
|
1461 pPage->idxShift = 0; |
|
1462 pPage->nCell = 0; |
|
1463 pPage->isInit = 1; |
|
1464 pageIntegrity(pPage); |
|
1465 } |
|
1466 |
|
1467 /* |
|
1468 ** Get a page from the pager. Initialize the MemPage.pBt and |
|
1469 ** MemPage.aData elements if needed. |
|
1470 */ |
|
1471 static int getPage(BtShared *pBt, Pgno pgno, MemPage **ppPage){ |
|
1472 int rc; |
|
1473 unsigned char *aData; |
|
1474 MemPage *pPage; |
|
1475 rc = sqlite3pager_get(pBt->pPager, pgno, (void**)&aData); |
|
1476 if( rc ) return rc; |
|
1477 pPage = (MemPage*)&aData[pBt->pageSize]; |
|
1478 pPage->aData = aData; |
|
1479 pPage->pBt = pBt; |
|
1480 pPage->pgno = pgno; |
|
1481 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0; |
|
1482 *ppPage = pPage; |
|
1483 return SQLITE_OK; |
|
1484 } |
|
1485 |
|
1486 /* |
|
1487 ** Get a page from the pager and initialize it. This routine |
|
1488 ** is just a convenience wrapper around separate calls to |
|
1489 ** getPage() and initPage(). |
|
1490 */ |
|
1491 static int getAndInitPage( |
|
1492 BtShared *pBt, /* The database file */ |
|
1493 Pgno pgno, /* Number of the page to get */ |
|
1494 MemPage **ppPage, /* Write the page pointer here */ |
|
1495 MemPage *pParent /* Parent of the page */ |
|
1496 ){ |
|
1497 int rc; |
|
1498 if( pgno==0 ){ |
|
1499 return SQLITE_CORRUPT_BKPT; |
|
1500 } |
|
1501 rc = getPage(pBt, pgno, ppPage); |
|
1502 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){ |
|
1503 rc = initPage(*ppPage, pParent); |
|
1504 } |
|
1505 return rc; |
|
1506 } |
|
1507 |
|
1508 /* |
|
1509 ** Release a MemPage. This should be called once for each prior |
|
1510 ** call to getPage. |
|
1511 */ |
|
1512 static void releasePage(MemPage *pPage){ |
|
1513 if( pPage ){ |
|
1514 assert( pPage->aData ); |
|
1515 assert( pPage->pBt ); |
|
1516 assert( &pPage->aData[pPage->pBt->pageSize]==(unsigned char*)pPage ); |
|
1517 sqlite3pager_unref(pPage->aData); |
|
1518 } |
|
1519 } |
|
1520 |
|
1521 /* |
|
1522 ** This routine is called when the reference count for a page |
|
1523 ** reaches zero. We need to unref the pParent pointer when that |
|
1524 ** happens. |
|
1525 */ |
|
1526 static void pageDestructor(void *pData, int pageSize){ |
|
1527 MemPage *pPage; |
|
1528 assert( (pageSize & 7)==0 ); |
|
1529 pPage = (MemPage*)&((char*)pData)[pageSize]; |
|
1530 if( pPage->pParent ){ |
|
1531 MemPage *pParent = pPage->pParent; |
|
1532 pPage->pParent = 0; |
|
1533 releasePage(pParent); |
|
1534 } |
|
1535 pPage->isInit = 0; |
|
1536 } |
|
1537 |
|
1538 /* |
|
1539 ** During a rollback, when the pager reloads information into the cache |
|
1540 ** so that the cache is restored to its original state at the start of |
|
1541 ** the transaction, for each page restored this routine is called. |
|
1542 ** |
|
1543 ** This routine needs to reset the extra data section at the end of the |
|
1544 ** page to agree with the restored data. |
|
1545 */ |
|
1546 static void pageReinit(void *pData, int pageSize){ |
|
1547 MemPage *pPage; |
|
1548 assert( (pageSize & 7)==0 ); |
|
1549 pPage = (MemPage*)&((char*)pData)[pageSize]; |
|
1550 if( pPage->isInit ){ |
|
1551 pPage->isInit = 0; |
|
1552 initPage(pPage, pPage->pParent); |
|
1553 } |
|
1554 } |
|
1555 |
|
1556 /* |
|
1557 ** Open a database file. |
|
1558 ** |
|
1559 ** zFilename is the name of the database file. If zFilename is NULL |
|
1560 ** a new database with a random name is created. This randomly named |
|
1561 ** database file will be deleted when sqlite3BtreeClose() is called. |
|
1562 */ |
|
1563 int sqlite3BtreeOpen( |
|
1564 const char *zFilename, /* Name of the file containing the BTree database */ |
|
1565 sqlite3 *pSqlite, /* Associated database handle */ |
|
1566 Btree **ppBtree, /* Pointer to new Btree object written here */ |
|
1567 int flags /* Options */ |
|
1568 ){ |
|
1569 BtShared *pBt; /* Shared part of btree structure */ |
|
1570 Btree *p; /* Handle to return */ |
|
1571 int rc; |
|
1572 int nReserve; |
|
1573 unsigned char zDbHeader[100]; |
|
1574 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
|
1575 const ThreadData *pTsdro; |
|
1576 #endif |
|
1577 |
|
1578 /* Set the variable isMemdb to true for an in-memory database, or |
|
1579 ** false for a file-based database. This symbol is only required if |
|
1580 ** either of the shared-data or autovacuum features are compiled |
|
1581 ** into the library. |
|
1582 */ |
|
1583 #if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM) |
|
1584 #ifdef SQLITE_OMIT_MEMORYDB |
|
1585 const int isMemdb = 0; |
|
1586 #else |
|
1587 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:"); |
|
1588 #endif |
|
1589 #endif |
|
1590 |
|
1591 p = sqliteMalloc(sizeof(Btree)); |
|
1592 if( !p ){ |
|
1593 return SQLITE_NOMEM; |
|
1594 } |
|
1595 p->inTrans = TRANS_NONE; |
|
1596 p->pSqlite = pSqlite; |
|
1597 |
|
1598 /* Try to find an existing Btree structure opened on zFilename. */ |
|
1599 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
|
1600 pTsdro = sqlite3ThreadDataReadOnly(); |
|
1601 if( pTsdro->useSharedData && zFilename && !isMemdb ){ |
|
1602 char *zFullPathname = sqlite3OsFullPathname(zFilename); |
|
1603 if( !zFullPathname ){ |
|
1604 sqliteFree(p); |
|
1605 return SQLITE_NOMEM; |
|
1606 } |
|
1607 for(pBt=pTsdro->pBtree; pBt; pBt=pBt->pNext){ |
|
1608 assert( pBt->nRef>0 ); |
|
1609 if( 0==strcmp(zFullPathname, sqlite3pager_filename(pBt->pPager)) ){ |
|
1610 p->pBt = pBt; |
|
1611 *ppBtree = p; |
|
1612 pBt->nRef++; |
|
1613 sqliteFree(zFullPathname); |
|
1614 return SQLITE_OK; |
|
1615 } |
|
1616 } |
|
1617 sqliteFree(zFullPathname); |
|
1618 } |
|
1619 #endif |
|
1620 |
|
1621 /* |
|
1622 ** The following asserts make sure that structures used by the btree are |
|
1623 ** the right size. This is to guard against size changes that result |
|
1624 ** when compiling on a different architecture. |
|
1625 */ |
|
1626 assert( sizeof(i64)==8 || sizeof(i64)==4 ); |
|
1627 assert( sizeof(u64)==8 || sizeof(u64)==4 ); |
|
1628 assert( sizeof(u32)==4 ); |
|
1629 assert( sizeof(u16)==2 ); |
|
1630 assert( sizeof(Pgno)==4 ); |
|
1631 |
|
1632 pBt = sqliteMalloc( sizeof(*pBt) ); |
|
1633 if( pBt==0 ){ |
|
1634 *ppBtree = 0; |
|
1635 sqliteFree(p); |
|
1636 return SQLITE_NOMEM; |
|
1637 } |
|
1638 rc = sqlite3pager_open(&pBt->pPager, zFilename, EXTRA_SIZE, flags); |
|
1639 if( rc!=SQLITE_OK ){ |
|
1640 if( pBt->pPager ) sqlite3pager_close(pBt->pPager); |
|
1641 sqliteFree(pBt); |
|
1642 sqliteFree(p); |
|
1643 *ppBtree = 0; |
|
1644 return rc; |
|
1645 } |
|
1646 p->pBt = pBt; |
|
1647 |
|
1648 sqlite3pager_set_destructor(pBt->pPager, pageDestructor); |
|
1649 sqlite3pager_set_reiniter(pBt->pPager, pageReinit); |
|
1650 pBt->pCursor = 0; |
|
1651 pBt->pPage1 = 0; |
|
1652 pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager); |
|
1653 sqlite3pager_read_fileheader(pBt->pPager, sizeof(zDbHeader), zDbHeader); |
|
1654 pBt->pageSize = get2byte(&zDbHeader[16]); |
|
1655 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE |
|
1656 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ |
|
1657 pBt->pageSize = SQLITE_DEFAULT_PAGE_SIZE; |
|
1658 pBt->maxEmbedFrac = 64; /* 25% */ |
|
1659 pBt->minEmbedFrac = 32; /* 12.5% */ |
|
1660 pBt->minLeafFrac = 32; /* 12.5% */ |
|
1661 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
1662 /* If the magic name ":memory:" will create an in-memory database, then |
|
1663 ** do not set the auto-vacuum flag, even if SQLITE_DEFAULT_AUTOVACUUM |
|
1664 ** is true. On the other hand, if SQLITE_OMIT_MEMORYDB has been defined, |
|
1665 ** then ":memory:" is just a regular file-name. Respect the auto-vacuum |
|
1666 ** default in this case. |
|
1667 */ |
|
1668 if( zFilename && !isMemdb ){ |
|
1669 pBt->autoVacuum = SQLITE_DEFAULT_AUTOVACUUM; |
|
1670 } |
|
1671 #endif |
|
1672 nReserve = 0; |
|
1673 }else{ |
|
1674 nReserve = zDbHeader[20]; |
|
1675 pBt->maxEmbedFrac = zDbHeader[21]; |
|
1676 pBt->minEmbedFrac = zDbHeader[22]; |
|
1677 pBt->minLeafFrac = zDbHeader[23]; |
|
1678 pBt->pageSizeFixed = 1; |
|
1679 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
1680 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); |
|
1681 #endif |
|
1682 } |
|
1683 pBt->usableSize = pBt->pageSize - nReserve; |
|
1684 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ |
|
1685 sqlite3pager_set_pagesize(pBt->pPager, pBt->pageSize); |
|
1686 |
|
1687 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
|
1688 /* Add the new btree to the linked list starting at ThreadData.pBtree. |
|
1689 ** There is no chance that a malloc() may fail inside of the |
|
1690 ** sqlite3ThreadData() call, as the ThreadData structure must have already |
|
1691 ** been allocated for pTsdro->useSharedData to be non-zero. |
|
1692 */ |
|
1693 if( pTsdro->useSharedData && zFilename && !isMemdb ){ |
|
1694 pBt->pNext = pTsdro->pBtree; |
|
1695 sqlite3ThreadData()->pBtree = pBt; |
|
1696 } |
|
1697 #endif |
|
1698 pBt->nRef = 1; |
|
1699 *ppBtree = p; |
|
1700 return SQLITE_OK; |
|
1701 } |
|
1702 |
|
1703 /* |
|
1704 ** Close an open database and invalidate all cursors. |
|
1705 */ |
|
1706 int sqlite3BtreeClose(Btree *p){ |
|
1707 BtShared *pBt = p->pBt; |
|
1708 BtCursor *pCur; |
|
1709 |
|
1710 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
1711 ThreadData *pTsd; |
|
1712 #endif |
|
1713 |
|
1714 /* Close all cursors opened via this handle. */ |
|
1715 pCur = pBt->pCursor; |
|
1716 while( pCur ){ |
|
1717 BtCursor *pTmp = pCur; |
|
1718 pCur = pCur->pNext; |
|
1719 if( pTmp->pBtree==p ){ |
|
1720 sqlite3BtreeCloseCursor(pTmp); |
|
1721 } |
|
1722 } |
|
1723 |
|
1724 /* Rollback any active transaction and free the handle structure. |
|
1725 ** The call to sqlite3BtreeRollback() drops any table-locks held by |
|
1726 ** this handle. |
|
1727 */ |
|
1728 sqlite3BtreeRollback(p); |
|
1729 sqliteFree(p); |
|
1730 |
|
1731 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
1732 /* If there are still other outstanding references to the shared-btree |
|
1733 ** structure, return now. The remainder of this procedure cleans |
|
1734 ** up the shared-btree. |
|
1735 */ |
|
1736 assert( pBt->nRef>0 ); |
|
1737 pBt->nRef--; |
|
1738 if( pBt->nRef ){ |
|
1739 return SQLITE_OK; |
|
1740 } |
|
1741 |
|
1742 /* Remove the shared-btree from the thread wide list. Call |
|
1743 ** ThreadDataReadOnly() and then cast away the const property of the |
|
1744 ** pointer to avoid allocating thread data if it is not really required. |
|
1745 */ |
|
1746 pTsd = (ThreadData *)sqlite3ThreadDataReadOnly(); |
|
1747 if( pTsd->pBtree==pBt ){ |
|
1748 assert( pTsd==sqlite3ThreadData() ); |
|
1749 pTsd->pBtree = pBt->pNext; |
|
1750 }else{ |
|
1751 BtShared *pPrev; |
|
1752 for(pPrev=pTsd->pBtree; pPrev && pPrev->pNext!=pBt; pPrev=pPrev->pNext){} |
|
1753 if( pPrev ){ |
|
1754 assert( pTsd==sqlite3ThreadData() ); |
|
1755 pPrev->pNext = pBt->pNext; |
|
1756 } |
|
1757 } |
|
1758 #endif |
|
1759 |
|
1760 /* Close the pager and free the shared-btree structure */ |
|
1761 assert( !pBt->pCursor ); |
|
1762 sqlite3pager_close(pBt->pPager); |
|
1763 if( pBt->xFreeSchema && pBt->pSchema ){ |
|
1764 pBt->xFreeSchema(pBt->pSchema); |
|
1765 } |
|
1766 sqliteFree(pBt->pSchema); |
|
1767 sqliteFree(pBt); |
|
1768 return SQLITE_OK; |
|
1769 } |
|
1770 |
|
1771 /* |
|
1772 ** Change the busy handler callback function. |
|
1773 */ |
|
1774 int sqlite3BtreeSetBusyHandler(Btree *p, BusyHandler *pHandler){ |
|
1775 BtShared *pBt = p->pBt; |
|
1776 pBt->pBusyHandler = pHandler; |
|
1777 sqlite3pager_set_busyhandler(pBt->pPager, pHandler); |
|
1778 return SQLITE_OK; |
|
1779 } |
|
1780 |
|
1781 /* |
|
1782 ** Change the limit on the number of pages allowed in the cache. |
|
1783 ** |
|
1784 ** The maximum number of cache pages is set to the absolute |
|
1785 ** value of mxPage. If mxPage is negative, the pager will |
|
1786 ** operate asynchronously - it will not stop to do fsync()s |
|
1787 ** to insure data is written to the disk surface before |
|
1788 ** continuing. Transactions still work if synchronous is off, |
|
1789 ** and the database cannot be corrupted if this program |
|
1790 ** crashes. But if the operating system crashes or there is |
|
1791 ** an abrupt power failure when synchronous is off, the database |
|
1792 ** could be left in an inconsistent and unrecoverable state. |
|
1793 ** Synchronous is on by default so database corruption is not |
|
1794 ** normally a worry. |
|
1795 */ |
|
1796 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ |
|
1797 BtShared *pBt = p->pBt; |
|
1798 sqlite3pager_set_cachesize(pBt->pPager, mxPage); |
|
1799 return SQLITE_OK; |
|
1800 } |
|
1801 |
|
1802 /* |
|
1803 ** Change the way data is synced to disk in order to increase or decrease |
|
1804 ** how well the database resists damage due to OS crashes and power |
|
1805 ** failures. Level 1 is the same as asynchronous (no syncs() occur and |
|
1806 ** there is a high probability of damage) Level 2 is the default. There |
|
1807 ** is a very low but non-zero probability of damage. Level 3 reduces the |
|
1808 ** probability of damage to near zero but with a write performance reduction. |
|
1809 */ |
|
1810 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
|
1811 int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){ |
|
1812 BtShared *pBt = p->pBt; |
|
1813 sqlite3pager_set_safety_level(pBt->pPager, level, fullSync); |
|
1814 return SQLITE_OK; |
|
1815 } |
|
1816 #endif |
|
1817 |
|
1818 /* |
|
1819 ** Return TRUE if the given btree is set to safety level 1. In other |
|
1820 ** words, return TRUE if no sync() occurs on the disk files. |
|
1821 */ |
|
1822 int sqlite3BtreeSyncDisabled(Btree *p){ |
|
1823 BtShared *pBt = p->pBt; |
|
1824 assert( pBt && pBt->pPager ); |
|
1825 return sqlite3pager_nosync(pBt->pPager); |
|
1826 } |
|
1827 |
|
1828 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) |
|
1829 /* |
|
1830 ** Change the default pages size and the number of reserved bytes per page. |
|
1831 ** |
|
1832 ** The page size must be a power of 2 between 512 and 65536. If the page |
|
1833 ** size supplied does not meet this constraint then the page size is not |
|
1834 ** changed. |
|
1835 ** |
|
1836 ** Page sizes are constrained to be a power of two so that the region |
|
1837 ** of the database file used for locking (beginning at PENDING_BYTE, |
|
1838 ** the first byte past the 1GB boundary, 0x40000000) needs to occur |
|
1839 ** at the beginning of a page. |
|
1840 ** |
|
1841 ** If parameter nReserve is less than zero, then the number of reserved |
|
1842 ** bytes per page is left unchanged. |
|
1843 */ |
|
1844 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){ |
|
1845 BtShared *pBt = p->pBt; |
|
1846 if( pBt->pageSizeFixed ){ |
|
1847 return SQLITE_READONLY; |
|
1848 } |
|
1849 if( nReserve<0 ){ |
|
1850 nReserve = pBt->pageSize - pBt->usableSize; |
|
1851 } |
|
1852 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && |
|
1853 ((pageSize-1)&pageSize)==0 ){ |
|
1854 assert( (pageSize & 7)==0 ); |
|
1855 assert( !pBt->pPage1 && !pBt->pCursor ); |
|
1856 pBt->pageSize = sqlite3pager_set_pagesize(pBt->pPager, pageSize); |
|
1857 } |
|
1858 pBt->usableSize = pBt->pageSize - nReserve; |
|
1859 return SQLITE_OK; |
|
1860 } |
|
1861 |
|
1862 /* |
|
1863 ** Return the currently defined page size |
|
1864 */ |
|
1865 int sqlite3BtreeGetPageSize(Btree *p){ |
|
1866 return p->pBt->pageSize; |
|
1867 } |
|
1868 int sqlite3BtreeGetReserve(Btree *p){ |
|
1869 return p->pBt->pageSize - p->pBt->usableSize; |
|
1870 } |
|
1871 #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */ |
|
1872 |
|
1873 /* |
|
1874 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' |
|
1875 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it |
|
1876 ** is disabled. The default value for the auto-vacuum property is |
|
1877 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. |
|
1878 */ |
|
1879 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ |
|
1880 BtShared *pBt = p->pBt;; |
|
1881 #ifdef SQLITE_OMIT_AUTOVACUUM |
|
1882 return SQLITE_READONLY; |
|
1883 #else |
|
1884 if( pBt->pageSizeFixed ){ |
|
1885 return SQLITE_READONLY; |
|
1886 } |
|
1887 pBt->autoVacuum = (autoVacuum?1:0); |
|
1888 return SQLITE_OK; |
|
1889 #endif |
|
1890 } |
|
1891 |
|
1892 /* |
|
1893 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is |
|
1894 ** enabled 1 is returned. Otherwise 0. |
|
1895 */ |
|
1896 int sqlite3BtreeGetAutoVacuum(Btree *p){ |
|
1897 #ifdef SQLITE_OMIT_AUTOVACUUM |
|
1898 return 0; |
|
1899 #else |
|
1900 return p->pBt->autoVacuum; |
|
1901 #endif |
|
1902 } |
|
1903 |
|
1904 |
|
1905 /* |
|
1906 ** Get a reference to pPage1 of the database file. This will |
|
1907 ** also acquire a readlock on that file. |
|
1908 ** |
|
1909 ** SQLITE_OK is returned on success. If the file is not a |
|
1910 ** well-formed database file, then SQLITE_CORRUPT is returned. |
|
1911 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM |
|
1912 ** is returned if we run out of memory. SQLITE_PROTOCOL is returned |
|
1913 ** if there is a locking protocol violation. |
|
1914 */ |
|
1915 static int lockBtree(BtShared *pBt){ |
|
1916 int rc, pageSize; |
|
1917 MemPage *pPage1; |
|
1918 if( pBt->pPage1 ) return SQLITE_OK; |
|
1919 rc = getPage(pBt, 1, &pPage1); |
|
1920 if( rc!=SQLITE_OK ) return rc; |
|
1921 |
|
1922 |
|
1923 /* Do some checking to help insure the file we opened really is |
|
1924 ** a valid database file. |
|
1925 */ |
|
1926 rc = SQLITE_NOTADB; |
|
1927 if( sqlite3pager_pagecount(pBt->pPager)>0 ){ |
|
1928 u8 *page1 = pPage1->aData; |
|
1929 if( memcmp(page1, zMagicHeader, 16)!=0 ){ |
|
1930 goto page1_init_failed; |
|
1931 } |
|
1932 if( page1[18]>1 || page1[19]>1 ){ |
|
1933 goto page1_init_failed; |
|
1934 } |
|
1935 pageSize = get2byte(&page1[16]); |
|
1936 if( ((pageSize-1)&pageSize)!=0 ){ |
|
1937 goto page1_init_failed; |
|
1938 } |
|
1939 assert( (pageSize & 7)==0 ); |
|
1940 pBt->pageSize = pageSize; |
|
1941 pBt->usableSize = pageSize - page1[20]; |
|
1942 if( pBt->usableSize<500 ){ |
|
1943 goto page1_init_failed; |
|
1944 } |
|
1945 pBt->maxEmbedFrac = page1[21]; |
|
1946 pBt->minEmbedFrac = page1[22]; |
|
1947 pBt->minLeafFrac = page1[23]; |
|
1948 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
1949 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); |
|
1950 #endif |
|
1951 } |
|
1952 |
|
1953 /* maxLocal is the maximum amount of payload to store locally for |
|
1954 ** a cell. Make sure it is small enough so that at least minFanout |
|
1955 ** cells can will fit on one page. We assume a 10-byte page header. |
|
1956 ** Besides the payload, the cell must store: |
|
1957 ** 2-byte pointer to the cell |
|
1958 ** 4-byte child pointer |
|
1959 ** 9-byte nKey value |
|
1960 ** 4-byte nData value |
|
1961 ** 4-byte overflow page pointer |
|
1962 ** So a cell consists of a 2-byte poiner, a header which is as much as |
|
1963 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow |
|
1964 ** page pointer. |
|
1965 */ |
|
1966 pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23; |
|
1967 pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23; |
|
1968 pBt->maxLeaf = pBt->usableSize - 35; |
|
1969 pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23; |
|
1970 if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){ |
|
1971 goto page1_init_failed; |
|
1972 } |
|
1973 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); |
|
1974 pBt->pPage1 = pPage1; |
|
1975 return SQLITE_OK; |
|
1976 |
|
1977 page1_init_failed: |
|
1978 releasePage(pPage1); |
|
1979 pBt->pPage1 = 0; |
|
1980 return rc; |
|
1981 } |
|
1982 |
|
1983 /* |
|
1984 ** This routine works like lockBtree() except that it also invokes the |
|
1985 ** busy callback if there is lock contention. |
|
1986 */ |
|
1987 static int lockBtreeWithRetry(Btree *pRef){ |
|
1988 int rc = SQLITE_OK; |
|
1989 if( pRef->inTrans==TRANS_NONE ){ |
|
1990 u8 inTransaction = pRef->pBt->inTransaction; |
|
1991 btreeIntegrity(pRef); |
|
1992 rc = sqlite3BtreeBeginTrans(pRef, 0); |
|
1993 pRef->pBt->inTransaction = inTransaction; |
|
1994 pRef->inTrans = TRANS_NONE; |
|
1995 if( rc==SQLITE_OK ){ |
|
1996 pRef->pBt->nTransaction--; |
|
1997 } |
|
1998 btreeIntegrity(pRef); |
|
1999 } |
|
2000 return rc; |
|
2001 } |
|
2002 |
|
2003 |
|
2004 /* |
|
2005 ** If there are no outstanding cursors and we are not in the middle |
|
2006 ** of a transaction but there is a read lock on the database, then |
|
2007 ** this routine unrefs the first page of the database file which |
|
2008 ** has the effect of releasing the read lock. |
|
2009 ** |
|
2010 ** If there are any outstanding cursors, this routine is a no-op. |
|
2011 ** |
|
2012 ** If there is a transaction in progress, this routine is a no-op. |
|
2013 */ |
|
2014 static void unlockBtreeIfUnused(BtShared *pBt){ |
|
2015 if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){ |
|
2016 if( pBt->pPage1->aData==0 ){ |
|
2017 MemPage *pPage = pBt->pPage1; |
|
2018 pPage->aData = &((u8*)pPage)[-pBt->pageSize]; |
|
2019 pPage->pBt = pBt; |
|
2020 pPage->pgno = 1; |
|
2021 } |
|
2022 releasePage(pBt->pPage1); |
|
2023 pBt->pPage1 = 0; |
|
2024 pBt->inStmt = 0; |
|
2025 } |
|
2026 } |
|
2027 |
|
2028 /* |
|
2029 ** Create a new database by initializing the first page of the |
|
2030 ** file. |
|
2031 */ |
|
2032 static int newDatabase(BtShared *pBt){ |
|
2033 MemPage *pP1; |
|
2034 unsigned char *data; |
|
2035 int rc; |
|
2036 if( sqlite3pager_pagecount(pBt->pPager)>0 ) return SQLITE_OK; |
|
2037 pP1 = pBt->pPage1; |
|
2038 assert( pP1!=0 ); |
|
2039 data = pP1->aData; |
|
2040 rc = sqlite3pager_write(data); |
|
2041 if( rc ) return rc; |
|
2042 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); |
|
2043 assert( sizeof(zMagicHeader)==16 ); |
|
2044 put2byte(&data[16], pBt->pageSize); |
|
2045 data[18] = 1; |
|
2046 data[19] = 1; |
|
2047 data[20] = pBt->pageSize - pBt->usableSize; |
|
2048 data[21] = pBt->maxEmbedFrac; |
|
2049 data[22] = pBt->minEmbedFrac; |
|
2050 data[23] = pBt->minLeafFrac; |
|
2051 memset(&data[24], 0, 100-24); |
|
2052 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); |
|
2053 pBt->pageSizeFixed = 1; |
|
2054 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
2055 if( pBt->autoVacuum ){ |
|
2056 put4byte(&data[36 + 4*4], 1); |
|
2057 } |
|
2058 #endif |
|
2059 return SQLITE_OK; |
|
2060 } |
|
2061 |
|
2062 /* |
|
2063 ** Attempt to start a new transaction. A write-transaction |
|
2064 ** is started if the second argument is nonzero, otherwise a read- |
|
2065 ** transaction. If the second argument is 2 or more and exclusive |
|
2066 ** transaction is started, meaning that no other process is allowed |
|
2067 ** to access the database. A preexisting transaction may not be |
|
2068 ** upgraded to exclusive by calling this routine a second time - the |
|
2069 ** exclusivity flag only works for a new transaction. |
|
2070 ** |
|
2071 ** A write-transaction must be started before attempting any |
|
2072 ** changes to the database. None of the following routines |
|
2073 ** will work unless a transaction is started first: |
|
2074 ** |
|
2075 ** sqlite3BtreeCreateTable() |
|
2076 ** sqlite3BtreeCreateIndex() |
|
2077 ** sqlite3BtreeClearTable() |
|
2078 ** sqlite3BtreeDropTable() |
|
2079 ** sqlite3BtreeInsert() |
|
2080 ** sqlite3BtreeDelete() |
|
2081 ** sqlite3BtreeUpdateMeta() |
|
2082 ** |
|
2083 ** If an initial attempt to acquire the lock fails because of lock contention |
|
2084 ** and the database was previously unlocked, then invoke the busy handler |
|
2085 ** if there is one. But if there was previously a read-lock, do not |
|
2086 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is |
|
2087 ** returned when there is already a read-lock in order to avoid a deadlock. |
|
2088 ** |
|
2089 ** Suppose there are two processes A and B. A has a read lock and B has |
|
2090 ** a reserved lock. B tries to promote to exclusive but is blocked because |
|
2091 ** of A's read lock. A tries to promote to reserved but is blocked by B. |
