|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This is the implementation of the page cache subsystem or "pager". |
|
13 ** |
|
14 ** The pager is used to access a database disk file. It implements |
|
15 ** atomic commit and rollback through the use of a journal file that |
|
16 ** is separate from the database file. The pager also implements file |
|
17 ** locking to prevent two processes from writing the same database |
|
18 ** file simultaneously, or one process from reading the database while |
|
19 ** another is writing. |
|
20 ** |
|
21 ** @(#) $Id: pager.c,v 1.271 2006/08/08 13:51:43 drh Exp $ |
|
22 */ |
|
23 #ifndef SQLITE_OMIT_DISKIO |
|
24 #include "sqliteInt.h" |
|
25 #include "os.h" |
|
26 #include "pager.h" |
|
27 #include <assert.h> |
|
28 #include <string.h> |
|
29 |
|
30 /* |
|
31 ** Macros for troubleshooting. Normally turned off |
|
32 */ |
|
33 #if 0 |
|
34 #define TRACE1(X) sqlite3DebugPrintf(X) |
|
35 #define TRACE2(X,Y) sqlite3DebugPrintf(X,Y) |
|
36 #define TRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z) |
|
37 #define TRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W) |
|
38 #define TRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V) |
|
39 #else |
|
40 #define TRACE1(X) |
|
41 #define TRACE2(X,Y) |
|
42 #define TRACE3(X,Y,Z) |
|
43 #define TRACE4(X,Y,Z,W) |
|
44 #define TRACE5(X,Y,Z,W,V) |
|
45 #endif |
|
46 |
|
47 /* |
|
48 ** The following two macros are used within the TRACEX() macros above |
|
49 ** to print out file-descriptors. |
|
50 ** |
|
51 ** PAGERID() takes a pointer to a Pager struct as it's argument. The |
|
52 ** associated file-descriptor is returned. FILEHANDLEID() takes an OsFile |
|
53 ** struct as it's argument. |
|
54 */ |
|
55 #define PAGERID(p) ((int)(p->fd)) |
|
56 #define FILEHANDLEID(fd) ((int)fd) |
|
57 |
|
58 /* |
|
59 ** The page cache as a whole is always in one of the following |
|
60 ** states: |
|
61 ** |
|
62 ** PAGER_UNLOCK The page cache is not currently reading or |
|
63 ** writing the database file. There is no |
|
64 ** data held in memory. This is the initial |
|
65 ** state. |
|
66 ** |
|
67 ** PAGER_SHARED The page cache is reading the database. |
|
68 ** Writing is not permitted. There can be |
|
69 ** multiple readers accessing the same database |
|
70 ** file at the same time. |
|
71 ** |
|
72 ** PAGER_RESERVED This process has reserved the database for writing |
|
73 ** but has not yet made any changes. Only one process |
|
74 ** at a time can reserve the database. The original |
|
75 ** database file has not been modified so other |
|
76 ** processes may still be reading the on-disk |
|
77 ** database file. |
|
78 ** |
|
79 ** PAGER_EXCLUSIVE The page cache is writing the database. |
|
80 ** Access is exclusive. No other processes or |
|
81 ** threads can be reading or writing while one |
|
82 ** process is writing. |
|
83 ** |
|
84 ** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE |
|
85 ** after all dirty pages have been written to the |
|
86 ** database file and the file has been synced to |
|
87 ** disk. All that remains to do is to remove the |
|
88 ** journal file and the transaction will be |
|
89 ** committed. |
|
90 ** |
|
91 ** The page cache comes up in PAGER_UNLOCK. The first time a |
|
92 ** sqlite3pager_get() occurs, the state transitions to PAGER_SHARED. |
|
93 ** After all pages have been released using sqlite_page_unref(), |
|
94 ** the state transitions back to PAGER_UNLOCK. The first time |
|
95 ** that sqlite3pager_write() is called, the state transitions to |
|
96 ** PAGER_RESERVED. (Note that sqlite_page_write() can only be |
|
97 ** called on an outstanding page which means that the pager must |
|
98 ** be in PAGER_SHARED before it transitions to PAGER_RESERVED.) |
|
99 ** The transition to PAGER_EXCLUSIVE occurs when before any changes |
|
100 ** are made to the database file. After an sqlite3pager_rollback() |
|
101 ** or sqlite_pager_commit(), the state goes back to PAGER_SHARED. |
|
102 */ |
|
103 #define PAGER_UNLOCK 0 |
|
104 #define PAGER_SHARED 1 /* same as SHARED_LOCK */ |
|
105 #define PAGER_RESERVED 2 /* same as RESERVED_LOCK */ |
|
106 #define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */ |
