|
1 /* |
|
2 ** 2001 September 22 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This is the implementation of generic hash-tables |
|
13 ** used in SQLite. |
|
14 ** |
|
15 ** $Id: hash.c,v 1.18 2006/02/14 10:48:39 danielk1977 Exp $ |
|
16 */ |
|
17 #include "sqliteInt.h" |
|
18 #include <assert.h> |
|
19 |
|
20 /* Turn bulk memory into a hash table object by initializing the |
|
21 ** fields of the Hash structure. |
|
22 ** |
|
23 ** "pNew" is a pointer to the hash table that is to be initialized. |
|
24 ** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER, |
|
25 ** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass |
|
26 ** determines what kind of key the hash table will use. "copyKey" is |
|
27 ** true if the hash table should make its own private copy of keys and |
|
28 ** false if it should just use the supplied pointer. CopyKey only makes |
|
29 ** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored |
|
30 ** for other key classes. |
|
31 */ |
|
32 void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){ |
|
33 assert( pNew!=0 ); |
|
34 assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY ); |
|
35 pNew->keyClass = keyClass; |
|
36 #if 0 |
|
37 if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0; |
|
38 #endif |
|
39 pNew->copyKey = copyKey; |
|
40 pNew->first = 0; |
|
41 pNew->count = 0; |
|
42 pNew->htsize = 0; |
|
43 pNew->ht = 0; |
|
44 pNew->xMalloc = sqlite3MallocX; |
|
45 pNew->xFree = sqlite3FreeX; |
|
46 } |
|
47 |
|
48 /* Remove all entries from a hash table. Reclaim all memory. |
|
49 ** Call this routine to delete a hash table or to reset a hash table |
|
50 ** to the empty state. |
|
51 */ |
|
52 void sqlite3HashClear(Hash *pH){ |
|
53 HashElem *elem; /* For looping over all elements of the table */ |
|
54 |
|
55 assert( pH!=0 ); |
|
56 elem = pH->first; |
|
57 pH->first = 0; |
|
58 if( pH->ht ) pH->xFree(pH->ht); |
|
59 pH->ht = 0; |
|
60 pH->htsize = 0; |
|
61 while( elem ){ |
|
62 HashElem *next_elem = elem->next; |
|
63 if( pH->copyKey && elem->pKey ){ |
|
64 pH->xFree(elem->pKey); |
|
65 } |
|
66 pH->xFree(elem); |
|
67 elem = next_elem; |
|
68 } |
|
69 pH->count = 0; |
|
70 } |
|
71 |
|
72 #if 0 /* NOT USED */ |
|
73 /* |
|
74 ** Hash and comparison functions when the mode is SQLITE_HASH_INT |
|
75 */ |
|
76 static int intHash(const void *pKey, int nKey){ |
|
77 return nKey ^ (nKey<<8) ^ (nKey>>8); |
|
78 } |
|
79 static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
|
80 return n2 - n1; |
|
81 } |
|
82 #endif |
|
83 |
|
84 #if 0 /* NOT USED */ |
|
85 /* |
|
86 ** Hash and comparison functions when the mode is SQLITE_HASH_POINTER |
|
87 */ |
|
88 static int ptrHash(const void *pKey, int nKey){ |
|
89 uptr x = Addr(pKey); |
|
90 return x ^ (x<<8) ^ (x>>8); |
|
91 } |
|
92 static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
|
93 if( pKey1==pKey2 ) return 0; |
|
94 if( pKey1<pKey2 ) return -1; |
|
95 return 1; |
|
96 } |
|
97 #endif |
|
98 |
|
99 /* |
|
100 ** Hash and comparison functions when the mode is SQLITE_HASH_STRING |
|
101 */ |
|
102 static int strHash(const void *pKey, int nKey){ |
|
103 const char *z = (const char *)pKey; |
|
104 int h = 0; |
|
105 if( nKey<=0 ) nKey = strlen(z); |
|
106 while( nKey > 0 ){ |
|
107 h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++]; |
|
108 nKey--; |
|
109 } |
|
110 return h & 0x7fffffff; |
|
111 } |