|
2092 ** One or the other of the two processes must give way or there can be |
|
2093 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback |
|
2094 ** when A already has a read lock, we encourage A to give up and let B |
|
2095 ** proceed. |
|
2096 */ |
|
2097 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ |
|
2098 BtShared *pBt = p->pBt; |
|
2099 int rc = SQLITE_OK; |
|
2100 |
|
2101 btreeIntegrity(p); |
|
2102 |
|
2103 /* If the btree is already in a write-transaction, or it |
|
2104 ** is already in a read-transaction and a read-transaction |
|
2105 ** is requested, this is a no-op. |
|
2106 */ |
|
2107 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ |
|
2108 return SQLITE_OK; |
|
2109 } |
|
2110 |
|
2111 /* Write transactions are not possible on a read-only database */ |
|
2112 if( pBt->readOnly && wrflag ){ |
|
2113 return SQLITE_READONLY; |
|
2114 } |
|
2115 |
|
2116 /* If another database handle has already opened a write transaction |
|
2117 ** on this shared-btree structure and a second write transaction is |
|
2118 ** requested, return SQLITE_BUSY. |
|
2119 */ |
|
2120 if( pBt->inTransaction==TRANS_WRITE && wrflag ){ |
|
2121 return SQLITE_BUSY; |
|
2122 } |
|
2123 |
|
2124 do { |
|
2125 if( pBt->pPage1==0 ){ |
|
2126 rc = lockBtree(pBt); |
|
2127 } |
|
2128 |
|
2129 if( rc==SQLITE_OK && wrflag ){ |
|
2130 rc = sqlite3pager_begin(pBt->pPage1->aData, wrflag>1); |
|
2131 if( rc==SQLITE_OK ){ |
|
2132 rc = newDatabase(pBt); |
|
2133 } |
|
2134 } |
|
2135 |
|
2136 if( rc==SQLITE_OK ){ |
|
2137 if( wrflag ) pBt->inStmt = 0; |
|
2138 }else{ |
|
2139 unlockBtreeIfUnused(pBt); |
|
2140 } |
|
2141 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && |
|
2142 sqlite3InvokeBusyHandler(pBt->pBusyHandler) ); |
|
2143 |
|
2144 if( rc==SQLITE_OK ){ |
|
2145 if( p->inTrans==TRANS_NONE ){ |
|
2146 pBt->nTransaction++; |
|
2147 } |
|
2148 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); |
|
2149 if( p->inTrans>pBt->inTransaction ){ |
|
2150 pBt->inTransaction = p->inTrans; |
|
2151 } |
|
2152 } |
|
2153 |
|
2154 btreeIntegrity(p); |
|
2155 return rc; |
|
2156 } |
|
2157 |
|
2158 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
2159 |
|
2160 /* |
|
2161 ** Set the pointer-map entries for all children of page pPage. Also, if |
|
2162 ** pPage contains cells that point to overflow pages, set the pointer |
|
2163 ** map entries for the overflow pages as well. |
|
2164 */ |
|
2165 static int setChildPtrmaps(MemPage *pPage){ |
|
2166 int i; /* Counter variable */ |
|
2167 int nCell; /* Number of cells in page pPage */ |
|
2168 int rc = SQLITE_OK; /* Return code */ |
|
2169 BtShared *pBt = pPage->pBt; |
|
2170 int isInitOrig = pPage->isInit; |
|
2171 Pgno pgno = pPage->pgno; |
|
2172 |
|
2173 initPage(pPage, 0); |
|
2174 nCell = pPage->nCell; |
|
2175 |
|
2176 for(i=0; i<nCell; i++){ |
|
2177 u8 *pCell = findCell(pPage, i); |
|
2178 |
|
2179 rc = ptrmapPutOvflPtr(pPage, pCell); |
|
2180 if( rc!=SQLITE_OK ){ |
|
2181 goto set_child_ptrmaps_out; |
|
2182 } |
|
2183 |
|
2184 if( !pPage->leaf ){ |
|
2185 Pgno childPgno = get4byte(pCell); |
|
2186 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno); |
|
2187 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out; |
|
2188 } |
|
2189 } |
|
2190 |
|
2191 if( !pPage->leaf ){ |
|
2192 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
|
2193 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno); |
|
2194 } |
|
2195 |
|
2196 set_child_ptrmaps_out: |
|
2197 pPage->isInit = isInitOrig; |
|
2198 return rc; |
|
2199 } |
|
2200 |
|
2201 /* |
|
2202 ** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow |
|
2203 ** page, is a pointer to page iFrom. Modify this pointer so that it points to |
|
2204 ** iTo. Parameter eType describes the type of pointer to be modified, as |
|
2205 ** follows: |
|
2206 ** |
|
2207 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child |
|
2208 ** page of pPage. |
|
2209 ** |
|
2210 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow |
|
2211 ** page pointed to by one of the cells on pPage. |
|
2212 ** |
|
2213 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next |
|
2214 ** overflow page in the list. |
|
2215 */ |
|
2216 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ |
|
2217 if( eType==PTRMAP_OVERFLOW2 ){ |
|
2218 /* The pointer is always the first 4 bytes of the page in this case. */ |
|
2219 if( get4byte(pPage->aData)!=iFrom ){ |
|
2220 return SQLITE_CORRUPT_BKPT; |
|
2221 } |
|
2222 put4byte(pPage->aData, iTo); |
|
2223 }else{ |
|
2224 int isInitOrig = pPage->isInit; |
|
2225 int i; |
|
2226 int nCell; |
|
2227 |
|
2228 initPage(pPage, 0); |
|
2229 nCell = pPage->nCell; |
|
2230 |
|
2231 for(i=0; i<nCell; i++){ |
|
2232 u8 *pCell = findCell(pPage, i); |
|
2233 if( eType==PTRMAP_OVERFLOW1 ){ |
|
2234 CellInfo info; |
|
2235 parseCellPtr(pPage, pCell, &info); |
|
2236 if( info.iOverflow ){ |
|
2237 if( iFrom==get4byte(&pCell[info.iOverflow]) ){ |
|
2238 put4byte(&pCell[info.iOverflow], iTo); |
|
2239 break; |
|
2240 } |
|
2241 } |
|
2242 }else{ |
|
2243 if( get4byte(pCell)==iFrom ){ |
|
2244 put4byte(pCell, iTo); |
|
2245 break; |
|
2246 } |
|
2247 } |
|
2248 } |
|
2249 |
|
2250 if( i==nCell ){ |
|
2251 if( eType!=PTRMAP_BTREE || |
|
2252 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ |
|
2253 return SQLITE_CORRUPT_BKPT; |
|
2254 } |
|
2255 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); |
|
2256 } |
|
2257 |
|
2258 pPage->isInit = isInitOrig; |
|
2259 } |
|
2260 return SQLITE_OK; |
|
2261 } |
|
2262 |
|
2263 |
|
2264 /* |
|
2265 ** Move the open database page pDbPage to location iFreePage in the |
|
2266 ** database. The pDbPage reference remains valid. |
|
2267 */ |
|
2268 static int relocatePage( |
|
2269 BtShared *pBt, /* Btree */ |
|
2270 MemPage *pDbPage, /* Open page to move */ |
|
2271 u8 eType, /* Pointer map 'type' entry for pDbPage */ |
|
2272 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ |
|
2273 Pgno iFreePage /* The location to move pDbPage to */ |
|
2274 ){ |
|
2275 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ |
|
2276 Pgno iDbPage = pDbPage->pgno; |
|
2277 Pager *pPager = pBt->pPager; |
|
2278 int rc; |
|
2279 |
|
2280 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || |
|
2281 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); |
|
2282 |
|
2283 /* Move page iDbPage from it's current location to page number iFreePage */ |
|
2284 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", |
|
2285 iDbPage, iFreePage, iPtrPage, eType)); |
|
2286 rc = sqlite3pager_movepage(pPager, pDbPage->aData, iFreePage); |
|
2287 if( rc!=SQLITE_OK ){ |
|
2288 return rc; |
|
2289 } |
|
2290 pDbPage->pgno = iFreePage; |
|
2291 |
|
2292 /* If pDbPage was a btree-page, then it may have child pages and/or cells |
|
2293 ** that point to overflow pages. The pointer map entries for all these |
|
2294 ** pages need to be changed. |
|
2295 ** |
|
2296 ** If pDbPage is an overflow page, then the first 4 bytes may store a |
|
2297 ** pointer to a subsequent overflow page. If this is the case, then |
|
2298 ** the pointer map needs to be updated for the subsequent overflow page. |
|
2299 */ |
|
2300 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ |
|
2301 rc = setChildPtrmaps(pDbPage); |
|
2302 if( rc!=SQLITE_OK ){ |
|
2303 return rc; |
|
2304 } |
|
2305 }else{ |
|
2306 Pgno nextOvfl = get4byte(pDbPage->aData); |
|
2307 if( nextOvfl!=0 ){ |
|
2308 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage); |
|
2309 if( rc!=SQLITE_OK ){ |
|
2310 return rc; |
|
2311 } |
|
2312 } |
|
2313 } |
|
2314 |
|
2315 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so |
|
2316 ** that it points at iFreePage. Also fix the pointer map entry for |
|
2317 ** iPtrPage. |
|
2318 */ |
|
2319 if( eType!=PTRMAP_ROOTPAGE ){ |
|
2320 rc = getPage(pBt, iPtrPage, &pPtrPage); |
|
2321 if( rc!=SQLITE_OK ){ |
|
2322 return rc; |
|
2323 } |
|
2324 rc = sqlite3pager_write(pPtrPage->aData); |
|
2325 if( rc!=SQLITE_OK ){ |
|
2326 releasePage(pPtrPage); |
|
2327 return rc; |
|
2328 } |
|
2329 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); |
|
2330 releasePage(pPtrPage); |
|
2331 if( rc==SQLITE_OK ){ |
|
2332 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage); |
|
2333 } |
|
2334 } |
|
2335 return rc; |
|
2336 } |
|
2337 |
|
2338 /* Forward declaration required by autoVacuumCommit(). */ |
|
2339 static int allocatePage(BtShared *, MemPage **, Pgno *, Pgno, u8); |
|
2340 |
|
2341 /* |
|
2342 ** This routine is called prior to sqlite3pager_commit when a transaction |
|
2343 ** is commited for an auto-vacuum database. |
|
2344 */ |
|
2345 static int autoVacuumCommit(BtShared *pBt, Pgno *nTrunc){ |
|
2346 Pager *pPager = pBt->pPager; |
|
2347 Pgno nFreeList; /* Number of pages remaining on the free-list. */ |
|
2348 int nPtrMap; /* Number of pointer-map pages deallocated */ |
|
2349 Pgno origSize; /* Pages in the database file */ |
|
2350 Pgno finSize; /* Pages in the database file after truncation */ |
|
2351 int rc; /* Return code */ |
|
2352 u8 eType; |
|
2353 int pgsz = pBt->pageSize; /* Page size for this database */ |
|
2354 Pgno iDbPage; /* The database page to move */ |
|
2355 MemPage *pDbMemPage = 0; /* "" */ |
|
2356 Pgno iPtrPage; /* The page that contains a pointer to iDbPage */ |
|
2357 Pgno iFreePage; /* The free-list page to move iDbPage to */ |
|
2358 MemPage *pFreeMemPage = 0; /* "" */ |
|
2359 |
|
2360 #ifndef NDEBUG |
|
2361 int nRef = sqlite3pager_refcount(pPager); |
|
2362 #endif |
|
2363 |
|
2364 assert( pBt->autoVacuum ); |
|
2365 if( PTRMAP_ISPAGE(pBt, sqlite3pager_pagecount(pPager)) ){ |
|
2366 return SQLITE_CORRUPT_BKPT; |
|
2367 } |
|
2368 |
|
2369 /* Figure out how many free-pages are in the database. If there are no |
|
2370 ** free pages, then auto-vacuum is a no-op. |
|
2371 */ |
|
2372 nFreeList = get4byte(&pBt->pPage1->aData[36]); |
|
2373 if( nFreeList==0 ){ |
|
2374 *nTrunc = 0; |
|
2375 return SQLITE_OK; |
|
2376 } |
|
2377 |
|
2378 /* This block figures out how many pages there are in the database |
|
2379 ** now (variable origSize), and how many there will be after the |
|
2380 ** truncation (variable finSize). |
|
2381 ** |
|
2382 ** The final size is the original size, less the number of free pages |
|
2383 ** in the database, less any pointer-map pages that will no longer |
|
2384 ** be required, less 1 if the pending-byte page was part of the database |
|
2385 ** but is not after the truncation. |
|
2386 **/ |
|
2387 origSize = sqlite3pager_pagecount(pPager); |
|
2388 if( origSize==PENDING_BYTE_PAGE(pBt) ){ |
|
2389 origSize--; |
|
2390 } |
|
2391 nPtrMap = (nFreeList-origSize+PTRMAP_PAGENO(pBt, origSize)+pgsz/5)/(pgsz/5); |
|
2392 finSize = origSize - nFreeList - nPtrMap; |
|
2393 if( origSize>PENDING_BYTE_PAGE(pBt) && finSize<=PENDING_BYTE_PAGE(pBt) ){ |
|
2394 finSize--; |
|
2395 } |
|
2396 while( PTRMAP_ISPAGE(pBt, finSize) || finSize==PENDING_BYTE_PAGE(pBt) ){ |
|
2397 finSize--; |
|
2398 } |
|
2399 TRACE(("AUTOVACUUM: Begin (db size %d->%d)\n", origSize, finSize)); |
|
2400 |
|
2401 /* Variable 'finSize' will be the size of the file in pages after |
|
2402 ** the auto-vacuum has completed (the current file size minus the number |
|
2403 ** of pages on the free list). Loop through the pages that lie beyond |
|
2404 ** this mark, and if they are not already on the free list, move them |
|
2405 ** to a free page earlier in the file (somewhere before finSize). |
|
2406 */ |
|
2407 for( iDbPage=finSize+1; iDbPage<=origSize; iDbPage++ ){ |
|
2408 /* If iDbPage is a pointer map page, or the pending-byte page, skip it. */ |
|
2409 if( PTRMAP_ISPAGE(pBt, iDbPage) || iDbPage==PENDING_BYTE_PAGE(pBt) ){ |
|
2410 continue; |
|
2411 } |
|
2412 |
|
2413 rc = ptrmapGet(pBt, iDbPage, &eType, &iPtrPage); |
|
2414 if( rc!=SQLITE_OK ) goto autovacuum_out; |
|
2415 if( eType==PTRMAP_ROOTPAGE ){ |
|
2416 rc = SQLITE_CORRUPT_BKPT; |
|
2417 goto autovacuum_out; |
|
2418 } |
|
2419 |
|
2420 /* If iDbPage is free, do not swap it. */ |
|
2421 if( eType==PTRMAP_FREEPAGE ){ |
|
2422 continue; |
|
2423 } |
|
2424 rc = getPage(pBt, iDbPage, &pDbMemPage); |
|
2425 if( rc!=SQLITE_OK ) goto autovacuum_out; |
|
2426 |
|
2427 /* Find the next page in the free-list that is not already at the end |
|
2428 ** of the file. A page can be pulled off the free list using the |
|
2429 ** allocatePage() routine. |
|
2430 */ |
|
2431 do{ |
|
2432 if( pFreeMemPage ){ |
|
2433 releasePage(pFreeMemPage); |
|
2434 pFreeMemPage = 0; |
|
2435 } |
|
2436 rc = allocatePage(pBt, &pFreeMemPage, &iFreePage, 0, 0); |
|
2437 if( rc!=SQLITE_OK ){ |
|
2438 releasePage(pDbMemPage); |
|
2439 goto autovacuum_out; |
|
2440 } |
|
2441 assert( iFreePage<=origSize ); |
|
2442 }while( iFreePage>finSize ); |
|
2443 releasePage(pFreeMemPage); |
|
2444 pFreeMemPage = 0; |
|
2445 |
|
2446 /* Relocate the page into the body of the file. Note that although the |
|
2447 ** page has moved within the database file, the pDbMemPage pointer |
|
2448 ** remains valid. This means that this function can run without |
|
2449 ** invalidating cursors open on the btree. This is important in |
|
2450 ** shared-cache mode. |
|
2451 */ |
|
2452 rc = relocatePage(pBt, pDbMemPage, eType, iPtrPage, iFreePage); |
|
2453 releasePage(pDbMemPage); |
|
2454 if( rc!=SQLITE_OK ) goto autovacuum_out; |
|
2455 } |
|
2456 |
|
2457 /* The entire free-list has been swapped to the end of the file. So |
|
2458 ** truncate the database file to finSize pages and consider the |
|
2459 ** free-list empty. |
|
2460 */ |
|
2461 rc = sqlite3pager_write(pBt->pPage1->aData); |
|
2462 if( rc!=SQLITE_OK ) goto autovacuum_out; |
|
2463 put4byte(&pBt->pPage1->aData[32], 0); |
|
2464 put4byte(&pBt->pPage1->aData[36], 0); |
|
2465 *nTrunc = finSize; |
|
2466 assert( finSize!=PENDING_BYTE_PAGE(pBt) ); |
|
2467 |
|
2468 autovacuum_out: |
|
2469 assert( nRef==sqlite3pager_refcount(pPager) ); |
|
2470 if( rc!=SQLITE_OK ){ |
|
2471 sqlite3pager_rollback(pPager); |
|
2472 } |
|
2473 return rc; |
|
2474 } |
|
2475 #endif |
|
2476 |
|
2477 /* |
|
2478 ** Commit the transaction currently in progress. |
|
2479 ** |
|
2480 ** This will release the write lock on the database file. If there |
|
2481 ** are no active cursors, it also releases the read lock. |
|
2482 */ |
|
2483 int sqlite3BtreeCommit(Btree *p){ |
|
2484 BtShared *pBt = p->pBt; |
|
2485 |
|
2486 btreeIntegrity(p); |
|
2487 |
|
2488 /* If the handle has a write-transaction open, commit the shared-btrees |
|
2489 ** transaction and set the shared state to TRANS_READ. |
|
2490 */ |
|
2491 if( p->inTrans==TRANS_WRITE ){ |
|
2492 int rc; |
|
2493 assert( pBt->inTransaction==TRANS_WRITE ); |
|
2494 assert( pBt->nTransaction>0 ); |
|
2495 rc = sqlite3pager_commit(pBt->pPager); |
|
2496 if( rc!=SQLITE_OK ){ |
|
2497 return rc; |
|
2498 } |
|
2499 pBt->inTransaction = TRANS_READ; |
|
2500 pBt->inStmt = 0; |
|
2501 } |
|
2502 unlockAllTables(p); |
|
2503 |
|
2504 /* If the handle has any kind of transaction open, decrement the transaction |
|
2505 ** count of the shared btree. If the transaction count reaches 0, set |
|
2506 ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below |
|
2507 ** will unlock the pager. |
|
2508 */ |
|
2509 if( p->inTrans!=TRANS_NONE ){ |
|
2510 pBt->nTransaction--; |
|
2511 if( 0==pBt->nTransaction ){ |
|
2512 pBt->inTransaction = TRANS_NONE; |
|
2513 } |
|
2514 } |
|
2515 |
|
2516 /* Set the handles current transaction state to TRANS_NONE and unlock |
|
2517 ** the pager if this call closed the only read or write transaction. |
|
2518 */ |
|
2519 p->inTrans = TRANS_NONE; |
|
2520 unlockBtreeIfUnused(pBt); |
|
2521 |
|
2522 btreeIntegrity(p); |
|
2523 return SQLITE_OK; |
|
2524 } |
|
2525 |
|
2526 #ifndef NDEBUG |
|
2527 /* |
|
2528 ** Return the number of write-cursors open on this handle. This is for use |
|
2529 ** in assert() expressions, so it is only compiled if NDEBUG is not |
|
2530 ** defined. |
|
2531 */ |
|
2532 static int countWriteCursors(BtShared *pBt){ |
|
2533 BtCursor *pCur; |
|
2534 int r = 0; |
|
2535 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
|
2536 if( pCur->wrFlag ) r++; |
|
2537 } |
|
2538 return r; |
|
2539 } |
|
2540 #endif |
|
2541 |
|
2542 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) |
|
2543 /* |
|
2544 ** Print debugging information about all cursors to standard output. |
|
2545 */ |
|
2546 void sqlite3BtreeCursorList(Btree *p){ |
|
2547 BtCursor *pCur; |
|
2548 BtShared *pBt = p->pBt; |
|
2549 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
|
2550 MemPage *pPage = pCur->pPage; |
|
2551 char *zMode = pCur->wrFlag ? "rw" : "ro"; |
|
2552 sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n", |
|
2553 pCur, pCur->pgnoRoot, zMode, |
|
2554 pPage ? pPage->pgno : 0, pCur->idx, |
|
2555 (pCur->eState==CURSOR_VALID) ? "" : " eof" |
|
2556 ); |
|
2557 } |
|
2558 } |
|
2559 #endif |
|
2560 |
|
2561 /* |
|
2562 ** Rollback the transaction in progress. All cursors will be |
|
2563 ** invalided by this operation. Any attempt to use a cursor |
|
2564 ** that was open at the beginning of this operation will result |
|
2565 ** in an error. |
|
2566 ** |
|
2567 ** This will release the write lock on the database file. If there |
|
2568 ** are no active cursors, it also releases the read lock. |
|
2569 */ |
|
2570 int sqlite3BtreeRollback(Btree *p){ |
|
2571 int rc; |
|
2572 BtShared *pBt = p->pBt; |
|
2573 MemPage *pPage1; |
|
2574 |
|
2575 rc = saveAllCursors(pBt, 0, 0); |
|
2576 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
2577 if( rc!=SQLITE_OK ){ |
|
2578 /* This is a horrible situation. An IO or malloc() error occured whilst |
|
2579 ** trying to save cursor positions. If this is an automatic rollback (as |
|
2580 ** the result of a constraint, malloc() failure or IO error) then |
|
2581 ** the cache may be internally inconsistent (not contain valid trees) so |
|
2582 ** we cannot simply return the error to the caller. Instead, abort |
|
2583 ** all queries that may be using any of the cursors that failed to save. |
|
2584 */ |
|
2585 while( pBt->pCursor ){ |
|
2586 sqlite3 *db = pBt->pCursor->pBtree->pSqlite; |
|
2587 if( db ){ |
|
2588 sqlite3AbortOtherActiveVdbes(db, 0); |
|
2589 } |
|
2590 } |
|
2591 } |
|
2592 #endif |
|
2593 btreeIntegrity(p); |
|
2594 unlockAllTables(p); |
|
2595 |
|
2596 if( p->inTrans==TRANS_WRITE ){ |
|
2597 int rc2; |
|
2598 |
|
2599 assert( TRANS_WRITE==pBt->inTransaction ); |
|
2600 rc2 = sqlite3pager_rollback(pBt->pPager); |
|
2601 if( rc2!=SQLITE_OK ){ |
|
2602 rc = rc2; |
|
2603 } |
|
2604 |
|
2605 /* The rollback may have destroyed the pPage1->aData value. So |
|
2606 ** call getPage() on page 1 again to make sure pPage1->aData is |
|
2607 ** set correctly. */ |
|
2608 if( getPage(pBt, 1, &pPage1)==SQLITE_OK ){ |
|
2609 releasePage(pPage1); |
|
2610 } |
|
2611 assert( countWriteCursors(pBt)==0 ); |
|
2612 pBt->inTransaction = TRANS_READ; |
|
2613 } |
|
2614 |
|
2615 if( p->inTrans!=TRANS_NONE ){ |
|
2616 assert( pBt->nTransaction>0 ); |
|
2617 pBt->nTransaction--; |
|
2618 if( 0==pBt->nTransaction ){ |
|
2619 pBt->inTransaction = TRANS_NONE; |
|
2620 } |
|
2621 } |
|
2622 |
|
2623 p->inTrans = TRANS_NONE; |
|
2624 pBt->inStmt = 0; |
|
2625 unlockBtreeIfUnused(pBt); |
|
2626 |
|
2627 btreeIntegrity(p); |
|
2628 return rc; |
|
2629 } |
|
2630 |
|
2631 /* |
|
2632 ** Start a statement subtransaction. The subtransaction can |
|
2633 ** can be rolled back independently of the main transaction. |
|
2634 ** You must start a transaction before starting a subtransaction. |
|
2635 ** The subtransaction is ended automatically if the main transaction |
|
2636 ** commits or rolls back. |
|
2637 ** |
|
2638 ** Only one subtransaction may be active at a time. It is an error to try |
|
2639 ** to start a new subtransaction if another subtransaction is already active. |
|
2640 ** |
|
2641 ** Statement subtransactions are used around individual SQL statements |
|
2642 ** that are contained within a BEGIN...COMMIT block. If a constraint |
|
2643 ** error occurs within the statement, the effect of that one statement |
|
2644 ** can be rolled back without having to rollback the entire transaction. |
|
2645 */ |
|
2646 int sqlite3BtreeBeginStmt(Btree *p){ |
|
2647 int rc; |
|
2648 BtShared *pBt = p->pBt; |
|
2649 if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){ |
|
2650 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
2651 } |
|
2652 assert( pBt->inTransaction==TRANS_WRITE ); |
|
2653 rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_stmt_begin(pBt->pPager); |
|
2654 pBt->inStmt = 1; |
|
2655 return rc; |
|
2656 } |
|
2657 |
|
2658 |
|
2659 /* |
|
2660 ** Commit the statment subtransaction currently in progress. If no |
|
2661 ** subtransaction is active, this is a no-op. |
|
2662 */ |
|
2663 int sqlite3BtreeCommitStmt(Btree *p){ |
|
2664 int rc; |
|
2665 BtShared *pBt = p->pBt; |
|
2666 if( pBt->inStmt && !pBt->readOnly ){ |
|
2667 rc = sqlite3pager_stmt_commit(pBt->pPager); |
|
2668 }else{ |
|
2669 rc = SQLITE_OK; |
|
2670 } |
|
2671 pBt->inStmt = 0; |
|
2672 return rc; |
|
2673 } |
|
2674 |
|
2675 /* |
|
2676 ** Rollback the active statement subtransaction. If no subtransaction |
|
2677 ** is active this routine is a no-op. |
|
2678 ** |
|
2679 ** All cursors will be invalidated by this operation. Any attempt |
|
2680 ** to use a cursor that was open at the beginning of this operation |
|
2681 ** will result in an error. |
|
2682 */ |
|
2683 int sqlite3BtreeRollbackStmt(Btree *p){ |
|
2684 int rc = SQLITE_OK; |
|
2685 BtShared *pBt = p->pBt; |
|
2686 sqlite3MallocDisallow(); |
|
2687 if( pBt->inStmt && !pBt->readOnly ){ |
|
2688 rc = sqlite3pager_stmt_rollback(pBt->pPager); |
|
2689 assert( countWriteCursors(pBt)==0 ); |
|
2690 pBt->inStmt = 0; |
|
2691 } |
|
2692 sqlite3MallocAllow(); |
|
2693 return rc; |
|
2694 } |
|
2695 |
|
2696 /* |
|
2697 ** Default key comparison function to be used if no comparison function |
|
2698 ** is specified on the sqlite3BtreeCursor() call. |
|
2699 */ |
|
2700 static int dfltCompare( |
|
2701 void *NotUsed, /* User data is not used */ |
|
2702 int n1, const void *p1, /* First key to compare */ |
|
2703 int n2, const void *p2 /* Second key to compare */ |
|
2704 ){ |
|
2705 int c; |
|
2706 c = memcmp(p1, p2, n1<n2 ? n1 : n2); |
|
2707 if( c==0 ){ |
|
2708 c = n1 - n2; |
|
2709 } |
|
2710 return c; |
|
2711 } |
|
2712 |
|
2713 /* |
|
2714 ** Create a new cursor for the BTree whose root is on the page |
|
2715 ** iTable. The act of acquiring a cursor gets a read lock on |
|
2716 ** the database file. |
|
2717 ** |
|
2718 ** If wrFlag==0, then the cursor can only be used for reading. |
|
2719 ** If wrFlag==1, then the cursor can be used for reading or for |
|
2720 ** writing if other conditions for writing are also met. These |
|
2721 ** are the conditions that must be met in order for writing to |
|
2722 ** be allowed: |
|
2723 ** |
|
2724 ** 1: The cursor must have been opened with wrFlag==1 |
|
2725 ** |
|
2726 ** 2: No other cursors may be open with wrFlag==0 on the same table |
|
2727 ** |
|
2728 ** 3: The database must be writable (not on read-only media) |
|
2729 ** |
|
2730 ** 4: There must be an active transaction. |
|
2731 ** |
|
2732 ** Condition 2 warrants further discussion. If any cursor is opened |
|
2733 ** on a table with wrFlag==0, that prevents all other cursors from |
|
2734 ** writing to that table. This is a kind of "read-lock". When a cursor |
|
2735 ** is opened with wrFlag==0 it is guaranteed that the table will not |
|
2736 ** change as long as the cursor is open. This allows the cursor to |
|
2737 ** do a sequential scan of the table without having to worry about |
|
2738 ** entries being inserted or deleted during the scan. Cursors should |
|
2739 ** be opened with wrFlag==0 only if this read-lock property is needed. |
|
2740 ** That is to say, cursors should be opened with wrFlag==0 only if they |
|
2741 ** intend to use the sqlite3BtreeNext() system call. All other cursors |
|