|
107 #define PAGER_SYNCED 5 |
|
108 |
|
109 /* |
|
110 ** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time, |
|
111 ** then failed attempts to get a reserved lock will invoke the busy callback. |
|
112 ** This is off by default. To see why, consider the following scenario: |
|
113 ** |
|
114 ** Suppose thread A already has a shared lock and wants a reserved lock. |
|
115 ** Thread B already has a reserved lock and wants an exclusive lock. If |
|
116 ** both threads are using their busy callbacks, it might be a long time |
|
117 ** be for one of the threads give up and allows the other to proceed. |
|
118 ** But if the thread trying to get the reserved lock gives up quickly |
|
119 ** (if it never invokes its busy callback) then the contention will be |
|
120 ** resolved quickly. |
|
121 */ |
|
122 #ifndef SQLITE_BUSY_RESERVED_LOCK |
|
123 # define SQLITE_BUSY_RESERVED_LOCK 0 |
|
124 #endif |
|
125 |
|
126 /* |
|
127 ** This macro rounds values up so that if the value is an address it |
|
128 ** is guaranteed to be an address that is aligned to an 8-byte boundary. |
|
129 */ |
|
130 #define FORCE_ALIGNMENT(X) (((X)+7)&~7) |
|
131 |
|
132 /* |
|
133 ** Each in-memory image of a page begins with the following header. |
|
134 ** This header is only visible to this pager module. The client |
|
135 ** code that calls pager sees only the data that follows the header. |
|
136 ** |
|
137 ** Client code should call sqlite3pager_write() on a page prior to making |
|
138 ** any modifications to that page. The first time sqlite3pager_write() |
|
139 ** is called, the original page contents are written into the rollback |
|
140 ** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once |
|
141 ** the journal page has made it onto the disk surface, PgHdr.needSync |
|
142 ** is cleared. The modified page cannot be written back into the original |
|
143 ** database file until the journal pages has been synced to disk and the |
|
144 ** PgHdr.needSync has been cleared. |
|
145 ** |
|
146 ** The PgHdr.dirty flag is set when sqlite3pager_write() is called and |
|
147 ** is cleared again when the page content is written back to the original |
|
148 ** database file. |
|
149 */ |
|
150 typedef struct PgHdr PgHdr; |
|
151 struct PgHdr { |
|
152 Pager *pPager; /* The pager to which this page belongs */ |
|
153 Pgno pgno; /* The page number for this page */ |
|
154 PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */ |
|
155 PgHdr *pNextFree, *pPrevFree; /* Freelist of pages where nRef==0 */ |
|
156 PgHdr *pNextAll; /* A list of all pages */ |
|
157 PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */ |
|
158 u8 inJournal; /* TRUE if has been written to journal */ |
|
159 u8 inStmt; /* TRUE if in the statement subjournal */ |
|
160 u8 dirty; /* TRUE if we need to write back changes */ |
|
161 u8 needSync; /* Sync journal before writing this page */ |
|
162 u8 alwaysRollback; /* Disable dont_rollback() for this page */ |
|
163 short int nRef; /* Number of users of this page */ |
|
164 PgHdr *pDirty, *pPrevDirty; /* Dirty pages */ |
|
165 u32 notUsed; /* Buffer space */ |
|
166 #ifdef SQLITE_CHECK_PAGES |
|
167 u32 pageHash; |
|
168 #endif |
|
169 /* pPager->pageSize bytes of page data follow this header */ |
|
170 /* Pager.nExtra bytes of local data follow the page data */ |
|
171 }; |
|
172 |
|
173 /* |
|
174 ** For an in-memory only database, some extra information is recorded about |
|
175 ** each page so that changes can be rolled back. (Journal files are not |
|
176 ** used for in-memory databases.) The following information is added to |
|
177 ** the end of every EXTRA block for in-memory databases. |
|
178 ** |
|
179 ** This information could have been added directly to the PgHdr structure. |
|
180 ** But then it would take up an extra 8 bytes of storage on every PgHdr |
|
181 ** even for disk-based databases. Splitting it out saves 8 bytes. This |
|
182 ** is only a savings of 0.8% but those percentages add up. |
|
183 */ |
|
184 typedef struct PgHistory PgHistory; |
|
185 struct PgHistory { |
|
186 u8 *pOrig; /* Original page text. Restore to this on a full rollback */ |
|
187 u8 *pStmt; /* Text as it was at the beginning of the current statement */ |
