|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This file contains routines used for analyzing expressions and |
|
13 ** for generating VDBE code that evaluates expressions in SQLite. |
|
14 ** |
|
15 ** $Id: expr.c,v 1.268 2006/08/24 15:18:25 drh Exp $ |
|
16 */ |
|
17 #include "sqliteInt.h" |
|
18 #include <ctype.h> |
|
19 |
|
20 /* |
|
21 ** Return the 'affinity' of the expression pExpr if any. |
|
22 ** |
|
23 ** If pExpr is a column, a reference to a column via an 'AS' alias, |
|
24 ** or a sub-select with a column as the return value, then the |
|
25 ** affinity of that column is returned. Otherwise, 0x00 is returned, |
|
26 ** indicating no affinity for the expression. |
|
27 ** |
|
28 ** i.e. the WHERE clause expresssions in the following statements all |
|
29 ** have an affinity: |
|
30 ** |
|
31 ** CREATE TABLE t1(a); |
|
32 ** SELECT * FROM t1 WHERE a; |
|
33 ** SELECT a AS b FROM t1 WHERE b; |
|
34 ** SELECT * FROM t1 WHERE (select a from t1); |
|
35 */ |
|
36 char sqlite3ExprAffinity(Expr *pExpr){ |
|
37 int op = pExpr->op; |
|
38 if( op==TK_AS ){ |
|
39 return sqlite3ExprAffinity(pExpr->pLeft); |
|
40 } |
|
41 if( op==TK_SELECT ){ |
|
42 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); |
|
43 } |
|
44 #ifndef SQLITE_OMIT_CAST |
|
45 if( op==TK_CAST ){ |
|
46 return sqlite3AffinityType(&pExpr->token); |
|
47 } |
|
48 #endif |
|
49 return pExpr->affinity; |
|
50 } |
|
51 |
|
52 /* |
|
53 ** Return the default collation sequence for the expression pExpr. If |
|
54 ** there is no default collation type, return 0. |
|
55 */ |
|
56 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ |
|
57 CollSeq *pColl = 0; |
|
58 if( pExpr ){ |
|
59 pColl = pExpr->pColl; |
|
60 if( (pExpr->op==TK_AS || pExpr->op==TK_CAST) && !pColl ){ |
|
61 return sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
|
62 } |
|
63 } |
|
64 if( sqlite3CheckCollSeq(pParse, pColl) ){ |
|
65 pColl = 0; |
|
66 } |
|
67 return pColl; |
|
68 } |
|
69 |
|
70 /* |
|
71 ** pExpr is an operand of a comparison operator. aff2 is the |
|
72 ** type affinity of the other operand. This routine returns the |
|
73 ** type affinity that should be used for the comparison operator. |
|
74 */ |
|
75 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ |
|
76 char aff1 = sqlite3ExprAffinity(pExpr); |
|
77 if( aff1 && aff2 ){ |
|
78 /* Both sides of the comparison are columns. If one has numeric |
|
79 ** affinity, use that. Otherwise use no affinity. |
|
80 */ |
|
81 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ |
|
82 return SQLITE_AFF_NUMERIC; |
|
83 }else{ |
|
84 return SQLITE_AFF_NONE; |
|
85 } |
|
86 }else if( !aff1 && !aff2 ){ |
|
87 /* Neither side of the comparison is a column. Compare the |
|
88 ** results directly. |
|
89 */ |
|
90 return SQLITE_AFF_NONE; |
|
91 }else{ |
|
92 /* One side is a column, the other is not. Use the columns affinity. */ |
|
93 assert( aff1==0 || aff2==0 ); |
|
94 return (aff1 + aff2); |
|
95 } |
|
96 } |
|
97 |
|
98 /* |
|
99 ** pExpr is a comparison operator. Return the type affinity that should |
|
100 ** be applied to both operands prior to doing the comparison. |
|
101 */ |
|
102 static char comparisonAffinity(Expr *pExpr){ |
|
103 char aff; |
|
104 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || |
|
105 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || |
|
106 pExpr->op==TK_NE ); |
|
107 assert( pExpr->pLeft ); |
|
108 aff = sqlite3ExprAffinity(pExpr->pLeft); |
|
109 if( pExpr->pRight ){ |
|
110 aff = sqlite3CompareAffinity(pExpr->pRight, aff); |
|
111 } |
|
112 else if( pExpr->pSelect ){ |
|
113 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); |
|
114 } |
|
115 else if( !aff ){ |
|
116 aff = SQLITE_AFF_NUMERIC; |
|
117 } |
|
118 return aff; |
|
119 } |
|
120 |
|
121 /* |
|
122 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. |
|
123 ** idx_affinity is the affinity of an indexed column. Return true |
|
124 ** if the index with affinity idx_affinity may be used to implement |
|
125 ** the comparison in pExpr. |
|
126 */ |
|
127 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ |
|
128 char aff = comparisonAffinity(pExpr); |
|
129 switch( aff ){ |
|
130 case SQLITE_AFF_NONE: |
|
131 return 1; |
|
132 case SQLITE_AFF_TEXT: |
|
133 return idx_affinity==SQLITE_AFF_TEXT; |
|
134 default: |
|
135 return sqlite3IsNumericAffinity(idx_affinity); |
|
136 } |
|
137 } |
|
138 |
|
139 /* |
|
140 ** Return the P1 value that should be used for a binary comparison |
|
141 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. |
|
142 ** If jumpIfNull is true, then set the low byte of the returned |
|
143 ** P1 value to tell the opcode to jump if either expression |
|
144 ** evaluates to NULL. |
|
145 */ |
|
146 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ |
|
147 char aff = sqlite3ExprAffinity(pExpr2); |
|
148 return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); |
|
149 } |
|
150 |
|
151 /* |
|
152 ** Return a pointer to the collation sequence that should be used by |
|
153 ** a binary comparison operator comparing pLeft and pRight. |
|
154 ** |
|
155 ** If the left hand expression has a collating sequence type, then it is |
|
156 ** used. Otherwise the collation sequence for the right hand expression |
|
157 ** is used, or the default (BINARY) if neither expression has a collating |
|
158 ** type. |
|
159 */ |
|
160 static CollSeq* binaryCompareCollSeq(Parse *pParse, Expr *pLeft, Expr *pRight){ |
|
161 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pLeft); |
|
162 if( !pColl ){ |
|
163 pColl = sqlite3ExprCollSeq(pParse, pRight); |
|
164 } |
|
165 return pColl; |
|
166 } |
|
167 |
|
168 /* |
|
169 ** Generate code for a comparison operator. |
|
170 */ |
|
171 static int codeCompare( |
|
172 Parse *pParse, /* The parsing (and code generating) context */ |
|
173 Expr *pLeft, /* The left operand */ |
|
174 Expr *pRight, /* The right operand */ |
|
175 int opcode, /* The comparison opcode */ |
|
176 int dest, /* Jump here if true. */ |
|
177 int jumpIfNull /* If true, jump if either operand is NULL */ |
|
178 ){ |
|
179 int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); |
|
180 CollSeq *p3 = binaryCompareCollSeq(pParse, pLeft, pRight); |
|
181 return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); |
|
182 } |
|
183 |
|
184 /* |
|
185 ** Construct a new expression node and return a pointer to it. Memory |
|
186 ** for this node is obtained from sqliteMalloc(). The calling function |
|
187 ** is responsible for making sure the node eventually gets freed. |
|
188 */ |
|
189 Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){ |
|
190 Expr *pNew; |
|
191 pNew = sqliteMalloc( sizeof(Expr) ); |
|
192 if( pNew==0 ){ |
|
193 /* When malloc fails, delete pLeft and pRight. Expressions passed to |
|
194 ** this function must always be allocated with sqlite3Expr() for this |
|
195 ** reason. |
|
196 */ |
|
197 sqlite3ExprDelete(pLeft); |
|
198 sqlite3ExprDelete(pRight); |
|
199 return 0; |
|
200 } |
|
201 pNew->op = op; |
|
202 pNew->pLeft = pLeft; |
|
203 pNew->pRight = pRight; |
|
204 pNew->iAgg = -1; |
|
205 if( pToken ){ |
|
206 assert( pToken->dyn==0 ); |
|
207 pNew->span = pNew->token = *pToken; |
|
208 }else if( pLeft && pRight ){ |
|
209 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); |
|
210 } |
|
211 return pNew; |
|
212 } |
|
213 |
|
214 /* |
|
215 ** Works like sqlite3Expr() but frees its pLeft and pRight arguments |
|
216 ** if it fails due to a malloc problem. |
|
217 */ |
|
218 Expr *sqlite3ExprOrFree(int op, Expr *pLeft, Expr *pRight, const Token *pToken){ |
|
219 Expr *pNew = sqlite3Expr(op, pLeft, pRight, pToken); |
|
220 if( pNew==0 ){ |
|
221 sqlite3ExprDelete(pLeft); |
|
222 sqlite3ExprDelete(pRight); |
|
223 } |
|
224 return pNew; |
|
225 } |
|
226 |
|
227 /* |
|
228 ** When doing a nested parse, you can include terms in an expression |
|
229 ** that look like this: #0 #1 #2 ... These terms refer to elements |
|
230 ** on the stack. "#0" means the top of the stack. |
|
231 ** "#1" means the next down on the stack. And so forth. |
|
232 ** |
|
233 ** This routine is called by the parser to deal with on of those terms. |
|
234 ** It immediately generates code to store the value in a memory location. |
|
235 ** The returns an expression that will code to extract the value from |
|
236 ** that memory location as needed. |
|
237 */ |
|
238 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ |
|
239 Vdbe *v = pParse->pVdbe; |
|
240 Expr *p; |
|
241 int depth; |
|
242 if( pParse->nested==0 ){ |
|
243 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); |
|
244 return 0; |
|
245 } |
|
246 if( v==0 ) return 0; |
|
247 p = sqlite3Expr(TK_REGISTER, 0, 0, pToken); |
|
248 if( p==0 ){ |
|
249 return 0; /* Malloc failed */ |
|
250 } |
|
251 depth = atoi((char*)&pToken->z[1]); |
|
252 p->iTable = pParse->nMem++; |
|
253 sqlite3VdbeAddOp(v, OP_Dup, depth, 0); |
|
254 sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); |
|
255 return p; |
|
256 } |
|
257 |
|
258 /* |
|
259 ** Join two expressions using an AND operator. If either expression is |
|
260 ** NULL, then just return the other expression. |
|
261 */ |
|
262 Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){ |
|
263 if( pLeft==0 ){ |
|
264 return pRight; |
|
265 }else if( pRight==0 ){ |
|
266 return pLeft; |
|
267 }else{ |
|
268 return sqlite3Expr(TK_AND, pLeft, pRight, 0); |
|
269 } |
|
270 } |
|
271 |
|
272 /* |
|
273 ** Set the Expr.span field of the given expression to span all |
|
274 ** text between the two given tokens. |
|
275 */ |
|
276 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ |
|
277 assert( pRight!=0 ); |
|
278 assert( pLeft!=0 ); |
|
279 if( !sqlite3MallocFailed() && pRight->z && pLeft->z ){ |
|
280 assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); |
|
281 if( pLeft->dyn==0 && pRight->dyn==0 ){ |
|
282 pExpr->span.z = pLeft->z; |
|
283 pExpr->span.n = pRight->n + (pRight->z - pLeft->z); |
|
284 }else{ |
|
285 pExpr->span.z = 0; |
|
286 } |
|
287 } |
|
288 } |
|
289 |
|
290 /* |
|
291 ** Construct a new expression node for a function with multiple |
|
292 ** arguments. |
|
293 */ |
|
294 Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){ |
|
295 Expr *pNew; |
|
296 assert( pToken ); |
|
297 pNew = sqliteMalloc( sizeof(Expr) ); |
|
298 if( pNew==0 ){ |
|
299 sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ |
|
300 return 0; |
|
301 } |
|
302 pNew->op = TK_FUNCTION; |
|
303 pNew->pList = pList; |
|
304 assert( pToken->dyn==0 ); |
|
305 pNew->token = *pToken; |
|
306 pNew->span = pNew->token; |
|
307 return pNew; |
|
308 } |
|
309 |
|