2742 ** should be opened with wrFlag==1 even if they never really intend |
|
2743 ** to write. |
|
2744 ** |
|
2745 ** No checking is done to make sure that page iTable really is the |
|
2746 ** root page of a b-tree. If it is not, then the cursor acquired |
|
2747 ** will not work correctly. |
|
2748 ** |
|
2749 ** The comparison function must be logically the same for every cursor |
|
2750 ** on a particular table. Changing the comparison function will result |
|
2751 ** in incorrect operations. If the comparison function is NULL, a |
|
2752 ** default comparison function is used. The comparison function is |
|
2753 ** always ignored for INTKEY tables. |
|
2754 */ |
|
2755 int sqlite3BtreeCursor( |
|
2756 Btree *p, /* The btree */ |
|
2757 int iTable, /* Root page of table to open */ |
|
2758 int wrFlag, /* 1 to write. 0 read-only */ |
|
2759 int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */ |
|
2760 void *pArg, /* First arg to xCompare() */ |
|
2761 BtCursor **ppCur /* Write new cursor here */ |
|
2762 ){ |
|
2763 int rc; |
|
2764 BtCursor *pCur; |
|
2765 BtShared *pBt = p->pBt; |
|
2766 |
|
2767 *ppCur = 0; |
|
2768 if( wrFlag ){ |
|
2769 if( pBt->readOnly ){ |
|
2770 return SQLITE_READONLY; |
|
2771 } |
|
2772 if( checkReadLocks(p, iTable, 0) ){ |
|
2773 return SQLITE_LOCKED; |
|
2774 } |
|
2775 } |
|
2776 |
|
2777 if( pBt->pPage1==0 ){ |
|
2778 rc = lockBtreeWithRetry(p); |
|
2779 if( rc!=SQLITE_OK ){ |
|
2780 return rc; |
|
2781 } |
|
2782 } |
|
2783 pCur = sqliteMalloc( sizeof(*pCur) ); |
|
2784 if( pCur==0 ){ |
|
2785 rc = SQLITE_NOMEM; |
|
2786 goto create_cursor_exception; |
|
2787 } |
|
2788 pCur->pgnoRoot = (Pgno)iTable; |
|
2789 if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){ |
|
2790 rc = SQLITE_EMPTY; |
|
2791 goto create_cursor_exception; |
|
2792 } |
|
2793 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0); |
|
2794 if( rc!=SQLITE_OK ){ |
|
2795 goto create_cursor_exception; |
|
2796 } |
|
2797 |
|
2798 /* Now that no other errors can occur, finish filling in the BtCursor |
|
2799 ** variables, link the cursor into the BtShared list and set *ppCur (the |
|
2800 ** output argument to this function). |
|
2801 */ |
|
2802 pCur->xCompare = xCmp ? xCmp : dfltCompare; |
|
2803 pCur->pArg = pArg; |
|
2804 pCur->pBtree = p; |
|
2805 pCur->wrFlag = wrFlag; |
|
2806 pCur->pNext = pBt->pCursor; |
|
2807 if( pCur->pNext ){ |
|
2808 pCur->pNext->pPrev = pCur; |
|
2809 } |
|
2810 pBt->pCursor = pCur; |
|
2811 pCur->eState = CURSOR_INVALID; |
|
2812 *ppCur = pCur; |
|
2813 |
|
2814 return SQLITE_OK; |
|
2815 create_cursor_exception: |
|
2816 if( pCur ){ |
|
2817 releasePage(pCur->pPage); |
|
2818 sqliteFree(pCur); |
|
2819 } |
|
2820 unlockBtreeIfUnused(pBt); |
|
2821 return rc; |
|
2822 } |
|
2823 |
|
2824 #if 0 /* Not Used */ |
|
2825 /* |
|
2826 ** Change the value of the comparison function used by a cursor. |
|
2827 */ |
|
2828 void sqlite3BtreeSetCompare( |
|
2829 BtCursor *pCur, /* The cursor to whose comparison function is changed */ |
|
2830 int(*xCmp)(void*,int,const void*,int,const void*), /* New comparison func */ |
|
2831 void *pArg /* First argument to xCmp() */ |
|
2832 ){ |
|
2833 pCur->xCompare = xCmp ? xCmp : dfltCompare; |
|
2834 pCur->pArg = pArg; |
|
2835 } |
|
2836 #endif |
|
2837 |
|
2838 /* |
|
2839 ** Close a cursor. The read lock on the database file is released |
|
2840 ** when the last cursor is closed. |
|
2841 */ |
|
2842 int sqlite3BtreeCloseCursor(BtCursor *pCur){ |
|
2843 BtShared *pBt = pCur->pBtree->pBt; |
|
2844 restoreOrClearCursorPosition(pCur, 0); |
|
2845 if( pCur->pPrev ){ |
|
2846 pCur->pPrev->pNext = pCur->pNext; |
|
2847 }else{ |
|
2848 pBt->pCursor = pCur->pNext; |
|
2849 } |
|
2850 if( pCur->pNext ){ |
|
2851 pCur->pNext->pPrev = pCur->pPrev; |
|
2852 } |
|
2853 releasePage(pCur->pPage); |
|
2854 unlockBtreeIfUnused(pBt); |
|
2855 sqliteFree(pCur); |
|
2856 return SQLITE_OK; |
|
2857 } |
|
2858 |
|
2859 /* |
|
2860 ** Make a temporary cursor by filling in the fields of pTempCur. |
|
2861 ** The temporary cursor is not on the cursor list for the Btree. |
|
2862 */ |
|
2863 static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){ |
|
2864 memcpy(pTempCur, pCur, sizeof(*pCur)); |
|
2865 pTempCur->pNext = 0; |
|
2866 pTempCur->pPrev = 0; |
|
2867 if( pTempCur->pPage ){ |
|
2868 sqlite3pager_ref(pTempCur->pPage->aData); |
|
2869 } |
|
2870 } |
|
2871 |
|
2872 /* |
|
2873 ** Delete a temporary cursor such as was made by the CreateTemporaryCursor() |
|
2874 ** function above. |
|
2875 */ |
|
2876 static void releaseTempCursor(BtCursor *pCur){ |
|
2877 if( pCur->pPage ){ |
|
2878 sqlite3pager_unref(pCur->pPage->aData); |
|
2879 } |
|
2880 } |
|
2881 |
|
2882 /* |
|
2883 ** Make sure the BtCursor.info field of the given cursor is valid. |
|
2884 ** If it is not already valid, call parseCell() to fill it in. |
|
2885 ** |
|
2886 ** BtCursor.info is a cache of the information in the current cell. |
|
2887 ** Using this cache reduces the number of calls to parseCell(). |
|
2888 */ |
|
2889 static void getCellInfo(BtCursor *pCur){ |
|
2890 if( pCur->info.nSize==0 ){ |
|
2891 parseCell(pCur->pPage, pCur->idx, &pCur->info); |
|
2892 }else{ |
|
2893 #ifndef NDEBUG |
|
2894 CellInfo info; |
|
2895 memset(&info, 0, sizeof(info)); |
|
2896 parseCell(pCur->pPage, pCur->idx, &info); |
|
2897 assert( memcmp(&info, &pCur->info, sizeof(info))==0 ); |
|
2898 #endif |
|
2899 } |
|
2900 } |
|
2901 |
|
2902 /* |
|
2903 ** Set *pSize to the size of the buffer needed to hold the value of |
|
2904 ** the key for the current entry. If the cursor is not pointing |
|
2905 ** to a valid entry, *pSize is set to 0. |
|
2906 ** |
|
2907 ** For a table with the INTKEY flag set, this routine returns the key |
|
2908 ** itself, not the number of bytes in the key. |
|
2909 */ |
|
2910 int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ |
|
2911 int rc = restoreOrClearCursorPosition(pCur, 1); |
|
2912 if( rc==SQLITE_OK ){ |
|
2913 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); |
|
2914 if( pCur->eState==CURSOR_INVALID ){ |
|
2915 *pSize = 0; |
|
2916 }else{ |
|
2917 getCellInfo(pCur); |
|
2918 *pSize = pCur->info.nKey; |
|
2919 } |
|
2920 } |
|
2921 return rc; |
|
2922 } |
|
2923 |
|
2924 /* |
|
2925 ** Set *pSize to the number of bytes of data in the entry the |
|
2926 ** cursor currently points to. Always return SQLITE_OK. |
|
2927 ** Failure is not possible. If the cursor is not currently |
|
2928 ** pointing to an entry (which can happen, for example, if |
|
2929 ** the database is empty) then *pSize is set to 0. |
|
2930 */ |
|
2931 int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ |
|
2932 int rc = restoreOrClearCursorPosition(pCur, 1); |
|
2933 if( rc==SQLITE_OK ){ |
|
2934 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); |
|
2935 if( pCur->eState==CURSOR_INVALID ){ |
|
2936 /* Not pointing at a valid entry - set *pSize to 0. */ |
|
2937 *pSize = 0; |
|
2938 }else{ |
|
2939 getCellInfo(pCur); |
|
2940 *pSize = pCur->info.nData; |
|
2941 } |
|
2942 } |
|
2943 return rc; |
|
2944 } |
|
2945 |
|
2946 /* |
|
2947 ** Read payload information from the entry that the pCur cursor is |
|
2948 ** pointing to. Begin reading the payload at "offset" and read |
|
2949 ** a total of "amt" bytes. Put the result in zBuf. |
|
2950 ** |
|
2951 ** This routine does not make a distinction between key and data. |
|
2952 ** It just reads bytes from the payload area. Data might appear |
|
2953 ** on the main page or be scattered out on multiple overflow pages. |
|
2954 */ |
|
2955 static int getPayload( |
|
2956 BtCursor *pCur, /* Cursor pointing to entry to read from */ |
|
2957 int offset, /* Begin reading this far into payload */ |
|
2958 int amt, /* Read this many bytes */ |
|
2959 unsigned char *pBuf, /* Write the bytes into this buffer */ |
|
2960 int skipKey /* offset begins at data if this is true */ |
|
2961 ){ |
|
2962 unsigned char *aPayload; |
|
2963 Pgno nextPage; |
|
2964 int rc; |
|
2965 MemPage *pPage; |
|
2966 BtShared *pBt; |
|
2967 int ovflSize; |
|
2968 u32 nKey; |
|
2969 |
|
2970 assert( pCur!=0 && pCur->pPage!=0 ); |
|
2971 assert( pCur->eState==CURSOR_VALID ); |
|
2972 pBt = pCur->pBtree->pBt; |
|
2973 pPage = pCur->pPage; |
|
2974 pageIntegrity(pPage); |
|
2975 assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); |
|
2976 getCellInfo(pCur); |
|
2977 aPayload = pCur->info.pCell + pCur->info.nHeader; |
|
2978 if( pPage->intKey ){ |
|
2979 nKey = 0; |
|
2980 }else{ |
|
2981 nKey = pCur->info.nKey; |
|
2982 } |
|
2983 assert( offset>=0 ); |
|
2984 if( skipKey ){ |
|
2985 offset += nKey; |
|
2986 } |
|
2987 if( offset+amt > nKey+pCur->info.nData ){ |
|
2988 return SQLITE_ERROR; |
|
2989 } |
|
2990 if( offset<pCur->info.nLocal ){ |
|
2991 int a = amt; |
|
2992 if( a+offset>pCur->info.nLocal ){ |
|
2993 a = pCur->info.nLocal - offset; |
|
2994 } |
|
2995 memcpy(pBuf, &aPayload[offset], a); |
|
2996 if( a==amt ){ |
|
2997 return SQLITE_OK; |
|
2998 } |
|
2999 offset = 0; |
|
3000 pBuf += a; |
|
3001 amt -= a; |
|
3002 }else{ |
|
3003 offset -= pCur->info.nLocal; |
|
3004 } |
|
3005 ovflSize = pBt->usableSize - 4; |
|
3006 if( amt>0 ){ |
|
3007 nextPage = get4byte(&aPayload[pCur->info.nLocal]); |
|
3008 while( amt>0 && nextPage ){ |
|
3009 rc = sqlite3pager_get(pBt->pPager, nextPage, (void**)&aPayload); |
|
3010 if( rc!=0 ){ |
|
3011 return rc; |
|
3012 } |
|
3013 nextPage = get4byte(aPayload); |
|
3014 if( offset<ovflSize ){ |
|
3015 int a = amt; |
|
3016 if( a + offset > ovflSize ){ |
|
3017 a = ovflSize - offset; |
|
3018 } |
|
3019 memcpy(pBuf, &aPayload[offset+4], a); |
|
3020 offset = 0; |
|
3021 amt -= a; |
|
3022 pBuf += a; |
|
3023 }else{ |
|
3024 offset -= ovflSize; |
|
3025 } |
|
3026 sqlite3pager_unref(aPayload); |
|
3027 } |
|
3028 } |
|
3029 |
|
3030 if( amt>0 ){ |
|
3031 return SQLITE_CORRUPT_BKPT; |
|
3032 } |
|
3033 return SQLITE_OK; |
|
3034 } |
|
3035 |
|
3036 /* |
|
3037 ** Read part of the key associated with cursor pCur. Exactly |
|
3038 ** "amt" bytes will be transfered into pBuf[]. The transfer |
|
3039 ** begins at "offset". |
|
3040 ** |
|
3041 ** Return SQLITE_OK on success or an error code if anything goes |
|
3042 ** wrong. An error is returned if "offset+amt" is larger than |
|
3043 ** the available payload. |
|
3044 */ |
|
3045 int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
|
3046 int rc = restoreOrClearCursorPosition(pCur, 1); |
|
3047 if( rc==SQLITE_OK ){ |
|
3048 assert( pCur->eState==CURSOR_VALID ); |
|
3049 assert( pCur->pPage!=0 ); |
|
3050 if( pCur->pPage->intKey ){ |
|
3051 return SQLITE_CORRUPT_BKPT; |
|
3052 } |
|
3053 assert( pCur->pPage->intKey==0 ); |
|
3054 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); |
|
3055 rc = getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); |
|
3056 } |
|
3057 return rc; |
|
3058 } |
|
3059 |
|
3060 /* |
|
3061 ** Read part of the data associated with cursor pCur. Exactly |
|
3062 ** "amt" bytes will be transfered into pBuf[]. The transfer |
|
3063 ** begins at "offset". |
|
3064 ** |
|
3065 ** Return SQLITE_OK on success or an error code if anything goes |
|
3066 ** wrong. An error is returned if "offset+amt" is larger than |
|
3067 ** the available payload. |
|
3068 */ |
|
3069 int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
|
3070 int rc = restoreOrClearCursorPosition(pCur, 1); |
|
3071 if( rc==SQLITE_OK ){ |
|
3072 assert( pCur->eState==CURSOR_VALID ); |
|
3073 assert( pCur->pPage!=0 ); |
|
3074 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); |
|
3075 rc = getPayload(pCur, offset, amt, pBuf, 1); |
|
3076 } |
|
3077 return rc; |
|
3078 } |
|
3079 |
|
3080 /* |
|
3081 ** Return a pointer to payload information from the entry that the |
|
3082 ** pCur cursor is pointing to. The pointer is to the beginning of |
|
3083 ** the key if skipKey==0 and it points to the beginning of data if |
|
3084 ** skipKey==1. The number of bytes of available key/data is written |
|
3085 ** into *pAmt. If *pAmt==0, then the value returned will not be |
|
3086 ** a valid pointer. |
|
3087 ** |
|
3088 ** This routine is an optimization. It is common for the entire key |
|
3089 ** and data to fit on the local page and for there to be no overflow |
|
3090 ** pages. When that is so, this routine can be used to access the |
|
3091 ** key and data without making a copy. If the key and/or data spills |
|
3092 ** onto overflow pages, then getPayload() must be used to reassembly |
|
3093 ** the key/data and copy it into a preallocated buffer. |
|
3094 ** |
|
3095 ** The pointer returned by this routine looks directly into the cached |
|
3096 ** page of the database. The data might change or move the next time |
|
3097 ** any btree routine is called. |
|
3098 */ |
|
3099 static const unsigned char *fetchPayload( |
|
3100 BtCursor *pCur, /* Cursor pointing to entry to read from */ |
|
3101 int *pAmt, /* Write the number of available bytes here */ |
|
3102 int skipKey /* read beginning at data if this is true */ |
|
3103 ){ |
|
3104 unsigned char *aPayload; |
|
3105 MemPage *pPage; |
|
3106 u32 nKey; |
|
3107 int nLocal; |
|
3108 |
|
3109 assert( pCur!=0 && pCur->pPage!=0 ); |
|
3110 assert( pCur->eState==CURSOR_VALID ); |
|
3111 pPage = pCur->pPage; |
|
3112 pageIntegrity(pPage); |
|
3113 assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); |
|
3114 getCellInfo(pCur); |
|
3115 aPayload = pCur->info.pCell; |
|
3116 aPayload += pCur->info.nHeader; |
|
3117 if( pPage->intKey ){ |
|
3118 nKey = 0; |
|
3119 }else{ |
|
3120 nKey = pCur->info.nKey; |
|
3121 } |
|
3122 if( skipKey ){ |
|
3123 aPayload += nKey; |
|
3124 nLocal = pCur->info.nLocal - nKey; |
|
3125 }else{ |
|
3126 nLocal = pCur->info.nLocal; |
|
3127 if( nLocal>nKey ){ |
|
3128 nLocal = nKey; |
|
3129 } |
|
3130 } |
|
3131 *pAmt = nLocal; |
|
3132 return aPayload; |
|
3133 } |
|
3134 |
|
3135 |
|
3136 /* |
|
3137 ** For the entry that cursor pCur is point to, return as |
|
3138 ** many bytes of the key or data as are available on the local |
|
3139 ** b-tree page. Write the number of available bytes into *pAmt. |
|
3140 ** |
|
3141 ** The pointer returned is ephemeral. The key/data may move |
|
3142 ** or be destroyed on the next call to any Btree routine. |
|
3143 ** |
|
3144 ** These routines is used to get quick access to key and data |
|
3145 ** in the common case where no overflow pages are used. |
|
3146 */ |
|
3147 const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){ |
|
3148 if( pCur->eState==CURSOR_VALID ){ |
|
3149 return (const void*)fetchPayload(pCur, pAmt, 0); |
|
3150 } |
|
3151 return 0; |
|
3152 } |
|
3153 const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){ |
|
3154 if( pCur->eState==CURSOR_VALID ){ |
|
3155 return (const void*)fetchPayload(pCur, pAmt, 1); |
|
3156 } |
|
3157 return 0; |
|
3158 } |
|
3159 |
|
3160 |
|
3161 /* |
|
3162 ** Move the cursor down to a new child page. The newPgno argument is the |
|
3163 ** page number of the child page to move to. |
|
3164 */ |
|
3165 static int moveToChild(BtCursor *pCur, u32 newPgno){ |
|
3166 int rc; |
|
3167 MemPage *pNewPage; |
|
3168 MemPage *pOldPage; |
|
3169 BtShared *pBt = pCur->pBtree->pBt; |
|
3170 |
|
3171 assert( pCur->eState==CURSOR_VALID ); |
|
3172 rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage); |
|
3173 if( rc ) return rc; |
|
3174 pageIntegrity(pNewPage); |
|
3175 pNewPage->idxParent = pCur->idx; |
|
3176 pOldPage = pCur->pPage; |
|
3177 pOldPage->idxShift = 0; |
|
3178 releasePage(pOldPage); |
|
3179 pCur->pPage = pNewPage; |
|
3180 pCur->idx = 0; |
|
3181 pCur->info.nSize = 0; |
|
3182 if( pNewPage->nCell<1 ){ |
|
3183 return SQLITE_CORRUPT_BKPT; |
|
3184 } |
|
3185 return SQLITE_OK; |
|
3186 } |
|
3187 |
|
3188 /* |
|
3189 ** Return true if the page is the virtual root of its table. |
|
3190 ** |
|
3191 ** The virtual root page is the root page for most tables. But |
|
3192 ** for the table rooted on page 1, sometime the real root page |
|
3193 ** is empty except for the right-pointer. In such cases the |
|
3194 ** virtual root page is the page that the right-pointer of page |
|
3195 ** 1 is pointing to. |
|
3196 */ |
|
3197 static int isRootPage(MemPage *pPage){ |
|
3198 MemPage *pParent = pPage->pParent; |
|
3199 if( pParent==0 ) return 1; |
|
3200 if( pParent->pgno>1 ) return 0; |
|
3201 if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1; |
|
3202 return 0; |
|
3203 } |
|
3204 |
|
3205 /* |
|
3206 ** Move the cursor up to the parent page. |
|
3207 ** |
|
3208 ** pCur->idx is set to the cell index that contains the pointer |
|
3209 ** to the page we are coming from. If we are coming from the |
|
3210 ** right-most child page then pCur->idx is set to one more than |
|
3211 ** the largest cell index. |
|
3212 */ |
|
3213 static void moveToParent(BtCursor *pCur){ |
|
3214 MemPage *pParent; |
|
3215 MemPage *pPage; |
|
3216 int idxParent; |
|
3217 |
|
3218 assert( pCur->eState==CURSOR_VALID ); |
|
3219 pPage = pCur->pPage; |
|
3220 assert( pPage!=0 ); |
|
3221 assert( !isRootPage(pPage) ); |
|
3222 pageIntegrity(pPage); |
|
3223 pParent = pPage->pParent; |
|
3224 assert( pParent!=0 ); |
|
3225 pageIntegrity(pParent); |
|
3226 idxParent = pPage->idxParent; |
|
3227 sqlite3pager_ref(pParent->aData); |
|
3228 releasePage(pPage); |
|
3229 pCur->pPage = pParent; |
|
3230 pCur->info.nSize = 0; |
|
3231 assert( pParent->idxShift==0 ); |
|
3232 pCur->idx = idxParent; |
|
3233 } |
|
3234 |
|
3235 /* |
|
3236 ** Move the cursor to the root page |
|
3237 */ |
|
3238 static int moveToRoot(BtCursor *pCur){ |
|
3239 MemPage *pRoot; |
|
3240 int rc = SQLITE_OK; |
|
3241 BtShared *pBt = pCur->pBtree->pBt; |
|
3242 |
|
3243 restoreOrClearCursorPosition(pCur, 0); |
|
3244 pRoot = pCur->pPage; |
|
3245 if( pRoot && pRoot->pgno==pCur->pgnoRoot ){ |
|
3246 assert( pRoot->isInit ); |
|
3247 }else{ |
|
3248 if( |
|
3249 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0)) |
|
3250 ){ |
|
3251 pCur->eState = CURSOR_INVALID; |
|
3252 return rc; |
|
3253 } |
|
3254 releasePage(pCur->pPage); |
|
3255 pageIntegrity(pRoot); |
|
3256 pCur->pPage = pRoot; |
|
3257 } |
|
3258 pCur->idx = 0; |
|
3259 pCur->info.nSize = 0; |
|
3260 if( pRoot->nCell==0 && !pRoot->leaf ){ |
|
3261 Pgno subpage; |
|
3262 assert( pRoot->pgno==1 ); |
|
3263 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); |
|
3264 assert( subpage>0 ); |
|
3265 pCur->eState = CURSOR_VALID; |
|
3266 rc = moveToChild(pCur, subpage); |
|
3267 } |
|
3268 pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID); |
|
3269 return rc; |
|
3270 } |
|
3271 |
|
3272 /* |
|
3273 ** Move the cursor down to the left-most leaf entry beneath the |
|
3274 ** entry to which it is currently pointing. |
|
3275 ** |
|
3276 ** The left-most leaf is the one with the smallest key - the first |
|
3277 ** in ascending order. |
|
3278 */ |
|
3279 static int moveToLeftmost(BtCursor *pCur){ |
|
3280 Pgno pgno; |
|
3281 int rc; |
|
3282 MemPage *pPage; |
|
3283 |
|
3284 assert( pCur->eState==CURSOR_VALID ); |
|
3285 while( !(pPage = pCur->pPage)->leaf ){ |
|
3286 assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); |
|
3287 pgno = get4byte(findCell(pPage, pCur->idx)); |
|
3288 rc = moveToChild(pCur, pgno); |
|
3289 if( rc ) return rc; |
|
3290 } |
|
3291 return SQLITE_OK; |
|
3292 } |
|
3293 |
|
3294 /* |
|
3295 ** Move the cursor down to the right-most leaf entry beneath the |
|
3296 ** page to which it is currently pointing. Notice the difference |
|
3297 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() |
|
3298 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() |
|
3299 ** finds the right-most entry beneath the *page*. |
|
3300 ** |
|
3301 ** The right-most entry is the one with the largest key - the last |
|
3302 ** key in ascending order. |
|
3303 */ |
|
3304 static int moveToRightmost(BtCursor *pCur){ |
|
3305 Pgno pgno; |
|
3306 int rc; |
|
3307 MemPage *pPage; |
|
3308 |
|
3309 assert( pCur->eState==CURSOR_VALID ); |
|
3310 while( !(pPage = pCur->pPage)->leaf ){ |
|
3311 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
|
3312 pCur->idx = pPage->nCell; |
|
3313 rc = moveToChild(pCur, pgno); |
|
3314 if( rc ) return rc; |
|
3315 } |
|
3316 pCur->idx = pPage->nCell - 1; |
|
3317 pCur->info.nSize = 0; |
|
3318 return SQLITE_OK; |
|
3319 } |
|
3320 |
|
3321 /* Move the cursor to the first entry in the table. Return SQLITE_OK |
|
3322 ** on success. Set *pRes to 0 if the cursor actually points to something |
|
3323 ** or set *pRes to 1 if the table is empty. |
|
3324 */ |
|
3325 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ |
|
3326 int rc; |
|
3327 rc = moveToRoot(pCur); |
|
3328 if( rc ) return rc; |
|
3329 if( pCur->eState==CURSOR_INVALID ){ |
|
3330 assert( pCur->pPage->nCell==0 ); |
|
3331 *pRes = 1; |
|
3332 return SQLITE_OK; |
|
3333 } |
|
3334 assert( pCur->pPage->nCell>0 ); |
|
3335 *pRes = 0; |
|
3336 rc = moveToLeftmost(pCur); |
|
3337 return rc; |
|
3338 } |
|
3339 |
|
3340 /* Move the cursor to the last entry in the table. Return SQLITE_OK |
|
3341 ** on success. Set *pRes to 0 if the cursor actually points to something |
|
3342 ** or set *pRes to 1 if the table is empty. |
|
3343 */ |
|
3344 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ |
|
3345 int rc; |
|
3346 rc = moveToRoot(pCur); |
|
3347 if( rc ) return rc; |
|
3348 if( CURSOR_INVALID==pCur->eState ){ |
|
3349 assert( pCur->pPage->nCell==0 ); |
|
3350 *pRes = 1; |
|
3351 return SQLITE_OK; |
|
3352 } |
|
3353 assert( pCur->eState==CURSOR_VALID ); |
|
3354 *pRes = 0; |
|
3355 rc = moveToRightmost(pCur); |
|
3356 return rc; |
|
3357 } |
|
3358 |
|
3359 /* Move the cursor so that it points to an entry near pKey/nKey. |
|
3360 ** Return a success code. |
|
3361 ** |
|
3362 ** For INTKEY tables, only the nKey parameter is used. pKey is |
|
3363 ** ignored. For other tables, nKey is the number of bytes of data |
|
3364 ** in pKey. The comparison function specified when the cursor was |
|
3365 ** created is used to compare keys. |
|
3366 ** |
|
3367 ** If an exact match is not found, then the cursor is always |
|
3368 ** left pointing at a leaf page which would hold the entry if it |
|
3369 ** were present. The cursor might point to an entry that comes |
|
3370 ** before or after the key. |
|
3371 ** |
|
3372 ** The result of comparing the key with the entry to which the |
|
3373 ** cursor is written to *pRes if pRes!=NULL. The meaning of |
|
3374 ** this value is as follows: |
|
3375 ** |
|
3376 ** *pRes<0 The cursor is left pointing at an entry that |
|
3377 ** is smaller than pKey or if the table is empty |
|
3378 ** and the cursor is therefore left point to nothing. |
|
3379 ** |
|
3380 ** *pRes==0 The cursor is left pointing at an entry that |
|
3381 ** exactly matches pKey. |
|
3382 ** |
|
3383 ** *pRes>0 The cursor is left pointing at an entry that |
|
3384 ** is larger than pKey. |
|
3385 */ |
|
3386 int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){ |
|
3387 int rc; |
|
3388 int tryRightmost; |
|
3389 rc = moveToRoot(pCur); |
|
3390 if( rc ) return rc; |
|
3391 assert( pCur->pPage ); |
|
3392 assert( pCur->pPage->isInit ); |
|
3393 tryRightmost = pCur->pPage->intKey; |
|
3394 if( pCur->eState==CURSOR_INVALID ){ |
|
3395 *pRes = -1; |
|
3396 assert( pCur->pPage->nCell==0 ); |
|
3397 return SQLITE_OK; |
|
3398 } |
|
3399 for(;;){ |
|
3400 int lwr, upr; |
|
3401 Pgno chldPg; |
|
3402 MemPage *pPage = pCur->pPage; |
|
3403 int c = -1; /* pRes return if table is empty must be -1 */ |
|
3404 lwr = 0; |
|
3405 upr = pPage->nCell-1; |
|
3406 if( !pPage->intKey && pKey==0 ){ |
|
3407 return SQLITE_CORRUPT_BKPT; |
|
3408 } |
|
3409 pageIntegrity(pPage); |
|
3410 while( lwr<=upr ){ |
|
3411 void *pCellKey; |
|
3412 i64 nCellKey; |
|
3413 pCur->idx = (lwr+upr)/2; |
|
3414 pCur->info.nSize = 0; |
|
3415 if( pPage->intKey ){ |
|
3416 u8 *pCell; |
|
3417 if( tryRightmost ){ |
|
3418 pCur->idx = upr; |
|
3419 } |
|
3420 pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize; |
|
3421 if( pPage->hasData ){ |
|
3422 u32 dummy; |
|
3423 pCell += getVarint32(pCell, &dummy); |