|
188 }; |
|
189 |
|
190 /* |
|
191 ** A macro used for invoking the codec if there is one |
|
192 */ |
|
193 #ifdef SQLITE_HAS_CODEC |
|
194 # define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); } |
|
195 # define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D)) |
|
196 #else |
|
197 # define CODEC1(P,D,N,X) /* NO-OP */ |
|
198 # define CODEC2(P,D,N,X) ((char*)D) |
|
199 #endif |
|
200 |
|
201 /* |
|
202 ** Convert a pointer to a PgHdr into a pointer to its data |
|
203 ** and back again. |
|
204 */ |
|
205 #define PGHDR_TO_DATA(P) ((void*)(&(P)[1])) |
|
206 #define DATA_TO_PGHDR(D) (&((PgHdr*)(D))[-1]) |
|
207 #define PGHDR_TO_EXTRA(G,P) ((void*)&((char*)(&(G)[1]))[(P)->pageSize]) |
|
208 #define PGHDR_TO_HIST(P,PGR) \ |
|
209 ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->pageSize+(PGR)->nExtra]) |
|
210 |
|
211 /* |
|
212 ** A open page cache is an instance of the following structure. |
|
213 ** |
|
214 ** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, SQLITE_PROTOCOL |
|
215 ** or SQLITE_FULL. Once one of the first three errors occurs, it persists |
|
216 ** and is returned as the result of every major pager API call. The |
|
217 ** SQLITE_FULL return code is slightly different. It persists only until the |
|
218 ** next successful rollback is performed on the pager cache. Also, |
|
219 ** SQLITE_FULL does not affect the sqlite3pager_get() and sqlite3pager_lookup() |
|
220 ** APIs, they may still be used successfully. |
|
221 */ |
|
222 struct Pager { |
|
223 u8 journalOpen; /* True if journal file descriptors is valid */ |
|
224 u8 journalStarted; /* True if header of journal is synced */ |
|
225 u8 useJournal; /* Use a rollback journal on this file */ |
|
226 u8 noReadlock; /* Do not bother to obtain readlocks */ |
|
227 u8 stmtOpen; /* True if the statement subjournal is open */ |
|
228 u8 stmtInUse; /* True we are in a statement subtransaction */ |
|
229 u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/ |
|
230 u8 noSync; /* Do not sync the journal if true */ |
|
231 u8 fullSync; /* Do extra syncs of the journal for robustness */ |
|
232 u8 full_fsync; /* Use F_FULLFSYNC when available */ |
|
233 u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */ |
|
234 u8 errCode; /* One of several kinds of errors */ |
|
235 u8 tempFile; /* zFilename is a temporary file */ |
|
236 u8 readOnly; /* True for a read-only database */ |
|
237 u8 needSync; /* True if an fsync() is needed on the journal */ |
|
238 u8 dirtyCache; /* True if cached pages have changed */ |
|
239 u8 alwaysRollback; /* Disable dont_rollback() for all pages */ |
|
240 u8 memDb; /* True to inhibit all file I/O */ |
|
241 u8 setMaster; /* True if a m-j name has been written to jrnl */ |
|
242 int dbSize; /* Number of pages in the file */ |
|
243 int origDbSize; /* dbSize before the current change */ |
|
244 int stmtSize; /* Size of database (in pages) at stmt_begin() */ |
|
245 int nRec; /* Number of pages written to the journal */ |
|
246 u32 cksumInit; /* Quasi-random value added to every checksum */ |
|
247 int stmtNRec; /* Number of records in stmt subjournal */ |
|
248 int nExtra; /* Add this many bytes to each in-memory page */ |
|
249 int pageSize; /* Number of bytes in a page */ |
|
250 int nPage; /* Total number of in-memory pages */ |
|
251 int nMaxPage; /* High water mark of nPage */ |
|
252 int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ |
|
253 int mxPage; /* Maximum number of pages to hold in cache */ |
|
254 u8 *aInJournal; /* One bit for each page in the database file */ |
|
255 u8 *aInStmt; /* One bit for each page in the database */ |
|
256 char *zFilename; /* Name of the database file */ |
|
257 char *zJournal; /* Name of the journal file */ |
|
258 char *zDirectory; /* Directory hold database and journal files */ |
|
259 OsFile *fd, *jfd; /* File descriptors for database and journal */ |
|
260 OsFile *stfd; /* File descriptor for the statement subjournal*/ |
|
261 BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */ |
|
262 PgHdr *pFirst, *pLast; /* List of free pages */ |
|
263 PgHdr *pFirstSynced; /* First free page with PgHdr.needSync==0 */ |
|