310 /* |
|
311 ** Assign a variable number to an expression that encodes a wildcard |
|
312 ** in the original SQL statement. |
|
313 ** |
|
314 ** Wildcards consisting of a single "?" are assigned the next sequential |
|
315 ** variable number. |
|
316 ** |
|
317 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make |
|
318 ** sure "nnn" is not too be to avoid a denial of service attack when |
|
319 ** the SQL statement comes from an external source. |
|
320 ** |
|
321 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number |
|
322 ** as the previous instance of the same wildcard. Or if this is the first |
|
323 ** instance of the wildcard, the next sequenial variable number is |
|
324 ** assigned. |
|
325 */ |
|
326 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ |
|
327 Token *pToken; |
|
328 if( pExpr==0 ) return; |
|
329 pToken = &pExpr->token; |
|
330 assert( pToken->n>=1 ); |
|
331 assert( pToken->z!=0 ); |
|
332 assert( pToken->z[0]!=0 ); |
|
333 if( pToken->n==1 ){ |
|
334 /* Wildcard of the form "?". Assign the next variable number */ |
|
335 pExpr->iTable = ++pParse->nVar; |
|
336 }else if( pToken->z[0]=='?' ){ |
|
337 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and |
|
338 ** use it as the variable number */ |
|
339 int i; |
|
340 pExpr->iTable = i = atoi((char*)&pToken->z[1]); |
|
341 if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ |
|
342 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", |
|
343 SQLITE_MAX_VARIABLE_NUMBER); |
|
344 } |
|
345 if( i>pParse->nVar ){ |
|
346 pParse->nVar = i; |
|
347 } |
|
348 }else{ |
|
349 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable |
|
350 ** number as the prior appearance of the same name, or if the name |
|
351 ** has never appeared before, reuse the same variable number |
|
352 */ |
|
353 int i, n; |
|
354 n = pToken->n; |
|
355 for(i=0; i<pParse->nVarExpr; i++){ |
|
356 Expr *pE; |
|
357 if( (pE = pParse->apVarExpr[i])!=0 |
|
358 && pE->token.n==n |
|
359 && memcmp(pE->token.z, pToken->z, n)==0 ){ |
|
360 pExpr->iTable = pE->iTable; |
|
361 break; |
|
362 } |
|
363 } |
|
364 if( i>=pParse->nVarExpr ){ |
|
365 pExpr->iTable = ++pParse->nVar; |
|
366 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ |
|
367 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; |
|
368 sqliteReallocOrFree((void**)&pParse->apVarExpr, |
|
369 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) ); |
|
370 } |
|
371 if( !sqlite3MallocFailed() ){ |
|
372 assert( pParse->apVarExpr!=0 ); |
|
373 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; |
|
374 } |
|
375 } |
|
376 } |
|
377 } |
|
378 |
|
379 /* |
|
380 ** Recursively delete an expression tree. |
|
381 */ |
|
382 void sqlite3ExprDelete(Expr *p){ |
|
383 if( p==0 ) return; |
|
384 if( p->span.dyn ) sqliteFree((char*)p->span.z); |
|
385 if( p->token.dyn ) sqliteFree((char*)p->token.z); |
|
386 sqlite3ExprDelete(p->pLeft); |
|
387 sqlite3ExprDelete(p->pRight); |
|
388 sqlite3ExprListDelete(p->pList); |
|
389 sqlite3SelectDelete(p->pSelect); |
|
390 sqliteFree(p); |
|
391 } |
|
392 |
|
393 /* |
|
394 ** The Expr.token field might be a string literal that is quoted. |
|
395 ** If so, remove the quotation marks. |
|
396 */ |
|
397 void sqlite3DequoteExpr(Expr *p){ |
|
398 if( ExprHasAnyProperty(p, EP_Dequoted) ){ |
|
399 return; |
|
400 } |
|
401 ExprSetProperty(p, EP_Dequoted); |
|
402 if( p->token.dyn==0 ){ |
|
403 sqlite3TokenCopy(&p->token, &p->token); |
|
404 } |
|
405 sqlite3Dequote((char*)p->token.z); |
|
406 } |
|
407 |
|
408 |
|
409 /* |
|
410 ** The following group of routines make deep copies of expressions, |
|
411 ** expression lists, ID lists, and select statements. The copies can |
|
412 ** be deleted (by being passed to their respective ...Delete() routines) |
|
413 ** without effecting the originals. |
|
414 ** |
|
415 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), |
|
416 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded |
|
417 ** by subsequent calls to sqlite*ListAppend() routines. |
|
418 ** |
|
419 ** Any tables that the SrcList might point to are not duplicated. |
|
420 */ |
|
421 Expr *sqlite3ExprDup(Expr *p){ |
|
422 Expr *pNew; |
|
423 if( p==0 ) return 0; |
|
424 pNew = sqliteMallocRaw( sizeof(*p) ); |
|
425 if( pNew==0 ) return 0; |
|
426 memcpy(pNew, p, sizeof(*pNew)); |
|
427 if( p->token.z!=0 ){ |
|
428 pNew->token.z = (u8*)sqliteStrNDup((char*)p->token.z, p->token.n); |
|
429 pNew->token.dyn = 1; |
|
430 }else{ |
|
431 assert( pNew->token.z==0 ); |
|
432 } |
|
433 pNew->span.z = 0; |
|
434 pNew->pLeft = sqlite3ExprDup(p->pLeft); |
|
435 pNew->pRight = sqlite3ExprDup(p->pRight); |
|
436 pNew->pList = sqlite3ExprListDup(p->pList); |
|
437 pNew->pSelect = sqlite3SelectDup(p->pSelect); |
|
438 pNew->pTab = p->pTab; |
|
439 return pNew; |
|
440 } |
|
441 void sqlite3TokenCopy(Token *pTo, Token *pFrom){ |
|
442 if( pTo->dyn ) sqliteFree((char*)pTo->z); |
|
443 if( pFrom->z ){ |
|
444 pTo->n = pFrom->n; |
|
445 pTo->z = (u8*)sqliteStrNDup((char*)pFrom->z, pFrom->n); |
|
446 pTo->dyn = 1; |
|
447 }else{ |
|
448 pTo->z = 0; |
|
449 } |
|
450 } |
|
451 ExprList *sqlite3ExprListDup(ExprList *p){ |
|
452 ExprList *pNew; |
|
453 struct ExprList_item *pItem, *pOldItem; |
|
454 int i; |
|
455 if( p==0 ) return 0; |
|
456 pNew = sqliteMalloc( sizeof(*pNew) ); |
|
457 if( pNew==0 ) return 0; |
|
458 pNew->nExpr = pNew->nAlloc = p->nExpr; |
|
459 pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) ); |
|
460 if( pItem==0 ){ |
|
461 sqliteFree(pNew); |
|
462 return 0; |
|
463 } |
|
464 pOldItem = p->a; |
|
465 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ |
|
466 Expr *pNewExpr, *pOldExpr; |
|
467 pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr); |
|
468 if( pOldExpr->span.z!=0 && pNewExpr ){ |
|
469 /* Always make a copy of the span for top-level expressions in the |
|
470 ** expression list. The logic in SELECT processing that determines |
|
471 ** the names of columns in the result set needs this information */ |
|
472 sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span); |
|
473 } |
|
474 assert( pNewExpr==0 || pNewExpr->span.z!=0 |
|
475 || pOldExpr->span.z==0 |
|
476 || sqlite3MallocFailed() ); |
|
477 pItem->zName = sqliteStrDup(pOldItem->zName); |
|
478 pItem->sortOrder = pOldItem->sortOrder; |
|
479 pItem->isAgg = pOldItem->isAgg; |
|
480 pItem->done = 0; |
|
481 } |
|
482 return pNew; |
|
483 } |
|
484 |
|
485 /* |
|
486 ** If cursors, triggers, views and subqueries are all omitted from |
|
487 ** the build, then none of the following routines, except for |
|
488 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes |
|
489 ** called with a NULL argument. |
|
490 */ |
|
491 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ |
|
492 || !defined(SQLITE_OMIT_SUBQUERY) |
|
493 SrcList *sqlite3SrcListDup(SrcList *p){ |
|
494 SrcList *pNew; |
|
495 int i; |
|
496 int nByte; |
|
497 if( p==0 ) return 0; |
|
498 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); |
|
499 pNew = sqliteMallocRaw( nByte ); |
|
500 if( pNew==0 ) return 0; |
|
501 pNew->nSrc = pNew->nAlloc = p->nSrc; |
|
502 for(i=0; i<p->nSrc; i++){ |
|
503 struct SrcList_item *pNewItem = &pNew->a[i]; |
|
504 struct SrcList_item *pOldItem = &p->a[i]; |
|
505 Table *pTab; |
|
506 pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase); |
|
507 pNewItem->zName = sqliteStrDup(pOldItem->zName); |
|
508 pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias); |
|
509 pNewItem->jointype = pOldItem->jointype; |
|
510 pNewItem->iCursor = pOldItem->iCursor; |
|
511 pNewItem->isPopulated = pOldItem->isPopulated; |
|
512 pTab = pNewItem->pTab = pOldItem->pTab; |
|
513 if( pTab ){ |
|
514 pTab->nRef++; |
|
515 } |
|
516 pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect); |
|
517 pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn); |
|
518 pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing); |
|
519 pNewItem->colUsed = pOldItem->colUsed; |
|
520 } |
|
521 return pNew; |
|
522 } |
|
523 IdList *sqlite3IdListDup(IdList *p){ |
|
524 IdList *pNew; |
|
525 int i; |
|
526 if( p==0 ) return 0; |
|
527 pNew = sqliteMallocRaw( sizeof(*pNew) ); |
|
528 if( pNew==0 ) return 0; |
|
529 pNew->nId = pNew->nAlloc = p->nId; |
|
530 pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) ); |
|
531 if( pNew->a==0 ){ |
|
532 sqliteFree(pNew); |
|
533 return 0; |
|
534 } |
|
535 for(i=0; i<p->nId; i++){ |
|
536 struct IdList_item *pNewItem = &pNew->a[i]; |
|
537 struct IdList_item *pOldItem = &p->a[i]; |
|
538 pNewItem->zName = sqliteStrDup(pOldItem->zName); |
|
539 pNewItem->idx = pOldItem->idx; |
|
540 } |
|
541 return pNew; |
|
542 } |
|
543 Select *sqlite3SelectDup(Select *p){ |
|
544 Select *pNew; |
|
545 if( p==0 ) return 0; |
|
546 pNew = sqliteMallocRaw( sizeof(*p) ); |
|
547 if( pNew==0 ) return 0; |
|
548 pNew->isDistinct = p->isDistinct; |
|
549 pNew->pEList = sqlite3ExprListDup(p->pEList); |
|
550 pNew->pSrc = sqlite3SrcListDup(p->pSrc); |
|
551 pNew->pWhere = sqlite3ExprDup(p->pWhere); |
|
552 pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy); |
|
553 pNew->pHaving = sqlite3ExprDup(p->pHaving); |
|
554 pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy); |
|
555 pNew->op = p->op; |
|
556 pNew->pPrior = sqlite3SelectDup(p->pPrior); |
|
557 pNew->pLimit = sqlite3ExprDup(p->pLimit); |
|
558 pNew->pOffset = sqlite3ExprDup(p->pOffset); |
|
559 pNew->iLimit = -1; |
|
560 pNew->iOffset = -1; |
|
561 pNew->isResolved = p->isResolved; |
|
562 pNew->isAgg = p->isAgg; |
|
563 pNew->usesEphm = 0; |
|
564 pNew->disallowOrderBy = 0; |
|
565 pNew->pRightmost = 0; |
|
566 pNew->addrOpenEphm[0] = -1; |
|
567 pNew->addrOpenEphm[1] = -1; |
|
568 pNew->addrOpenEphm[2] = -1; |
|
569 return pNew; |
|
570 } |
|
571 #else |
|
572 Select *sqlite3SelectDup(Select *p){ |
|
573 assert( p==0 ); |
|
574 return 0; |
|
575 } |
|
576 #endif |
|
577 |
|
578 |
|
579 /* |
|
580 ** Add a new element to the end of an expression list. If pList is |
|
581 ** initially NULL, then create a new expression list. |
|
582 */ |
|
583 ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ |
|
584 if( pList==0 ){ |
|
585 pList = sqliteMalloc( sizeof(ExprList) ); |
|
586 if( pList==0 ){ |
|
587 goto no_mem; |
|
588 } |
|
589 assert( pList->nAlloc==0 ); |
|
590 } |
|
591 if( pList->nAlloc<=pList->nExpr ){ |
|
592 struct ExprList_item *a; |
|
593 int n = pList->nAlloc*2 + 4; |
|
594 a = sqliteRealloc(pList->a, n*sizeof(pList->a[0])); |
|
595 if( a==0 ){ |
|
596 goto no_mem; |
|
597 } |
|
598 pList->a = a; |
|
599 pList->nAlloc = n; |
|
600 } |
|
601 assert( pList->a!=0 ); |
|
602 if( pExpr || pName ){ |