|
3424 } |
|
3425 getVarint(pCell, (u64 *)&nCellKey); |
|
3426 if( nCellKey<nKey ){ |
|
3427 c = -1; |
|
3428 }else if( nCellKey>nKey ){ |
|
3429 c = +1; |
|
3430 tryRightmost = 0; |
|
3431 }else{ |
|
3432 c = 0; |
|
3433 } |
|
3434 }else{ |
|
3435 int available; |
|
3436 pCellKey = (void *)fetchPayload(pCur, &available, 0); |
|
3437 nCellKey = pCur->info.nKey; |
|
3438 if( available>=nCellKey ){ |
|
3439 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey); |
|
3440 }else{ |
|
3441 pCellKey = sqliteMallocRaw( nCellKey ); |
|
3442 if( pCellKey==0 ) return SQLITE_NOMEM; |
|
3443 rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey); |
|
3444 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey); |
|
3445 sqliteFree(pCellKey); |
|
3446 if( rc ) return rc; |
|
3447 } |
|
3448 } |
|
3449 if( c==0 ){ |
|
3450 if( pPage->leafData && !pPage->leaf ){ |
|
3451 lwr = pCur->idx; |
|
3452 upr = lwr - 1; |
|
3453 break; |
|
3454 }else{ |
|
3455 if( pRes ) *pRes = 0; |
|
3456 return SQLITE_OK; |
|
3457 } |
|
3458 } |
|
3459 if( c<0 ){ |
|
3460 lwr = pCur->idx+1; |
|
3461 }else{ |
|
3462 upr = pCur->idx-1; |
|
3463 } |
|
3464 } |
|
3465 assert( lwr==upr+1 ); |
|
3466 assert( pPage->isInit ); |
|
3467 if( pPage->leaf ){ |
|
3468 chldPg = 0; |
|
3469 }else if( lwr>=pPage->nCell ){ |
|
3470 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
|
3471 }else{ |
|
3472 chldPg = get4byte(findCell(pPage, lwr)); |
|
3473 } |
|
3474 if( chldPg==0 ){ |
|
3475 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); |
|
3476 if( pRes ) *pRes = c; |
|
3477 return SQLITE_OK; |
|
3478 } |
|
3479 pCur->idx = lwr; |
|
3480 pCur->info.nSize = 0; |
|
3481 rc = moveToChild(pCur, chldPg); |
|
3482 if( rc ){ |
|
3483 return rc; |
|
3484 } |
|
3485 } |
|
3486 /* NOT REACHED */ |
|
3487 } |
|
3488 |
|
3489 /* |
|
3490 ** Return TRUE if the cursor is not pointing at an entry of the table. |
|
3491 ** |
|
3492 ** TRUE will be returned after a call to sqlite3BtreeNext() moves |
|
3493 ** past the last entry in the table or sqlite3BtreePrev() moves past |
|
3494 ** the first entry. TRUE is also returned if the table is empty. |
|
3495 */ |
|
3496 int sqlite3BtreeEof(BtCursor *pCur){ |
|
3497 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries |
|
3498 ** have been deleted? This API will need to change to return an error code |
|
3499 ** as well as the boolean result value. |
|
3500 */ |
|
3501 return (CURSOR_VALID!=pCur->eState); |
|
3502 } |
|
3503 |
|
3504 /* |
|
3505 ** Advance the cursor to the next entry in the database. If |
|
3506 ** successful then set *pRes=0. If the cursor |
|
3507 ** was already pointing to the last entry in the database before |
|
3508 ** this routine was called, then set *pRes=1. |
|
3509 */ |
|
3510 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ |
|
3511 int rc; |
|
3512 MemPage *pPage; |
|
3513 |
|
3514 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
3515 rc = restoreOrClearCursorPosition(pCur, 1); |
|
3516 if( rc!=SQLITE_OK ){ |
|
3517 return rc; |
|
3518 } |
|
3519 if( pCur->skip>0 ){ |
|
3520 pCur->skip = 0; |
|
3521 *pRes = 0; |
|
3522 return SQLITE_OK; |
|
3523 } |
|
3524 pCur->skip = 0; |
|
3525 #endif |
|
3526 |
|
3527 assert( pRes!=0 ); |
|
3528 pPage = pCur->pPage; |
|
3529 if( CURSOR_INVALID==pCur->eState ){ |
|
3530 *pRes = 1; |
|
3531 return SQLITE_OK; |
|
3532 } |
|
3533 assert( pPage->isInit ); |
|
3534 assert( pCur->idx<pPage->nCell ); |
|
3535 |
|
3536 pCur->idx++; |
|
3537 pCur->info.nSize = 0; |
|
3538 if( pCur->idx>=pPage->nCell ){ |
|
3539 if( !pPage->leaf ){ |
|
3540 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
|
3541 if( rc ) return rc; |
|
3542 rc = moveToLeftmost(pCur); |
|
3543 *pRes = 0; |
|
3544 return rc; |
|
3545 } |
|
3546 do{ |
|
3547 if( isRootPage(pPage) ){ |
|
3548 *pRes = 1; |
|
3549 pCur->eState = CURSOR_INVALID; |
|
3550 return SQLITE_OK; |
|
3551 } |
|
3552 moveToParent(pCur); |
|
3553 pPage = pCur->pPage; |
|
3554 }while( pCur->idx>=pPage->nCell ); |
|
3555 *pRes = 0; |
|
3556 if( pPage->leafData ){ |
|
3557 rc = sqlite3BtreeNext(pCur, pRes); |
|
3558 }else{ |
|
3559 rc = SQLITE_OK; |
|
3560 } |
|
3561 return rc; |
|
3562 } |
|
3563 *pRes = 0; |
|
3564 if( pPage->leaf ){ |
|
3565 return SQLITE_OK; |
|
3566 } |
|
3567 rc = moveToLeftmost(pCur); |
|
3568 return rc; |
|
3569 } |
|
3570 |
|
3571 /* |
|
3572 ** Step the cursor to the back to the previous entry in the database. If |
|
3573 ** successful then set *pRes=0. If the cursor |
|
3574 ** was already pointing to the first entry in the database before |
|
3575 ** this routine was called, then set *pRes=1. |
|
3576 */ |
|
3577 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ |
|
3578 int rc; |
|
3579 Pgno pgno; |
|
3580 MemPage *pPage; |
|
3581 |
|
3582 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
3583 rc = restoreOrClearCursorPosition(pCur, 1); |
|
3584 if( rc!=SQLITE_OK ){ |
|
3585 return rc; |
|
3586 } |
|
3587 if( pCur->skip<0 ){ |
|
3588 pCur->skip = 0; |
|
3589 *pRes = 0; |
|
3590 return SQLITE_OK; |
|
3591 } |
|
3592 pCur->skip = 0; |
|
3593 #endif |
|
3594 |
|
3595 if( CURSOR_INVALID==pCur->eState ){ |
|
3596 *pRes = 1; |
|
3597 return SQLITE_OK; |
|
3598 } |
|
3599 |
|
3600 pPage = pCur->pPage; |
|
3601 assert( pPage->isInit ); |
|
3602 assert( pCur->idx>=0 ); |
|
3603 if( !pPage->leaf ){ |
|
3604 pgno = get4byte( findCell(pPage, pCur->idx) ); |
|
3605 rc = moveToChild(pCur, pgno); |
|
3606 if( rc ) return rc; |
|
3607 rc = moveToRightmost(pCur); |
|
3608 }else{ |
|
3609 while( pCur->idx==0 ){ |
|
3610 if( isRootPage(pPage) ){ |
|
3611 pCur->eState = CURSOR_INVALID; |
|
3612 *pRes = 1; |
|
3613 return SQLITE_OK; |
|
3614 } |
|
3615 moveToParent(pCur); |
|
3616 pPage = pCur->pPage; |
|
3617 } |
|
3618 pCur->idx--; |
|
3619 pCur->info.nSize = 0; |
|
3620 if( pPage->leafData && !pPage->leaf ){ |
|
3621 rc = sqlite3BtreePrevious(pCur, pRes); |
|
3622 }else{ |
|
3623 rc = SQLITE_OK; |
|
3624 } |
|
3625 } |
|
3626 *pRes = 0; |
|
3627 return rc; |
|
3628 } |
|
3629 |
|
3630 /* |
|
3631 ** Allocate a new page from the database file. |
|
3632 ** |
|
3633 ** The new page is marked as dirty. (In other words, sqlite3pager_write() |
|
3634 ** has already been called on the new page.) The new page has also |
|
3635 ** been referenced and the calling routine is responsible for calling |
|
3636 ** sqlite3pager_unref() on the new page when it is done. |
|
3637 ** |
|
3638 ** SQLITE_OK is returned on success. Any other return value indicates |
|
3639 ** an error. *ppPage and *pPgno are undefined in the event of an error. |
|
3640 ** Do not invoke sqlite3pager_unref() on *ppPage if an error is returned. |
|
3641 ** |
|
3642 ** If the "nearby" parameter is not 0, then a (feeble) effort is made to |
|
3643 ** locate a page close to the page number "nearby". This can be used in an |
|
3644 ** attempt to keep related pages close to each other in the database file, |
|
3645 ** which in turn can make database access faster. |
|
3646 ** |
|
3647 ** If the "exact" parameter is not 0, and the page-number nearby exists |
|
3648 ** anywhere on the free-list, then it is guarenteed to be returned. This |
|
3649 ** is only used by auto-vacuum databases when allocating a new table. |
|
3650 */ |
|
3651 static int allocatePage( |
|
3652 BtShared *pBt, |
|
3653 MemPage **ppPage, |
|
3654 Pgno *pPgno, |
|
3655 Pgno nearby, |
|
3656 u8 exact |
|
3657 ){ |
|
3658 MemPage *pPage1; |
|
3659 int rc; |
|
3660 int n; /* Number of pages on the freelist */ |
|
3661 int k; /* Number of leaves on the trunk of the freelist */ |
|
3662 |
|
3663 pPage1 = pBt->pPage1; |
|
3664 n = get4byte(&pPage1->aData[36]); |
|
3665 if( n>0 ){ |
|
3666 /* There are pages on the freelist. Reuse one of those pages. */ |
|
3667 MemPage *pTrunk = 0; |
|
3668 Pgno iTrunk; |
|
3669 MemPage *pPrevTrunk = 0; |
|
3670 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ |
|
3671 |
|
3672 /* If the 'exact' parameter was true and a query of the pointer-map |
|
3673 ** shows that the page 'nearby' is somewhere on the free-list, then |
|
3674 ** the entire-list will be searched for that page. |
|
3675 */ |
|
3676 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
3677 if( exact ){ |
|
3678 u8 eType; |
|
3679 assert( nearby>0 ); |
|
3680 assert( pBt->autoVacuum ); |
|
3681 rc = ptrmapGet(pBt, nearby, &eType, 0); |
|
3682 if( rc ) return rc; |
|
3683 if( eType==PTRMAP_FREEPAGE ){ |
|
3684 searchList = 1; |
|
3685 } |
|
3686 *pPgno = nearby; |
|
3687 } |
|
3688 #endif |
|
3689 |
|
3690 /* Decrement the free-list count by 1. Set iTrunk to the index of the |
|
3691 ** first free-list trunk page. iPrevTrunk is initially 1. |
|
3692 */ |
|
3693 rc = sqlite3pager_write(pPage1->aData); |
|
3694 if( rc ) return rc; |
|
3695 put4byte(&pPage1->aData[36], n-1); |
|
3696 |
|
3697 /* The code within this loop is run only once if the 'searchList' variable |
|
3698 ** is not true. Otherwise, it runs once for each trunk-page on the |
|
3699 ** free-list until the page 'nearby' is located. |
|
3700 */ |
|
3701 do { |
|
3702 pPrevTrunk = pTrunk; |
|
3703 if( pPrevTrunk ){ |
|
3704 iTrunk = get4byte(&pPrevTrunk->aData[0]); |
|
3705 }else{ |
|
3706 iTrunk = get4byte(&pPage1->aData[32]); |
|
3707 } |
|
3708 rc = getPage(pBt, iTrunk, &pTrunk); |
|
3709 if( rc ){ |
|
3710 releasePage(pPrevTrunk); |
|
3711 return rc; |
|
3712 } |
|
3713 |
|
3714 /* TODO: This should move to after the loop? */ |
|
3715 rc = sqlite3pager_write(pTrunk->aData); |
|
3716 if( rc ){ |
|
3717 releasePage(pTrunk); |
|
3718 releasePage(pPrevTrunk); |
|
3719 return rc; |
|
3720 } |
|
3721 |
|
3722 k = get4byte(&pTrunk->aData[4]); |
|
3723 if( k==0 && !searchList ){ |
|
3724 /* The trunk has no leaves and the list is not being searched. |
|
3725 ** So extract the trunk page itself and use it as the newly |
|
3726 ** allocated page */ |
|
3727 assert( pPrevTrunk==0 ); |
|
3728 *pPgno = iTrunk; |
|
3729 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
|
3730 *ppPage = pTrunk; |
|
3731 pTrunk = 0; |
|
3732 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
|
3733 }else if( k>pBt->usableSize/4 - 8 ){ |
|
3734 /* Value of k is out of range. Database corruption */ |
|
3735 return SQLITE_CORRUPT_BKPT; |
|
3736 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
3737 }else if( searchList && nearby==iTrunk ){ |
|
3738 /* The list is being searched and this trunk page is the page |
|
3739 ** to allocate, regardless of whether it has leaves. |
|
3740 */ |
|
3741 assert( *pPgno==iTrunk ); |
|
3742 *ppPage = pTrunk; |
|
3743 searchList = 0; |
|
3744 if( k==0 ){ |
|
3745 if( !pPrevTrunk ){ |
|
3746 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
|
3747 }else{ |
|
3748 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); |
|
3749 } |
|
3750 }else{ |
|
3751 /* The trunk page is required by the caller but it contains |
|
3752 ** pointers to free-list leaves. The first leaf becomes a trunk |
|
3753 ** page in this case. |
|
3754 */ |
|
3755 MemPage *pNewTrunk; |
|
3756 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); |
|
3757 rc = getPage(pBt, iNewTrunk, &pNewTrunk); |
|
3758 if( rc!=SQLITE_OK ){ |
|
3759 releasePage(pTrunk); |
|
3760 releasePage(pPrevTrunk); |
|
3761 return rc; |
|
3762 } |
|
3763 rc = sqlite3pager_write(pNewTrunk->aData); |
|
3764 if( rc!=SQLITE_OK ){ |
|
3765 releasePage(pNewTrunk); |
|
3766 releasePage(pTrunk); |
|
3767 releasePage(pPrevTrunk); |
|
3768 return rc; |
|
3769 } |
|
3770 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); |
|
3771 put4byte(&pNewTrunk->aData[4], k-1); |
|
3772 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); |
|
3773 if( !pPrevTrunk ){ |
|
3774 put4byte(&pPage1->aData[32], iNewTrunk); |
|
3775 }else{ |
|
3776 put4byte(&pPrevTrunk->aData[0], iNewTrunk); |
|
3777 } |
|
3778 releasePage(pNewTrunk); |
|
3779 } |
|
3780 pTrunk = 0; |
|
3781 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
|
3782 #endif |
|
3783 }else{ |
|
3784 /* Extract a leaf from the trunk */ |
|
3785 int closest; |
|
3786 Pgno iPage; |
|
3787 unsigned char *aData = pTrunk->aData; |
|
3788 if( nearby>0 ){ |
|
3789 int i, dist; |
|
3790 closest = 0; |
|
3791 dist = get4byte(&aData[8]) - nearby; |
|
3792 if( dist<0 ) dist = -dist; |
|
3793 for(i=1; i<k; i++){ |
|
3794 int d2 = get4byte(&aData[8+i*4]) - nearby; |
|
3795 if( d2<0 ) d2 = -d2; |
|
3796 if( d2<dist ){ |
|
3797 closest = i; |
|
3798 dist = d2; |
|
3799 } |
|
3800 } |
|
3801 }else{ |
|
3802 closest = 0; |
|
3803 } |
|
3804 |
|
3805 iPage = get4byte(&aData[8+closest*4]); |
|
3806 if( !searchList || iPage==nearby ){ |
|
3807 *pPgno = iPage; |
|
3808 if( *pPgno>sqlite3pager_pagecount(pBt->pPager) ){ |
|
3809 /* Free page off the end of the file */ |
|
3810 return SQLITE_CORRUPT_BKPT; |
|
3811 } |
|
3812 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" |
|
3813 ": %d more free pages\n", |
|
3814 *pPgno, closest+1, k, pTrunk->pgno, n-1)); |
|
3815 if( closest<k-1 ){ |
|
3816 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); |
|
3817 } |
|
3818 put4byte(&aData[4], k-1); |
|
3819 rc = getPage(pBt, *pPgno, ppPage); |
|
3820 if( rc==SQLITE_OK ){ |
|
3821 sqlite3pager_dont_rollback((*ppPage)->aData); |
|
3822 rc = sqlite3pager_write((*ppPage)->aData); |
|
3823 if( rc!=SQLITE_OK ){ |
|
3824 releasePage(*ppPage); |
|
3825 } |
|
3826 } |
|
3827 searchList = 0; |
|
3828 } |
|
3829 } |
|
3830 releasePage(pPrevTrunk); |
|
3831 }while( searchList ); |
|
3832 releasePage(pTrunk); |
|
3833 }else{ |
|
3834 /* There are no pages on the freelist, so create a new page at the |
|
3835 ** end of the file */ |
|
3836 *pPgno = sqlite3pager_pagecount(pBt->pPager) + 1; |
|
3837 |
|
3838 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
3839 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){ |
|
3840 /* If *pPgno refers to a pointer-map page, allocate two new pages |
|
3841 ** at the end of the file instead of one. The first allocated page |
|
3842 ** becomes a new pointer-map page, the second is used by the caller. |
|
3843 */ |
|
3844 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno)); |
|
3845 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
|
3846 (*pPgno)++; |
|
3847 } |
|
3848 #endif |
|
3849 |
|
3850 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
|
3851 rc = getPage(pBt, *pPgno, ppPage); |
|
3852 if( rc ) return rc; |
|
3853 rc = sqlite3pager_write((*ppPage)->aData); |
|
3854 if( rc!=SQLITE_OK ){ |
|
3855 releasePage(*ppPage); |
|
3856 } |
|
3857 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); |
|
3858 } |
|
3859 |
|
3860 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
|
3861 return rc; |
|
3862 } |
|
3863 |
|
3864 /* |
|
3865 ** Add a page of the database file to the freelist. |
|
3866 ** |
|
3867 ** sqlite3pager_unref() is NOT called for pPage. |
|
3868 */ |
|
3869 static int freePage(MemPage *pPage){ |
|
3870 BtShared *pBt = pPage->pBt; |
|
3871 MemPage *pPage1 = pBt->pPage1; |
|
3872 int rc, n, k; |
|
3873 |
|
3874 /* Prepare the page for freeing */ |
|
3875 assert( pPage->pgno>1 ); |
|
3876 pPage->isInit = 0; |
|
3877 releasePage(pPage->pParent); |
|
3878 pPage->pParent = 0; |
|
3879 |
|
3880 /* Increment the free page count on pPage1 */ |
|
3881 rc = sqlite3pager_write(pPage1->aData); |
|
3882 if( rc ) return rc; |
|
3883 n = get4byte(&pPage1->aData[36]); |
|
3884 put4byte(&pPage1->aData[36], n+1); |
|
3885 |
|
3886 #ifdef SQLITE_SECURE_DELETE |
|
3887 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then |
|
3888 ** always fully overwrite deleted information with zeros. |
|
3889 */ |
|
3890 rc = sqlite3pager_write(pPage->aData); |
|
3891 if( rc ) return rc; |
|
3892 memset(pPage->aData, 0, pPage->pBt->pageSize); |
|
3893 #endif |
|
3894 |
|
3895 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
3896 /* If the database supports auto-vacuum, write an entry in the pointer-map |
|
3897 ** to indicate that the page is free. |
|
3898 */ |
|
3899 if( pBt->autoVacuum ){ |
|
3900 rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0); |
|
3901 if( rc ) return rc; |
|
3902 } |
|
3903 #endif |
|
3904 |
|
3905 if( n==0 ){ |
|
3906 /* This is the first free page */ |
|
3907 rc = sqlite3pager_write(pPage->aData); |
|
3908 if( rc ) return rc; |
|
3909 memset(pPage->aData, 0, 8); |
|
3910 put4byte(&pPage1->aData[32], pPage->pgno); |
|
3911 TRACE(("FREE-PAGE: %d first\n", pPage->pgno)); |
|
3912 }else{ |
|
3913 /* Other free pages already exist. Retrive the first trunk page |
|
3914 ** of the freelist and find out how many leaves it has. */ |
|
3915 MemPage *pTrunk; |
|
3916 rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk); |
|
3917 if( rc ) return rc; |
|
3918 k = get4byte(&pTrunk->aData[4]); |
|
3919 if( k>=pBt->usableSize/4 - 8 ){ |
|
3920 /* The trunk is full. Turn the page being freed into a new |
|
3921 ** trunk page with no leaves. */ |
|
3922 rc = sqlite3pager_write(pPage->aData); |
|
3923 if( rc ) return rc; |
|
3924 put4byte(pPage->aData, pTrunk->pgno); |
|
3925 put4byte(&pPage->aData[4], 0); |
|
3926 put4byte(&pPage1->aData[32], pPage->pgno); |
|
3927 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", |
|
3928 pPage->pgno, pTrunk->pgno)); |
|
3929 }else{ |
|
3930 /* Add the newly freed page as a leaf on the current trunk */ |
|
3931 rc = sqlite3pager_write(pTrunk->aData); |
|
3932 if( rc ) return rc; |
|
3933 put4byte(&pTrunk->aData[4], k+1); |
|
3934 put4byte(&pTrunk->aData[8+k*4], pPage->pgno); |
|
3935 #ifndef SQLITE_SECURE_DELETE |
|
3936 sqlite3pager_dont_write(pBt->pPager, pPage->pgno); |
|
3937 #endif |
|
3938 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); |
|
3939 } |
|
3940 releasePage(pTrunk); |
|
3941 } |
|
3942 return rc; |
|
3943 } |
|
3944 |
|
3945 /* |
|
3946 ** Free any overflow pages associated with the given Cell. |
|
3947 */ |
|
3948 static int clearCell(MemPage *pPage, unsigned char *pCell){ |
|
3949 BtShared *pBt = pPage->pBt; |
|
3950 CellInfo info; |
|
3951 Pgno ovflPgno; |
|
3952 int rc; |
|
3953 |
|
3954 parseCellPtr(pPage, pCell, &info); |
|
3955 if( info.iOverflow==0 ){ |
|
3956 return SQLITE_OK; /* No overflow pages. Return without doing anything */ |
|
3957 } |
|
3958 ovflPgno = get4byte(&pCell[info.iOverflow]); |
|
3959 while( ovflPgno!=0 ){ |
|
3960 MemPage *pOvfl; |
|
3961 if( ovflPgno>sqlite3pager_pagecount(pBt->pPager) ){ |
|
3962 return SQLITE_CORRUPT_BKPT; |
|
3963 } |
|
3964 rc = getPage(pBt, ovflPgno, &pOvfl); |
|
3965 if( rc ) return rc; |
|
3966 ovflPgno = get4byte(pOvfl->aData); |
|
3967 rc = freePage(pOvfl); |
|
3968 sqlite3pager_unref(pOvfl->aData); |
|
3969 if( rc ) return rc; |
|
3970 } |
|
3971 return SQLITE_OK; |
|
3972 } |
|
3973 |
|
3974 /* |
|
3975 ** Create the byte sequence used to represent a cell on page pPage |
|
3976 ** and write that byte sequence into pCell[]. Overflow pages are |
|
3977 ** allocated and filled in as necessary. The calling procedure |
|
3978 ** is responsible for making sure sufficient space has been allocated |
|
3979 ** for pCell[]. |
|
3980 ** |
|
3981 ** Note that pCell does not necessary need to point to the pPage->aData |
|
3982 ** area. pCell might point to some temporary storage. The cell will |
|
3983 ** be constructed in this temporary area then copied into pPage->aData |
|
3984 ** later. |
|
3985 */ |
|
3986 static int fillInCell( |
|
3987 MemPage *pPage, /* The page that contains the cell */ |
|
3988 unsigned char *pCell, /* Complete text of the cell */ |
|
3989 const void *pKey, i64 nKey, /* The key */ |
|
3990 const void *pData,int nData, /* The data */ |
|
3991 int *pnSize /* Write cell size here */ |
|
3992 ){ |
|
3993 int nPayload; |
|
3994 const u8 *pSrc; |
|
3995 int nSrc, n, rc; |
|
3996 int spaceLeft; |
|
3997 MemPage *pOvfl = 0; |
|
3998 MemPage *pToRelease = 0; |
|
3999 unsigned char *pPrior; |
|
4000 unsigned char *pPayload; |
|
4001 BtShared *pBt = pPage->pBt; |
|
4002 Pgno pgnoOvfl = 0; |
|
4003 int nHeader; |
|
4004 CellInfo info; |
|
4005 |
|
4006 /* Fill in the header. */ |
|
4007 nHeader = 0; |
|
4008 if( !pPage->leaf ){ |
|
4009 nHeader += 4; |
|
4010 } |
|
4011 if( pPage->hasData ){ |
|
4012 nHeader += putVarint(&pCell[nHeader], nData); |
|
4013 }else{ |
|
4014 nData = 0; |
|
4015 } |
|
4016 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); |
|
4017 parseCellPtr(pPage, pCell, &info); |
|
4018 assert( info.nHeader==nHeader ); |
|
4019 assert( info.nKey==nKey ); |
|
4020 assert( info.nData==nData ); |
|
4021 |
|
4022 /* Fill in the payload */ |
|
4023 nPayload = nData; |
|
4024 if( pPage->intKey ){ |
|
4025 pSrc = pData; |
|
4026 nSrc = nData; |
|
4027 nData = 0; |
|
4028 }else{ |
|
4029 nPayload += nKey; |
|
4030 pSrc = pKey; |
|
4031 nSrc = nKey; |
|
4032 } |
|
4033 *pnSize = info.nSize; |
|
4034 spaceLeft = info.nLocal; |
|
4035 pPayload = &pCell[nHeader]; |
|
4036 pPrior = &pCell[info.iOverflow]; |
|
4037 |
|
4038 while( nPayload>0 ){ |
|
4039 if( spaceLeft==0 ){ |
|
4040 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4041 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ |
|
4042 #endif |
|
4043 rc = allocatePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); |
|
4044 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4045 /* If the database supports auto-vacuum, and the second or subsequent |
|
4046 ** overflow page is being allocated, add an entry to the pointer-map |
|
4047 ** for that page now. The entry for the first overflow page will be |
|
4048 ** added later, by the insertCell() routine. |
|
4049 */ |
|
4050 if( pBt->autoVacuum && pgnoPtrmap!=0 && rc==SQLITE_OK ){ |
|
4051 rc = ptrmapPut(pBt, pgnoOvfl, PTRMAP_OVERFLOW2, pgnoPtrmap); |
|
4052 } |
|
4053 #endif |
|
4054 if( rc ){ |
|
4055 releasePage(pToRelease); |
|
4056 /* clearCell(pPage, pCell); */ |
|
4057 return rc; |
|
4058 } |
|
4059 put4byte(pPrior, pgnoOvfl); |
|
4060 releasePage(pToRelease); |
|
4061 pToRelease = pOvfl; |
|
4062 pPrior = pOvfl->aData; |
|
4063 put4byte(pPrior, 0); |
|
4064 pPayload = &pOvfl->aData[4]; |
|
4065 spaceLeft = pBt->usableSize - 4; |
|
4066 } |
|
4067 n = nPayload; |
|
4068 if( n>spaceLeft ) n = spaceLeft; |
|
4069 if( n>nSrc ) n = nSrc; |
|
4070 assert( pSrc ); |
|
4071 memcpy(pPayload, pSrc, n); |
|
4072 nPayload -= n; |
|
4073 pPayload += n; |
|
4074 pSrc += n; |
|
4075 nSrc -= n; |
|
4076 spaceLeft -= n; |
|
4077 if( nSrc==0 ){ |
|
4078 nSrc = nData; |
|
4079 pSrc = pData; |
|
4080 } |
|
4081 } |
|
4082 releasePage(pToRelease); |
|
4083 return SQLITE_OK; |
|
4084 } |
|
4085 |
|
4086 /* |
|
4087 ** Change the MemPage.pParent pointer on the page whose number is |
|
4088 ** given in the second argument so that MemPage.pParent holds the |
|
4089 ** pointer in the third argument. |
|
4090 */ |
|
4091 static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){ |
|
4092 MemPage *pThis; |
|
4093 unsigned char *aData; |
|
4094 |
|
4095 assert( pNewParent!=0 ); |
|
4096 if( pgno==0 ) return SQLITE_OK; |
|
4097 assert( pBt->pPager!=0 ); |
|
4098 aData = sqlite3pager_lookup(pBt->pPager, pgno); |
|
4099 if( aData ){ |
|
4100 pThis = (MemPage*)&aData[pBt->pageSize]; |
|
4101 assert( pThis->aData==aData ); |
|
4102 if( pThis->isInit ){ |
|
4103 if( pThis->pParent!=pNewParent ){ |
|
4104 if( pThis->pParent ) sqlite3pager_unref(pThis->pParent->aData); |
|
4105 pThis->pParent = pNewParent; |
|
4106 sqlite3pager_ref(pNewParent->aData); |
|
4107 } |
|
4108 pThis->idxParent = idx; |
|
4109 } |
|
4110 sqlite3pager_unref(aData); |
|
4111 } |
|
4112 |
|
4113 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4114 if( pBt->autoVacuum ){ |
|
4115 return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno); |
|
4116 } |
|
4117 #endif |
|
4118 return SQLITE_OK; |
|
4119 } |
|
4120 |
|
4121 |
|
4122 |
|
4123 /* |
|
4124 ** Change the pParent pointer of all children of pPage to point back |
|
4125 ** to pPage. |
|
4126 ** |
|
4127 ** In other words, for every child of pPage, invoke reparentPage() |
|
4128 ** to make sure that each child knows that pPage is its parent. |
|
4129 ** |
|
4130 ** This routine gets called after you memcpy() one page into |
|
4131 ** another. |
|
4132 */ |
|