264 PgHdr *pAll; /* List of all pages */ |
|
265 PgHdr *pStmt; /* List of pages in the statement subjournal */ |
|
266 PgHdr *pDirty; /* List of all dirty pages */ |
|
267 i64 journalOff; /* Current byte offset in the journal file */ |
|
268 i64 journalHdr; /* Byte offset to previous journal header */ |
|
269 i64 stmtHdrOff; /* First journal header written this statement */ |
|
270 i64 stmtCksum; /* cksumInit when statement was started */ |
|
271 i64 stmtJSize; /* Size of journal at stmt_begin() */ |
|
272 int sectorSize; /* Assumed sector size during rollback */ |
|
273 #ifdef SQLITE_TEST |
|
274 int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */ |
|
275 int nRead,nWrite; /* Database pages read/written */ |
|
276 #endif |
|
277 void (*xDestructor)(void*,int); /* Call this routine when freeing pages */ |
|
278 void (*xReiniter)(void*,int); /* Call this routine when reloading pages */ |
|
279 void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ |
|
280 void *pCodecArg; /* First argument to xCodec() */ |
|
281 int nHash; /* Size of the pager hash table */ |
|
282 PgHdr **aHash; /* Hash table to map page number to PgHdr */ |
|
283 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
284 Pager *pNext; /* Linked list of pagers in this thread */ |
|
285 #endif |
|
286 }; |
|
287 |
|
288 /* |
|
289 ** If SQLITE_TEST is defined then increment the variable given in |
|
290 ** the argument |
|
291 */ |
|
292 #ifdef SQLITE_TEST |
|
293 # define TEST_INCR(x) x++ |
|
294 #else |
|
295 # define TEST_INCR(x) |
|
296 #endif |
|
297 |
|
298 /* |
|
299 ** Journal files begin with the following magic string. The data |
|
300 ** was obtained from /dev/random. It is used only as a sanity check. |
|
301 ** |
|
302 ** Since version 2.8.0, the journal format contains additional sanity |
|
303 ** checking information. If the power fails while the journal is begin |
|
304 ** written, semi-random garbage data might appear in the journal |
|
305 ** file after power is restored. If an attempt is then made |
|
306 ** to roll the journal back, the database could be corrupted. The additional |
|
307 ** sanity checking data is an attempt to discover the garbage in the |
|
308 ** journal and ignore it. |
|
309 ** |
|
310 ** The sanity checking information for the new journal format consists |
|
311 ** of a 32-bit checksum on each page of data. The checksum covers both |
|
312 ** the page number and the pPager->pageSize bytes of data for the page. |
|
313 ** This cksum is initialized to a 32-bit random value that appears in the |
|
314 ** journal file right after the header. The random initializer is important, |
|
315 ** because garbage data that appears at the end of a journal is likely |
|
316 ** data that was once in other files that have now been deleted. If the |
|
317 ** garbage data came from an obsolete journal file, the checksums might |
|
318 ** be correct. But by initializing the checksum to random value which |
|
319 ** is different for every journal, we minimize that risk. |
|
320 */ |
|
321 static const unsigned char aJournalMagic[] = { |
|
322 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, |
|
323 }; |
|
324 |
|
325 /* |
|
326 ** The size of the header and of each page in the journal is determined |
|
327 ** by the following macros. |
|
328 */ |
|
329 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) |
|
330 |
|
331 /* |
|
332 ** The journal header size for this pager. In the future, this could be |
|
333 ** set to some value read from the disk controller. The important |
|
334 ** characteristic is that it is the same size as a disk sector. |
|
335 */ |
|
336 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) |
|
337 |
|
338 /* |
|
339 ** The macro MEMDB is true if we are dealing with an in-memory database. |
|
340 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, |
|
341 ** the value of MEMDB will be a constant and the compiler will optimize |
|
342 ** out code that would never execute. |
|
343 */ |
|
344 #ifdef SQLITE_OMIT_MEMORYDB |
|
345 # define MEMDB 0 |
|
346 #else |
|
347 # define MEMDB pPager->memDb |
|
348 #endif |
|
349 |
|
350 /* |
|
351 ** The default size of a disk sector |
|
352 */ |
|
353 #define PAGER_SECTOR_SIZE 512 |