|
603 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; |
|
604 memset(pItem, 0, sizeof(*pItem)); |
|
605 pItem->zName = sqlite3NameFromToken(pName); |
|
606 pItem->pExpr = pExpr; |
|
607 } |
|
608 return pList; |
|
609 |
|
610 no_mem: |
|
611 /* Avoid leaking memory if malloc has failed. */ |
|
612 sqlite3ExprDelete(pExpr); |
|
613 sqlite3ExprListDelete(pList); |
|
614 return 0; |
|
615 } |
|
616 |
|
617 /* |
|
618 ** Delete an entire expression list. |
|
619 */ |
|
620 void sqlite3ExprListDelete(ExprList *pList){ |
|
621 int i; |
|
622 struct ExprList_item *pItem; |
|
623 if( pList==0 ) return; |
|
624 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); |
|
625 assert( pList->nExpr<=pList->nAlloc ); |
|
626 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
|
627 sqlite3ExprDelete(pItem->pExpr); |
|
628 sqliteFree(pItem->zName); |
|
629 } |
|
630 sqliteFree(pList->a); |
|
631 sqliteFree(pList); |
|
632 } |
|
633 |
|
634 /* |
|
635 ** Walk an expression tree. Call xFunc for each node visited. |
|
636 ** |
|
637 ** The return value from xFunc determines whether the tree walk continues. |
|
638 ** 0 means continue walking the tree. 1 means do not walk children |
|
639 ** of the current node but continue with siblings. 2 means abandon |
|
640 ** the tree walk completely. |
|
641 ** |
|
642 ** The return value from this routine is 1 to abandon the tree walk |
|
643 ** and 0 to continue. |
|
644 ** |
|
645 ** NOTICE: This routine does *not* descend into subqueries. |
|
646 */ |
|
647 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); |
|
648 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ |
|
649 int rc; |
|
650 if( pExpr==0 ) return 0; |
|
651 rc = (*xFunc)(pArg, pExpr); |
|
652 if( rc==0 ){ |
|
653 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; |
|
654 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; |
|
655 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; |
|
656 } |
|
657 return rc>1; |
|
658 } |
|
659 |
|
660 /* |
|
661 ** Call walkExprTree() for every expression in list p. |
|
662 */ |
|
663 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ |
|
664 int i; |
|
665 struct ExprList_item *pItem; |
|
666 if( !p ) return 0; |
|
667 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ |
|
668 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; |
|
669 } |
|
670 return 0; |
|
671 } |
|
672 |
|
673 /* |
|
674 ** Call walkExprTree() for every expression in Select p, not including |
|
675 ** expressions that are part of sub-selects in any FROM clause or the LIMIT |
|
676 ** or OFFSET expressions.. |
|
677 */ |
|
678 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ |
|
679 walkExprList(p->pEList, xFunc, pArg); |
|
680 walkExprTree(p->pWhere, xFunc, pArg); |
|
681 walkExprList(p->pGroupBy, xFunc, pArg); |
|
682 walkExprTree(p->pHaving, xFunc, pArg); |
|
683 walkExprList(p->pOrderBy, xFunc, pArg); |
|
684 return 0; |
|
685 } |
|
686 |
|
687 |
|
688 /* |
|
689 ** This routine is designed as an xFunc for walkExprTree(). |
|
690 ** |
|
691 ** pArg is really a pointer to an integer. If we can tell by looking |
|
692 ** at pExpr that the expression that contains pExpr is not a constant |
|
693 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. |
|
694 ** If pExpr does does not disqualify the expression from being a constant |
|
695 ** then do nothing. |
|
696 ** |
|
697 ** After walking the whole tree, if no nodes are found that disqualify |
|
698 ** the expression as constant, then we assume the whole expression |
|
699 ** is constant. See sqlite3ExprIsConstant() for additional information. |
|
700 */ |
|
701 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ |
|
702 switch( pExpr->op ){ |
|
703 /* Consider functions to be constant if all their arguments are constant |
|
704 ** and *pArg==2 */ |
|
705 case TK_FUNCTION: |
|
706 if( *((int*)pArg)==2 ) return 0; |
|
707 /* Fall through */ |
|
708 case TK_ID: |
|
709 case TK_COLUMN: |
|
710 case TK_DOT: |
|
711 case TK_AGG_FUNCTION: |
|
712 case TK_AGG_COLUMN: |
|
713 #ifndef SQLITE_OMIT_SUBQUERY |
|
714 case TK_SELECT: |
|
715 case TK_EXISTS: |
|
716 #endif |
|
717 *((int*)pArg) = 0; |
|
718 return 2; |
|
719 case TK_IN: |
|
720 if( pExpr->pSelect ){ |
|
721 *((int*)pArg) = 0; |
|
722 return 2; |
|
723 } |
|
724 default: |
|
725 return 0; |
|
726 } |
|
727 } |
|
728 |
|
729 /* |
|
730 ** Walk an expression tree. Return 1 if the expression is constant |
|
731 ** and 0 if it involves variables or function calls. |
|
732 ** |
|
733 ** For the purposes of this function, a double-quoted string (ex: "abc") |
|
734 ** is considered a variable but a single-quoted string (ex: 'abc') is |
|
735 ** a constant. |
|
736 */ |
|
737 int sqlite3ExprIsConstant(Expr *p){ |
|
738 int isConst = 1; |
|
739 walkExprTree(p, exprNodeIsConstant, &isConst); |
|
740 return isConst; |
|
741 } |
|
742 |
|
743 /* |
|
744 ** Walk an expression tree. Return 1 if the expression is constant |
|
745 ** or a function call with constant arguments. Return and 0 if there |
|
746 ** are any variables. |
|
747 ** |
|
748 ** For the purposes of this function, a double-quoted string (ex: "abc") |
|
749 ** is considered a variable but a single-quoted string (ex: 'abc') is |
|
750 ** a constant. |
|
751 */ |
|
752 int sqlite3ExprIsConstantOrFunction(Expr *p){ |
|
753 int isConst = 2; |
|
754 walkExprTree(p, exprNodeIsConstant, &isConst); |
|
755 return isConst!=0; |
|
756 } |
|
757 |
|
758 /* |
|
759 ** If the expression p codes a constant integer that is small enough |
|
760 ** to fit in a 32-bit integer, return 1 and put the value of the integer |
|
761 ** in *pValue. If the expression is not an integer or if it is too big |
|
762 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. |
|
763 */ |
|
764 int sqlite3ExprIsInteger(Expr *p, int *pValue){ |
|
765 switch( p->op ){ |
|
766 case TK_INTEGER: { |
|
767 if( sqlite3GetInt32((char*)p->token.z, pValue) ){ |
|
768 return 1; |
|
769 } |
|
770 break; |
|
771 } |
|
772 case TK_UPLUS: { |
|
773 return sqlite3ExprIsInteger(p->pLeft, pValue); |
|
774 } |
|
775 case TK_UMINUS: { |
|
776 int v; |
|
777 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ |
|
778 *pValue = -v; |
|
779 return 1; |
|
780 } |
|
781 break; |
|
782 } |
|
783 default: break; |
|
784 } |
|
785 return 0; |
|
786 } |
|
787 |
|
788 /* |
|
789 ** Return TRUE if the given string is a row-id column name. |
|
790 */ |
|
791 int sqlite3IsRowid(const char *z){ |
|
792 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; |
|
793 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; |
|
794 if( sqlite3StrICmp(z, "OID")==0 ) return 1; |
|
795 return 0; |
|
796 } |
|
797 |
|
798 /* |
|
799 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up |
|
800 ** that name in the set of source tables in pSrcList and make the pExpr |
|
801 ** expression node refer back to that source column. The following changes |
|
802 ** are made to pExpr: |
|
803 ** |
|
804 ** pExpr->iDb Set the index in db->aDb[] of the database holding |
|
805 ** the table. |
|
806 ** pExpr->iTable Set to the cursor number for the table obtained |
|
807 ** from pSrcList. |
|
808 ** pExpr->iColumn Set to the column number within the table. |
|
809 ** pExpr->op Set to TK_COLUMN. |
|
810 ** pExpr->pLeft Any expression this points to is deleted |
|
811 ** pExpr->pRight Any expression this points to is deleted. |
|
812 ** |
|
813 ** The pDbToken is the name of the database (the "X"). This value may be |
|
814 ** NULL meaning that name is of the form Y.Z or Z. Any available database |
|
815 ** can be used. The pTableToken is the name of the table (the "Y"). This |
|
816 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it |
|
817 ** means that the form of the name is Z and that columns from any table |
|
818 ** can be used. |
|
819 ** |
|
820 ** If the name cannot be resolved unambiguously, leave an error message |
|
821 ** in pParse and return non-zero. Return zero on success. |
|
822 */ |
|
823 static int lookupName( |
|
824 Parse *pParse, /* The parsing context */ |
|
825 Token *pDbToken, /* Name of the database containing table, or NULL */ |
|
826 Token *pTableToken, /* Name of table containing column, or NULL */ |
|
827 Token *pColumnToken, /* Name of the column. */ |
|
828 NameContext *pNC, /* The name context used to resolve the name */ |
|
829 Expr *pExpr /* Make this EXPR node point to the selected column */ |
|
830 ){ |
|
831 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ |
|
832 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ |
|
833 char *zCol = 0; /* Name of the column. The "Z" */ |
|
834 int i, j; /* Loop counters */ |
|
835 int cnt = 0; /* Number of matching column names */ |
|
836 int cntTab = 0; /* Number of matching table names */ |
|
837 sqlite3 *db = pParse->db; /* The database */ |
|
838 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ |
|
839 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ |
|
840 NameContext *pTopNC = pNC; /* First namecontext in the list */ |
|
841 |
|
842 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ |
|
843 zDb = sqlite3NameFromToken(pDbToken); |
|
844 zTab = sqlite3NameFromToken(pTableToken); |
|
845 zCol = sqlite3NameFromToken(pColumnToken); |
|
846 if( sqlite3MallocFailed() ){ |
|
847 goto lookupname_end; |
|
848 } |
|
849 |
|
850 pExpr->iTable = -1; |
|
851 while( pNC && cnt==0 ){ |
|
852 ExprList *pEList; |
|
853 SrcList *pSrcList = pNC->pSrcList; |
|
854 |
|
855 if( pSrcList ){ |
|
856 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ |
|
857 Table *pTab; |
|
858 int iDb; |
|
859 Column *pCol; |
|
860 |
|
861 pTab = pItem->pTab; |
|
862 assert( pTab!=0 ); |
|
863 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
|
864 assert( pTab->nCol>0 ); |
|
865 if( zTab ){ |
|
866 if( pItem->zAlias ){ |
|
867 char *zTabName = pItem->zAlias; |
|
868 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; |
|
869 }else{ |
|
870 char *zTabName = pTab->zName; |
|
871 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; |
|
872 if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ |
|
873 continue; |
|
874 } |
|
875 } |
|
876 } |
|
877 if( 0==(cntTab++) ){ |
|
878 pExpr->iTable = pItem->iCursor; |
|
879 pExpr->pSchema = pTab->pSchema; |
|
880 pMatch = pItem; |
|
881 } |
|
882 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ |
|
883 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ |
|
884 const char *zColl = pTab->aCol[j].zColl; |
|
885 IdList *pUsing; |
|
886 cnt++; |
|
887 pExpr->iTable = pItem->iCursor; |
|
888 pMatch = pItem; |
|
889 pExpr->pSchema = pTab->pSchema; |
|
890 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ |
|
891 pExpr->iColumn = j==pTab->iPKey ? -1 : j; |
|
892 pExpr->affinity = pTab->aCol[j].affinity; |
|
893 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); |
|
894 if( pItem->jointype & JT_NATURAL ){ |
|
895 /* If this match occurred in the left table of a natural join, |
|
896 ** then skip the right table to avoid a duplicate match */ |
|
897 pItem++; |
|
898 i++; |
|
899 } |
|
900 if( (pUsing = pItem->pUsing)!=0 ){ |
|
901 /* If this match occurs on a column that is in the USING clause |
|
902 ** of a join, skip the search of the right table of the join |
|
903 ** to avoid a duplicate match there. */ |
|
904 int k; |
|
905 for(k=0; k<pUsing->nId; k++){ |
|
906 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ |
|
907 pItem++; |
|
908 i++; |
|
909 break; |
|
910 } |
|
911 } |
|
912 } |
|
913 break; |
|
914 } |
|
915 } |
|
916 } |
|
917 } |
|
918 |
|
919 #ifndef SQLITE_OMIT_TRIGGER |
|
920 /* If we have not already resolved the name, then maybe |
|
921 ** it is a new.* or old.* trigger argument reference |
|
922 */ |
|
923 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ |
|
924 TriggerStack *pTriggerStack = pParse->trigStack; |
|
925 Table *pTab = 0; |
|
926 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ |
|
927 pExpr->iTable = pTriggerStack->newIdx; |
|
928 assert( pTriggerStack->pTab ); |
|
929 pTab = pTriggerStack->pTab; |
|
930 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ |
|
931 pExpr->iTable = pTriggerStack->oldIdx; |
|
932 assert( pTriggerStack->pTab ); |
|
933 pTab = pTriggerStack->pTab; |
|
934 } |
|
935 |
|
936 if( pTab ){ |
|
937 int iCol; |
|
938 Column *pCol = pTab->aCol; |
|
939 |
|
940 pExpr->pSchema = pTab->pSchema; |
|
941 cntTab++; |
|
942 for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { |
|
943 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ |
|
944 const char *zColl = pTab->aCol[iCol].zColl; |
|
945 cnt++; |
|
946 pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; |
|
947 pExpr->affinity = pTab->aCol[iCol].affinity; |
|
948 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); |
|
949 pExpr->pTab = pTab; |
|
950 break; |
|
951 } |
|
952 } |
|
953 } |
|
954 } |
|
955 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ |
|
956 |
|
957 /* |
|
958 ** Perhaps the name is a reference to the ROWID |
|
959 */ |
|
960 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ |
|
961 cnt = 1; |
|
962 pExpr->iColumn = -1; |
|
963 pExpr->affinity = SQLITE_AFF_INTEGER; |
|
964 } |
|
965 |
|
966 /* |
|
967 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z |
|
968 ** might refer to an result-set alias. This happens, for example, when |
|
969 ** we are resolving names in the WHERE clause of the following command: |
|
970 ** |
|
971 ** SELECT a+b AS x FROM table WHERE x<10; |
|
972 ** |
|
973 ** In cases like this, replace pExpr with a copy of the expression that |
|
974 ** forms the result set entry ("a+b" in the example) and return immediately. |
|
975 ** Note that the expression in the result set should have already been |
|
976 ** resolved by the time the WHERE clause is resolved. |
|
977 */ |
|
978 if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ |
|
979 for(j=0; j<pEList->nExpr; j++){ |
|
980 char *zAs = pEList->a[j].zName; |
|
981 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ |
|
982 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); |
|
983 pExpr->op = TK_AS; |
|
984 pExpr->iColumn = j; |
|
985 pExpr->pLeft = sqlite3ExprDup(pEList->a[j].pExpr); |
|
986 cnt = 1; |
|
987 assert( zTab==0 && zDb==0 ); |
|
988 goto lookupname_end_2; |
|
989 } |
|
990 } |
|
991 } |
|
992 |
|
993 /* Advance to the next name context. The loop will exit when either |
|
994 ** we have a match (cnt>0) or when we run out of name contexts. |
|
995 */ |
|
996 if( cnt==0 ){ |
|
997 pNC = pNC->pNext; |
|
998 } |
|
999 } |
|
1000 |
|
1001 /* |
|
1002 ** If X and Y are NULL (in other words if only the column name Z is |
|
1003 ** supplied) and the value of Z is enclosed in double-quotes, then |
|
1004 ** Z is a string literal if it doesn't match any column names. In that |
|
1005 ** case, we need to return right away and not make any changes to |
|
1006 ** pExpr. |
|
1007 ** |
|
1008 ** Because no reference was made to outer contexts, the pNC->nRef |
|
1009 ** fields are not changed in any context. |
|
1010 */ |
|
1011 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ |
|
1012 sqliteFree(zCol); |
|
1013 return 0; |
|
1014 } |
|
1015 |
|
1016 /* |
|
1017 ** cnt==0 means there was not match. cnt>1 means there were two or |
|
1018 ** more matches. Either way, we have an error. |
|
1019 */ |
|
1020 if( cnt!=1 ){ |
|
1021 char *z = 0; |
|
1022 char *zErr; |
|
1023 zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; |
|
1024 if( zDb ){ |
|
1025 sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0); |
|
1026 }else if( zTab ){ |
|
1027 sqlite3SetString(&z, zTab, ".", zCol, (char*)0); |
|
1028 }else{ |
|
1029 z = sqliteStrDup(zCol); |
|
1030 } |
|
1031 sqlite3ErrorMsg(pParse, zErr, z); |
|
1032 sqliteFree(z); |
|
1033 pTopNC->nErr++; |
|
1034 } |
|
1035 |
|
1036 /* If a column from a table in pSrcList is referenced, then record |
|
1037 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes |
|
1038 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the |
|
1039 ** column number is greater than the number of bits in the bitmask |
|
1040 ** then set the high-order bit of the bitmask. |
|
1041 */ |
|
1042 if( pExpr->iColumn>=0 && pMatch!=0 ){ |
|
1043 int n = pExpr->iColumn; |
|
1044 if( n>=sizeof(Bitmask)*8 ){ |
|
1045 n = sizeof(Bitmask)*8-1; |
|
1046 } |
|
1047 assert( pMatch->iCursor==pExpr->iTable ); |
|
1048 pMatch->colUsed |= 1<<n; |
|
1049 } |
|
1050 |
|
1051 lookupname_end: |
|
1052 /* Clean up and return |
|
1053 */ |
|
1054 sqliteFree(zDb); |
|
1055 sqliteFree(zTab); |
|
1056 sqlite3ExprDelete(pExpr->pLeft); |
|
1057 pExpr->pLeft = 0; |
|
1058 sqlite3ExprDelete(pExpr->pRight); |
|
1059 pExpr->pRight = 0; |
|
1060 pExpr->op = TK_COLUMN; |
|
1061 lookupname_end_2: |
|
1062 sqliteFree(zCol); |
|
1063 if( cnt==1 ){ |
|
1064 assert( pNC!=0 ); |
|
1065 sqlite3AuthRead(pParse, pExpr, pNC->pSrcList); |
|
1066 if( pMatch && !pMatch->pSelect ){ |
|
1067 pExpr->pTab = pMatch->pTab; |
|
1068 } |
|
1069 /* Increment the nRef value on all name contexts from TopNC up to |
|
1070 ** the point where the name matched. */ |
|
1071 for(;;){ |
|
1072 assert( pTopNC!=0 ); |
|
1073 pTopNC->nRef++; |
|
1074 if( pTopNC==pNC ) break; |
|
1075 pTopNC = pTopNC->pNext; |
|
1076 } |
|
1077 return 0; |
|
1078 } else { |
|
1079 return 1; |
|
1080 } |
|
1081 } |
|
1082 |
|
1083 /* |
|
1084 ** This routine is designed as an xFunc for walkExprTree(). |
|
1085 ** |
|
1086 ** Resolve symbolic names into TK_COLUMN operators for the current |
|
1087 ** node in the expression tree. Return 0 to continue the search down |
|
1088 ** the tree or 2 to abort the tree walk. |
|
1089 ** |
|
1090 ** This routine also does error checking and name resolution for |
|
1091 ** function names. The operator for aggregate functions is changed |
|
1092 ** to TK_AGG_FUNCTION. |
|
1093 */ |
|
1094 static int nameResolverStep(void *pArg, Expr *pExpr){ |
|
1095 NameContext *pNC = (NameContext*)pArg; |
|
1096 Parse *pParse; |
|
1097 |
|
1098 if( pExpr==0 ) return 1; |
|
1099 assert( pNC!=0 ); |
|
1100 pParse = pNC->pParse; |
|
1101 |
|
1102 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; |
|
1103 ExprSetProperty(pExpr, EP_Resolved); |
|
1104 #ifndef NDEBUG |
|
1105 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ |
|
1106 SrcList *pSrcList = pNC->pSrcList; |
|
1107 int i; |
|
1108 for(i=0; i<pNC->pSrcList->nSrc; i++){ |
|
1109 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); |
|
1110 } |
|
1111 } |
|
1112 #endif |
|
1113 switch( pExpr->op ){ |
|
1114 /* Double-quoted strings (ex: "abc") are used as identifiers if |
|
1115 ** possible. Otherwise they remain as strings. Single-quoted |
|
1116 ** strings (ex: 'abc') are always string literals. |
|
1117 */ |
|
1118 case TK_STRING: { |
|
1119 if( pExpr->token.z[0]=='\'' ) break; |
|
1120 /* Fall thru into the TK_ID case if this is a double-quoted string */ |
|
1121 } |
|
1122 /* A lone identifier is the name of a column. |
|
1123 */ |
|
1124 case TK_ID: { |
|
1125 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); |
|
1126 return 1; |
|
1127 } |
|
1128 |
|
1129 /* A table name and column name: ID.ID |
|
1130 ** Or a database, table and column: ID.ID.ID |
|
1131 */ |
|
1132 case TK_DOT: { |
|
1133 Token *pColumn; |
|
1134 Token *pTable; |
|
1135 Token *pDb; |
|
1136 Expr *pRight; |
|
1137 |
|
1138 /* if( pSrcList==0 ) break; */ |
|
1139 pRight = pExpr->pRight; |
|
1140 if( pRight->op==TK_ID ){ |
|
1141 pDb = 0; |
|
1142 pTable = &pExpr->pLeft->token; |
|
1143 pColumn = &pRight->token; |
|
1144 }else{ |
|
1145 assert( pRight->op==TK_DOT ); |
|
1146 pDb = &pExpr->pLeft->token; |
|
1147 pTable = &pRight->pLeft->token; |
|
1148 pColumn = &pRight->pRight->token; |
|
1149 } |
|
1150 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); |
|
1151 return 1; |
|
1152 } |
|
1153 |
|
1154 /* Resolve function names |
|
1155 */ |
|
1156 case TK_CONST_FUNC: |
|
1157 case TK_FUNCTION: { |
|
1158 ExprList *pList = pExpr->pList; /* The argument list */ |
|
1159 int n = pList ? pList->nExpr : 0; /* Number of arguments */ |
|
1160 int no_such_func = 0; /* True if no such function exists */ |
|
1161 int wrong_num_args = 0; /* True if wrong number of arguments */ |
|
1162 int is_agg = 0; /* True if is an aggregate function */ |
|
1163 int i; |
|
1164 int auth; /* Authorization to use the function */ |
|
1165 int nId; /* Number of characters in function name */ |
|
1166 const char *zId; /* The function name. */ |
|
1167 FuncDef *pDef; /* Information about the function */ |
|
1168 int enc = ENC(pParse->db); /* The database encoding */ |
|
1169 |
|
1170 zId = (char*)pExpr->token.z; |
|
1171 nId = pExpr->token.n; |
|
1172 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); |
|
1173 if( pDef==0 ){ |
|
1174 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); |
|
1175 if( pDef==0 ){ |
|
1176 no_such_func = 1; |
|
1177 }else{ |
|
1178 wrong_num_args = 1; |
|
1179 } |
|
1180 }else{ |
|
1181 is_agg = pDef->xFunc==0; |
|
1182 } |
|
1183 #ifndef SQLITE_OMIT_AUTHORIZER |
|
1184 if( pDef ){ |
|
1185 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); |
|
1186 if( auth!=SQLITE_OK ){ |
|
1187 if( auth==SQLITE_DENY ){ |
|
1188 sqlite3ErrorMsg(pParse, "not authorized to use function: %s", |
|
1189 pDef->zName); |
|
1190 pNC->nErr++; |
|
1191 } |
|