|
112 static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
|
113 if( n1!=n2 ) return 1; |
|
114 return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1); |
|
115 } |
|
116 |
|
117 /* |
|
118 ** Hash and comparison functions when the mode is SQLITE_HASH_BINARY |
|
119 */ |
|
120 static int binHash(const void *pKey, int nKey){ |
|
121 int h = 0; |
|
122 const char *z = (const char *)pKey; |
|
123 while( nKey-- > 0 ){ |
|
124 h = (h<<3) ^ h ^ *(z++); |
|
125 } |
|
126 return h & 0x7fffffff; |
|
127 } |
|
128 static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
|
129 if( n1!=n2 ) return 1; |
|
130 return memcmp(pKey1,pKey2,n1); |
|
131 } |
|
132 |
|
133 /* |
|
134 ** Return a pointer to the appropriate hash function given the key class. |
|
135 ** |
|
136 ** The C syntax in this function definition may be unfamilar to some |
|
137 ** programmers, so we provide the following additional explanation: |
|
138 ** |
|
139 ** The name of the function is "hashFunction". The function takes a |
|
140 ** single parameter "keyClass". The return value of hashFunction() |
|
141 ** is a pointer to another function. Specifically, the return value |
|
142 ** of hashFunction() is a pointer to a function that takes two parameters |
|
143 ** with types "const void*" and "int" and returns an "int". |
|
144 */ |
|
145 static int (*hashFunction(int keyClass))(const void*,int){ |
|
146 #if 0 /* HASH_INT and HASH_POINTER are never used */ |
|
147 switch( keyClass ){ |
|
148 case SQLITE_HASH_INT: return &intHash; |
|
149 case SQLITE_HASH_POINTER: return &ptrHash; |
|
150 case SQLITE_HASH_STRING: return &strHash; |
|
151 case SQLITE_HASH_BINARY: return &binHash;; |
|
152 default: break; |
|
153 } |
|
154 return 0; |
|
155 #else |
|
156 if( keyClass==SQLITE_HASH_STRING ){ |
|
157 return &strHash; |
|
158 }else{ |
|
159 assert( keyClass==SQLITE_HASH_BINARY ); |
|
160 return &binHash; |
|
161 } |
|
162 #endif |
|
163 } |
|
164 |
|
165 /* |
|
166 ** Return a pointer to the appropriate hash function given the key class. |
|
167 ** |
|
168 ** For help in interpreted the obscure C code in the function definition, |
|
169 ** see the header comment on the previous function. |
|
170 */ |
|
171 static int (*compareFunction(int keyClass))(const void*,int,const void*,int){ |
|
172 #if 0 /* HASH_INT and HASH_POINTER are never used */ |
|
173 switch( keyClass ){ |
|
174 case SQLITE_HASH_INT: return &intCompare; |
|
175 case SQLITE_HASH_POINTER: return &ptrCompare; |
|
176 case SQLITE_HASH_STRING: return &strCompare; |
|
177 case SQLITE_HASH_BINARY: return &binCompare; |
|
178 default: break; |
|
179 } |
|
180 return 0; |
|
181 #else |
|
182 if( keyClass==SQLITE_HASH_STRING ){ |
|
183 return &strCompare; |
|
184 }else{ |
|
185 assert( keyClass==SQLITE_HASH_BINARY ); |
|
186 return &binCompare; |
|
187 } |
|
188 #endif |
|
189 } |
|
190 |
|
191 /* Link an element into the hash table |
|
192 */ |
|
193 static void insertElement( |
|
194 Hash *pH, /* The complete hash table */ |
|
195 struct _ht *pEntry, /* The entry into which pNew is inserted */ |
|
196 HashElem *pNew /* The element to be inserted */ |
|
197 ){ |
|
198 HashElem *pHead; /* First element already in pEntry */ |
|
199 pHead = pEntry->chain; |
|
200 if( pHead ){ |
|
201 pNew->next = pHead; |
|
202 pNew->prev = pHead->prev; |
|
203 if( pHead->prev ){ pHead->prev->next = pNew; } |
|