4133 static int reparentChildPages(MemPage *pPage){ |
|
4134 int i; |
|
4135 BtShared *pBt = pPage->pBt; |
|
4136 int rc = SQLITE_OK; |
|
4137 |
|
4138 if( pPage->leaf ) return SQLITE_OK; |
|
4139 |
|
4140 for(i=0; i<pPage->nCell; i++){ |
|
4141 u8 *pCell = findCell(pPage, i); |
|
4142 if( !pPage->leaf ){ |
|
4143 rc = reparentPage(pBt, get4byte(pCell), pPage, i); |
|
4144 if( rc!=SQLITE_OK ) return rc; |
|
4145 } |
|
4146 } |
|
4147 if( !pPage->leaf ){ |
|
4148 rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]), |
|
4149 pPage, i); |
|
4150 pPage->idxShift = 0; |
|
4151 } |
|
4152 return rc; |
|
4153 } |
|
4154 |
|
4155 /* |
|
4156 ** Remove the i-th cell from pPage. This routine effects pPage only. |
|
4157 ** The cell content is not freed or deallocated. It is assumed that |
|
4158 ** the cell content has been copied someplace else. This routine just |
|
4159 ** removes the reference to the cell from pPage. |
|
4160 ** |
|
4161 ** "sz" must be the number of bytes in the cell. |
|
4162 */ |
|
4163 static void dropCell(MemPage *pPage, int idx, int sz){ |
|
4164 int i; /* Loop counter */ |
|
4165 int pc; /* Offset to cell content of cell being deleted */ |
|
4166 u8 *data; /* pPage->aData */ |
|
4167 u8 *ptr; /* Used to move bytes around within data[] */ |
|
4168 |
|
4169 assert( idx>=0 && idx<pPage->nCell ); |
|
4170 assert( sz==cellSize(pPage, idx) ); |
|
4171 assert( sqlite3pager_iswriteable(pPage->aData) ); |
|
4172 data = pPage->aData; |
|
4173 ptr = &data[pPage->cellOffset + 2*idx]; |
|
4174 pc = get2byte(ptr); |
|
4175 assert( pc>10 && pc+sz<=pPage->pBt->usableSize ); |
|
4176 freeSpace(pPage, pc, sz); |
|
4177 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){ |
|
4178 ptr[0] = ptr[2]; |
|
4179 ptr[1] = ptr[3]; |
|
4180 } |
|
4181 pPage->nCell--; |
|
4182 put2byte(&data[pPage->hdrOffset+3], pPage->nCell); |
|
4183 pPage->nFree += 2; |
|
4184 pPage->idxShift = 1; |
|
4185 } |
|
4186 |
|
4187 /* |
|
4188 ** Insert a new cell on pPage at cell index "i". pCell points to the |
|
4189 ** content of the cell. |
|
4190 ** |
|
4191 ** If the cell content will fit on the page, then put it there. If it |
|
4192 ** will not fit, then make a copy of the cell content into pTemp if |
|
4193 ** pTemp is not null. Regardless of pTemp, allocate a new entry |
|
4194 ** in pPage->aOvfl[] and make it point to the cell content (either |
|
4195 ** in pTemp or the original pCell) and also record its index. |
|
4196 ** Allocating a new entry in pPage->aCell[] implies that |
|
4197 ** pPage->nOverflow is incremented. |
|
4198 ** |
|
4199 ** If nSkip is non-zero, then do not copy the first nSkip bytes of the |
|
4200 ** cell. The caller will overwrite them after this function returns. If |
|
4201 ** nSkip is non-zero, then pCell may not point to an invalid memory location |
|
4202 ** (but pCell+nSkip is always valid). |
|
4203 */ |
|
4204 static int insertCell( |
|
4205 MemPage *pPage, /* Page into which we are copying */ |
|
4206 int i, /* New cell becomes the i-th cell of the page */ |
|
4207 u8 *pCell, /* Content of the new cell */ |
|
4208 int sz, /* Bytes of content in pCell */ |
|
4209 u8 *pTemp, /* Temp storage space for pCell, if needed */ |
|
4210 u8 nSkip /* Do not write the first nSkip bytes of the cell */ |
|
4211 ){ |
|
4212 int idx; /* Where to write new cell content in data[] */ |
|
4213 int j; /* Loop counter */ |
|
4214 int top; /* First byte of content for any cell in data[] */ |
|
4215 int end; /* First byte past the last cell pointer in data[] */ |
|
4216 int ins; /* Index in data[] where new cell pointer is inserted */ |
|
4217 int hdr; /* Offset into data[] of the page header */ |
|
4218 int cellOffset; /* Address of first cell pointer in data[] */ |
|
4219 u8 *data; /* The content of the whole page */ |
|
4220 u8 *ptr; /* Used for moving information around in data[] */ |
|
4221 |
|
4222 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); |
|
4223 assert( sz==cellSizePtr(pPage, pCell) ); |
|
4224 assert( sqlite3pager_iswriteable(pPage->aData) ); |
|
4225 if( pPage->nOverflow || sz+2>pPage->nFree ){ |
|
4226 if( pTemp ){ |
|
4227 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip); |
|
4228 pCell = pTemp; |
|
4229 } |
|
4230 j = pPage->nOverflow++; |
|
4231 assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) ); |
|
4232 pPage->aOvfl[j].pCell = pCell; |
|
4233 pPage->aOvfl[j].idx = i; |
|
4234 pPage->nFree = 0; |
|
4235 }else{ |
|
4236 data = pPage->aData; |
|
4237 hdr = pPage->hdrOffset; |
|
4238 top = get2byte(&data[hdr+5]); |
|
4239 cellOffset = pPage->cellOffset; |
|
4240 end = cellOffset + 2*pPage->nCell + 2; |
|
4241 ins = cellOffset + 2*i; |
|
4242 if( end > top - sz ){ |
|
4243 int rc = defragmentPage(pPage); |
|
4244 if( rc!=SQLITE_OK ) return rc; |
|
4245 top = get2byte(&data[hdr+5]); |
|
4246 assert( end + sz <= top ); |
|
4247 } |
|
4248 idx = allocateSpace(pPage, sz); |
|
4249 assert( idx>0 ); |
|
4250 assert( end <= get2byte(&data[hdr+5]) ); |
|
4251 pPage->nCell++; |
|
4252 pPage->nFree -= 2; |
|
4253 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip); |
|
4254 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){ |
|
4255 ptr[0] = ptr[-2]; |
|
4256 ptr[1] = ptr[-1]; |
|
4257 } |
|
4258 put2byte(&data[ins], idx); |
|
4259 put2byte(&data[hdr+3], pPage->nCell); |
|
4260 pPage->idxShift = 1; |
|
4261 pageIntegrity(pPage); |
|
4262 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4263 if( pPage->pBt->autoVacuum ){ |
|
4264 /* The cell may contain a pointer to an overflow page. If so, write |
|
4265 ** the entry for the overflow page into the pointer map. |
|
4266 */ |
|
4267 CellInfo info; |
|
4268 parseCellPtr(pPage, pCell, &info); |
|
4269 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){ |
|
4270 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); |
|
4271 int rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno); |
|
4272 if( rc!=SQLITE_OK ) return rc; |
|
4273 } |
|
4274 } |
|
4275 #endif |
|
4276 } |
|
4277 |
|
4278 return SQLITE_OK; |
|
4279 } |
|
4280 |
|
4281 /* |
|
4282 ** Add a list of cells to a page. The page should be initially empty. |
|
4283 ** The cells are guaranteed to fit on the page. |
|
4284 */ |
|
4285 static void assemblePage( |
|
4286 MemPage *pPage, /* The page to be assemblied */ |
|
4287 int nCell, /* The number of cells to add to this page */ |
|
4288 u8 **apCell, /* Pointers to cell bodies */ |
|
4289 int *aSize /* Sizes of the cells */ |
|
4290 ){ |
|
4291 int i; /* Loop counter */ |
|
4292 int totalSize; /* Total size of all cells */ |
|
4293 int hdr; /* Index of page header */ |
|
4294 int cellptr; /* Address of next cell pointer */ |
|
4295 int cellbody; /* Address of next cell body */ |
|
4296 u8 *data; /* Data for the page */ |
|
4297 |
|
4298 assert( pPage->nOverflow==0 ); |
|
4299 totalSize = 0; |
|
4300 for(i=0; i<nCell; i++){ |
|
4301 totalSize += aSize[i]; |
|
4302 } |
|
4303 assert( totalSize+2*nCell<=pPage->nFree ); |
|
4304 assert( pPage->nCell==0 ); |
|
4305 cellptr = pPage->cellOffset; |
|
4306 data = pPage->aData; |
|
4307 hdr = pPage->hdrOffset; |
|
4308 put2byte(&data[hdr+3], nCell); |
|
4309 if( nCell ){ |
|
4310 cellbody = allocateSpace(pPage, totalSize); |
|
4311 assert( cellbody>0 ); |
|
4312 assert( pPage->nFree >= 2*nCell ); |
|
4313 pPage->nFree -= 2*nCell; |
|
4314 for(i=0; i<nCell; i++){ |
|
4315 put2byte(&data[cellptr], cellbody); |
|
4316 memcpy(&data[cellbody], apCell[i], aSize[i]); |
|
4317 cellptr += 2; |
|
4318 cellbody += aSize[i]; |
|
4319 } |
|
4320 assert( cellbody==pPage->pBt->usableSize ); |
|
4321 } |
|
4322 pPage->nCell = nCell; |
|
4323 } |
|
4324 |
|
4325 /* |
|
4326 ** The following parameters determine how many adjacent pages get involved |
|
4327 ** in a balancing operation. NN is the number of neighbors on either side |
|
4328 ** of the page that participate in the balancing operation. NB is the |
|
4329 ** total number of pages that participate, including the target page and |
|
4330 ** NN neighbors on either side. |
|
4331 ** |
|
4332 ** The minimum value of NN is 1 (of course). Increasing NN above 1 |
|
4333 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance |
|
4334 ** in exchange for a larger degradation in INSERT and UPDATE performance. |
|
4335 ** The value of NN appears to give the best results overall. |
|
4336 */ |
|
4337 #define NN 1 /* Number of neighbors on either side of pPage */ |
|
4338 #define NB (NN*2+1) /* Total pages involved in the balance */ |
|
4339 |
|
4340 /* Forward reference */ |
|
4341 static int balance(MemPage*, int); |
|
4342 |
|
4343 #ifndef SQLITE_OMIT_QUICKBALANCE |
|
4344 /* |
|
4345 ** This version of balance() handles the common special case where |
|
4346 ** a new entry is being inserted on the extreme right-end of the |
|
4347 ** tree, in other words, when the new entry will become the largest |
|
4348 ** entry in the tree. |
|
4349 ** |
|
4350 ** Instead of trying balance the 3 right-most leaf pages, just add |
|
4351 ** a new page to the right-hand side and put the one new entry in |
|
4352 ** that page. This leaves the right side of the tree somewhat |
|
4353 ** unbalanced. But odds are that we will be inserting new entries |
|
4354 ** at the end soon afterwards so the nearly empty page will quickly |
|
4355 ** fill up. On average. |
|
4356 ** |
|
4357 ** pPage is the leaf page which is the right-most page in the tree. |
|
4358 ** pParent is its parent. pPage must have a single overflow entry |
|
4359 ** which is also the right-most entry on the page. |
|
4360 */ |
|
4361 static int balance_quick(MemPage *pPage, MemPage *pParent){ |
|
4362 int rc; |
|
4363 MemPage *pNew; |
|
4364 Pgno pgnoNew; |
|
4365 u8 *pCell; |
|
4366 int szCell; |
|
4367 CellInfo info; |
|
4368 BtShared *pBt = pPage->pBt; |
|
4369 int parentIdx = pParent->nCell; /* pParent new divider cell index */ |
|
4370 int parentSize; /* Size of new divider cell */ |
|
4371 u8 parentCell[64]; /* Space for the new divider cell */ |
|
4372 |
|
4373 /* Allocate a new page. Insert the overflow cell from pPage |
|
4374 ** into it. Then remove the overflow cell from pPage. |
|
4375 */ |
|
4376 rc = allocatePage(pBt, &pNew, &pgnoNew, 0, 0); |
|
4377 if( rc!=SQLITE_OK ){ |
|
4378 return rc; |
|
4379 } |
|
4380 pCell = pPage->aOvfl[0].pCell; |
|
4381 szCell = cellSizePtr(pPage, pCell); |
|
4382 zeroPage(pNew, pPage->aData[0]); |
|
4383 assemblePage(pNew, 1, &pCell, &szCell); |
|
4384 pPage->nOverflow = 0; |
|
4385 |
|
4386 /* Set the parent of the newly allocated page to pParent. */ |
|
4387 pNew->pParent = pParent; |
|
4388 sqlite3pager_ref(pParent->aData); |
|
4389 |
|
4390 /* pPage is currently the right-child of pParent. Change this |
|
4391 ** so that the right-child is the new page allocated above and |
|
4392 ** pPage is the next-to-right child. |
|
4393 */ |
|
4394 assert( pPage->nCell>0 ); |
|
4395 parseCellPtr(pPage, findCell(pPage, pPage->nCell-1), &info); |
|
4396 rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, &parentSize); |
|
4397 if( rc!=SQLITE_OK ){ |
|
4398 return rc; |
|
4399 } |
|
4400 assert( parentSize<64 ); |
|
4401 rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4); |
|
4402 if( rc!=SQLITE_OK ){ |
|
4403 return rc; |
|
4404 } |
|
4405 put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno); |
|
4406 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); |
|
4407 |
|
4408 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4409 /* If this is an auto-vacuum database, update the pointer map |
|
4410 ** with entries for the new page, and any pointer from the |
|
4411 ** cell on the page to an overflow page. |
|
4412 */ |
|
4413 if( pBt->autoVacuum ){ |
|
4414 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno); |
|
4415 if( rc!=SQLITE_OK ){ |
|
4416 return rc; |
|
4417 } |
|
4418 rc = ptrmapPutOvfl(pNew, 0); |
|
4419 if( rc!=SQLITE_OK ){ |
|
4420 return rc; |
|
4421 } |
|
4422 } |
|
4423 #endif |
|
4424 |
|
4425 /* Release the reference to the new page and balance the parent page, |
|
4426 ** in case the divider cell inserted caused it to become overfull. |
|
4427 */ |
|
4428 releasePage(pNew); |
|
4429 return balance(pParent, 0); |
|
4430 } |
|
4431 #endif /* SQLITE_OMIT_QUICKBALANCE */ |
|
4432 |
|
4433 /* |
|
4434 ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine |
|
4435 ** if the database supports auto-vacuum or not. Because it is used |
|
4436 ** within an expression that is an argument to another macro |
|
4437 ** (sqliteMallocRaw), it is not possible to use conditional compilation. |
|
4438 ** So, this macro is defined instead. |
|
4439 */ |
|
4440 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4441 #define ISAUTOVACUUM (pBt->autoVacuum) |
|
4442 #else |
|
4443 #define ISAUTOVACUUM 0 |
|
4444 #endif |
|
4445 |
|
4446 /* |
|
4447 ** This routine redistributes Cells on pPage and up to NN*2 siblings |
|
4448 ** of pPage so that all pages have about the same amount of free space. |
|
4449 ** Usually NN siblings on either side of pPage is used in the balancing, |
|
4450 ** though more siblings might come from one side if pPage is the first |
|
4451 ** or last child of its parent. If pPage has fewer than 2*NN siblings |
|
4452 ** (something which can only happen if pPage is the root page or a |
|
4453 ** child of root) then all available siblings participate in the balancing. |
|
4454 ** |
|
4455 ** The number of siblings of pPage might be increased or decreased by one or |
|
4456 ** two in an effort to keep pages nearly full but not over full. The root page |
|
4457 ** is special and is allowed to be nearly empty. If pPage is |
|
4458 ** the root page, then the depth of the tree might be increased |
|
4459 ** or decreased by one, as necessary, to keep the root page from being |
|
4460 ** overfull or completely empty. |
|
4461 ** |
|
4462 ** Note that when this routine is called, some of the Cells on pPage |
|
4463 ** might not actually be stored in pPage->aData[]. This can happen |
|
4464 ** if the page is overfull. Part of the job of this routine is to |
|
4465 ** make sure all Cells for pPage once again fit in pPage->aData[]. |
|
4466 ** |
|
4467 ** In the course of balancing the siblings of pPage, the parent of pPage |
|
4468 ** might become overfull or underfull. If that happens, then this routine |
|
4469 ** is called recursively on the parent. |
|
4470 ** |
|
4471 ** If this routine fails for any reason, it might leave the database |
|
4472 ** in a corrupted state. So if this routine fails, the database should |
|
4473 ** be rolled back. |
|
4474 */ |
|
4475 static int balance_nonroot(MemPage *pPage){ |
|
4476 MemPage *pParent; /* The parent of pPage */ |
|
4477 BtShared *pBt; /* The whole database */ |
|
4478 int nCell = 0; /* Number of cells in apCell[] */ |
|
4479 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ |
|
4480 int nOld; /* Number of pages in apOld[] */ |
|
4481 int nNew; /* Number of pages in apNew[] */ |
|
4482 int nDiv; /* Number of cells in apDiv[] */ |
|
4483 int i, j, k; /* Loop counters */ |
|
4484 int idx; /* Index of pPage in pParent->aCell[] */ |
|
4485 int nxDiv; /* Next divider slot in pParent->aCell[] */ |
|
4486 int rc; /* The return code */ |
|
4487 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */ |
|
4488 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ |
|
4489 int usableSpace; /* Bytes in pPage beyond the header */ |
|
4490 int pageFlags; /* Value of pPage->aData[0] */ |
|
4491 int subtotal; /* Subtotal of bytes in cells on one page */ |
|
4492 int iSpace = 0; /* First unused byte of aSpace[] */ |
|
4493 MemPage *apOld[NB]; /* pPage and up to two siblings */ |
|
4494 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */ |
|
4495 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */ |
|
4496 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ |
|
4497 Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */ |
|
4498 u8 *apDiv[NB]; /* Divider cells in pParent */ |
|
4499 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */ |
|
4500 int szNew[NB+2]; /* Combined size of cells place on i-th page */ |
|
4501 u8 **apCell = 0; /* All cells begin balanced */ |
|
4502 int *szCell; /* Local size of all cells in apCell[] */ |
|
4503 u8 *aCopy[NB]; /* Space for holding data of apCopy[] */ |
|
4504 u8 *aSpace; /* Space to hold copies of dividers cells */ |
|
4505 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4506 u8 *aFrom = 0; |
|
4507 #endif |
|
4508 |
|
4509 /* |
|
4510 ** Find the parent page. |
|
4511 */ |
|
4512 assert( pPage->isInit ); |
|
4513 assert( sqlite3pager_iswriteable(pPage->aData) ); |
|
4514 pBt = pPage->pBt; |
|
4515 pParent = pPage->pParent; |
|
4516 assert( pParent ); |
|
4517 if( SQLITE_OK!=(rc = sqlite3pager_write(pParent->aData)) ){ |
|
4518 return rc; |
|
4519 } |
|
4520 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); |
|
4521 |
|
4522 #ifndef SQLITE_OMIT_QUICKBALANCE |
|
4523 /* |
|
4524 ** A special case: If a new entry has just been inserted into a |
|
4525 ** table (that is, a btree with integer keys and all data at the leaves) |
|
4526 ** and the new entry is the right-most entry in the tree (it has the |
|
4527 ** largest key) then use the special balance_quick() routine for |
|
4528 ** balancing. balance_quick() is much faster and results in a tighter |
|
4529 ** packing of data in the common case. |
|
4530 */ |
|
4531 if( pPage->leaf && |
|
4532 pPage->intKey && |
|
4533 pPage->leafData && |
|
4534 pPage->nOverflow==1 && |
|
4535 pPage->aOvfl[0].idx==pPage->nCell && |
|
4536 pPage->pParent->pgno!=1 && |
|
4537 get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno |
|
4538 ){ |
|
4539 /* |
|
4540 ** TODO: Check the siblings to the left of pPage. It may be that |
|
4541 ** they are not full and no new page is required. |
|
4542 */ |
|
4543 return balance_quick(pPage, pParent); |
|
4544 } |
|
4545 #endif |
|
4546 |
|
4547 /* |
|
4548 ** Find the cell in the parent page whose left child points back |
|
4549 ** to pPage. The "idx" variable is the index of that cell. If pPage |
|
4550 ** is the rightmost child of pParent then set idx to pParent->nCell |
|
4551 */ |
|
4552 if( pParent->idxShift ){ |
|
4553 Pgno pgno; |
|
4554 pgno = pPage->pgno; |
|
4555 assert( pgno==sqlite3pager_pagenumber(pPage->aData) ); |
|
4556 for(idx=0; idx<pParent->nCell; idx++){ |
|
4557 if( get4byte(findCell(pParent, idx))==pgno ){ |
|
4558 break; |
|
4559 } |
|
4560 } |
|
4561 assert( idx<pParent->nCell |
|
4562 || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno ); |
|
4563 }else{ |
|
4564 idx = pPage->idxParent; |
|
4565 } |
|
4566 |
|
4567 /* |
|
4568 ** Initialize variables so that it will be safe to jump |
|
4569 ** directly to balance_cleanup at any moment. |
|
4570 */ |
|
4571 nOld = nNew = 0; |
|
4572 sqlite3pager_ref(pParent->aData); |
|
4573 |
|
4574 /* |
|
4575 ** Find sibling pages to pPage and the cells in pParent that divide |
|
4576 ** the siblings. An attempt is made to find NN siblings on either |
|
4577 ** side of pPage. More siblings are taken from one side, however, if |
|
4578 ** pPage there are fewer than NN siblings on the other side. If pParent |
|
4579 ** has NB or fewer children then all children of pParent are taken. |
|
4580 */ |
|
4581 nxDiv = idx - NN; |
|
4582 if( nxDiv + NB > pParent->nCell ){ |
|
4583 nxDiv = pParent->nCell - NB + 1; |
|
4584 } |
|
4585 if( nxDiv<0 ){ |
|
4586 nxDiv = 0; |
|
4587 } |
|
4588 nDiv = 0; |
|
4589 for(i=0, k=nxDiv; i<NB; i++, k++){ |
|
4590 if( k<pParent->nCell ){ |
|
4591 apDiv[i] = findCell(pParent, k); |
|
4592 nDiv++; |
|
4593 assert( !pParent->leaf ); |
|
4594 pgnoOld[i] = get4byte(apDiv[i]); |
|
4595 }else if( k==pParent->nCell ){ |
|
4596 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]); |
|
4597 }else{ |
|
4598 break; |
|
4599 } |
|
4600 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent); |
|
4601 if( rc ) goto balance_cleanup; |
|
4602 apOld[i]->idxParent = k; |
|
4603 apCopy[i] = 0; |
|
4604 assert( i==nOld ); |
|
4605 nOld++; |
|
4606 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; |
|
4607 } |
|
4608 |
|
4609 /* Make nMaxCells a multiple of 2 in order to preserve 8-byte |
|
4610 ** alignment */ |
|
4611 nMaxCells = (nMaxCells + 1)&~1; |
|
4612 |
|
4613 /* |
|
4614 ** Allocate space for memory structures |
|
4615 */ |
|
4616 apCell = sqliteMallocRaw( |
|
4617 nMaxCells*sizeof(u8*) /* apCell */ |
|
4618 + nMaxCells*sizeof(int) /* szCell */ |
|
4619 + ROUND8(sizeof(MemPage))*NB /* aCopy */ |
|
4620 + pBt->pageSize*(5+NB) /* aSpace */ |
|
4621 + (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */ |
|
4622 ); |
|
4623 if( apCell==0 ){ |
|
4624 rc = SQLITE_NOMEM; |
|
4625 goto balance_cleanup; |
|
4626 } |
|
4627 szCell = (int*)&apCell[nMaxCells]; |
|
4628 aCopy[0] = (u8*)&szCell[nMaxCells]; |
|
4629 assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ |
|
4630 for(i=1; i<NB; i++){ |
|
4631 aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))]; |
|
4632 assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ |
|
4633 } |
|
4634 aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))]; |
|
4635 assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ |
|
4636 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4637 if( pBt->autoVacuum ){ |
|
4638 aFrom = &aSpace[5*pBt->pageSize]; |
|
4639 } |
|
4640 #endif |
|
4641 |
|
4642 /* |
|
4643 ** Make copies of the content of pPage and its siblings into aOld[]. |
|
4644 ** The rest of this function will use data from the copies rather |
|
4645 ** that the original pages since the original pages will be in the |
|
4646 ** process of being overwritten. |
|
4647 */ |
|
4648 for(i=0; i<nOld; i++){ |
|
4649 MemPage *p = apCopy[i] = (MemPage*)&aCopy[i][pBt->pageSize]; |
|
4650 p->aData = &((u8*)p)[-pBt->pageSize]; |
|
4651 memcpy(p->aData, apOld[i]->aData, pBt->pageSize + sizeof(MemPage)); |
|
4652 /* The memcpy() above changes the value of p->aData so we have to |
|
4653 ** set it again. */ |
|
4654 p->aData = &((u8*)p)[-pBt->pageSize]; |
|
4655 } |
|
4656 |
|
4657 /* |
|
4658 ** Load pointers to all cells on sibling pages and the divider cells |
|
4659 ** into the local apCell[] array. Make copies of the divider cells |
|
4660 ** into space obtained form aSpace[] and remove the the divider Cells |
|
4661 ** from pParent. |
|
4662 ** |
|
4663 ** If the siblings are on leaf pages, then the child pointers of the |
|
4664 ** divider cells are stripped from the cells before they are copied |
|
4665 ** into aSpace[]. In this way, all cells in apCell[] are without |
|
4666 ** child pointers. If siblings are not leaves, then all cell in |
|
4667 ** apCell[] include child pointers. Either way, all cells in apCell[] |
|
4668 ** are alike. |
|
4669 ** |
|
4670 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. |
|
4671 ** leafData: 1 if pPage holds key+data and pParent holds only keys. |
|
4672 */ |
|
4673 nCell = 0; |
|
4674 leafCorrection = pPage->leaf*4; |
|
4675 leafData = pPage->leafData && pPage->leaf; |
|
4676 for(i=0; i<nOld; i++){ |
|
4677 MemPage *pOld = apCopy[i]; |
|
4678 int limit = pOld->nCell+pOld->nOverflow; |
|
4679 for(j=0; j<limit; j++){ |
|
4680 assert( nCell<nMaxCells ); |
|
4681 apCell[nCell] = findOverflowCell(pOld, j); |
|
4682 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); |
|
4683 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4684 if( pBt->autoVacuum ){ |
|
4685 int a; |
|
4686 aFrom[nCell] = i; |
|
4687 for(a=0; a<pOld->nOverflow; a++){ |
|
4688 if( pOld->aOvfl[a].pCell==apCell[nCell] ){ |
|
4689 aFrom[nCell] = 0xFF; |
|
4690 break; |
|
4691 } |
|
4692 } |
|
4693 } |
|
4694 #endif |
|
4695 nCell++; |
|
4696 } |
|
4697 if( i<nOld-1 ){ |
|
4698 int sz = cellSizePtr(pParent, apDiv[i]); |
|
4699 if( leafData ){ |
|
4700 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that |
|
4701 ** are duplicates of keys on the child pages. We need to remove |
|
4702 ** the divider cells from pParent, but the dividers cells are not |
|
4703 ** added to apCell[] because they are duplicates of child cells. |
|
4704 */ |
|
4705 dropCell(pParent, nxDiv, sz); |