1192 pExpr->op = TK_NULL; |
|
1193 return 1; |
|
1194 } |
|
1195 } |
|
1196 #endif |
|
1197 if( is_agg && !pNC->allowAgg ){ |
|
1198 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); |
|
1199 pNC->nErr++; |
|
1200 is_agg = 0; |
|
1201 }else if( no_such_func ){ |
|
1202 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); |
|
1203 pNC->nErr++; |
|
1204 }else if( wrong_num_args ){ |
|
1205 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", |
|
1206 nId, zId); |
|
1207 pNC->nErr++; |
|
1208 } |
|
1209 if( is_agg ){ |
|
1210 pExpr->op = TK_AGG_FUNCTION; |
|
1211 pNC->hasAgg = 1; |
|
1212 } |
|
1213 if( is_agg ) pNC->allowAgg = 0; |
|
1214 for(i=0; pNC->nErr==0 && i<n; i++){ |
|
1215 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); |
|
1216 } |
|
1217 if( is_agg ) pNC->allowAgg = 1; |
|
1218 /* FIX ME: Compute pExpr->affinity based on the expected return |
|
1219 ** type of the function |
|
1220 */ |
|
1221 return is_agg; |
|
1222 } |
|
1223 #ifndef SQLITE_OMIT_SUBQUERY |
|
1224 case TK_SELECT: |
|
1225 case TK_EXISTS: |
|
1226 #endif |
|
1227 case TK_IN: { |
|
1228 if( pExpr->pSelect ){ |
|
1229 int nRef = pNC->nRef; |
|
1230 #ifndef SQLITE_OMIT_CHECK |
|
1231 if( pNC->isCheck ){ |
|
1232 sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); |
|
1233 } |
|
1234 #endif |
|
1235 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); |
|
1236 assert( pNC->nRef>=nRef ); |
|
1237 if( nRef!=pNC->nRef ){ |
|
1238 ExprSetProperty(pExpr, EP_VarSelect); |
|
1239 } |
|
1240 } |
|
1241 break; |
|
1242 } |
|
1243 #ifndef SQLITE_OMIT_CHECK |
|
1244 case TK_VARIABLE: { |
|
1245 if( pNC->isCheck ){ |
|
1246 sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); |
|
1247 } |
|
1248 break; |
|
1249 } |
|
1250 #endif |
|
1251 } |
|
1252 return 0; |
|
1253 } |
|
1254 |
|
1255 /* |
|
1256 ** This routine walks an expression tree and resolves references to |
|
1257 ** table columns. Nodes of the form ID.ID or ID resolve into an |
|
1258 ** index to the table in the table list and a column offset. The |
|
1259 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable |
|
1260 ** value is changed to the index of the referenced table in pTabList |
|
1261 ** plus the "base" value. The base value will ultimately become the |
|
1262 ** VDBE cursor number for a cursor that is pointing into the referenced |
|
1263 ** table. The Expr.iColumn value is changed to the index of the column |
|
1264 ** of the referenced table. The Expr.iColumn value for the special |
|
1265 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an |
|
1266 ** alias for ROWID. |
|
1267 ** |
|
1268 ** Also resolve function names and check the functions for proper |
|
1269 ** usage. Make sure all function names are recognized and all functions |
|
1270 ** have the correct number of arguments. Leave an error message |
|
1271 ** in pParse->zErrMsg if anything is amiss. Return the number of errors. |
|
1272 ** |
|
1273 ** If the expression contains aggregate functions then set the EP_Agg |
|
1274 ** property on the expression. |
|
1275 */ |
|
1276 int sqlite3ExprResolveNames( |
|
1277 NameContext *pNC, /* Namespace to resolve expressions in. */ |
|
1278 Expr *pExpr /* The expression to be analyzed. */ |
|
1279 ){ |
|
1280 int savedHasAgg; |
|
1281 if( pExpr==0 ) return 0; |
|
1282 savedHasAgg = pNC->hasAgg; |
|
1283 pNC->hasAgg = 0; |
|
1284 walkExprTree(pExpr, nameResolverStep, pNC); |
|
1285 if( pNC->nErr>0 ){ |
|
1286 ExprSetProperty(pExpr, EP_Error); |
|
1287 } |
|
1288 if( pNC->hasAgg ){ |
|
1289 ExprSetProperty(pExpr, EP_Agg); |
|
1290 }else if( savedHasAgg ){ |
|
1291 pNC->hasAgg = 1; |
|
1292 } |
|
1293 return ExprHasProperty(pExpr, EP_Error); |
|
1294 } |
|
1295 |
|
1296 /* |
|
1297 ** A pointer instance of this structure is used to pass information |
|
1298 ** through walkExprTree into codeSubqueryStep(). |
|
1299 */ |
|
1300 typedef struct QueryCoder QueryCoder; |
|
1301 struct QueryCoder { |
|
1302 Parse *pParse; /* The parsing context */ |
|
1303 NameContext *pNC; /* Namespace of first enclosing query */ |
|
1304 }; |
|
1305 |
|
1306 |
|
1307 /* |
|
1308 ** Generate code for scalar subqueries used as an expression |
|
1309 ** and IN operators. Examples: |
|
1310 ** |
|
1311 ** (SELECT a FROM b) -- subquery |
|
1312 ** EXISTS (SELECT a FROM b) -- EXISTS subquery |
|
1313 ** x IN (4,5,11) -- IN operator with list on right-hand side |
|
1314 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right |
|
1315 ** |
|
1316 ** The pExpr parameter describes the expression that contains the IN |
|
1317 ** operator or subquery. |
|
1318 */ |
|
1319 #ifndef SQLITE_OMIT_SUBQUERY |
|
1320 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ |
|
1321 int testAddr = 0; /* One-time test address */ |
|
1322 Vdbe *v = sqlite3GetVdbe(pParse); |
|
1323 if( v==0 ) return; |
|
1324 |
|
1325 /* This code must be run in its entirety every time it is encountered |
|
1326 ** if any of the following is true: |
|
1327 ** |
|
1328 ** * The right-hand side is a correlated subquery |
|
1329 ** * The right-hand side is an expression list containing variables |
|
1330 ** * We are inside a trigger |
|
1331 ** |
|
1332 ** If all of the above are false, then we can run this code just once |
|
1333 ** save the results, and reuse the same result on subsequent invocations. |
|
1334 */ |
|
1335 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ |
|
1336 int mem = pParse->nMem++; |
|
1337 sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); |
|
1338 testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); |
|
1339 assert( testAddr>0 || sqlite3MallocFailed() ); |
|
1340 sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); |
|
1341 } |
|
1342 |
|
1343 switch( pExpr->op ){ |
|
1344 case TK_IN: { |
|
1345 char affinity; |
|
1346 KeyInfo keyInfo; |
|
1347 int addr; /* Address of OP_OpenEphemeral instruction */ |
|
1348 |
|
1349 affinity = sqlite3ExprAffinity(pExpr->pLeft); |
|
1350 |
|
1351 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' |
|
1352 ** expression it is handled the same way. A virtual table is |
|
1353 ** filled with single-field index keys representing the results |
|
1354 ** from the SELECT or the <exprlist>. |
|
1355 ** |
|
1356 ** If the 'x' expression is a column value, or the SELECT... |
|
1357 ** statement returns a column value, then the affinity of that |
|
1358 ** column is used to build the index keys. If both 'x' and the |
|
1359 ** SELECT... statement are columns, then numeric affinity is used |
|
1360 ** if either column has NUMERIC or INTEGER affinity. If neither |
|
1361 ** 'x' nor the SELECT... statement are columns, then numeric affinity |
|
1362 ** is used. |
|
1363 */ |
|
1364 pExpr->iTable = pParse->nTab++; |
|
1365 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0); |
|
1366 memset(&keyInfo, 0, sizeof(keyInfo)); |
|
1367 keyInfo.nField = 1; |
|
1368 sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); |
|
1369 |
|
1370 if( pExpr->pSelect ){ |
|
1371 /* Case 1: expr IN (SELECT ...) |
|
1372 ** |
|
1373 ** Generate code to write the results of the select into the temporary |
|
1374 ** table allocated and opened above. |
|
1375 */ |
|
1376 int iParm = pExpr->iTable + (((int)affinity)<<16); |
|
1377 ExprList *pEList; |
|
1378 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); |
|
1379 sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0); |
|
1380 pEList = pExpr->pSelect->pEList; |
|
1381 if( pEList && pEList->nExpr>0 ){ |
|
1382 keyInfo.aColl[0] = binaryCompareCollSeq(pParse, pExpr->pLeft, |
|
1383 pEList->a[0].pExpr); |
|
1384 } |
|
1385 }else if( pExpr->pList ){ |
|
1386 /* Case 2: expr IN (exprlist) |
|
1387 ** |
|
1388 ** For each expression, build an index key from the evaluation and |
|
1389 ** store it in the temporary table. If <expr> is a column, then use |
|
1390 ** that columns affinity when building index keys. If <expr> is not |
|
1391 ** a column, use numeric affinity. |
|
1392 */ |
|
1393 int i; |
|
1394 ExprList *pList = pExpr->pList; |
|
1395 struct ExprList_item *pItem; |
|
1396 |
|
1397 if( !affinity ){ |
|
1398 affinity = SQLITE_AFF_NONE; |
|
1399 } |
|
1400 keyInfo.aColl[0] = pExpr->pLeft->pColl; |
|
1401 |
|
1402 /* Loop through each expression in <exprlist>. */ |
|
1403 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ |
|
1404 Expr *pE2 = pItem->pExpr; |
|
1405 |
|
1406 /* If the expression is not constant then we will need to |
|
1407 ** disable the test that was generated above that makes sure |
|
1408 ** this code only executes once. Because for a non-constant |
|
1409 ** expression we need to rerun this code each time. |
|
1410 */ |
|
1411 if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ |
|
1412 sqlite3VdbeChangeToNoop(v, testAddr-1, 3); |
|
1413 testAddr = 0; |
|
1414 } |
|
1415 |
|
1416 /* Evaluate the expression and insert it into the temp table */ |
|
1417 sqlite3ExprCode(pParse, pE2); |
|
1418 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); |
|
1419 sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); |
|
1420 } |
|
1421 } |
|
1422 sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); |
|
1423 break; |
|
1424 } |
|
1425 |
|
1426 case TK_EXISTS: |
|
1427 case TK_SELECT: { |
|
1428 /* This has to be a scalar SELECT. Generate code to put the |
|
1429 ** value of this select in a memory cell and record the number |
|
1430 ** of the memory cell in iColumn. |
|
1431 */ |
|
1432 static const Token one = { (u8*)"1", 0, 1 }; |
|
1433 Select *pSel; |
|
1434 int iMem; |
|
1435 int sop; |
|
1436 |
|
1437 pExpr->iColumn = iMem = pParse->nMem++; |
|
1438 pSel = pExpr->pSelect; |
|
1439 if( pExpr->op==TK_SELECT ){ |
|
1440 sop = SRT_Mem; |
|
1441 sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); |
|
1442 VdbeComment((v, "# Init subquery result")); |
|
1443 }else{ |
|
1444 sop = SRT_Exists; |
|
1445 sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); |
|
1446 VdbeComment((v, "# Init EXISTS result")); |
|
1447 } |
|
1448 sqlite3ExprDelete(pSel->pLimit); |
|
1449 pSel->pLimit = sqlite3Expr(TK_INTEGER, 0, 0, &one); |
|
1450 sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0); |
|
1451 break; |
|
1452 } |
|
1453 } |
|
1454 |
|
1455 if( testAddr ){ |
|
1456 sqlite3VdbeJumpHere(v, testAddr); |
|
1457 } |
|
1458 return; |
|
1459 } |
|
1460 #endif /* SQLITE_OMIT_SUBQUERY */ |
|
1461 |
|
1462 /* |
|
1463 ** Generate an instruction that will put the integer describe by |
|
1464 ** text z[0..n-1] on the stack. |
|
1465 */ |
|
1466 static void codeInteger(Vdbe *v, const char *z, int n){ |
|
1467 int i; |
|
1468 if( sqlite3GetInt32(z, &i) ){ |
|
1469 sqlite3VdbeAddOp(v, OP_Integer, i, 0); |