204 else { pH->first = pNew; } |
|
205 pHead->prev = pNew; |
|
206 }else{ |
|
207 pNew->next = pH->first; |
|
208 if( pH->first ){ pH->first->prev = pNew; } |
|
209 pNew->prev = 0; |
|
210 pH->first = pNew; |
|
211 } |
|
212 pEntry->count++; |
|
213 pEntry->chain = pNew; |
|
214 } |
|
215 |
|
216 |
|
217 /* Resize the hash table so that it cantains "new_size" buckets. |
|
218 ** "new_size" must be a power of 2. The hash table might fail |
|
219 ** to resize if sqliteMalloc() fails. |
|
220 */ |
|
221 static void rehash(Hash *pH, int new_size){ |
|
222 struct _ht *new_ht; /* The new hash table */ |
|
223 HashElem *elem, *next_elem; /* For looping over existing elements */ |
|
224 int (*xHash)(const void*,int); /* The hash function */ |
|
225 |
|
226 assert( (new_size & (new_size-1))==0 ); |
|
227 new_ht = (struct _ht *)pH->xMalloc( new_size*sizeof(struct _ht) ); |
|
228 if( new_ht==0 ) return; |
|
229 if( pH->ht ) pH->xFree(pH->ht); |
|
230 pH->ht = new_ht; |
|
231 pH->htsize = new_size; |
|
232 xHash = hashFunction(pH->keyClass); |
|
233 for(elem=pH->first, pH->first=0; elem; elem = next_elem){ |
|
234 int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1); |
|
235 next_elem = elem->next; |
|
236 insertElement(pH, &new_ht[h], elem); |
|
237 } |
|
238 } |
|
239 |
|
240 /* This function (for internal use only) locates an element in an |
|
241 ** hash table that matches the given key. The hash for this key has |
|
242 ** already been computed and is passed as the 4th parameter. |
|
243 */ |
|
244 static HashElem *findElementGivenHash( |
|
245 const Hash *pH, /* The pH to be searched */ |
|
246 const void *pKey, /* The key we are searching for */ |
|
247 int nKey, |
|
248 int h /* The hash for this key. */ |
|
249 ){ |
|
250 HashElem *elem; /* Used to loop thru the element list */ |
|
251 int count; /* Number of elements left to test */ |
|
252 int (*xCompare)(const void*,int,const void*,int); /* comparison function */ |
|
253 |
|
254 if( pH->ht ){ |
|
255 struct _ht *pEntry = &pH->ht[h]; |
|
256 elem = pEntry->chain; |
|
257 count = pEntry->count; |
|
258 xCompare = compareFunction(pH->keyClass); |
|
259 while( count-- && elem ){ |
|
260 if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ |
|
261 return elem; |
|
262 } |
|
263 elem = elem->next; |
|
264 } |
|
265 } |
|
266 return 0; |
|
267 } |
|
268 |
|
269 /* Remove a single entry from the hash table given a pointer to that |
|
270 ** element and a hash on the element's key. |
|
271 */ |
|
272 static void removeElementGivenHash( |
|
273 Hash *pH, /* The pH containing "elem" */ |
|
274 HashElem* elem, /* The element to be removed from the pH */ |
|
275 int h /* Hash value for the element */ |
|
276 ){ |
|
277 struct _ht *pEntry; |
|
278 if( elem->prev ){ |
|
279 elem->prev->next = elem->next; |
|
280 }else{ |
|
281 pH->first = elem->next; |
|
282 } |
|
283 if( elem->next ){ |
|
284 elem->next->prev = elem->prev; |
|
285 } |
|
286 pEntry = &pH->ht[h]; |
|
287 if( pEntry->chain==elem ){ |
|
288 pEntry->chain = elem->next; |
|
289 } |
|
290 pEntry->count--; |
|
291 if( pEntry->count<=0 ){ |
|
292 pEntry->chain = 0; |
|
293 } |
|
294 if( pH->copyKey && elem->pKey ){ |
|
295 pH->xFree(elem->pKey); |
|
296 } |
|
297 pH->xFree( elem ); |
|
298 pH->count--; |
|
299 if( pH->count<=0 ){ |
|
300 assert( pH->first==0 ); |
|
301 assert( pH->count==0 ); |
|
302 sqlite3HashClear(pH); |