|
4706 }else{ |
|
4707 u8 *pTemp; |
|
4708 assert( nCell<nMaxCells ); |
|
4709 szCell[nCell] = sz; |
|
4710 pTemp = &aSpace[iSpace]; |
|
4711 iSpace += sz; |
|
4712 assert( iSpace<=pBt->pageSize*5 ); |
|
4713 memcpy(pTemp, apDiv[i], sz); |
|
4714 apCell[nCell] = pTemp+leafCorrection; |
|
4715 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4716 if( pBt->autoVacuum ){ |
|
4717 aFrom[nCell] = 0xFF; |
|
4718 } |
|
4719 #endif |
|
4720 dropCell(pParent, nxDiv, sz); |
|
4721 szCell[nCell] -= leafCorrection; |
|
4722 assert( get4byte(pTemp)==pgnoOld[i] ); |
|
4723 if( !pOld->leaf ){ |
|
4724 assert( leafCorrection==0 ); |
|
4725 /* The right pointer of the child page pOld becomes the left |
|
4726 ** pointer of the divider cell */ |
|
4727 memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4); |
|
4728 }else{ |
|
4729 assert( leafCorrection==4 ); |
|
4730 } |
|
4731 nCell++; |
|
4732 } |
|
4733 } |
|
4734 } |
|
4735 |
|
4736 /* |
|
4737 ** Figure out the number of pages needed to hold all nCell cells. |
|
4738 ** Store this number in "k". Also compute szNew[] which is the total |
|
4739 ** size of all cells on the i-th page and cntNew[] which is the index |
|
4740 ** in apCell[] of the cell that divides page i from page i+1. |
|
4741 ** cntNew[k] should equal nCell. |
|
4742 ** |
|
4743 ** Values computed by this block: |
|
4744 ** |
|
4745 ** k: The total number of sibling pages |
|
4746 ** szNew[i]: Spaced used on the i-th sibling page. |
|
4747 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to |
|
4748 ** the right of the i-th sibling page. |
|
4749 ** usableSpace: Number of bytes of space available on each sibling. |
|
4750 ** |
|
4751 */ |
|
4752 usableSpace = pBt->usableSize - 12 + leafCorrection; |
|
4753 for(subtotal=k=i=0; i<nCell; i++){ |
|
4754 assert( i<nMaxCells ); |
|
4755 subtotal += szCell[i] + 2; |
|
4756 if( subtotal > usableSpace ){ |
|
4757 szNew[k] = subtotal - szCell[i]; |
|
4758 cntNew[k] = i; |
|
4759 if( leafData ){ i--; } |
|
4760 subtotal = 0; |
|
4761 k++; |
|
4762 } |
|
4763 } |
|
4764 szNew[k] = subtotal; |
|
4765 cntNew[k] = nCell; |
|
4766 k++; |
|
4767 |
|
4768 /* |
|
4769 ** The packing computed by the previous block is biased toward the siblings |
|
4770 ** on the left side. The left siblings are always nearly full, while the |
|
4771 ** right-most sibling might be nearly empty. This block of code attempts |
|
4772 ** to adjust the packing of siblings to get a better balance. |
|
4773 ** |
|
4774 ** This adjustment is more than an optimization. The packing above might |
|
4775 ** be so out of balance as to be illegal. For example, the right-most |
|
4776 ** sibling might be completely empty. This adjustment is not optional. |
|
4777 */ |
|
4778 for(i=k-1; i>0; i--){ |
|
4779 int szRight = szNew[i]; /* Size of sibling on the right */ |
|
4780 int szLeft = szNew[i-1]; /* Size of sibling on the left */ |
|
4781 int r; /* Index of right-most cell in left sibling */ |
|
4782 int d; /* Index of first cell to the left of right sibling */ |
|
4783 |
|
4784 r = cntNew[i-1] - 1; |
|
4785 d = r + 1 - leafData; |
|
4786 assert( d<nMaxCells ); |
|
4787 assert( r<nMaxCells ); |
|
4788 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){ |
|
4789 szRight += szCell[d] + 2; |
|
4790 szLeft -= szCell[r] + 2; |
|
4791 cntNew[i-1]--; |
|
4792 r = cntNew[i-1] - 1; |
|
4793 d = r + 1 - leafData; |
|
4794 } |
|
4795 szNew[i] = szRight; |
|
4796 szNew[i-1] = szLeft; |
|
4797 } |
|
4798 |
|
4799 /* Either we found one or more cells (cntnew[0])>0) or we are the |
|
4800 ** a virtual root page. A virtual root page is when the real root |
|
4801 ** page is page 1 and we are the only child of that page. |
|
4802 */ |
|
4803 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) ); |
|
4804 |
|
4805 /* |
|
4806 ** Allocate k new pages. Reuse old pages where possible. |
|
4807 */ |
|
4808 assert( pPage->pgno>1 ); |
|
4809 pageFlags = pPage->aData[0]; |
|
4810 for(i=0; i<k; i++){ |
|
4811 MemPage *pNew; |
|
4812 if( i<nOld ){ |
|
4813 pNew = apNew[i] = apOld[i]; |
|
4814 pgnoNew[i] = pgnoOld[i]; |
|
4815 apOld[i] = 0; |
|
4816 rc = sqlite3pager_write(pNew->aData); |
|
4817 if( rc ) goto balance_cleanup; |
|
4818 }else{ |
|
4819 assert( i>0 ); |
|
4820 rc = allocatePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0); |
|
4821 if( rc ) goto balance_cleanup; |
|
4822 apNew[i] = pNew; |
|
4823 } |
|
4824 nNew++; |
|
4825 zeroPage(pNew, pageFlags); |
|
4826 } |
|
4827 |
|
4828 /* Free any old pages that were not reused as new pages. |
|
4829 */ |
|
4830 while( i<nOld ){ |
|
4831 rc = freePage(apOld[i]); |
|
4832 if( rc ) goto balance_cleanup; |
|
4833 releasePage(apOld[i]); |
|
4834 apOld[i] = 0; |
|
4835 i++; |
|
4836 } |
|
4837 |
|
4838 /* |
|
4839 ** Put the new pages in accending order. This helps to |
|
4840 ** keep entries in the disk file in order so that a scan |
|
4841 ** of the table is a linear scan through the file. That |
|
4842 ** in turn helps the operating system to deliver pages |
|
4843 ** from the disk more rapidly. |
|
4844 ** |
|
4845 ** An O(n^2) insertion sort algorithm is used, but since |
|
4846 ** n is never more than NB (a small constant), that should |
|
4847 ** not be a problem. |
|
4848 ** |
|
4849 ** When NB==3, this one optimization makes the database |
|
4850 ** about 25% faster for large insertions and deletions. |
|
4851 */ |
|
4852 for(i=0; i<k-1; i++){ |
|
4853 int minV = pgnoNew[i]; |
|
4854 int minI = i; |
|
4855 for(j=i+1; j<k; j++){ |
|
4856 if( pgnoNew[j]<(unsigned)minV ){ |
|
4857 minI = j; |
|
4858 minV = pgnoNew[j]; |
|
4859 } |
|
4860 } |
|
4861 if( minI>i ){ |
|
4862 int t; |
|
4863 MemPage *pT; |
|
4864 t = pgnoNew[i]; |
|
4865 pT = apNew[i]; |
|
4866 pgnoNew[i] = pgnoNew[minI]; |
|
4867 apNew[i] = apNew[minI]; |
|
4868 pgnoNew[minI] = t; |
|
4869 apNew[minI] = pT; |
|
4870 } |
|
4871 } |
|
4872 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n", |
|
4873 pgnoOld[0], |
|
4874 nOld>=2 ? pgnoOld[1] : 0, |
|
4875 nOld>=3 ? pgnoOld[2] : 0, |
|
4876 pgnoNew[0], szNew[0], |
|
4877 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0, |
|
4878 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0, |
|
4879 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0, |
|
4880 nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0)); |
|
4881 |
|
4882 /* |
|
4883 ** Evenly distribute the data in apCell[] across the new pages. |
|
4884 ** Insert divider cells into pParent as necessary. |
|
4885 */ |
|
4886 j = 0; |
|
4887 for(i=0; i<nNew; i++){ |
|
4888 /* Assemble the new sibling page. */ |
|
4889 MemPage *pNew = apNew[i]; |
|
4890 assert( j<nMaxCells ); |
|
4891 assert( pNew->pgno==pgnoNew[i] ); |
|
4892 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]); |
|
4893 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) ); |
|
4894 assert( pNew->nOverflow==0 ); |
|
4895 |
|
4896 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4897 /* If this is an auto-vacuum database, update the pointer map entries |
|
4898 ** that point to the siblings that were rearranged. These can be: left |
|
4899 ** children of cells, the right-child of the page, or overflow pages |
|
4900 ** pointed to by cells. |
|
4901 */ |
|
4902 if( pBt->autoVacuum ){ |
|
4903 for(k=j; k<cntNew[i]; k++){ |
|
4904 assert( k<nMaxCells ); |
|
4905 if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){ |
|
4906 rc = ptrmapPutOvfl(pNew, k-j); |
|
4907 if( rc!=SQLITE_OK ){ |
|
4908 goto balance_cleanup; |
|
4909 } |
|
4910 } |
|
4911 } |
|
4912 } |
|
4913 #endif |
|
4914 |
|
4915 j = cntNew[i]; |
|
4916 |
|
4917 /* If the sibling page assembled above was not the right-most sibling, |
|
4918 ** insert a divider cell into the parent page. |
|
4919 */ |
|
4920 if( i<nNew-1 && j<nCell ){ |
|
4921 u8 *pCell; |
|
4922 u8 *pTemp; |
|
4923 int sz; |
|
4924 |
|
4925 assert( j<nMaxCells ); |
|
4926 pCell = apCell[j]; |
|
4927 sz = szCell[j] + leafCorrection; |
|
4928 if( !pNew->leaf ){ |
|
4929 memcpy(&pNew->aData[8], pCell, 4); |
|
4930 pTemp = 0; |
|
4931 }else if( leafData ){ |
|
4932 /* If the tree is a leaf-data tree, and the siblings are leaves, |
|
4933 ** then there is no divider cell in apCell[]. Instead, the divider |
|
4934 ** cell consists of the integer key for the right-most cell of |
|
4935 ** the sibling-page assembled above only. |
|
4936 */ |
|
4937 CellInfo info; |
|
4938 j--; |
|
4939 parseCellPtr(pNew, apCell[j], &info); |
|
4940 pCell = &aSpace[iSpace]; |
|
4941 fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz); |
|
4942 iSpace += sz; |
|
4943 assert( iSpace<=pBt->pageSize*5 ); |
|
4944 pTemp = 0; |
|
4945 }else{ |
|
4946 pCell -= 4; |
|
4947 pTemp = &aSpace[iSpace]; |
|
4948 iSpace += sz; |
|
4949 assert( iSpace<=pBt->pageSize*5 ); |
|
4950 } |
|
4951 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4); |
|
4952 if( rc!=SQLITE_OK ) goto balance_cleanup; |
|
4953 put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno); |
|
4954 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4955 /* If this is an auto-vacuum database, and not a leaf-data tree, |
|
4956 ** then update the pointer map with an entry for the overflow page |
|
4957 ** that the cell just inserted points to (if any). |
|
4958 */ |
|
4959 if( pBt->autoVacuum && !leafData ){ |
|
4960 rc = ptrmapPutOvfl(pParent, nxDiv); |
|
4961 if( rc!=SQLITE_OK ){ |
|
4962 goto balance_cleanup; |
|
4963 } |
|
4964 } |
|
4965 #endif |
|
4966 j++; |
|
4967 nxDiv++; |
|
4968 } |
|
4969 } |
|
4970 assert( j==nCell ); |
|
4971 assert( nOld>0 ); |
|
4972 assert( nNew>0 ); |
|
4973 if( (pageFlags & PTF_LEAF)==0 ){ |
|
4974 memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4); |
|
4975 } |
|
4976 if( nxDiv==pParent->nCell+pParent->nOverflow ){ |
|
4977 /* Right-most sibling is the right-most child of pParent */ |
|
4978 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]); |
|
4979 }else{ |
|
4980 /* Right-most sibling is the left child of the first entry in pParent |
|
4981 ** past the right-most divider entry */ |
|
4982 put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]); |
|
4983 } |
|
4984 |
|
4985 /* |
|
4986 ** Reparent children of all cells. |
|
4987 */ |
|
4988 for(i=0; i<nNew; i++){ |
|
4989 rc = reparentChildPages(apNew[i]); |
|
4990 if( rc!=SQLITE_OK ) goto balance_cleanup; |
|
4991 } |
|
4992 rc = reparentChildPages(pParent); |
|
4993 if( rc!=SQLITE_OK ) goto balance_cleanup; |
|
4994 |
|
4995 /* |
|
4996 ** Balance the parent page. Note that the current page (pPage) might |
|
4997 ** have been added to the freelist so it might no longer be initialized. |
|
4998 ** But the parent page will always be initialized. |
|
4999 */ |
|
5000 assert( pParent->isInit ); |
|
5001 /* assert( pPage->isInit ); // No! pPage might have been added to freelist */ |
|
5002 /* pageIntegrity(pPage); // No! pPage might have been added to freelist */ |
|
5003 rc = balance(pParent, 0); |
|
5004 |
|
5005 /* |
|
5006 ** Cleanup before returning. |
|
5007 */ |
|
5008 balance_cleanup: |
|
5009 sqliteFree(apCell); |
|
5010 for(i=0; i<nOld; i++){ |
|
5011 releasePage(apOld[i]); |
|
5012 } |
|
5013 for(i=0; i<nNew; i++){ |
|
5014 releasePage(apNew[i]); |
|
5015 } |
|
5016 releasePage(pParent); |
|
5017 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n", |
|
5018 pPage->pgno, nOld, nNew, nCell)); |
|
5019 return rc; |
|
5020 } |
|
5021 |
|
5022 /* |
|
5023 ** This routine is called for the root page of a btree when the root |
|
5024 ** page contains no cells. This is an opportunity to make the tree |
|
5025 ** shallower by one level. |
|
5026 */ |
|
5027 static int balance_shallower(MemPage *pPage){ |
|
5028 MemPage *pChild; /* The only child page of pPage */ |
|
5029 Pgno pgnoChild; /* Page number for pChild */ |
|
5030 int rc = SQLITE_OK; /* Return code from subprocedures */ |
|
5031 BtShared *pBt; /* The main BTree structure */ |
|
5032 int mxCellPerPage; /* Maximum number of cells per page */ |
|
5033 u8 **apCell; /* All cells from pages being balanced */ |
|
5034 int *szCell; /* Local size of all cells */ |
|
5035 |
|
5036 assert( pPage->pParent==0 ); |
|
5037 assert( pPage->nCell==0 ); |
|
5038 pBt = pPage->pBt; |
|
5039 mxCellPerPage = MX_CELL(pBt); |
|
5040 apCell = sqliteMallocRaw( mxCellPerPage*(sizeof(u8*)+sizeof(int)) ); |
|
5041 if( apCell==0 ) return SQLITE_NOMEM; |
|
5042 szCell = (int*)&apCell[mxCellPerPage]; |
|
5043 if( pPage->leaf ){ |
|
5044 /* The table is completely empty */ |
|
5045 TRACE(("BALANCE: empty table %d\n", pPage->pgno)); |
|
5046 }else{ |
|
5047 /* The root page is empty but has one child. Transfer the |
|
5048 ** information from that one child into the root page if it |
|
5049 ** will fit. This reduces the depth of the tree by one. |
|
5050 ** |
|
5051 ** If the root page is page 1, it has less space available than |
|
5052 ** its child (due to the 100 byte header that occurs at the beginning |
|
5053 ** of the database fle), so it might not be able to hold all of the |
|
5054 ** information currently contained in the child. If this is the |
|
5055 ** case, then do not do the transfer. Leave page 1 empty except |
|
5056 ** for the right-pointer to the child page. The child page becomes |
|
5057 ** the virtual root of the tree. |
|
5058 */ |
|
5059 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
|
5060 assert( pgnoChild>0 ); |
|
5061 assert( pgnoChild<=sqlite3pager_pagecount(pPage->pBt->pPager) ); |
|
5062 rc = getPage(pPage->pBt, pgnoChild, &pChild); |
|
5063 if( rc ) goto end_shallow_balance; |
|
5064 if( pPage->pgno==1 ){ |
|
5065 rc = initPage(pChild, pPage); |
|
5066 if( rc ) goto end_shallow_balance; |
|
5067 assert( pChild->nOverflow==0 ); |
|
5068 if( pChild->nFree>=100 ){ |
|
5069 /* The child information will fit on the root page, so do the |
|
5070 ** copy */ |
|
5071 int i; |
|
5072 zeroPage(pPage, pChild->aData[0]); |
|
5073 for(i=0; i<pChild->nCell; i++){ |
|
5074 apCell[i] = findCell(pChild,i); |
|
5075 szCell[i] = cellSizePtr(pChild, apCell[i]); |
|
5076 } |
|
5077 assemblePage(pPage, pChild->nCell, apCell, szCell); |
|
5078 /* Copy the right-pointer of the child to the parent. */ |
|
5079 put4byte(&pPage->aData[pPage->hdrOffset+8], |
|
5080 get4byte(&pChild->aData[pChild->hdrOffset+8])); |
|
5081 freePage(pChild); |
|
5082 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno)); |
|
5083 }else{ |
|
5084 /* The child has more information that will fit on the root. |
|
5085 ** The tree is already balanced. Do nothing. */ |
|
5086 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno)); |
|
5087 } |
|
5088 }else{ |
|
5089 memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize); |
|
5090 pPage->isInit = 0; |
|
5091 pPage->pParent = 0; |
|
5092 rc = initPage(pPage, 0); |
|
5093 assert( rc==SQLITE_OK ); |
|
5094 freePage(pChild); |
|
5095 TRACE(("BALANCE: transfer child %d into root %d\n", |
|
5096 pChild->pgno, pPage->pgno)); |
|
5097 } |
|
5098 rc = reparentChildPages(pPage); |
|
5099 assert( pPage->nOverflow==0 ); |
|
5100 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
5101 if( pBt->autoVacuum ){ |
|
5102 int i; |
|
5103 for(i=0; i<pPage->nCell; i++){ |
|
5104 rc = ptrmapPutOvfl(pPage, i); |
|
5105 if( rc!=SQLITE_OK ){ |
|
5106 goto end_shallow_balance; |
|
5107 } |
|
5108 } |
|
5109 } |
|
5110 #endif |
|
5111 if( rc!=SQLITE_OK ) goto end_shallow_balance; |
|
5112 releasePage(pChild); |
|
5113 } |
|
5114 end_shallow_balance: |
|
5115 sqliteFree(apCell); |
|
5116 return rc; |
|
5117 } |
|
5118 |
|
5119 |
|
5120 /* |
|
5121 ** The root page is overfull |
|
5122 ** |
|
5123 ** When this happens, Create a new child page and copy the |
|
5124 ** contents of the root into the child. Then make the root |
|
5125 ** page an empty page with rightChild pointing to the new |
|
5126 ** child. Finally, call balance_internal() on the new child |
|
5127 ** to cause it to split. |
|
5128 */ |
|
5129 static int balance_deeper(MemPage *pPage){ |
|
5130 int rc; /* Return value from subprocedures */ |
|
5131 MemPage *pChild; /* Pointer to a new child page */ |
|
5132 Pgno pgnoChild; /* Page number of the new child page */ |
|
5133 BtShared *pBt; /* The BTree */ |
|
5134 int usableSize; /* Total usable size of a page */ |
|
5135 u8 *data; /* Content of the parent page */ |
|
5136 u8 *cdata; /* Content of the child page */ |
|
5137 int hdr; /* Offset to page header in parent */ |
|
5138 int brk; /* Offset to content of first cell in parent */ |
|
5139 |
|
5140 assert( pPage->pParent==0 ); |
|
5141 assert( pPage->nOverflow>0 ); |
|
5142 pBt = pPage->pBt; |
|
5143 rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0); |
|
5144 if( rc ) return rc; |
|
5145 assert( sqlite3pager_iswriteable(pChild->aData) ); |
|
5146 usableSize = pBt->usableSize; |
|
5147 data = pPage->aData; |
|
5148 hdr = pPage->hdrOffset; |
|
5149 brk = get2byte(&data[hdr+5]); |
|
5150 cdata = pChild->aData; |
|
5151 memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr); |
|
5152 memcpy(&cdata[brk], &data[brk], usableSize-brk); |
|
5153 assert( pChild->isInit==0 ); |
|
5154 rc = initPage(pChild, pPage); |
|
5155 if( rc ) goto balancedeeper_out; |
|
5156 memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0])); |
|
5157 pChild->nOverflow = pPage->nOverflow; |
|
5158 if( pChild->nOverflow ){ |
|
5159 pChild->nFree = 0; |
|
5160 } |
|
5161 assert( pChild->nCell==pPage->nCell ); |
|
5162 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF); |
|
5163 put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild); |
|
5164 TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno)); |
|
5165 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
5166 if( pBt->autoVacuum ){ |
|
5167 int i; |
|
5168 rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno); |
|
5169 if( rc ) goto balancedeeper_out; |
|
5170 for(i=0; i<pChild->nCell; i++){ |
|
5171 rc = ptrmapPutOvfl(pChild, i); |
|
5172 if( rc!=SQLITE_OK ){ |
|
5173 return rc; |
|
5174 } |
|
5175 } |
|
5176 } |
|
5177 #endif |
|
5178 rc = balance_nonroot(pChild); |
|
5179 |
|
5180 balancedeeper_out: |
|
5181 releasePage(pChild); |
|
5182 return rc; |
|
5183 } |
|
5184 |
|
5185 /* |
|
5186 ** Decide if the page pPage needs to be balanced. If balancing is |
|
5187 ** required, call the appropriate balancing routine. |
|
5188 */ |
|
5189 static int balance(MemPage *pPage, int insert){ |
|
5190 int rc = SQLITE_OK; |
|
5191 if( pPage->pParent==0 ){ |
|
5192 if( pPage->nOverflow>0 ){ |
|
5193 rc = balance_deeper(pPage); |
|
5194 } |
|
5195 if( rc==SQLITE_OK && pPage->nCell==0 ){ |
|
5196 rc = balance_shallower(pPage); |
|
5197 } |
|
5198 }else{ |
|
5199 if( pPage->nOverflow>0 || |
|
5200 (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){ |
|
5201 rc = balance_nonroot(pPage); |
|
5202 } |
|
5203 } |
|
5204 return rc; |
|
5205 } |
|
5206 |
|
5207 /* |
|
5208 ** This routine checks all cursors that point to table pgnoRoot. |
|
5209 ** If any of those cursors were opened with wrFlag==0 in a different |
|
5210 ** database connection (a database connection that shares the pager |
|
5211 ** cache with the current connection) and that other connection |
|
5212 ** is not in the ReadUncommmitted state, then this routine returns |
|
5213 ** SQLITE_LOCKED. |
|
5214 ** |
|
5215 ** In addition to checking for read-locks (where a read-lock |
|
5216 ** means a cursor opened with wrFlag==0) this routine also moves |
|
5217 ** all cursors write cursors so that they are pointing to the |
|
5218 ** first Cell on the root page. This is necessary because an insert |
|
5219 ** or delete might change the number of cells on a page or delete |
|
5220 ** a page entirely and we do not want to leave any cursors |
|
5221 ** pointing to non-existant pages or cells. |
|
5222 */ |
|
5223 static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){ |
|
5224 BtCursor *p; |
|
5225 BtShared *pBt = pBtree->pBt; |
|
5226 sqlite3 *db = pBtree->pSqlite; |
|
5227 for(p=pBt->pCursor; p; p=p->pNext){ |
|
5228 if( p==pExclude ) continue; |
|
5229 if( p->eState!=CURSOR_VALID ) continue; |
|
5230 if( p->pgnoRoot!=pgnoRoot ) continue; |
|
5231 if( p->wrFlag==0 ){ |
|
5232 sqlite3 *dbOther = p->pBtree->pSqlite; |
|
5233 if( dbOther==0 || |
|
5234 (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){ |
|
5235 return SQLITE_LOCKED; |
|
5236 } |
|
5237 }else if( p->pPage->pgno!=p->pgnoRoot ){ |
|
5238 moveToRoot(p); |
|
5239 } |
|
5240 } |
|
5241 return SQLITE_OK; |
|
5242 } |
|
5243 |
|
5244 /* |
|
5245 ** Insert a new record into the BTree. The key is given by (pKey,nKey) |
|
5246 ** and the data is given by (pData,nData). The cursor is used only to |
|
5247 ** define what table the record should be inserted into. The cursor |
|
5248 ** is left pointing at a random location. |
|
5249 ** |
|
5250 ** For an INTKEY table, only the nKey value of the key is used. pKey is |
|
5251 ** ignored. For a ZERODATA table, the pData and nData are both ignored. |
|
5252 */ |
|
5253 int sqlite3BtreeInsert( |
|
5254 BtCursor *pCur, /* Insert data into the table of this cursor */ |
|
5255 const void *pKey, i64 nKey, /* The key of the new record */ |
|
5256 const void *pData, int nData /* The data of the new record */ |
|
5257 ){ |
|
5258 int rc; |
|
5259 int loc; |
|
5260 int szNew; |
|
5261 MemPage *pPage; |
|
5262 BtShared *pBt = pCur->pBtree->pBt; |
|
5263 unsigned char *oldCell; |
|
5264 unsigned char *newCell = 0; |
|
5265 |
|
5266 if( pBt->inTransaction!=TRANS_WRITE ){ |
|
5267 /* Must start a transaction before doing an insert */ |
|
5268 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
5269 } |
|
5270 assert( !pBt->readOnly ); |
|
5271 if( !pCur->wrFlag ){ |
|
5272 return SQLITE_PERM; /* Cursor not open for writing */ |
|
5273 } |
|
5274 if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){ |
|
5275 return SQLITE_LOCKED; /* The table pCur points to has a read lock */ |
|
5276 } |
|
5277 |
|
5278 /* Save the positions of any other cursors open on this table */ |
|
5279 restoreOrClearCursorPosition(pCur, 0); |
|
5280 if( |
|
5281 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || |
|
5282 SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc)) |
|
5283 ){ |
|
5284 return rc; |
|
5285 } |
|
5286 |
|
5287 pPage = pCur->pPage; |
|
5288 assert( pPage->intKey || nKey>=0 ); |
|
5289 assert( pPage->leaf || !pPage->leafData ); |
|
5290 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", |
|
5291 pCur->pgnoRoot, nKey, nData, pPage->pgno, |
|
5292 loc==0 ? "overwrite" : "new entry")); |
|
5293 assert( pPage->isInit ); |
|
5294 rc = sqlite3pager_write(pPage->aData); |
|
5295 if( rc ) return rc; |
|
5296 newCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) ); |
|
5297 if( newCell==0 ) return SQLITE_NOMEM; |
|
5298 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew); |
|
5299 if( rc ) goto end_insert; |
|
5300 assert( szNew==cellSizePtr(pPage, newCell) ); |
|
5301 assert( szNew<=MX_CELL_SIZE(pBt) ); |
|
5302 if( loc==0 && CURSOR_VALID==pCur->eState ){ |
|
5303 int szOld; |
|
5304 assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); |
|
5305 oldCell = findCell(pPage, pCur->idx); |
|
5306 if( !pPage->leaf ){ |
|
5307 memcpy(newCell, oldCell, 4); |
|
5308 } |
|
5309 szOld = cellSizePtr(pPage, oldCell); |
|
5310 rc = clearCell(pPage, oldCell); |
|
5311 if( rc ) goto end_insert; |
|
5312 dropCell(pPage, pCur->idx, szOld); |
|
5313 }else if( loc<0 && pPage->nCell>0 ){ |
|
5314 assert( pPage->leaf ); |
|
5315 pCur->idx++; |
|
5316 pCur->info.nSize = 0; |
|
5317 }else{ |
|
5318 assert( pPage->leaf ); |
|
5319 } |
|
5320 rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0); |
|
5321 if( rc!=SQLITE_OK ) goto end_insert; |
|
5322 rc = balance(pPage, 1); |
|
5323 /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */ |
|
5324 /* fflush(stdout); */ |
|
5325 if( rc==SQLITE_OK ){ |
|
5326 moveToRoot(pCur); |
|
5327 } |
|
5328 end_insert: |
|
5329 sqliteFree(newCell); |
|
5330 return rc; |
|
5331 } |
|
5332 |
|
5333 /* |
|
5334 ** Delete the entry that the cursor is pointing to. The cursor |
|
5335 ** is left pointing at a random location. |
|
5336 */ |
|