|
1470 }else if( sqlite3FitsIn64Bits(z) ){ |
|
1471 sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n); |
|
1472 }else{ |
|
1473 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n); |
|
1474 } |
|
1475 } |
|
1476 |
|
1477 /* |
|
1478 ** Generate code into the current Vdbe to evaluate the given |
|
1479 ** expression and leave the result on the top of stack. |
|
1480 ** |
|
1481 ** This code depends on the fact that certain token values (ex: TK_EQ) |
|
1482 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding |
|
1483 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in |
|
1484 ** the make process cause these values to align. Assert()s in the code |
|
1485 ** below verify that the numbers are aligned correctly. |
|
1486 */ |
|
1487 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ |
|
1488 Vdbe *v = pParse->pVdbe; |
|
1489 int op; |
|
1490 int stackChng = 1; /* Amount of change to stack depth */ |
|
1491 |
|
1492 if( v==0 ) return; |
|
1493 if( pExpr==0 ){ |
|
1494 sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
|
1495 return; |
|
1496 } |
|
1497 op = pExpr->op; |
|
1498 switch( op ){ |
|
1499 case TK_AGG_COLUMN: { |
|
1500 AggInfo *pAggInfo = pExpr->pAggInfo; |
|
1501 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; |
|
1502 if( !pAggInfo->directMode ){ |
|
1503 sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); |
|
1504 break; |
|
1505 }else if( pAggInfo->useSortingIdx ){ |
|
1506 sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, |
|
1507 pCol->iSorterColumn); |
|
1508 break; |
|
1509 } |
|
1510 /* Otherwise, fall thru into the TK_COLUMN case */ |
|
1511 } |
|
1512 case TK_COLUMN: { |
|
1513 if( pExpr->iTable<0 ){ |
|
1514 /* This only happens when coding check constraints */ |
|
1515 assert( pParse->ckOffset>0 ); |
|
1516 sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); |
|
1517 }else if( pExpr->iColumn>=0 ){ |
|
1518 Table *pTab = pExpr->pTab; |
|
1519 int iCol = pExpr->iColumn; |
|
1520 int op = (pTab && IsVirtual(pTab)) ? OP_VColumn : OP_Column; |
|
1521 sqlite3VdbeAddOp(v, op, pExpr->iTable, iCol); |
|
1522 sqlite3ColumnDefault(v, pTab, iCol); |
|
1523 #ifndef SQLITE_OMIT_FLOATING_POINT |
|
1524 if( pTab && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ |
|
1525 sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0); |
|
1526 } |
|
1527 #endif |
|
1528 }else{ |
|
1529 Table *pTab = pExpr->pTab; |
|
1530 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; |
|
1531 sqlite3VdbeAddOp(v, op, pExpr->iTable, 0); |
|
1532 } |
|
1533 break; |
|
1534 } |
|
1535 case TK_INTEGER: { |
|
1536 codeInteger(v, (char*)pExpr->token.z, pExpr->token.n); |
|
1537 break; |
|
1538 } |
|
1539 case TK_FLOAT: |
|
1540 case TK_STRING: { |
|
1541 assert( TK_FLOAT==OP_Real ); |
|
1542 assert( TK_STRING==OP_String8 ); |
|
1543 sqlite3DequoteExpr(pExpr); |
|
1544 sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n); |
|
1545 break; |
|
1546 } |
|
1547 case TK_NULL: { |
|
1548 sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
|
1549 break; |
|
1550 } |
|
1551 #ifndef SQLITE_OMIT_BLOB_LITERAL |
|
1552 case TK_BLOB: { |
|
1553 int n; |
|
1554 const char *z; |
|
1555 assert( TK_BLOB==OP_HexBlob ); |
|
1556 n = pExpr->token.n - 3; |
|
1557 z = (char*)pExpr->token.z + 2; |
|
1558 assert( n>=0 ); |
|
1559 if( n==0 ){ |
|
1560 z = ""; |
|
1561 } |
|
1562 sqlite3VdbeOp3(v, op, 0, 0, z, n); |
|
1563 break; |
|
1564 } |
|
1565 #endif |
|
1566 case TK_VARIABLE: { |
|
1567 sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); |
|
1568 if( pExpr->token.n>1 ){ |
|
1569 sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n); |
|
1570 } |
|
1571 break; |
|
1572 } |
|
1573 case TK_REGISTER: { |
|
1574 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); |
|
1575 break; |
|
1576 } |
|
1577 #ifndef SQLITE_OMIT_CAST |
|
1578 case TK_CAST: { |
|
1579 /* Expressions of the form: CAST(pLeft AS token) */ |
|
1580 int aff, to_op; |
|
1581 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
1582 aff = sqlite3AffinityType(&pExpr->token); |
|
1583 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; |
|
1584 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); |
|
1585 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); |
|
1586 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); |
|
1587 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); |
|
1588 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); |
|
1589 sqlite3VdbeAddOp(v, to_op, 0, 0); |
|
1590 stackChng = 0; |
|
1591 break; |
|
1592 } |
|
1593 #endif /* SQLITE_OMIT_CAST */ |
|
1594 case TK_LT: |
|
1595 case TK_LE: |
|
1596 case TK_GT: |
|
1597 case TK_GE: |
|
1598 case TK_NE: |
|
1599 case TK_EQ: { |
|
1600 assert( TK_LT==OP_Lt ); |
|
1601 assert( TK_LE==OP_Le ); |
|
1602 assert( TK_GT==OP_Gt ); |
|
1603 assert( TK_GE==OP_Ge ); |
|
1604 assert( TK_EQ==OP_Eq ); |
|
1605 assert( TK_NE==OP_Ne ); |
|
1606 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
1607 sqlite3ExprCode(pParse, pExpr->pRight); |
|
1608 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); |
|
1609 stackChng = -1; |
|
1610 break; |
|
1611 } |
|
1612 case TK_AND: |
|
1613 case TK_OR: |
|
1614 case TK_PLUS: |
|
1615 case TK_STAR: |
|
1616 case TK_MINUS: |
|
1617 case TK_REM: |
|
1618 case TK_BITAND: |
|
1619 case TK_BITOR: |
|
1620 case TK_SLASH: |
|
1621 case TK_LSHIFT: |
|
1622 case TK_RSHIFT: |
|
1623 case TK_CONCAT: { |
|
1624 assert( TK_AND==OP_And ); |
|
1625 assert( TK_OR==OP_Or ); |
|
1626 assert( TK_PLUS==OP_Add ); |
|
1627 assert( TK_MINUS==OP_Subtract ); |
|
1628 assert( TK_REM==OP_Remainder ); |
|
1629 assert( TK_BITAND==OP_BitAnd ); |
|
1630 assert( TK_BITOR==OP_BitOr ); |
|
1631 assert( TK_SLASH==OP_Divide ); |
|
1632 assert( TK_LSHIFT==OP_ShiftLeft ); |
|
1633 assert( TK_RSHIFT==OP_ShiftRight ); |
|
1634 assert( TK_CONCAT==OP_Concat ); |
|
1635 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
1636 sqlite3ExprCode(pParse, pExpr->pRight); |
|
1637 sqlite3VdbeAddOp(v, op, 0, 0); |
|
1638 stackChng = -1; |
|
1639 break; |
|
1640 } |
|
1641 case TK_UMINUS: { |
|
1642 Expr *pLeft = pExpr->pLeft; |
|
1643 assert( pLeft ); |
|
1644 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ |
|
1645 Token *p = &pLeft->token; |
|
1646 char *z = sqlite3MPrintf("-%.*s", p->n, p->z); |
|
1647 if( pLeft->op==TK_FLOAT ){ |
|
1648 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1); |
|
1649 }else{ |
|
1650 codeInteger(v, z, p->n+1); |
|
1651 } |
|
1652 sqliteFree(z); |
|
1653 break; |
|
1654 } |
|
1655 /* Fall through into TK_NOT */ |
|
1656 } |
|
1657 case TK_BITNOT: |
|
1658 case TK_NOT: { |
|
1659 assert( TK_BITNOT==OP_BitNot ); |
|
1660 assert( TK_NOT==OP_Not ); |
|
1661 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
1662 sqlite3VdbeAddOp(v, op, 0, 0); |
|
1663 stackChng = 0; |
|
1664 break; |
|
1665 } |
|
1666 case TK_ISNULL: |
|
1667 case TK_NOTNULL: { |
|
1668 int dest; |
|
1669 assert( TK_ISNULL==OP_IsNull ); |
|
1670 assert( TK_NOTNULL==OP_NotNull ); |
|
1671 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); |
|
1672 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
1673 dest = sqlite3VdbeCurrentAddr(v) + 2; |
|
1674 sqlite3VdbeAddOp(v, op, 1, dest); |
|
1675 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); |
|
1676 stackChng = 0; |
|
1677 break; |
|
1678 } |
|
1679 case TK_AGG_FUNCTION: { |
|
1680 AggInfo *pInfo = pExpr->pAggInfo; |
|
1681 if( pInfo==0 ){ |
|
1682 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", |
|
1683 &pExpr->span); |
|
1684 }else{ |
|
1685 sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); |
|
1686 } |
|
1687 break; |
|
1688 } |
|
1689 case TK_CONST_FUNC: |
|
1690 case TK_FUNCTION: { |
|
1691 ExprList *pList = pExpr->pList; |
|
1692 int nExpr = pList ? pList->nExpr : 0; |
|
1693 FuncDef *pDef; |
|
1694 int nId; |
|
1695 const char *zId; |
|
1696 int constMask = 0; |
|
1697 int i; |
|
1698 u8 enc = ENC(pParse->db); |
|
1699 CollSeq *pColl = 0; |
|
1700 zId = (char*)pExpr->token.z; |
|
1701 nId = pExpr->token.n; |
|
1702 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); |
|
1703 assert( pDef!=0 ); |
|
1704 nExpr = sqlite3ExprCodeExprList(pParse, pList); |
|
1705 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
1706 /* Possibly overload the function if the first argument is |
|
1707 ** a virtual table column. |
|
1708 ** |
|
1709 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the |
|
1710 ** second argument, not the first, as the argument to test to |
|
1711 ** see if it is a column in a virtual table. This is done because |
|
1712 ** the left operand of infix functions (the operand we want to |
|
1713 ** control overloading) ends up as the second argument to the |
|
1714 ** function. The expression "A glob B" is equivalent to |
|
1715 ** "glob(B,A). We want to use the A in "A glob B" to test |
|
1716 ** for function overloading. But we use the B term in "glob(B,A)". |
|
1717 */ |
|
1718 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ |
|
1719 pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[1].pExpr); |
|
1720 }else if( nExpr>0 ){ |
|
1721 pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[0].pExpr); |
|
1722 } |
|
1723 #endif |
|
1724 for(i=0; i<nExpr && i<32; i++){ |
|
1725 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ |
|
1726 constMask |= (1<<i); |
|
1727 } |
|
1728 if( pDef->needCollSeq && !pColl ){ |
|
1729 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); |
|
1730 } |
|
1731 } |
|
1732 if( pDef->needCollSeq ){ |
|
1733 if( !pColl ) pColl = pParse->db->pDfltColl; |
|
1734 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); |
|
1735 } |
|
1736 sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); |
|
1737 stackChng = 1-nExpr; |
|
1738 break; |
|
1739 } |
|
1740 #ifndef SQLITE_OMIT_SUBQUERY |
|
1741 case TK_EXISTS: |
|
1742 case TK_SELECT: { |
|
1743 if( pExpr->iColumn==0 ){ |
|
1744 sqlite3CodeSubselect(pParse, pExpr); |
|
1745 } |
|
1746 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); |
|
1747 VdbeComment((v, "# load subquery result")); |
|
1748 break; |
|
1749 } |
|
1750 case TK_IN: { |
|
1751 int addr; |
|
1752 char affinity; |
|
1753 int ckOffset = pParse->ckOffset; |
|
1754 sqlite3CodeSubselect(pParse, pExpr); |
|
1755 |
|
1756 /* Figure out the affinity to use to create a key from the results |
|
1757 ** of the expression. affinityStr stores a static string suitable for |
|
1758 ** P3 of OP_MakeRecord. |
|
1759 */ |
|
1760 affinity = comparisonAffinity(pExpr); |
|
1761 |
|
1762 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); |
|
1763 pParse->ckOffset = ckOffset+1; |
|
1764 |
|