|
303 } |
|
304 } |
|
305 |
|
306 /* Attempt to locate an element of the hash table pH with a key |
|
307 ** that matches pKey,nKey. Return the data for this element if it is |
|
308 ** found, or NULL if there is no match. |
|
309 */ |
|
310 void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){ |
|
311 int h; /* A hash on key */ |
|
312 HashElem *elem; /* The element that matches key */ |
|
313 int (*xHash)(const void*,int); /* The hash function */ |
|
314 |
|
315 if( pH==0 || pH->ht==0 ) return 0; |
|
316 xHash = hashFunction(pH->keyClass); |
|
317 assert( xHash!=0 ); |
|
318 h = (*xHash)(pKey,nKey); |
|
319 assert( (pH->htsize & (pH->htsize-1))==0 ); |
|
320 elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1)); |
|
321 return elem ? elem->data : 0; |
|
322 } |
|
323 |
|
324 /* Insert an element into the hash table pH. The key is pKey,nKey |
|
325 ** and the data is "data". |
|
326 ** |
|
327 ** If no element exists with a matching key, then a new |
|
328 ** element is created. A copy of the key is made if the copyKey |
|
329 ** flag is set. NULL is returned. |
|
330 ** |
|
331 ** If another element already exists with the same key, then the |
|
332 ** new data replaces the old data and the old data is returned. |
|
333 ** The key is not copied in this instance. If a malloc fails, then |
|
334 ** the new data is returned and the hash table is unchanged. |
|
335 ** |
|
336 ** If the "data" parameter to this function is NULL, then the |
|
337 ** element corresponding to "key" is removed from the hash table. |
|
338 */ |
|
339 void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){ |
|
340 int hraw; /* Raw hash value of the key */ |
|
341 int h; /* the hash of the key modulo hash table size */ |
|
342 HashElem *elem; /* Used to loop thru the element list */ |
|
343 HashElem *new_elem; /* New element added to the pH */ |
|
344 int (*xHash)(const void*,int); /* The hash function */ |
|
345 |
|
346 assert( pH!=0 ); |
|
347 xHash = hashFunction(pH->keyClass); |
|
348 assert( xHash!=0 ); |
|
349 hraw = (*xHash)(pKey, nKey); |
|
350 assert( (pH->htsize & (pH->htsize-1))==0 ); |
|
351 h = hraw & (pH->htsize-1); |
|
352 elem = findElementGivenHash(pH,pKey,nKey,h); |
|
353 if( elem ){ |
|
354 void *old_data = elem->data; |
|
355 if( data==0 ){ |
|
356 removeElementGivenHash(pH,elem,h); |
|
357 }else{ |
|
358 elem->data = data; |
|
359 } |
|
360 return old_data; |
|
361 } |
|
362 if( data==0 ) return 0; |
|
363 new_elem = (HashElem*)pH->xMalloc( sizeof(HashElem) ); |
|
364 if( new_elem==0 ) return data; |
|
365 if( pH->copyKey && pKey!=0 ){ |
|
366 new_elem->pKey = pH->xMalloc( nKey ); |
|
367 if( new_elem->pKey==0 ){ |
|
368 pH->xFree(new_elem); |
|
369 return data; |
|
370 } |
|
371 memcpy((void*)new_elem->pKey, pKey, nKey); |
|
372 }else{ |
|
373 new_elem->pKey = (void*)pKey; |
|
374 } |
|
375 new_elem->nKey = nKey; |
|
376 pH->count++; |
|
377 if( pH->htsize==0 ){ |
|
378 rehash(pH,8); |
|
379 if( pH->htsize==0 ){ |
|
380 pH->count = 0; |
|
381 pH->xFree(new_elem); |
|
382 return data; |
|
383 } |
|
384 } |
|
385 if( pH->count > pH->htsize ){ |
|
386 rehash(pH,pH->htsize*2); |
|
387 } |
|
388 assert( pH->htsize>0 ); |
|
389 assert( (pH->htsize & (pH->htsize-1))==0 ); |
|
390 h = hraw & (pH->htsize-1); |
|
391 insertElement(pH, &pH->ht[h], new_elem); |
|
392 new_elem->data = data; |
|
393 return 0; |
|
394 } |