|
354 |
|
355 /* |
|
356 ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is |
|
357 ** reserved for working around a windows/posix incompatibility). It is |
|
358 ** used in the journal to signify that the remainder of the journal file |
|
359 ** is devoted to storing a master journal name - there are no more pages to |
|
360 ** roll back. See comments for function writeMasterJournal() for details. |
|
361 */ |
|
362 /* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */ |
|
363 #define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1) |
|
364 |
|
365 /* |
|
366 ** The maximum legal page number is (2^31 - 1). |
|
367 */ |
|
368 #define PAGER_MAX_PGNO 2147483647 |
|
369 |
|
370 /* |
|
371 ** Enable reference count tracking (for debugging) here: |
|
372 */ |
|
373 #ifdef SQLITE_TEST |
|
374 int pager3_refinfo_enable = 0; |
|
375 static void pager_refinfo(PgHdr *p){ |
|
376 static int cnt = 0; |
|
377 if( !pager3_refinfo_enable ) return; |
|
378 sqlite3DebugPrintf( |
|
379 "REFCNT: %4d addr=%p nRef=%d\n", |
|
380 p->pgno, PGHDR_TO_DATA(p), p->nRef |
|
381 ); |
|
382 cnt++; /* Something to set a breakpoint on */ |
|
383 } |
|
384 # define REFINFO(X) pager_refinfo(X) |
|
385 #else |
|
386 # define REFINFO(X) |
|
387 #endif |
|
388 |
|
389 |
|
390 /* |
|
391 ** Change the size of the pager hash table to N. N must be a power |
|
392 ** of two. |
|
393 */ |
|
394 static void pager_resize_hash_table(Pager *pPager, int N){ |
|
395 PgHdr **aHash, *pPg; |
|
396 assert( N>0 && (N&(N-1))==0 ); |
|
397 aHash = sqliteMalloc( sizeof(aHash[0])*N ); |
|
398 if( aHash==0 ){ |
|
399 /* Failure to rehash is not an error. It is only a performance hit. */ |
|
400 return; |
|
401 } |
|
402 sqliteFree(pPager->aHash); |
|
403 pPager->nHash = N; |
|
404 pPager->aHash = aHash; |
|
405 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ |
|
406 int h; |
|
407 if( pPg->pgno==0 ){ |
|
408 assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); |
|
409 continue; |
|
410 } |
|
411 h = pPg->pgno & (N-1); |
|
412 pPg->pNextHash = aHash[h]; |
|
413 if( aHash[h] ){ |
|
414 aHash[h]->pPrevHash = pPg; |
|
415 } |
|
416 aHash[h] = pPg; |
|
417 pPg->pPrevHash = 0; |
|
418 } |
|
419 } |
|
420 |
|
421 /* |
|
422 ** Read a 32-bit integer from the given file descriptor. Store the integer |
|
423 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an |
|
424 ** error code is something goes wrong. |
|
425 ** |
|
426 ** All values are stored on disk as big-endian. |
|
427 */ |
|
428 static int read32bits(OsFile *fd, u32 *pRes){ |
|
429 unsigned char ac[4]; |
|
430 int rc = sqlite3OsRead(fd, ac, sizeof(ac)); |
|
431 if( rc==SQLITE_OK ){ |
|
432 *pRes = (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3]; |
|
433 } |
|
434 return rc; |
|
435 } |
|
436 |
|
437 /* |
|
438 ** Write a 32-bit integer into a string buffer in big-endian byte order. |
|
439 */ |
|
440 static void put32bits(char *ac, u32 val){ |
|
441 ac[0] = (val>>24) & 0xff; |
|
442 ac[1] = (val>>16) & 0xff; |
|
443 ac[2] = (val>>8) & 0xff; |
|
444 ac[3] = val & 0xff; |
|
445 } |
|
446 |
|
447 /* |
|
448 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK |
|
449 ** on success or an error code is something goes wrong. |
|
450 */ |
|
451 static int write32bits(OsFile *fd, u32 val){ |
|
452 char ac[4]; |
|
453 put32bits(ac, val); |
|
454 return sqlite3OsWrite(fd, ac, 4); |
|
455 } |
|
456 |
|
457 /* |
|
458 ** Read a 32-bit integer at offset 'offset' from the page identified by |
|
459 ** page header 'p'. |
|
460 */ |
|
461 static u32 retrieve32bits(PgHdr *p, int offset){ |
|
462 unsigned char *ac; |
|
463 ac = &((unsigned char*)PGHDR_TO_DATA(p))[offset]; |
|
464 return (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3]; |
|
465 } |
|
466 |
|
467 |
|
468 /* |
|
469 ** This function should be called when an error occurs within the pager |
|
470 ** code. The first argument is a pointer to the pager structure, the |
|
471 ** second the error-code about to be returned by a pager API function. |
|
472 ** The value returned is a copy of the second argument to this function. |
|
473 ** |
|
474 ** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT or SQLITE_PROTOCOL, |
|