1765 /* Code the <expr> from "<expr> IN (...)". The temporary table |
|
1766 ** pExpr->iTable contains the values that make up the (...) set. |
|
1767 */ |
|
1768 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
1769 addr = sqlite3VdbeCurrentAddr(v); |
|
1770 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ |
|
1771 sqlite3VdbeAddOp(v, OP_Pop, 2, 0); |
|
1772 sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
|
1773 sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); |
|
1774 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ |
|
1775 sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); |
|
1776 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ |
|
1777 |
|
1778 break; |
|
1779 } |
|
1780 #endif |
|
1781 case TK_BETWEEN: { |
|
1782 Expr *pLeft = pExpr->pLeft; |
|
1783 struct ExprList_item *pLItem = pExpr->pList->a; |
|
1784 Expr *pRight = pLItem->pExpr; |
|
1785 sqlite3ExprCode(pParse, pLeft); |
|
1786 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
|
1787 sqlite3ExprCode(pParse, pRight); |
|
1788 codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); |
|
1789 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); |
|
1790 pLItem++; |
|
1791 pRight = pLItem->pExpr; |
|
1792 sqlite3ExprCode(pParse, pRight); |
|
1793 codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); |
|
1794 sqlite3VdbeAddOp(v, OP_And, 0, 0); |
|
1795 break; |
|
1796 } |
|
1797 case TK_UPLUS: |
|
1798 case TK_AS: { |
|
1799 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
1800 stackChng = 0; |
|
1801 break; |
|
1802 } |
|
1803 case TK_CASE: { |
|
1804 int expr_end_label; |
|
1805 int jumpInst; |
|
1806 int nExpr; |
|
1807 int i; |
|
1808 ExprList *pEList; |
|
1809 struct ExprList_item *aListelem; |
|
1810 |
|
1811 assert(pExpr->pList); |
|
1812 assert((pExpr->pList->nExpr % 2) == 0); |
|
1813 assert(pExpr->pList->nExpr > 0); |
|
1814 pEList = pExpr->pList; |
|
1815 aListelem = pEList->a; |
|
1816 nExpr = pEList->nExpr; |
|
1817 expr_end_label = sqlite3VdbeMakeLabel(v); |
|
1818 if( pExpr->pLeft ){ |
|
1819 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
1820 } |
|
1821 for(i=0; i<nExpr; i=i+2){ |
|
1822 sqlite3ExprCode(pParse, aListelem[i].pExpr); |
|
1823 if( pExpr->pLeft ){ |
|
1824 sqlite3VdbeAddOp(v, OP_Dup, 1, 1); |
|
1825 jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, |
|
1826 OP_Ne, 0, 1); |
|
1827 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
1828 }else{ |
|
1829 jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); |
|
1830 } |
|
1831 sqlite3ExprCode(pParse, aListelem[i+1].pExpr); |
|
1832 sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); |
|
1833 sqlite3VdbeJumpHere(v, jumpInst); |
|
1834 } |
|
1835 if( pExpr->pLeft ){ |
|
1836 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
1837 } |
|
1838 if( pExpr->pRight ){ |
|
1839 sqlite3ExprCode(pParse, pExpr->pRight); |
|
1840 }else{ |
|
1841 sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
|
1842 } |
|
1843 sqlite3VdbeResolveLabel(v, expr_end_label); |
|
1844 break; |
|
1845 } |
|
1846 #ifndef SQLITE_OMIT_TRIGGER |
|
1847 case TK_RAISE: { |
|
1848 if( !pParse->trigStack ){ |
|
1849 sqlite3ErrorMsg(pParse, |
|
1850 "RAISE() may only be used within a trigger-program"); |
|
1851 return; |
|
1852 } |
|
1853 if( pExpr->iColumn!=OE_Ignore ){ |
|
1854 assert( pExpr->iColumn==OE_Rollback || |
|
1855 pExpr->iColumn == OE_Abort || |
|
1856 pExpr->iColumn == OE_Fail ); |
|
1857 sqlite3DequoteExpr(pExpr); |
|
1858 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, |
|
1859 (char*)pExpr->token.z, pExpr->token.n); |
|
1860 } else { |
|
1861 assert( pExpr->iColumn == OE_Ignore ); |
|
1862 sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); |
|
1863 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); |
|
1864 VdbeComment((v, "# raise(IGNORE)")); |
|
1865 } |
|
1866 stackChng = 0; |
|
1867 break; |
|
1868 } |
|
1869 #endif |
|
1870 } |
|
1871 |
|
1872 if( pParse->ckOffset ){ |
|
1873 pParse->ckOffset += stackChng; |
|
1874 assert( pParse->ckOffset ); |
|
1875 } |
|
1876 } |
|
1877 |
|
1878 #ifndef SQLITE_OMIT_TRIGGER |
|
1879 /* |
|
1880 ** Generate code that evalutes the given expression and leaves the result |
|
1881 ** on the stack. See also sqlite3ExprCode(). |
|
1882 ** |
|
1883 ** This routine might also cache the result and modify the pExpr tree |
|
1884 ** so that it will make use of the cached result on subsequent evaluations |
|
1885 ** rather than evaluate the whole expression again. Trivial expressions are |
|
1886 ** not cached. If the expression is cached, its result is stored in a |
|
1887 ** memory location. |
|
1888 */ |
|
1889 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ |
|
1890 Vdbe *v = pParse->pVdbe; |
|
1891 int iMem; |
|
1892 int addr1, addr2; |
|
1893 if( v==0 ) return; |
|
1894 addr1 = sqlite3VdbeCurrentAddr(v); |
|
1895 sqlite3ExprCode(pParse, pExpr); |
|
1896 addr2 = sqlite3VdbeCurrentAddr(v); |
|
1897 if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){ |
|
1898 iMem = pExpr->iTable = pParse->nMem++; |
|
1899 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); |
|
1900 pExpr->op = TK_REGISTER; |
|
1901 } |
|
1902 } |
|
1903 #endif |
|
1904 |
|
1905 /* |
|
1906 ** Generate code that pushes the value of every element of the given |
|
1907 ** expression list onto the stack. |
|
1908 ** |
|
1909 ** Return the number of elements pushed onto the stack. |
|
1910 */ |
|
1911 int sqlite3ExprCodeExprList( |
|
1912 Parse *pParse, /* Parsing context */ |
|
1913 ExprList *pList /* The expression list to be coded */ |
|
1914 ){ |
|
1915 struct ExprList_item *pItem; |
|
1916 int i, n; |
|
1917 if( pList==0 ) return 0; |
|
1918 n = pList->nExpr; |
|
1919 for(pItem=pList->a, i=n; i>0; i--, pItem++){ |
|
1920 sqlite3ExprCode(pParse, pItem->pExpr); |
|
1921 } |
|
1922 return n; |
|
1923 } |
|
1924 |
|
1925 /* |
|
1926 ** Generate code for a boolean expression such that a jump is made |
|
1927 ** to the label "dest" if the expression is true but execution |
|
1928 ** continues straight thru if the expression is false. |
|
1929 ** |
|
1930 ** If the expression evaluates to NULL (neither true nor false), then |
|
1931 ** take the jump if the jumpIfNull flag is true. |
|
1932 ** |
|
1933 ** This code depends on the fact that certain token values (ex: TK_EQ) |
|
1934 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding |
|
1935 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in |
|
1936 ** the make process cause these values to align. Assert()s in the code |
|
1937 ** below verify that the numbers are aligned correctly. |
|
1938 */ |
|
1939 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
|
1940 Vdbe *v = pParse->pVdbe; |
|
1941 int op = 0; |
|
1942 int ckOffset = pParse->ckOffset; |
|
1943 if( v==0 || pExpr==0 ) return; |
|
1944 op = pExpr->op; |
|
1945 switch( op ){ |
|
1946 case TK_AND: { |
|
1947 int d2 = sqlite3VdbeMakeLabel(v); |
|
1948 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); |
|
1949 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
|
1950 sqlite3VdbeResolveLabel(v, d2); |
|
1951 break; |
|
1952 } |
|
1953 case TK_OR: { |
|
1954 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
|
1955 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
|
1956 break; |
|
1957 } |
|
1958 case TK_NOT: { |
|
1959 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
|
1960 break; |
|
1961 } |
|
1962 case TK_LT: |
|
1963 case TK_LE: |
|
1964 case TK_GT: |
|
1965 case TK_GE: |
|
1966 case TK_NE: |
|
1967 case TK_EQ: { |
|
1968 assert( TK_LT==OP_Lt ); |
|
1969 assert( TK_LE==OP_Le ); |
|
1970 assert( TK_GT==OP_Gt ); |
|
1971 assert( TK_GE==OP_Ge ); |
|
1972 assert( TK_EQ==OP_Eq ); |
|
1973 assert( TK_NE==OP_Ne ); |
|
1974 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
1975 sqlite3ExprCode(pParse, pExpr->pRight); |
|
1976 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); |
|
1977 break; |
|
1978 } |
|
1979 case TK_ISNULL: |
|
1980 case TK_NOTNULL: { |
|
1981 assert( TK_ISNULL==OP_IsNull ); |
|
1982 assert( TK_NOTNULL==OP_NotNull ); |
|
1983 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
1984 sqlite3VdbeAddOp(v, op, 1, dest); |
|
1985 break; |
|
1986 } |
|
1987 case TK_BETWEEN: { |
|
1988 /* The expression "x BETWEEN y AND z" is implemented as: |
|
1989 ** |
|
1990 ** 1 IF (x < y) GOTO 3 |
|
1991 ** 2 IF (x <= z) GOTO <dest> |
|
1992 ** 3 ... |
|
1993 */ |
|
1994 int addr; |
|
1995 Expr *pLeft = pExpr->pLeft; |
|
1996 Expr *pRight = pExpr->pList->a[0].pExpr; |
|
1997 sqlite3ExprCode(pParse, pLeft); |
|
1998 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
|
1999 sqlite3ExprCode(pParse, pRight); |
|
2000 addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); |
|
2001 |
|
2002 pRight = pExpr->pList->a[1].pExpr; |
|
2003 sqlite3ExprCode(pParse, pRight); |
|
2004 codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); |
|
2005 |
|
2006 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); |
|
2007 sqlite3VdbeJumpHere(v, addr); |
|
2008 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
2009 break; |
|
2010 } |
|
2011 default: { |
|
2012 sqlite3ExprCode(pParse, pExpr); |
|
2013 sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); |
|
2014 break; |
|
2015 } |
|
2016 } |
|
2017 pParse->ckOffset = ckOffset; |
|
2018 } |
|
2019 |
|
2020 /* |
|
2021 ** Generate code for a boolean expression such that a jump is made |
|
2022 ** to the label "dest" if the expression is false but execution |
|
2023 ** continues straight thru if the expression is true. |
|
2024 ** |
|
2025 ** If the expression evaluates to NULL (neither true nor false) then |
|
2026 ** jump if jumpIfNull is true or fall through if jumpIfNull is false. |
|
2027 */ |
|
2028 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
|
2029 Vdbe *v = pParse->pVdbe; |
|
2030 int op = 0; |
|
2031 int ckOffset = pParse->ckOffset; |
|
2032 if( v==0 || pExpr==0 ) return; |
|
2033 |
|
2034 /* The value of pExpr->op and op are related as follows: |
|
2035 ** |
|
2036 ** pExpr->op op |
|
2037 ** --------- ---------- |
|
2038 ** TK_ISNULL OP_NotNull |
|
2039 ** TK_NOTNULL OP_IsNull |
|
2040 ** TK_NE OP_Eq |
|
2041 ** TK_EQ OP_Ne |
|
2042 ** TK_GT OP_Le |
|
2043 ** TK_LE OP_Gt |
|
2044 ** TK_GE OP_Lt |
|
2045 ** TK_LT OP_Ge |
|
2046 ** |
|
2047 ** For other values of pExpr->op, op is undefined and unused. |
|
2048 ** The value of TK_ and OP_ constants are arranged such that we |
|
2049 ** can compute the mapping above using the following expression. |
|
2050 ** Assert()s verify that the computation is correct. |
|
2051 */ |
|
2052 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); |
|
2053 |
|