5337 int sqlite3BtreeDelete(BtCursor *pCur){ |
|
5338 MemPage *pPage = pCur->pPage; |
|
5339 unsigned char *pCell; |
|
5340 int rc; |
|
5341 Pgno pgnoChild = 0; |
|
5342 BtShared *pBt = pCur->pBtree->pBt; |
|
5343 |
|
5344 assert( pPage->isInit ); |
|
5345 if( pBt->inTransaction!=TRANS_WRITE ){ |
|
5346 /* Must start a transaction before doing a delete */ |
|
5347 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
5348 } |
|
5349 assert( !pBt->readOnly ); |
|
5350 if( pCur->idx >= pPage->nCell ){ |
|
5351 return SQLITE_ERROR; /* The cursor is not pointing to anything */ |
|
5352 } |
|
5353 if( !pCur->wrFlag ){ |
|
5354 return SQLITE_PERM; /* Did not open this cursor for writing */ |
|
5355 } |
|
5356 if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){ |
|
5357 return SQLITE_LOCKED; /* The table pCur points to has a read lock */ |
|
5358 } |
|
5359 |
|
5360 /* Restore the current cursor position (a no-op if the cursor is not in |
|
5361 ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors |
|
5362 ** open on the same table. Then call sqlite3pager_write() on the page |
|
5363 ** that the entry will be deleted from. |
|
5364 */ |
|
5365 if( |
|
5366 (rc = restoreOrClearCursorPosition(pCur, 1))!=0 || |
|
5367 (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 || |
|
5368 (rc = sqlite3pager_write(pPage->aData))!=0 |
|
5369 ){ |
|
5370 return rc; |
|
5371 } |
|
5372 |
|
5373 /* Locate the cell within it's page and leave pCell pointing to the |
|
5374 ** data. The clearCell() call frees any overflow pages associated with the |
|
5375 ** cell. The cell itself is still intact. |
|
5376 */ |
|
5377 pCell = findCell(pPage, pCur->idx); |
|
5378 if( !pPage->leaf ){ |
|
5379 pgnoChild = get4byte(pCell); |
|
5380 } |
|
5381 rc = clearCell(pPage, pCell); |
|
5382 if( rc ) return rc; |
|
5383 |
|
5384 if( !pPage->leaf ){ |
|
5385 /* |
|
5386 ** The entry we are about to delete is not a leaf so if we do not |
|
5387 ** do something we will leave a hole on an internal page. |
|
5388 ** We have to fill the hole by moving in a cell from a leaf. The |
|
5389 ** next Cell after the one to be deleted is guaranteed to exist and |
|
5390 ** to be a leaf so we can use it. |
|
5391 */ |
|
5392 BtCursor leafCur; |
|
5393 unsigned char *pNext; |
|
5394 int szNext; /* The compiler warning is wrong: szNext is always |
|
5395 ** initialized before use. Adding an extra initialization |
|
5396 ** to silence the compiler slows down the code. */ |
|
5397 int notUsed; |
|
5398 unsigned char *tempCell = 0; |
|
5399 assert( !pPage->leafData ); |
|
5400 getTempCursor(pCur, &leafCur); |
|
5401 rc = sqlite3BtreeNext(&leafCur, ¬Used); |
|
5402 if( rc!=SQLITE_OK ){ |
|
5403 if( rc!=SQLITE_NOMEM ){ |
|
5404 rc = SQLITE_CORRUPT_BKPT; |
|
5405 } |
|
5406 } |
|
5407 if( rc==SQLITE_OK ){ |
|
5408 rc = sqlite3pager_write(leafCur.pPage->aData); |
|
5409 } |
|
5410 if( rc==SQLITE_OK ){ |
|
5411 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n", |
|
5412 pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno)); |
|
5413 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); |
|
5414 pNext = findCell(leafCur.pPage, leafCur.idx); |
|
5415 szNext = cellSizePtr(leafCur.pPage, pNext); |
|
5416 assert( MX_CELL_SIZE(pBt)>=szNext+4 ); |
|
5417 tempCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) ); |
|
5418 if( tempCell==0 ){ |
|
5419 rc = SQLITE_NOMEM; |
|
5420 } |
|
5421 } |
|
5422 if( rc==SQLITE_OK ){ |
|
5423 rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0); |
|
5424 } |
|
5425 if( rc==SQLITE_OK ){ |
|
5426 put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild); |
|
5427 rc = balance(pPage, 0); |
|
5428 } |
|
5429 if( rc==SQLITE_OK ){ |
|
5430 dropCell(leafCur.pPage, leafCur.idx, szNext); |
|
5431 rc = balance(leafCur.pPage, 0); |
|
5432 } |
|
5433 sqliteFree(tempCell); |
|
5434 releaseTempCursor(&leafCur); |
|
5435 }else{ |
|
5436 TRACE(("DELETE: table=%d delete from leaf %d\n", |
|
5437 pCur->pgnoRoot, pPage->pgno)); |
|
5438 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); |
|
5439 rc = balance(pPage, 0); |
|
5440 } |
|
5441 if( rc==SQLITE_OK ){ |
|
5442 moveToRoot(pCur); |
|
5443 } |
|
5444 return rc; |
|
5445 } |
|
5446 |
|
5447 /* |
|
5448 ** Create a new BTree table. Write into *piTable the page |
|
5449 ** number for the root page of the new table. |
|
5450 ** |
|
5451 ** The type of type is determined by the flags parameter. Only the |
|
5452 ** following values of flags are currently in use. Other values for |
|
5453 ** flags might not work: |
|
5454 ** |
|
5455 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys |
|
5456 ** BTREE_ZERODATA Used for SQL indices |
|
5457 */ |
|
5458 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ |
|
5459 BtShared *pBt = p->pBt; |
|
5460 MemPage *pRoot; |
|
5461 Pgno pgnoRoot; |
|
5462 int rc; |
|
5463 if( pBt->inTransaction!=TRANS_WRITE ){ |
|
5464 /* Must start a transaction first */ |
|
5465 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
5466 } |
|
5467 assert( !pBt->readOnly ); |
|
5468 |
|
5469 /* It is illegal to create a table if any cursors are open on the |
|
5470 ** database. This is because in auto-vacuum mode the backend may |
|
5471 ** need to move a database page to make room for the new root-page. |
|
5472 ** If an open cursor was using the page a problem would occur. |
|
5473 */ |
|
5474 if( pBt->pCursor ){ |
|
5475 return SQLITE_LOCKED; |
|
5476 } |
|
5477 |
|
5478 #ifdef SQLITE_OMIT_AUTOVACUUM |
|
5479 rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
|
5480 if( rc ) return rc; |
|
5481 #else |
|
5482 if( pBt->autoVacuum ){ |
|
5483 Pgno pgnoMove; /* Move a page here to make room for the root-page */ |
|
5484 MemPage *pPageMove; /* The page to move to. */ |
|
5485 |
|
5486 /* Read the value of meta[3] from the database to determine where the |
|
5487 ** root page of the new table should go. meta[3] is the largest root-page |
|
5488 ** created so far, so the new root-page is (meta[3]+1). |
|
5489 */ |
|
5490 rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot); |
|
5491 if( rc!=SQLITE_OK ) return rc; |
|
5492 pgnoRoot++; |
|
5493 |
|
5494 /* The new root-page may not be allocated on a pointer-map page, or the |
|
5495 ** PENDING_BYTE page. |
|
5496 */ |
|
5497 if( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || |
|
5498 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ |
|
5499 pgnoRoot++; |
|
5500 } |
|
5501 assert( pgnoRoot>=3 ); |
|
5502 |
|
5503 /* Allocate a page. The page that currently resides at pgnoRoot will |
|
5504 ** be moved to the allocated page (unless the allocated page happens |
|
5505 ** to reside at pgnoRoot). |
|
5506 */ |
|
5507 rc = allocatePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1); |
|
5508 if( rc!=SQLITE_OK ){ |
|
5509 return rc; |
|
5510 } |
|
5511 |
|
5512 if( pgnoMove!=pgnoRoot ){ |
|
5513 u8 eType; |
|
5514 Pgno iPtrPage; |
|
5515 |
|
5516 releasePage(pPageMove); |
|
5517 rc = getPage(pBt, pgnoRoot, &pRoot); |
|
5518 if( rc!=SQLITE_OK ){ |
|
5519 return rc; |
|
5520 } |
|
5521 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); |
|
5522 if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ |
|
5523 releasePage(pRoot); |
|
5524 return rc; |
|
5525 } |
|
5526 assert( eType!=PTRMAP_ROOTPAGE ); |
|
5527 assert( eType!=PTRMAP_FREEPAGE ); |
|
5528 rc = sqlite3pager_write(pRoot->aData); |
|
5529 if( rc!=SQLITE_OK ){ |
|
5530 releasePage(pRoot); |
|
5531 return rc; |
|
5532 } |
|
5533 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove); |
|
5534 releasePage(pRoot); |
|
5535 if( rc!=SQLITE_OK ){ |
|
5536 return rc; |
|
5537 } |
|
5538 rc = getPage(pBt, pgnoRoot, &pRoot); |
|
5539 if( rc!=SQLITE_OK ){ |
|
5540 return rc; |
|
5541 } |
|
5542 rc = sqlite3pager_write(pRoot->aData); |
|
5543 if( rc!=SQLITE_OK ){ |
|
5544 releasePage(pRoot); |
|
5545 return rc; |
|
5546 } |
|
5547 }else{ |
|
5548 pRoot = pPageMove; |
|
5549 } |
|
5550 |
|
5551 /* Update the pointer-map and meta-data with the new root-page number. */ |
|
5552 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0); |
|
5553 if( rc ){ |
|
5554 releasePage(pRoot); |
|
5555 return rc; |
|
5556 } |
|
5557 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); |
|
5558 if( rc ){ |
|
5559 releasePage(pRoot); |
|
5560 return rc; |
|
5561 } |
|
5562 |
|
5563 }else{ |
|
5564 rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
|
5565 if( rc ) return rc; |
|
5566 } |
|
5567 #endif |
|
5568 assert( sqlite3pager_iswriteable(pRoot->aData) ); |
|
5569 zeroPage(pRoot, flags | PTF_LEAF); |
|
5570 sqlite3pager_unref(pRoot->aData); |
|
5571 *piTable = (int)pgnoRoot; |
|
5572 return SQLITE_OK; |
|
5573 } |
|
5574 |
|
5575 /* |
|
5576 ** Erase the given database page and all its children. Return |
|
5577 ** the page to the freelist. |
|
5578 */ |
|
5579 static int clearDatabasePage( |
|
5580 BtShared *pBt, /* The BTree that contains the table */ |
|
5581 Pgno pgno, /* Page number to clear */ |
|
5582 MemPage *pParent, /* Parent page. NULL for the root */ |
|
5583 int freePageFlag /* Deallocate page if true */ |
|
5584 ){ |
|
5585 MemPage *pPage = 0; |
|
5586 int rc; |
|
5587 unsigned char *pCell; |
|
5588 int i; |
|
5589 |
|
5590 if( pgno>sqlite3pager_pagecount(pBt->pPager) ){ |
|
5591 return SQLITE_CORRUPT_BKPT; |
|
5592 } |
|
5593 |
|
5594 rc = getAndInitPage(pBt, pgno, &pPage, pParent); |
|
5595 if( rc ) goto cleardatabasepage_out; |
|
5596 rc = sqlite3pager_write(pPage->aData); |
|
5597 if( rc ) goto cleardatabasepage_out; |
|
5598 for(i=0; i<pPage->nCell; i++){ |
|
5599 pCell = findCell(pPage, i); |
|
5600 if( !pPage->leaf ){ |
|
5601 rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1); |
|
5602 if( rc ) goto cleardatabasepage_out; |
|
5603 } |
|
5604 rc = clearCell(pPage, pCell); |
|
5605 if( rc ) goto cleardatabasepage_out; |
|
5606 } |
|
5607 if( !pPage->leaf ){ |
|
5608 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1); |
|
5609 if( rc ) goto cleardatabasepage_out; |
|
5610 } |
|
5611 if( freePageFlag ){ |
|
5612 rc = freePage(pPage); |
|
5613 }else{ |
|
5614 zeroPage(pPage, pPage->aData[0] | PTF_LEAF); |
|
5615 } |
|
5616 |
|
5617 cleardatabasepage_out: |
|
5618 releasePage(pPage); |
|
5619 return rc; |
|
5620 } |
|
5621 |
|
5622 /* |
|
5623 ** Delete all information from a single table in the database. iTable is |
|
5624 ** the page number of the root of the table. After this routine returns, |
|
5625 ** the root page is empty, but still exists. |
|
5626 ** |
|
5627 ** This routine will fail with SQLITE_LOCKED if there are any open |
|
5628 ** read cursors on the table. Open write cursors are moved to the |
|
5629 ** root of the table. |
|
5630 */ |
|
5631 int sqlite3BtreeClearTable(Btree *p, int iTable){ |
|
5632 int rc; |
|
5633 BtShared *pBt = p->pBt; |
|
5634 if( p->inTrans!=TRANS_WRITE ){ |
|
5635 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
5636 } |
|
5637 rc = checkReadLocks(p, iTable, 0); |
|
5638 if( rc ){ |
|
5639 return rc; |
|
5640 } |
|
5641 |
|
5642 /* Save the position of all cursors open on this table */ |
|
5643 if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){ |
|
5644 return rc; |
|
5645 } |
|
5646 |
|
5647 return clearDatabasePage(pBt, (Pgno)iTable, 0, 0); |
|
5648 } |
|
5649 |
|
5650 /* |
|
5651 ** Erase all information in a table and add the root of the table to |
|
5652 ** the freelist. Except, the root of the principle table (the one on |
|
5653 ** page 1) is never added to the freelist. |
|
5654 ** |
|
5655 ** This routine will fail with SQLITE_LOCKED if there are any open |
|
5656 ** cursors on the table. |
|
5657 ** |
|
5658 ** If AUTOVACUUM is enabled and the page at iTable is not the last |
|
5659 ** root page in the database file, then the last root page |
|
5660 ** in the database file is moved into the slot formerly occupied by |
|
5661 ** iTable and that last slot formerly occupied by the last root page |
|
5662 ** is added to the freelist instead of iTable. In this say, all |
|
5663 ** root pages are kept at the beginning of the database file, which |
|
5664 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the |
|
5665 ** page number that used to be the last root page in the file before |
|
5666 ** the move. If no page gets moved, *piMoved is set to 0. |
|
5667 ** The last root page is recorded in meta[3] and the value of |
|
5668 ** meta[3] is updated by this procedure. |
|
5669 */ |
|
5670 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ |
|
5671 int rc; |
|
5672 MemPage *pPage = 0; |
|
5673 BtShared *pBt = p->pBt; |
|
5674 |
|
5675 if( p->inTrans!=TRANS_WRITE ){ |
|
5676 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
5677 } |
|
5678 |
|
5679 /* It is illegal to drop a table if any cursors are open on the |
|
5680 ** database. This is because in auto-vacuum mode the backend may |
|
5681 ** need to move another root-page to fill a gap left by the deleted |
|
5682 ** root page. If an open cursor was using this page a problem would |
|
5683 ** occur. |
|
5684 */ |
|
5685 if( pBt->pCursor ){ |
|
5686 return SQLITE_LOCKED; |
|
5687 } |
|
5688 |
|
5689 rc = getPage(pBt, (Pgno)iTable, &pPage); |
|
5690 if( rc ) return rc; |
|
5691 rc = sqlite3BtreeClearTable(p, iTable); |
|
5692 if( rc ){ |
|
5693 releasePage(pPage); |
|
5694 return rc; |
|
5695 } |
|
5696 |
|
5697 *piMoved = 0; |
|
5698 |
|
5699 if( iTable>1 ){ |
|
5700 #ifdef SQLITE_OMIT_AUTOVACUUM |
|
5701 rc = freePage(pPage); |
|
5702 releasePage(pPage); |
|
5703 #else |
|
5704 if( pBt->autoVacuum ){ |
|
5705 Pgno maxRootPgno; |
|
5706 rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno); |
|
5707 if( rc!=SQLITE_OK ){ |
|
5708 releasePage(pPage); |
|
5709 return rc; |
|
5710 } |
|
5711 |
|
5712 if( iTable==maxRootPgno ){ |
|
5713 /* If the table being dropped is the table with the largest root-page |
|
5714 ** number in the database, put the root page on the free list. |
|
5715 */ |
|
5716 rc = freePage(pPage); |
|
5717 releasePage(pPage); |
|
5718 if( rc!=SQLITE_OK ){ |
|
5719 return rc; |
|
5720 } |
|
5721 }else{ |
|
5722 /* The table being dropped does not have the largest root-page |
|
5723 ** number in the database. So move the page that does into the |
|
5724 ** gap left by the deleted root-page. |
|
5725 */ |
|
5726 MemPage *pMove; |
|
5727 releasePage(pPage); |
|
5728 rc = getPage(pBt, maxRootPgno, &pMove); |
|
5729 if( rc!=SQLITE_OK ){ |
|
5730 return rc; |
|
5731 } |
|
5732 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable); |
|
5733 releasePage(pMove); |
|
5734 if( rc!=SQLITE_OK ){ |
|
5735 return rc; |
|
5736 } |
|
5737 rc = getPage(pBt, maxRootPgno, &pMove); |
|
5738 if( rc!=SQLITE_OK ){ |
|
5739 return rc; |
|
5740 } |
|
5741 rc = freePage(pMove); |
|
5742 releasePage(pMove); |
|
5743 if( rc!=SQLITE_OK ){ |
|
5744 return rc; |
|
5745 } |
|
5746 *piMoved = maxRootPgno; |
|
5747 } |
|
5748 |
|
5749 /* Set the new 'max-root-page' value in the database header. This |
|
5750 ** is the old value less one, less one more if that happens to |
|
5751 ** be a root-page number, less one again if that is the |
|
5752 ** PENDING_BYTE_PAGE. |
|
5753 */ |
|
5754 maxRootPgno--; |
|
5755 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){ |
|
5756 maxRootPgno--; |
|
5757 } |
|
5758 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){ |
|
5759 maxRootPgno--; |
|
5760 } |
|
5761 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); |
|
5762 |
|
5763 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); |
|
5764 }else{ |
|
5765 rc = freePage(pPage); |
|
5766 releasePage(pPage); |
|
5767 } |
|
5768 #endif |
|
5769 }else{ |
|
5770 /* If sqlite3BtreeDropTable was called on page 1. */ |
|
5771 zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); |
|
5772 releasePage(pPage); |
|
5773 } |
|
5774 return rc; |
|
5775 } |
|
5776 |
|
5777 |
|
5778 /* |
|
5779 ** Read the meta-information out of a database file. Meta[0] |
|
5780 ** is the number of free pages currently in the database. Meta[1] |
|
5781 ** through meta[15] are available for use by higher layers. Meta[0] |
|
5782 ** is read-only, the others are read/write. |
|
5783 ** |
|
5784 ** The schema layer numbers meta values differently. At the schema |
|
5785 ** layer (and the SetCookie and ReadCookie opcodes) the number of |
|
5786 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. |
|
5787 */ |
|
5788 int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ |
|
5789 int rc; |
|
5790 unsigned char *pP1; |
|
5791 BtShared *pBt = p->pBt; |
|
5792 |
|
5793 /* Reading a meta-data value requires a read-lock on page 1 (and hence |
|
5794 ** the sqlite_master table. We grab this lock regardless of whether or |
|
5795 ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page |
|
5796 ** 1 is treated as a special case by queryTableLock() and lockTable()). |
|
5797 */ |
|
5798 rc = queryTableLock(p, 1, READ_LOCK); |
|
5799 if( rc!=SQLITE_OK ){ |
|
5800 return rc; |
|
5801 } |
|
5802 |
|
5803 assert( idx>=0 && idx<=15 ); |
|
5804 rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1); |
|
5805 if( rc ) return rc; |
|
5806 *pMeta = get4byte(&pP1[36 + idx*4]); |
|
5807 sqlite3pager_unref(pP1); |
|
5808 |
|
5809 /* If autovacuumed is disabled in this build but we are trying to |
|
5810 ** access an autovacuumed database, then make the database readonly. |
|
5811 */ |
|
5812 #ifdef SQLITE_OMIT_AUTOVACUUM |
|
5813 if( idx==4 && *pMeta>0 ) pBt->readOnly = 1; |
|
5814 #endif |
|
5815 |
|
5816 /* Grab the read-lock on page 1. */ |
|
5817 rc = lockTable(p, 1, READ_LOCK); |
|
5818 return rc; |
|
5819 } |
|
5820 |
|
5821 /* |
|
5822 ** Write meta-information back into the database. Meta[0] is |
|
5823 ** read-only and may not be written. |
|
5824 */ |
|
5825 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ |
|
5826 BtShared *pBt = p->pBt; |
|
5827 unsigned char *pP1; |
|
5828 int rc; |
|
5829 assert( idx>=1 && idx<=15 ); |
|
5830 if( p->inTrans!=TRANS_WRITE ){ |
|
5831 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
|
5832 } |
|
5833 assert( pBt->pPage1!=0 ); |
|
5834 pP1 = pBt->pPage1->aData; |
|
5835 rc = sqlite3pager_write(pP1); |
|
5836 if( rc ) return rc; |
|
5837 put4byte(&pP1[36 + idx*4], iMeta); |
|
5838 return SQLITE_OK; |
|
5839 } |
|
5840 |
|
5841 /* |
|
5842 ** Return the flag byte at the beginning of the page that the cursor |
|
5843 ** is currently pointing to. |
|
5844 */ |
|
5845 int sqlite3BtreeFlags(BtCursor *pCur){ |
|
5846 /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call |
|
5847 ** restoreOrClearCursorPosition() here. |
|
5848 */ |
|
5849 MemPage *pPage = pCur->pPage; |
|
5850 return pPage ? pPage->aData[pPage->hdrOffset] : 0; |
|
5851 } |
|
5852 |
|
5853 #ifdef SQLITE_DEBUG |
|
5854 /* |
|
5855 ** Print a disassembly of the given page on standard output. This routine |
|
5856 ** is used for debugging and testing only. |
|
5857 */ |
|
5858 static int btreePageDump(BtShared *pBt, int pgno, int recursive, MemPage *pParent){ |
|
5859 int rc; |
|
5860 MemPage *pPage; |
|
5861 int i, j, c; |
|
5862 int nFree; |
|
5863 u16 idx; |
|
5864 int hdr; |
|
5865 int nCell; |
|
5866 int isInit; |
|
5867 unsigned char *data; |
|
5868 char range[20]; |
|
5869 unsigned char payload[20]; |
|
5870 |
|
5871 rc = getPage(pBt, (Pgno)pgno, &pPage); |
|
5872 isInit = pPage->isInit; |
|
5873 if( pPage->isInit==0 ){ |
|
5874 initPage(pPage, pParent); |
|
5875 } |
|
5876 if( rc ){ |
|
5877 return rc; |
|
5878 } |
|
5879 hdr = pPage->hdrOffset; |
|
5880 data = pPage->aData; |
|
5881 c = data[hdr]; |
|
5882 pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0; |
|
5883 pPage->zeroData = (c & PTF_ZERODATA)!=0; |
|
5884 pPage->leafData = (c & PTF_LEAFDATA)!=0; |
|
5885 pPage->leaf = (c & PTF_LEAF)!=0; |
|
5886 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); |
|
5887 nCell = get2byte(&data[hdr+3]); |
|
5888 sqlite3DebugPrintf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno, |
|
5889 data[hdr], data[hdr+7], |
|
5890 (pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0); |
|
5891 assert( hdr == (pgno==1 ? 100 : 0) ); |
|
5892 idx = hdr + 12 - pPage->leaf*4; |
|
5893 for(i=0; i<nCell; i++){ |
|
5894 CellInfo info; |
|
5895 Pgno child; |
|
5896 unsigned char *pCell; |
|
5897 int sz; |
|
5898 int addr; |
|
5899 |
|
5900 addr = get2byte(&data[idx + 2*i]); |
|
5901 pCell = &data[addr]; |
|
5902 parseCellPtr(pPage, pCell, &info); |
|
5903 sz = info.nSize; |
|
5904 sprintf(range,"%d..%d", addr, addr+sz-1); |
|
5905 if( pPage->leaf ){ |
|
5906 child = 0; |
|
5907 }else{ |
|
5908 child = get4byte(pCell); |
|
5909 } |
|
5910 sz = info.nData; |
|
5911 if( !pPage->intKey ) sz += info.nKey; |
|
5912 if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1; |
|
5913 memcpy(payload, &pCell[info.nHeader], sz); |
|
5914 for(j=0; j<sz; j++){ |
|
5915 if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.'; |
|
5916 } |
|
5917 payload[sz] = 0; |
|
5918 sqlite3DebugPrintf( |
|
5919 "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n", |
|
5920 i, range, child, info.nKey, info.nData, payload |
|
5921 ); |
|
5922 } |
|
5923 if( !pPage->leaf ){ |
|
5924 sqlite3DebugPrintf("right_child: %d\n", get4byte(&data[hdr+8])); |
|
5925 } |
|
5926 nFree = 0; |
|
5927 i = 0; |
|
5928 idx = get2byte(&data[hdr+1]); |
|
5929 while( idx>0 && idx<pPage->pBt->usableSize ){ |
|
5930 int sz = get2byte(&data[idx+2]); |
|
5931 sprintf(range,"%d..%d", idx, idx+sz-1); |
|
5932 nFree += sz; |
|
5933 sqlite3DebugPrintf("freeblock %2d: i=%-10s size=%-4d total=%d\n", |
|
5934 i, range, sz, nFree); |
|
5935 idx = get2byte(&data[idx]); |
|
5936 i++; |
|
5937 } |
|
5938 if( idx!=0 ){ |
|
5939 sqlite3DebugPrintf("ERROR: next freeblock index out of range: %d\n", idx); |
|
5940 } |
|
5941 if( recursive && !pPage->leaf ){ |
|
5942 for(i=0; i<nCell; i++){ |
|
5943 unsigned char *pCell = findCell(pPage, i); |
|
5944 btreePageDump(pBt, get4byte(pCell), 1, pPage); |
|
5945 idx = get2byte(pCell); |
|
5946 } |
|
5947 btreePageDump(pBt, get4byte(&data[hdr+8]), 1, pPage); |
|
5948 } |
|
5949 pPage->isInit = isInit; |
|
5950 sqlite3pager_unref(data); |
|
5951 fflush(stdout); |
|
5952 return SQLITE_OK; |
|
5953 } |
|
5954 int sqlite3BtreePageDump(Btree *p, int pgno, int recursive){ |
|
5955 return btreePageDump(p->pBt, pgno, recursive, 0); |
|
5956 } |
|
5957 #endif |
|
5958 |
|
5959 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) |
|
5960 /* |
|
5961 ** Fill aResult[] with information about the entry and page that the |
|
5962 ** cursor is pointing to. |
|
5963 ** |
|
5964 ** aResult[0] = The page number |
|
5965 ** aResult[1] = The entry number |
|
5966 ** aResult[2] = Total number of entries on this page |
|
5967 ** aResult[3] = Cell size (local payload + header) |
|
5968 ** aResult[4] = Number of free bytes on this page |
|
5969 ** aResult[5] = Number of free blocks on the page |
|
5970 ** aResult[6] = Total payload size (local + overflow) |
|
5971 ** aResult[7] = Header size in bytes |
|
5972 ** aResult[8] = Local payload size |
|
5973 ** aResult[9] = Parent page number |
|
5974 ** |
|
5975 ** This routine is used for testing and debugging only. |
|
5976 */ |
|
5977 int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){ |
|
5978 int cnt, idx; |
|
5979 MemPage *pPage = pCur->pPage; |
|
5980 BtCursor tmpCur; |
|
5981 |
|
5982 int rc = restoreOrClearCursorPosition(pCur, 1); |
|
5983 if( rc!=SQLITE_OK ){ |
|
5984 return rc; |
|
5985 } |
|
5986 |
|
5987 pageIntegrity(pPage); |
|
5988 assert( pPage->isInit ); |
|
5989 getTempCursor(pCur, &tmpCur); |
|
5990 while( upCnt-- ){ |
|
5991 moveToParent(&tmpCur); |
|
5992 } |
|
5993 pPage = tmpCur.pPage; |
|
5994 pageIntegrity(pPage); |
|
5995 aResult[0] = sqlite3pager_pagenumber(pPage->aData); |
|
5996 assert( aResult[0]==pPage->pgno ); |
|
5997 aResult[1] = tmpCur.idx; |
|
5998 aResult[2] = pPage->nCell; |
|
5999 if( tmpCur.idx>=0 && tmpCur.idx<pPage->nCell ){ |
|
6000 getCellInfo(&tmpCur); |
|
6001 aResult[3] = tmpCur.info.nSize; |
|
6002 aResult[6] = tmpCur.info.nData; |
|
6003 aResult[7] = tmpCur.info.nHeader; |
|
6004 aResult[8] = tmpCur.info.nLocal; |
|
6005 }else{ |
|
6006 aResult[3] = 0; |