475 ** the error becomes persistent. All subsequent API calls on this Pager |
|
476 ** will immediately return the same error code. |
|
477 */ |
|
478 static int pager_error(Pager *pPager, int rc){ |
|
479 assert( pPager->errCode==SQLITE_FULL || pPager->errCode==SQLITE_OK ); |
|
480 if( |
|
481 rc==SQLITE_FULL || |
|
482 rc==SQLITE_IOERR || |
|
483 rc==SQLITE_CORRUPT || |
|
484 rc==SQLITE_PROTOCOL |
|
485 ){ |
|
486 pPager->errCode = rc; |
|
487 } |
|
488 return rc; |
|
489 } |
|
490 |
|
491 #ifdef SQLITE_CHECK_PAGES |
|
492 /* |
|
493 ** Return a 32-bit hash of the page data for pPage. |
|
494 */ |
|
495 static u32 pager_pagehash(PgHdr *pPage){ |
|
496 u32 hash = 0; |
|
497 int i; |
|
498 unsigned char *pData = (unsigned char *)PGHDR_TO_DATA(pPage); |
|
499 for(i=0; i<pPage->pPager->pageSize; i++){ |
|
500 hash = (hash+i)^pData[i]; |
|
501 } |
|
502 return hash; |
|
503 } |
|
504 |
|
505 /* |
|
506 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES |
|
507 ** is defined, and NDEBUG is not defined, an assert() statement checks |
|
508 ** that the page is either dirty or still matches the calculated page-hash. |
|
509 */ |
|
510 #define CHECK_PAGE(x) checkPage(x) |
|
511 static void checkPage(PgHdr *pPg){ |
|
512 Pager *pPager = pPg->pPager; |
|
513 assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty || |
|
514 pPg->pageHash==pager_pagehash(pPg) ); |
|
515 } |
|
516 |
|
517 #else |
|
518 #define CHECK_PAGE(x) |
|
519 #endif |
|
520 |
|
521 /* |
|
522 ** When this is called the journal file for pager pPager must be open. |
|
523 ** The master journal file name is read from the end of the file and |
|
524 ** written into memory obtained from sqliteMalloc(). *pzMaster is |
|
525 ** set to point at the memory and SQLITE_OK returned. The caller must |
|
526 ** sqliteFree() *pzMaster. |
|
527 ** |
|
528 ** If no master journal file name is present *pzMaster is set to 0 and |
|
529 ** SQLITE_OK returned. |
|
530 */ |
|
531 static int readMasterJournal(OsFile *pJrnl, char **pzMaster){ |
|
532 int rc; |
|
533 u32 len; |
|
534 i64 szJ; |
|
535 u32 cksum; |
|
536 int i; |
|
537 unsigned char aMagic[8]; /* A buffer to hold the magic header */ |
|
538 |
|
539 *pzMaster = 0; |
|
540 |
|
541 rc = sqlite3OsFileSize(pJrnl, &szJ); |
|
542 if( rc!=SQLITE_OK || szJ<16 ) return rc; |
|
543 |
|
544 rc = sqlite3OsSeek(pJrnl, szJ-16); |
|
545 if( rc!=SQLITE_OK ) return rc; |
|
546 |
|
547 rc = read32bits(pJrnl, &len); |
|
548 if( rc!=SQLITE_OK ) return rc; |
|
549 |
|
550 rc = read32bits(pJrnl, &cksum); |
|
551 if( rc!=SQLITE_OK ) return rc; |
|
552 |
|
553 rc = sqlite3OsRead(pJrnl, aMagic, 8); |
|
554 if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc; |
|
555 |
|
556 rc = sqlite3OsSeek(pJrnl, szJ-16-len); |
|
557 if( rc!=SQLITE_OK ) return rc; |
|
558 |
|
559 *pzMaster = (char *)sqliteMalloc(len+1); |
|
560 if( !*pzMaster ){ |
|
561 return SQLITE_NOMEM; |
|
562 } |
|
563 rc = sqlite3OsRead(pJrnl, *pzMaster, len); |
|
564 if( rc!=SQLITE_OK ){ |
|
565 sqliteFree(*pzMaster); |
|
566 *pzMaster = 0; |
|
567 return rc; |
|
568 } |
|
569 |
|
570 /* See if the checksum matches the master journal name */ |
|
571 for(i=0; i<len; i++){ |
|
572 cksum -= (*pzMaster)[i]; |
|
573 } |
|
574 if( cksum ){ |
|
575 /* If the checksum doesn't add up, then one or more of the disk sectors |
|
576 ** containing the master journal filename is corrupted. This means |
|
577 ** definitely roll back, so just return SQLITE_OK and report a (nul) |
|
578 ** master-journal filename. |
|
579 */ |
|
580 sqliteFree(*pzMaster); |
|
581 *pzMaster = 0; |
|
582 }else{ |
|
583 (*pzMaster)[len] = '\0'; |
|
584 } |
|
585 |
|
586 return SQLITE_OK; |
|
587 } |
|
588 |
|
589 /* |
|
590 ** Seek the journal file descriptor to the next sector boundary where a |
|
591 ** journal header may be read or written. Pager.journalOff is updated with |
|
592 ** the new seek offset. |
|
593 ** |
|
594 ** i.e for a sector size of 512: |
|
595 ** |
|
596 ** Input Offset Output Offset |
|
597 ** --------------------------------------- |
|
598 ** 0 0 |
|
599 ** 512 512 |
|
600 ** 100 512 |
|
601 ** 2000 2048 |
|
602 ** |
|
603 */ |
|
604 static int seekJournalHdr(Pager *pPager){ |
|
605 i64 offset = 0; |
|