2054 /* Verify correct alignment of TK_ and OP_ constants |
|
2055 */ |
|
2056 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); |
|
2057 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); |
|
2058 assert( pExpr->op!=TK_NE || op==OP_Eq ); |
|
2059 assert( pExpr->op!=TK_EQ || op==OP_Ne ); |
|
2060 assert( pExpr->op!=TK_LT || op==OP_Ge ); |
|
2061 assert( pExpr->op!=TK_LE || op==OP_Gt ); |
|
2062 assert( pExpr->op!=TK_GT || op==OP_Le ); |
|
2063 assert( pExpr->op!=TK_GE || op==OP_Lt ); |
|
2064 |
|
2065 switch( pExpr->op ){ |
|
2066 case TK_AND: { |
|
2067 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
|
2068 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
|
2069 break; |
|
2070 } |
|
2071 case TK_OR: { |
|
2072 int d2 = sqlite3VdbeMakeLabel(v); |
|
2073 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); |
|
2074 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
|
2075 sqlite3VdbeResolveLabel(v, d2); |
|
2076 break; |
|
2077 } |
|
2078 case TK_NOT: { |
|
2079 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
|
2080 break; |
|
2081 } |
|
2082 case TK_LT: |
|
2083 case TK_LE: |
|
2084 case TK_GT: |
|
2085 case TK_GE: |
|
2086 case TK_NE: |
|
2087 case TK_EQ: { |
|
2088 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2089 sqlite3ExprCode(pParse, pExpr->pRight); |
|
2090 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); |
|
2091 break; |
|
2092 } |
|
2093 case TK_ISNULL: |
|
2094 case TK_NOTNULL: { |
|
2095 sqlite3ExprCode(pParse, pExpr->pLeft); |
|
2096 sqlite3VdbeAddOp(v, op, 1, dest); |
|
2097 break; |
|
2098 } |
|
2099 case TK_BETWEEN: { |
|
2100 /* The expression is "x BETWEEN y AND z". It is implemented as: |
|
2101 ** |
|
2102 ** 1 IF (x >= y) GOTO 3 |
|
2103 ** 2 GOTO <dest> |
|
2104 ** 3 IF (x > z) GOTO <dest> |
|
2105 */ |
|
2106 int addr; |
|
2107 Expr *pLeft = pExpr->pLeft; |
|
2108 Expr *pRight = pExpr->pList->a[0].pExpr; |
|
2109 sqlite3ExprCode(pParse, pLeft); |
|
2110 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
|
2111 sqlite3ExprCode(pParse, pRight); |
|
2112 addr = sqlite3VdbeCurrentAddr(v); |
|
2113 codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); |
|
2114 |
|
2115 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
2116 sqlite3VdbeAddOp(v, OP_Goto, 0, dest); |
|
2117 pRight = pExpr->pList->a[1].pExpr; |
|
2118 sqlite3ExprCode(pParse, pRight); |
|
2119 codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); |
|
2120 break; |
|
2121 } |
|
2122 default: { |
|
2123 sqlite3ExprCode(pParse, pExpr); |
|
2124 sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); |
|
2125 break; |
|
2126 } |
|
2127 } |
|
2128 pParse->ckOffset = ckOffset; |
|
2129 } |
|
2130 |
|
2131 /* |
|
2132 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) |
|
2133 ** if they are identical and return FALSE if they differ in any way. |
|
2134 */ |
|
2135 int sqlite3ExprCompare(Expr *pA, Expr *pB){ |
|
2136 int i; |
|
2137 if( pA==0||pB==0 ){ |
|
2138 return pB==pA; |
|
2139 } |
|
2140 if( pA->op!=pB->op ) return 0; |
|
2141 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; |
|
2142 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; |
|
2143 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; |
|
2144 if( pA->pList ){ |
|
2145 if( pB->pList==0 ) return 0; |
|
2146 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; |
|
2147 for(i=0; i<pA->pList->nExpr; i++){ |
|
2148 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ |
|
2149 return 0; |
|
2150 } |
|
2151 } |
|
2152 }else if( pB->pList ){ |
|
2153 return 0; |
|
2154 } |
|
2155 if( pA->pSelect || pB->pSelect ) return 0; |
|
2156 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; |
|
2157 if( pA->token.z ){ |
|
2158 if( pB->token.z==0 ) return 0; |
|
2159 if( pB->token.n!=pA->token.n ) return 0; |
|
2160 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ |
|
2161 return 0; |
|
2162 } |
|
2163 } |
|
2164 return 1; |
|
2165 } |
|
2166 |
|
2167 |
|
2168 /* |
|
2169 ** Add a new element to the pAggInfo->aCol[] array. Return the index of |
|
2170 ** the new element. Return a negative number if malloc fails. |
|
2171 */ |
|
2172 static int addAggInfoColumn(AggInfo *pInfo){ |
|
2173 int i; |
|
2174 i = sqlite3ArrayAllocate((void**)&pInfo->aCol, sizeof(pInfo->aCol[0]), 3); |
|
2175 if( i<0 ){ |
|
2176 return -1; |
|
2177 } |
|
2178 return i; |
|
2179 } |
|
2180 |
|
2181 /* |
|
2182 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of |
|
2183 ** the new element. Return a negative number if malloc fails. |
|
2184 */ |
|
2185 static int addAggInfoFunc(AggInfo *pInfo){ |
|
2186 int i; |
|
2187 i = sqlite3ArrayAllocate((void**)&pInfo->aFunc, sizeof(pInfo->aFunc[0]), 2); |
|
2188 if( i<0 ){ |
|
2189 return -1; |
|
2190 } |
|
2191 return i; |
|
2192 } |
|
2193 |
|
2194 /* |
|
2195 ** This is an xFunc for walkExprTree() used to implement |
|
2196 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates |
|
2197 ** for additional information. |
|
2198 ** |
|
2199 ** This routine analyzes the aggregate function at pExpr. |
|
2200 */ |
|
2201 static int analyzeAggregate(void *pArg, Expr *pExpr){ |
|
2202 int i; |
|
2203 NameContext *pNC = (NameContext *)pArg; |
|
2204 Parse *pParse = pNC->pParse; |
|
2205 SrcList *pSrcList = pNC->pSrcList; |
|
2206 AggInfo *pAggInfo = pNC->pAggInfo; |
|
2207 |
|
2208 |
|
2209 switch( pExpr->op ){ |
|
2210 case TK_COLUMN: { |
|
2211 /* Check to see if the column is in one of the tables in the FROM |
|
2212 ** clause of the aggregate query */ |
|
2213 if( pSrcList ){ |
|
2214 struct SrcList_item *pItem = pSrcList->a; |
|
2215 for(i=0; i<pSrcList->nSrc; i++, pItem++){ |
|
2216 struct AggInfo_col *pCol; |
|
2217 if( pExpr->iTable==pItem->iCursor ){ |
|
2218 /* If we reach this point, it means that pExpr refers to a table |
|
2219 ** that is in the FROM clause of the aggregate query. |
|
2220 ** |
|
2221 ** Make an entry for the column in pAggInfo->aCol[] if there |
|
2222 ** is not an entry there already. |
|
2223 */ |
|
2224 pCol = pAggInfo->aCol; |
|
2225 for(i=0; i<pAggInfo->nColumn; i++, pCol++){ |
|
2226 if( pCol->iTable==pExpr->iTable && |
|
2227 pCol->iColumn==pExpr->iColumn ){ |
|
2228 break; |
|
2229 } |
|
2230 } |
|
2231 if( i>=pAggInfo->nColumn && (i = addAggInfoColumn(pAggInfo))>=0 ){ |
|
2232 pCol = &pAggInfo->aCol[i]; |
|
2233 pCol->iTable = pExpr->iTable; |
|
2234 pCol->iColumn = pExpr->iColumn; |
|
2235 pCol->iMem = pParse->nMem++; |
|
2236 pCol->iSorterColumn = -1; |
|
2237 pCol->pExpr = pExpr; |
|
2238 if( pAggInfo->pGroupBy ){ |
|
2239 int j, n; |
|
2240 ExprList *pGB = pAggInfo->pGroupBy; |
|
2241 struct ExprList_item *pTerm = pGB->a; |
|
2242 n = pGB->nExpr; |
|
2243 for(j=0; j<n; j++, pTerm++){ |
|
2244 Expr *pE = pTerm->pExpr; |
|
2245 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && |
|
2246 pE->iColumn==pExpr->iColumn ){ |
|
2247 pCol->iSorterColumn = j; |
|
2248 break; |
|
2249 } |
|
2250 } |
|
2251 } |
|
2252 if( pCol->iSorterColumn<0 ){ |
|
2253 pCol->iSorterColumn = pAggInfo->nSortingColumn++; |
|
2254 } |
|
2255 } |
|
2256 /* There is now an entry for pExpr in pAggInfo->aCol[] (either |
|
2257 ** because it was there before or because we just created it). |
|
2258 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that |
|
2259 ** pAggInfo->aCol[] entry. |
|
2260 */ |
|
2261 pExpr->pAggInfo = pAggInfo; |
|
2262 pExpr->op = TK_AGG_COLUMN; |
|
2263 pExpr->iAgg = i; |
|
2264 break; |
|
2265 } /* endif pExpr->iTable==pItem->iCursor */ |
|
2266 } /* end loop over pSrcList */ |
|
2267 } |
|
2268 return 1; |
|
2269 } |
|
2270 case TK_AGG_FUNCTION: { |
|
2271 /* The pNC->nDepth==0 test causes aggregate functions in subqueries |
|
2272 ** to be ignored */ |
|
2273 if( pNC->nDepth==0 ){ |
|
2274 /* Check to see if pExpr is a duplicate of another aggregate |
|
2275 ** function that is already in the pAggInfo structure |
|
2276 */ |
|
2277 struct AggInfo_func *pItem = pAggInfo->aFunc; |
|
2278 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ |
|
2279 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ |
|
2280 break; |
|
2281 } |
|
2282 } |
|
2283 if( i>=pAggInfo->nFunc ){ |
|
2284 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] |
|
2285 */ |
|
2286 u8 enc = ENC(pParse->db); |
|
2287 i = addAggInfoFunc(pAggInfo); |
|
2288 if( i>=0 ){ |
|
2289 pItem = &pAggInfo->aFunc[i]; |
|
2290 pItem->pExpr = pExpr; |
|
2291 pItem->iMem = pParse->nMem++; |
|
2292 pItem->pFunc = sqlite3FindFunction(pParse->db, |
|
2293 (char*)pExpr->token.z, pExpr->token.n, |
|
2294 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); |
|
2295 if( pExpr->flags & EP_Distinct ){ |
|
2296 pItem->iDistinct = pParse->nTab++; |
|
2297 }else{ |
|
2298 pItem->iDistinct = -1; |
|
2299 } |
|
2300 } |
|
2301 } |
|
2302 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry |
|
2303 */ |
|
2304 pExpr->iAgg = i; |
|
2305 pExpr->pAggInfo = pAggInfo; |
|
2306 return 1; |
|
2307 } |
|
2308 } |
|
2309 } |
|
2310 |
|
2311 /* Recursively walk subqueries looking for TK_COLUMN nodes that need |
|
2312 ** to be changed to TK_AGG_COLUMN. But increment nDepth so that |
|
2313 ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. |
|
2314 */ |
|
2315 if( pExpr->pSelect ){ |
|
2316 pNC->nDepth++; |
|
2317 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); |
|
2318 pNC->nDepth--; |
|
2319 } |
|
2320 return 0; |
|
2321 } |
|
2322 |
|
2323 /* |
|
2324 ** Analyze the given expression looking for aggregate functions and |
|
2325 ** for variables that need to be added to the pParse->aAgg[] array. |
|
2326 ** Make additional entries to the pParse->aAgg[] array as necessary. |
|
2327 ** |
|
2328 ** This routine should only be called after the expression has been |
|
2329 ** analyzed by sqlite3ExprResolveNames(). |
|
2330 ** |
|
2331 ** If errors are seen, leave an error message in zErrMsg and return |
|
2332 ** the number of errors. |
|
2333 */ |
|
2334 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ |
|
2335 int nErr = pNC->pParse->nErr; |
|
2336 walkExprTree(pExpr, analyzeAggregate, pNC); |
|
2337 return pNC->pParse->nErr - nErr; |
|
2338 } |
|
2339 |
|
2340 /* |
|
2341 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an |
|
2342 ** expression list. Return the number of errors. |
|
2343 ** |
|
2344 ** If an error is found, the analysis is cut short. |
|
2345 */ |
|
2346 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ |
|
2347 struct ExprList_item *pItem; |
|
2348 int i; |
|
2349 int nErr = 0; |
|
2350 if( pList ){ |
|
2351 for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){ |
|
2352 nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); |
|
2353 } |
|
2354 } |
|
2355 return nErr; |
|
2356 } |