|
6007 aResult[6] = 0; |
|
6008 aResult[7] = 0; |
|
6009 aResult[8] = 0; |
|
6010 } |
|
6011 aResult[4] = pPage->nFree; |
|
6012 cnt = 0; |
|
6013 idx = get2byte(&pPage->aData[pPage->hdrOffset+1]); |
|
6014 while( idx>0 && idx<pPage->pBt->usableSize ){ |
|
6015 cnt++; |
|
6016 idx = get2byte(&pPage->aData[idx]); |
|
6017 } |
|
6018 aResult[5] = cnt; |
|
6019 if( pPage->pParent==0 || isRootPage(pPage) ){ |
|
6020 aResult[9] = 0; |
|
6021 }else{ |
|
6022 aResult[9] = pPage->pParent->pgno; |
|
6023 } |
|
6024 releaseTempCursor(&tmpCur); |
|
6025 return SQLITE_OK; |
|
6026 } |
|
6027 #endif |
|
6028 |
|
6029 /* |
|
6030 ** Return the pager associated with a BTree. This routine is used for |
|
6031 ** testing and debugging only. |
|
6032 */ |
|
6033 Pager *sqlite3BtreePager(Btree *p){ |
|
6034 return p->pBt->pPager; |
|
6035 } |
|
6036 |
|
6037 /* |
|
6038 ** This structure is passed around through all the sanity checking routines |
|
6039 ** in order to keep track of some global state information. |
|
6040 */ |
|
6041 typedef struct IntegrityCk IntegrityCk; |
|
6042 struct IntegrityCk { |
|
6043 BtShared *pBt; /* The tree being checked out */ |
|
6044 Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ |
|
6045 int nPage; /* Number of pages in the database */ |
|
6046 int *anRef; /* Number of times each page is referenced */ |
|
6047 char *zErrMsg; /* An error message. NULL of no errors seen. */ |
|
6048 }; |
|
6049 |
|
6050 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
|
6051 /* |
|
6052 ** Append a message to the error message string. |
|
6053 */ |
|
6054 static void checkAppendMsg( |
|
6055 IntegrityCk *pCheck, |
|
6056 char *zMsg1, |
|
6057 const char *zFormat, |
|
6058 ... |
|
6059 ){ |
|
6060 va_list ap; |
|
6061 char *zMsg2; |
|
6062 va_start(ap, zFormat); |
|
6063 zMsg2 = sqlite3VMPrintf(zFormat, ap); |
|
6064 va_end(ap); |
|
6065 if( zMsg1==0 ) zMsg1 = ""; |
|
6066 if( pCheck->zErrMsg ){ |
|
6067 char *zOld = pCheck->zErrMsg; |
|
6068 pCheck->zErrMsg = 0; |
|
6069 sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0); |
|
6070 sqliteFree(zOld); |
|
6071 }else{ |
|
6072 sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0); |
|
6073 } |
|
6074 sqliteFree(zMsg2); |
|
6075 } |
|
6076 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
|
6077 |
|
6078 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
|
6079 /* |
|
6080 ** Add 1 to the reference count for page iPage. If this is the second |
|
6081 ** reference to the page, add an error message to pCheck->zErrMsg. |
|
6082 ** Return 1 if there are 2 ore more references to the page and 0 if |
|
6083 ** if this is the first reference to the page. |
|
6084 ** |
|
6085 ** Also check that the page number is in bounds. |
|
6086 */ |
|
6087 static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){ |
|
6088 if( iPage==0 ) return 1; |
|
6089 if( iPage>pCheck->nPage || iPage<0 ){ |
|
6090 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage); |
|
6091 return 1; |
|
6092 } |
|
6093 if( pCheck->anRef[iPage]==1 ){ |
|
6094 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage); |
|
6095 return 1; |
|
6096 } |
|
6097 return (pCheck->anRef[iPage]++)>1; |
|
6098 } |
|
6099 |
|
6100 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6101 /* |
|
6102 ** Check that the entry in the pointer-map for page iChild maps to |
|
6103 ** page iParent, pointer type ptrType. If not, append an error message |
|
6104 ** to pCheck. |
|
6105 */ |
|
6106 static void checkPtrmap( |
|
6107 IntegrityCk *pCheck, /* Integrity check context */ |
|
6108 Pgno iChild, /* Child page number */ |
|
6109 u8 eType, /* Expected pointer map type */ |
|
6110 Pgno iParent, /* Expected pointer map parent page number */ |
|
6111 char *zContext /* Context description (used for error msg) */ |
|
6112 ){ |
|
6113 int rc; |
|
6114 u8 ePtrmapType; |
|
6115 Pgno iPtrmapParent; |
|
6116 |
|
6117 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); |
|
6118 if( rc!=SQLITE_OK ){ |
|
6119 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild); |
|
6120 return; |
|
6121 } |
|
6122 |
|
6123 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ |
|
6124 checkAppendMsg(pCheck, zContext, |
|
6125 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", |
|
6126 iChild, eType, iParent, ePtrmapType, iPtrmapParent); |
|
6127 } |
|
6128 } |
|
6129 #endif |
|
6130 |
|
6131 /* |
|
6132 ** Check the integrity of the freelist or of an overflow page list. |
|
6133 ** Verify that the number of pages on the list is N. |
|
6134 */ |
|
6135 static void checkList( |
|
6136 IntegrityCk *pCheck, /* Integrity checking context */ |
|
6137 int isFreeList, /* True for a freelist. False for overflow page list */ |
|
6138 int iPage, /* Page number for first page in the list */ |
|
6139 int N, /* Expected number of pages in the list */ |
|
6140 char *zContext /* Context for error messages */ |
|
6141 ){ |
|
6142 int i; |
|
6143 int expected = N; |
|
6144 int iFirst = iPage; |
|
6145 while( N-- > 0 ){ |
|
6146 unsigned char *pOvfl; |
|
6147 if( iPage<1 ){ |
|
6148 checkAppendMsg(pCheck, zContext, |
|
6149 "%d of %d pages missing from overflow list starting at %d", |
|
6150 N+1, expected, iFirst); |
|
6151 break; |
|
6152 } |
|
6153 if( checkRef(pCheck, iPage, zContext) ) break; |
|
6154 if( sqlite3pager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){ |
|
6155 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage); |
|
6156 break; |
|
6157 } |
|
6158 if( isFreeList ){ |
|
6159 int n = get4byte(&pOvfl[4]); |
|
6160 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6161 if( pCheck->pBt->autoVacuum ){ |
|
6162 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext); |
|
6163 } |
|
6164 #endif |
|
6165 if( n>pCheck->pBt->usableSize/4-8 ){ |
|
6166 checkAppendMsg(pCheck, zContext, |
|
6167 "freelist leaf count too big on page %d", iPage); |
|
6168 N--; |
|
6169 }else{ |
|
6170 for(i=0; i<n; i++){ |
|
6171 Pgno iFreePage = get4byte(&pOvfl[8+i*4]); |
|
6172 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6173 if( pCheck->pBt->autoVacuum ){ |
|
6174 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext); |
|
6175 } |
|
6176 #endif |
|
6177 checkRef(pCheck, iFreePage, zContext); |
|
6178 } |
|
6179 N -= n; |
|
6180 } |
|
6181 } |
|
6182 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6183 else{ |
|
6184 /* If this database supports auto-vacuum and iPage is not the last |
|
6185 ** page in this overflow list, check that the pointer-map entry for |
|
6186 ** the following page matches iPage. |
|
6187 */ |
|
6188 if( pCheck->pBt->autoVacuum && N>0 ){ |
|
6189 i = get4byte(pOvfl); |
|
6190 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext); |
|
6191 } |
|
6192 } |
|
6193 #endif |
|
6194 iPage = get4byte(pOvfl); |
|
6195 sqlite3pager_unref(pOvfl); |
|
6196 } |
|
6197 } |
|
6198 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
|
6199 |
|
6200 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
|
6201 /* |
|
6202 ** Do various sanity checks on a single page of a tree. Return |
|
6203 ** the tree depth. Root pages return 0. Parents of root pages |
|
6204 ** return 1, and so forth. |
|
6205 ** |
|
6206 ** These checks are done: |
|
6207 ** |
|
6208 ** 1. Make sure that cells and freeblocks do not overlap |
|
6209 ** but combine to completely cover the page. |
|
6210 ** NO 2. Make sure cell keys are in order. |
|
6211 ** NO 3. Make sure no key is less than or equal to zLowerBound. |
|
6212 ** NO 4. Make sure no key is greater than or equal to zUpperBound. |
|
6213 ** 5. Check the integrity of overflow pages. |
|
6214 ** 6. Recursively call checkTreePage on all children. |
|
6215 ** 7. Verify that the depth of all children is the same. |
|
6216 ** 8. Make sure this page is at least 33% full or else it is |
|
6217 ** the root of the tree. |
|
6218 */ |
|
6219 static int checkTreePage( |
|
6220 IntegrityCk *pCheck, /* Context for the sanity check */ |
|
6221 int iPage, /* Page number of the page to check */ |
|
6222 MemPage *pParent, /* Parent page */ |
|
6223 char *zParentContext /* Parent context */ |
|
6224 ){ |
|
6225 MemPage *pPage; |
|
6226 int i, rc, depth, d2, pgno, cnt; |
|
6227 int hdr, cellStart; |
|
6228 int nCell; |
|
6229 u8 *data; |
|
6230 BtShared *pBt; |
|
6231 int usableSize; |
|
6232 char zContext[100]; |
|
6233 char *hit; |
|
6234 |
|
6235 sprintf(zContext, "Page %d: ", iPage); |
|
6236 |
|
6237 /* Check that the page exists |
|
6238 */ |
|
6239 pBt = pCheck->pBt; |
|
6240 usableSize = pBt->usableSize; |
|
6241 if( iPage==0 ) return 0; |
|
6242 if( checkRef(pCheck, iPage, zParentContext) ) return 0; |
|
6243 if( (rc = getPage(pBt, (Pgno)iPage, &pPage))!=0 ){ |
|
6244 checkAppendMsg(pCheck, zContext, |
|
6245 "unable to get the page. error code=%d", rc); |
|
6246 return 0; |
|
6247 } |
|
6248 if( (rc = initPage(pPage, pParent))!=0 ){ |
|
6249 checkAppendMsg(pCheck, zContext, "initPage() returns error code %d", rc); |
|
6250 releasePage(pPage); |
|
6251 return 0; |
|
6252 } |
|
6253 |
|
6254 /* Check out all the cells. |
|
6255 */ |
|
6256 depth = 0; |
|
6257 for(i=0; i<pPage->nCell; i++){ |
|
6258 u8 *pCell; |
|
6259 int sz; |
|
6260 CellInfo info; |
|
6261 |
|
6262 /* Check payload overflow pages |
|
6263 */ |
|
6264 sprintf(zContext, "On tree page %d cell %d: ", iPage, i); |
|
6265 pCell = findCell(pPage,i); |
|
6266 parseCellPtr(pPage, pCell, &info); |
|
6267 sz = info.nData; |
|
6268 if( !pPage->intKey ) sz += info.nKey; |
|
6269 if( sz>info.nLocal ){ |
|
6270 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); |
|
6271 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); |
|
6272 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6273 if( pBt->autoVacuum ){ |
|
6274 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext); |
|
6275 } |
|
6276 #endif |
|
6277 checkList(pCheck, 0, pgnoOvfl, nPage, zContext); |
|
6278 } |
|
6279 |
|
6280 /* Check sanity of left child page. |
|
6281 */ |
|
6282 if( !pPage->leaf ){ |
|
6283 pgno = get4byte(pCell); |
|
6284 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6285 if( pBt->autoVacuum ){ |
|
6286 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); |
|
6287 } |
|
6288 #endif |
|
6289 d2 = checkTreePage(pCheck,pgno,pPage,zContext); |
|
6290 if( i>0 && d2!=depth ){ |
|
6291 checkAppendMsg(pCheck, zContext, "Child page depth differs"); |
|
6292 } |
|
6293 depth = d2; |
|
6294 } |
|
6295 } |
|
6296 if( !pPage->leaf ){ |
|
6297 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
|
6298 sprintf(zContext, "On page %d at right child: ", iPage); |
|
6299 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6300 if( pBt->autoVacuum ){ |
|
6301 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0); |
|
6302 } |
|
6303 #endif |
|
6304 checkTreePage(pCheck, pgno, pPage, zContext); |
|
6305 } |
|
6306 |
|
6307 /* Check for complete coverage of the page |
|
6308 */ |
|
6309 data = pPage->aData; |
|
6310 hdr = pPage->hdrOffset; |
|
6311 hit = sqliteMalloc( usableSize ); |
|
6312 if( hit ){ |
|
6313 memset(hit, 1, get2byte(&data[hdr+5])); |
|
6314 nCell = get2byte(&data[hdr+3]); |
|
6315 cellStart = hdr + 12 - 4*pPage->leaf; |
|
6316 for(i=0; i<nCell; i++){ |
|
6317 int pc = get2byte(&data[cellStart+i*2]); |
|
6318 int size = cellSizePtr(pPage, &data[pc]); |
|
6319 int j; |
|
6320 if( (pc+size-1)>=usableSize || pc<0 ){ |
|
6321 checkAppendMsg(pCheck, 0, |
|
6322 "Corruption detected in cell %d on page %d",i,iPage,0); |
|
6323 }else{ |
|
6324 for(j=pc+size-1; j>=pc; j--) hit[j]++; |
|
6325 } |
|
6326 } |
|
6327 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; |
|
6328 cnt++){ |
|
6329 int size = get2byte(&data[i+2]); |
|
6330 int j; |
|
6331 if( (i+size-1)>=usableSize || i<0 ){ |
|
6332 checkAppendMsg(pCheck, 0, |
|
6333 "Corruption detected in cell %d on page %d",i,iPage,0); |
|
6334 }else{ |
|
6335 for(j=i+size-1; j>=i; j--) hit[j]++; |
|
6336 } |
|
6337 i = get2byte(&data[i]); |
|
6338 } |
|
6339 for(i=cnt=0; i<usableSize; i++){ |
|
6340 if( hit[i]==0 ){ |
|
6341 cnt++; |
|
6342 }else if( hit[i]>1 ){ |
|
6343 checkAppendMsg(pCheck, 0, |
|
6344 "Multiple uses for byte %d of page %d", i, iPage); |
|
6345 break; |
|
6346 } |
|
6347 } |
|
6348 if( cnt!=data[hdr+7] ){ |
|
6349 checkAppendMsg(pCheck, 0, |
|
6350 "Fragmented space is %d byte reported as %d on page %d", |
|
6351 cnt, data[hdr+7], iPage); |
|
6352 } |
|
6353 } |
|
6354 sqliteFree(hit); |
|
6355 |
|
6356 releasePage(pPage); |
|
6357 return depth+1; |
|
6358 } |
|
6359 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
|
6360 |
|
6361 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
|
6362 /* |
|
6363 ** This routine does a complete check of the given BTree file. aRoot[] is |
|
6364 ** an array of pages numbers were each page number is the root page of |
|
6365 ** a table. nRoot is the number of entries in aRoot. |
|
6366 ** |
|
6367 ** If everything checks out, this routine returns NULL. If something is |
|
6368 ** amiss, an error message is written into memory obtained from malloc() |
|
6369 ** and a pointer to that error message is returned. The calling function |
|
6370 ** is responsible for freeing the error message when it is done. |
|
6371 */ |
|
6372 char *sqlite3BtreeIntegrityCheck(Btree *p, int *aRoot, int nRoot){ |
|
6373 int i; |
|
6374 int nRef; |
|
6375 IntegrityCk sCheck; |
|
6376 BtShared *pBt = p->pBt; |
|
6377 |
|
6378 nRef = sqlite3pager_refcount(pBt->pPager); |
|
6379 if( lockBtreeWithRetry(p)!=SQLITE_OK ){ |
|
6380 return sqliteStrDup("Unable to acquire a read lock on the database"); |
|
6381 } |
|
6382 sCheck.pBt = pBt; |
|
6383 sCheck.pPager = pBt->pPager; |
|
6384 sCheck.nPage = sqlite3pager_pagecount(sCheck.pPager); |
|
6385 if( sCheck.nPage==0 ){ |
|
6386 unlockBtreeIfUnused(pBt); |
|
6387 return 0; |
|
6388 } |
|
6389 sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) ); |
|
6390 if( !sCheck.anRef ){ |
|
6391 unlockBtreeIfUnused(pBt); |
|
6392 return sqlite3MPrintf("Unable to malloc %d bytes", |
|
6393 (sCheck.nPage+1)*sizeof(sCheck.anRef[0])); |
|
6394 } |
|
6395 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } |
|
6396 i = PENDING_BYTE_PAGE(pBt); |
|
6397 if( i<=sCheck.nPage ){ |
|
6398 sCheck.anRef[i] = 1; |
|
6399 } |
|
6400 sCheck.zErrMsg = 0; |
|
6401 |
|
6402 /* Check the integrity of the freelist |
|
6403 */ |
|
6404 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), |
|
6405 get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); |
|
6406 |
|
6407 /* Check all the tables. |
|
6408 */ |
|
6409 for(i=0; i<nRoot; i++){ |
|
6410 if( aRoot[i]==0 ) continue; |
|
6411 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6412 if( pBt->autoVacuum && aRoot[i]>1 ){ |
|
6413 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0); |
|
6414 } |
|
6415 #endif |
|
6416 checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: "); |
|
6417 } |
|
6418 |
|
6419 /* Make sure every page in the file is referenced |
|
6420 */ |
|
6421 for(i=1; i<=sCheck.nPage; i++){ |
|
6422 #ifdef SQLITE_OMIT_AUTOVACUUM |
|
6423 if( sCheck.anRef[i]==0 ){ |
|
6424 checkAppendMsg(&sCheck, 0, "Page %d is never used", i); |
|
6425 } |
|
6426 #else |
|
6427 /* If the database supports auto-vacuum, make sure no tables contain |
|
6428 ** references to pointer-map pages. |
|
6429 */ |
|
6430 if( sCheck.anRef[i]==0 && |
|
6431 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ |
|
6432 checkAppendMsg(&sCheck, 0, "Page %d is never used", i); |
|
6433 } |
|
6434 if( sCheck.anRef[i]!=0 && |
|
6435 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ |
|
6436 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i); |
|
6437 } |
|
6438 #endif |
|
6439 } |
|
6440 |
|
6441 /* Make sure this analysis did not leave any unref() pages |
|
6442 */ |
|
6443 unlockBtreeIfUnused(pBt); |
|
6444 if( nRef != sqlite3pager_refcount(pBt->pPager) ){ |
|
6445 checkAppendMsg(&sCheck, 0, |
|
6446 "Outstanding page count goes from %d to %d during this analysis", |
|
6447 nRef, sqlite3pager_refcount(pBt->pPager) |
|
6448 ); |
|
6449 } |
|
6450 |
|
6451 /* Clean up and report errors. |
|
6452 */ |
|
6453 sqliteFree(sCheck.anRef); |
|
6454 return sCheck.zErrMsg; |
|
6455 } |
|
6456 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
|
6457 |
|
6458 /* |
|
6459 ** Return the full pathname of the underlying database file. |
|
6460 */ |
|
6461 const char *sqlite3BtreeGetFilename(Btree *p){ |
|
6462 assert( p->pBt->pPager!=0 ); |
|
6463 return sqlite3pager_filename(p->pBt->pPager); |
|
6464 } |
|
6465 |
|
6466 /* |
|
6467 ** Return the pathname of the directory that contains the database file. |
|
6468 */ |
|
6469 const char *sqlite3BtreeGetDirname(Btree *p){ |
|
6470 assert( p->pBt->pPager!=0 ); |
|
6471 return sqlite3pager_dirname(p->pBt->pPager); |
|
6472 } |
|
6473 |
|
6474 /* |
|
6475 ** Return the pathname of the journal file for this database. The return |
|
6476 ** value of this routine is the same regardless of whether the journal file |
|
6477 ** has been created or not. |
|
6478 */ |
|
6479 const char *sqlite3BtreeGetJournalname(Btree *p){ |
|
6480 assert( p->pBt->pPager!=0 ); |
|
6481 return sqlite3pager_journalname(p->pBt->pPager); |
|
6482 } |
|
6483 |
|
6484 #ifndef SQLITE_OMIT_VACUUM |
|
6485 /* |
|
6486 ** Copy the complete content of pBtFrom into pBtTo. A transaction |
|
6487 ** must be active for both files. |
|
6488 ** |
|
6489 ** The size of file pBtFrom may be reduced by this operation. |
|
6490 ** If anything goes wrong, the transaction on pBtFrom is rolled back. |
|
6491 */ |
|
6492 int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){ |
|
6493 int rc = SQLITE_OK; |
|
6494 Pgno i, nPage, nToPage, iSkip; |
|
6495 |
|
6496 BtShared *pBtTo = pTo->pBt; |
|
6497 BtShared *pBtFrom = pFrom->pBt; |
|
6498 |
|
6499 if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){ |
|
6500 return SQLITE_ERROR; |
|
6501 } |
|
6502 if( pBtTo->pCursor ) return SQLITE_BUSY; |
|
6503 nToPage = sqlite3pager_pagecount(pBtTo->pPager); |
|
6504 nPage = sqlite3pager_pagecount(pBtFrom->pPager); |
|
6505 iSkip = PENDING_BYTE_PAGE(pBtTo); |
|
6506 for(i=1; rc==SQLITE_OK && i<=nPage; i++){ |
|
6507 void *pPage; |
|
6508 if( i==iSkip ) continue; |
|
6509 rc = sqlite3pager_get(pBtFrom->pPager, i, &pPage); |
|
6510 if( rc ) break; |
|
6511 rc = sqlite3pager_overwrite(pBtTo->pPager, i, pPage); |
|
6512 if( rc ) break; |
|
6513 sqlite3pager_unref(pPage); |
|
6514 } |
|
6515 for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){ |
|
6516 void *pPage; |
|
6517 if( i==iSkip ) continue; |
|
6518 rc = sqlite3pager_get(pBtTo->pPager, i, &pPage); |
|
6519 if( rc ) break; |
|
6520 rc = sqlite3pager_write(pPage); |
|
6521 sqlite3pager_unref(pPage); |
|
6522 sqlite3pager_dont_write(pBtTo->pPager, i); |
|
6523 } |
|
6524 if( !rc && nPage<nToPage ){ |
|
6525 rc = sqlite3pager_truncate(pBtTo->pPager, nPage); |
|
6526 } |
|
6527 if( rc ){ |
|
6528 sqlite3BtreeRollback(pTo); |
|
6529 } |
|
6530 return rc; |
|
6531 } |
|
6532 #endif /* SQLITE_OMIT_VACUUM */ |
|
6533 |
|
6534 /* |
|
6535 ** Return non-zero if a transaction is active. |
|
6536 */ |
|
6537 int sqlite3BtreeIsInTrans(Btree *p){ |
|
6538 return (p && (p->inTrans==TRANS_WRITE)); |
|
6539 } |
|
6540 |
|
6541 /* |
|
6542 ** Return non-zero if a statement transaction is active. |
|
6543 */ |
|
6544 int sqlite3BtreeIsInStmt(Btree *p){ |
|
6545 return (p->pBt && p->pBt->inStmt); |
|
6546 } |
|
6547 |
|
6548 /* |
|
6549 ** Return non-zero if a read (or write) transaction is active. |
|
6550 */ |
|
6551 int sqlite3BtreeIsInReadTrans(Btree *p){ |
|
6552 return (p && (p->inTrans!=TRANS_NONE)); |
|
6553 } |
|
6554 |
|
6555 /* |
|
6556 ** This call is a no-op if no write-transaction is currently active on pBt. |
|
6557 ** |
|
6558 ** Otherwise, sync the database file for the btree pBt. zMaster points to |
|
6559 ** the name of a master journal file that should be written into the |
|
6560 ** individual journal file, or is NULL, indicating no master journal file |
|
6561 ** (single database transaction). |
|
6562 ** |
|
6563 ** When this is called, the master journal should already have been |
|
6564 ** created, populated with this journal pointer and synced to disk. |
|
6565 ** |
|
6566 ** Once this is routine has returned, the only thing required to commit |
|
6567 ** the write-transaction for this database file is to delete the journal. |
|
6568 */ |
|
6569 int sqlite3BtreeSync(Btree *p, const char *zMaster){ |
|
6570 int rc = SQLITE_OK; |
|
6571 if( p->inTrans==TRANS_WRITE ){ |
|
6572 BtShared *pBt = p->pBt; |
|
6573 Pgno nTrunc = 0; |
|
6574 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
6575 if( pBt->autoVacuum ){ |
|
6576 rc = autoVacuumCommit(pBt, &nTrunc); |
|
6577 if( rc!=SQLITE_OK ){ |
|
6578 return rc; |
|
6579 } |
|
6580 } |
|
6581 #endif |
|
6582 rc = sqlite3pager_sync(pBt->pPager, zMaster, nTrunc); |
|
6583 } |
|
6584 return rc; |
|
6585 } |
|
6586 |
|
6587 /* |
|
6588 ** This function returns a pointer to a blob of memory associated with |
|
6589 ** a single shared-btree. The memory is used by client code for it's own |
|
6590 ** purposes (for example, to store a high-level schema associated with |
|
6591 ** the shared-btree). The btree layer manages reference counting issues. |
|
6592 ** |
|
6593 ** The first time this is called on a shared-btree, nBytes bytes of memory |
|
6594 ** are allocated, zeroed, and returned to the caller. For each subsequent |
|
6595 ** call the nBytes parameter is ignored and a pointer to the same blob |
|
6596 ** of memory returned. |
|
6597 ** |
|
6598 ** Just before the shared-btree is closed, the function passed as the |
|
6599 ** xFree argument when the memory allocation was made is invoked on the |
|
6600 ** blob of allocated memory. This function should not call sqliteFree() |
|
6601 ** on the memory, the btree layer does that. |
|
6602 */ |
|
6603 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ |
|
6604 BtShared *pBt = p->pBt; |
|
6605 if( !pBt->pSchema ){ |
|
6606 pBt->pSchema = sqliteMalloc(nBytes); |
|
6607 pBt->xFreeSchema = xFree; |
|
6608 } |
|
6609 return pBt->pSchema; |
|
6610 } |
|
6611 |
|
6612 /* |
|
6613 ** Return true if another user of the same shared btree as the argument |
|
6614 ** handle holds an exclusive lock on the sqlite_master table. |
|
6615 */ |
|
6616 int sqlite3BtreeSchemaLocked(Btree *p){ |
|
6617 return (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK); |
|
6618 } |
|
6619 |
|
6620 |
|
6621 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
6622 /* |
|
6623 ** Obtain a lock on the table whose root page is iTab. The |
|
6624 ** lock is a write lock if isWritelock is true or a read lock |
|
6625 ** if it is false. |
|
6626 */ |
|
6627 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ |
|
6628 int rc = SQLITE_OK; |
|
6629 u8 lockType = (isWriteLock?WRITE_LOCK:READ_LOCK); |
|
6630 rc = queryTableLock(p, iTab, lockType); |
|
6631 if( rc==SQLITE_OK ){ |
|
6632 rc = lockTable(p, iTab, lockType); |
|
6633 } |
|
6634 return rc; |
|
6635 } |
|
6636 #endif |
|
6637 |
|
6638 /* |
|
6639 ** The following debugging interface has to be in this file (rather |
|
6640 ** than in, for example, test1.c) so that it can get access to |
|
6641 ** the definition of BtShared. |
|
6642 */ |
|
6643 #if defined(SQLITE_DEBUG) && defined(TCLSH) |
|
6644 #include <tcl.h> |
|
6645 int sqlite3_shared_cache_report( |
|
6646 void * clientData, |
|
6647 Tcl_Interp *interp, |
|
6648 int objc, |
|
6649 Tcl_Obj *CONST objv[] |
|
6650 ){ |
|
6651 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
6652 const ThreadData *pTd = sqlite3ThreadDataReadOnly(); |
|
6653 if( pTd->useSharedData ){ |
|
6654 BtShared *pBt; |
|
6655 Tcl_Obj *pRet = Tcl_NewObj(); |
|
6656 for(pBt=pTd->pBtree; pBt; pBt=pBt->pNext){ |
|
6657 const char *zFile = sqlite3pager_filename(pBt->pPager); |
|
6658 Tcl_ListObjAppendElement(interp, pRet, Tcl_NewStringObj(zFile, -1)); |
|
6659 Tcl_ListObjAppendElement(interp, pRet, Tcl_NewIntObj(pBt->nRef)); |
|
6660 } |
|
6661 Tcl_SetObjResult(interp, pRet); |
|
6662 } |
|
6663 #endif |
|
6664 return TCL_OK; |
|
6665 } |
|
6666 #endif |