606 i64 c = pPager->journalOff; |
|
607 if( c ){ |
|
608 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); |
|
609 } |
|
610 assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); |
|
611 assert( offset>=c ); |
|
612 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); |
|
613 pPager->journalOff = offset; |
|
614 return sqlite3OsSeek(pPager->jfd, pPager->journalOff); |
|
615 } |
|
616 |
|
617 /* |
|
618 ** The journal file must be open when this routine is called. A journal |
|
619 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the |
|
620 ** current location. |
|
621 ** |
|
622 ** The format for the journal header is as follows: |
|
623 ** - 8 bytes: Magic identifying journal format. |
|
624 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. |
|
625 ** - 4 bytes: Random number used for page hash. |
|
626 ** - 4 bytes: Initial database page count. |
|
627 ** - 4 bytes: Sector size used by the process that wrote this journal. |
|
628 ** |
|
629 ** Followed by (JOURNAL_HDR_SZ - 24) bytes of unused space. |
|
630 */ |
|
631 static int writeJournalHdr(Pager *pPager){ |
|
632 char zHeader[sizeof(aJournalMagic)+16]; |
|
633 |
|
634 int rc = seekJournalHdr(pPager); |
|
635 if( rc ) return rc; |
|
636 |
|
637 pPager->journalHdr = pPager->journalOff; |
|
638 if( pPager->stmtHdrOff==0 ){ |
|
639 pPager->stmtHdrOff = pPager->journalHdr; |
|
640 } |
|
641 pPager->journalOff += JOURNAL_HDR_SZ(pPager); |
|
642 |
|
643 /* FIX ME: |
|
644 ** |
|
645 ** Possibly for a pager not in no-sync mode, the journal magic should not |
|
646 ** be written until nRec is filled in as part of next syncJournal(). |
|
647 ** |
|
648 ** Actually maybe the whole journal header should be delayed until that |
|
649 ** point. Think about this. |
|
650 */ |
|
651 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); |
|
652 /* The nRec Field. 0xFFFFFFFF for no-sync journals. */ |
|
653 put32bits(&zHeader[sizeof(aJournalMagic)], pPager->noSync ? 0xffffffff : 0); |
|
654 /* The random check-hash initialiser */ |
|
655 sqlite3Randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); |
|
656 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); |
|
657 /* The initial database size */ |
|
658 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize); |
|
659 /* The assumed sector size for this process */ |
|
660 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); |
|
661 rc = sqlite3OsWrite(pPager->jfd, zHeader, sizeof(zHeader)); |
|
662 |
|
663 /* The journal header has been written successfully. Seek the journal |
|
664 ** file descriptor to the end of the journal header sector. |
|
665 */ |
|
666 if( rc==SQLITE_OK ){ |
|
667 rc = sqlite3OsSeek(pPager->jfd, pPager->journalOff-1); |
|
668 if( rc==SQLITE_OK ){ |
|
669 rc = sqlite3OsWrite(pPager->jfd, "\000", 1); |
|
670 } |
|
671 } |
|
672 return rc; |
|
673 } |
|
674 |
|
675 /* |
|
676 ** The journal file must be open when this is called. A journal header file |
|
677 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal |
|
678 ** file. See comments above function writeJournalHdr() for a description of |
|
679 ** the journal header format. |
|
680 ** |
|
681 ** If the header is read successfully, *nRec is set to the number of |
|
682 ** page records following this header and *dbSize is set to the size of the |
|
683 ** database before the transaction began, in pages. Also, pPager->cksumInit |
|
684 ** is set to the value read from the journal header. SQLITE_OK is returned |
|
685 ** in this case. |
|
686 ** |
|
687 ** If the journal header file appears to be corrupted, SQLITE_DONE is |
|
688 ** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes |
|
689 ** cannot be read from the journal file an error code is returned. |
|
690 */ |
|
691 static int readJournalHdr( |
|
692 Pager *pPager, |
|
693 i64 journalSize, |
|
694 u32 *pNRec, |
|
695 u32 *pDbSize |
|
696 ){ |
|
697 int rc; |
|
698 unsigned char aMagic[8]; /* A buffer to hold the magic header */ |
|
699 |
|
700 rc = seekJournalHdr(pPager); |
|
701 if( rc ) return rc; |
|
702 |
|
703 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ |
|
704 return SQLITE_DONE; |
|
705 } |
|
706 |
|
707 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic)); |
|
708 if( rc ) return rc; |
|
709 |
|
710 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ |
|
711 return SQLITE_DONE; |
|
712 } |
|
713 |
|
714 rc = read32bits(pPager->jfd, pNRec); |
|
715 if( rc ) return rc; |
|
716 |
|
717 rc = read32bits(pPager->jfd, &pPager->cksumInit); |
|
718 if( rc ) return rc; |
|
719 |
|
720 rc = read32bits(pPager->jfd, pDbSize); |
|
721 if( rc ) return rc; |
|
722 |
|
723 /* Update the assumed sector-size to match the value used by |
|
724 ** the process that created this journal. If this journal was |
|
725 ** created by a process other than this one, then this routine |
|
726 ** is being called from within pager_playback(). The local value |
|
727 ** of Pager.sectorSize is restored at the end of that routine. |
|
728 */ |
|
729 rc = read32bits(pPager->jfd, (u32 *)&pPager->sectorSize); |
|
730 if( rc ) return rc; |
|
731 |
|
732 pPager->journalOff += JOURNAL_HDR_SZ(pPager); |
|
733 rc = sqlite3OsSeek(pPager->jfd, pPager->journalOff); |
|
734 return rc; |
|
735 } |
|
736 |
|
737 |
|
738 /* |
|
739 ** Write the supplied master journal name into the journal file for pager |
|
740 ** pPager at the current location. The master journal name must be the last |
|
741 ** thing written to a journal file. If the pager is in full-sync mode, the |
|
742 ** journal file descriptor is advanced to the next sector boundary before |
|
743 ** anything is written. The format is: |
|
744 ** |
|
745 ** + 4 bytes: PAGER_MJ_PGNO. |
|
746 ** + N bytes: length of master journal name. |
|
747 ** + 4 bytes: N |
|
748 ** + 4 bytes: Master journal name checksum. |
|
749 ** + 8 bytes: aJournalMagic[]. |
|
750 ** |
|
751 ** The master journal page checksum is the sum of the bytes in the master |
|
752 ** journal name. |
|
753 ** |
|
754 ** If zMaster is a NULL pointer (occurs for a single database transaction), |
|
755 ** this call is a no-op. |
|
756 */ |
|
757 static int writeMasterJournal(Pager *pPager, const char *zMaster){ |
|
758 int rc; |
|
759 int len; |
|
760 int i; |
|
761 u32 cksum = 0; |
|
762 char zBuf[sizeof(aJournalMagic)+2*4]; |
|
763 |
|
764 if( !zMaster || pPager->setMaster) return SQLITE_OK; |
|
765 pPager->setMaster = 1; |
|
766 |
|
767 len = strlen(zMaster); |
|
768 for(i=0; i<len; i++){ |
|
769 cksum += zMaster[i]; |
|
770 } |
|
771 |
|
772 /* If in full-sync mode, advance to the next disk sector before writing |
|
773 ** the master journal name. This is in case the previous page written to |
|
774 ** the journal has already been synced. |
|
775 */ |
|
776 if( pPager->fullSync ){ |
|
777 rc = seekJournalHdr(pPager); |
|
778 if( rc!=SQLITE_OK ) return rc; |
|
779 } |
|
780 pPager->journalOff += (len+20); |
|
781 |
|
782 rc = write32bits(pPager->jfd, PAGER_MJ_PGNO(pPager)); |
|
783 if( rc!=SQLITE_OK ) return rc; |
|
784 |
|
785 rc = sqlite3OsWrite(pPager->jfd, zMaster, len); |
|
786 if( rc!=SQLITE_OK ) return rc; |
|
787 |
|
788 put32bits(zBuf, len); |
|
789 put32bits(&zBuf[4], cksum); |
|
790 memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic)); |
|
791 rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic)); |
|
792 pPager->needSync = !pPager->noSync; |
|
793 return rc; |
|
794 } |
|
795 |
|
796 /* |
|
797 ** Add or remove a page from the list of all pages that are in the |
|
798 ** statement journal. |
|
799 ** |
|
800 ** The Pager keeps a separate list of pages that are currently in |
|
801 ** the statement journal. This helps the sqlite3pager_stmt_commit() |
|
802 ** routine run MUCH faster for the common case where there are many |
|
803 ** pages in memory but only a few are in the statement journal. |
|
804 */ |
|
805 static void page_add_to_stmt_list(PgHdr *pPg){ |
|
806 Pager *pPager = pPg->pPager; |
|
807 if( pPg->inStmt ) return; |
|
808 assert( pPg->pPrevStmt==0 && pPg->pNextStmt==0 ); |
|
809 pPg->pPrevStmt = 0; |
|
810 if( pPager->pStmt ){ |
|
811 pPager->pStmt->pPrevStmt = pPg; |
|
812 } |
|
813 pPg->pNextStmt = pPager->pStmt; |
|
814 pPager->pStmt = pPg; |
|
815 pPg->inStmt = 1; |
|
816 } |
|
817 static void page_remove_from_stmt_list(PgHdr *pPg){ |
|
818 if( !pPg->inStmt ) return; |
|
819 if( pPg->pPrevStmt ){ |
|
820 assert( pPg->pPrevStmt->pNextStmt==pPg ); |
|
821 pPg->pPrevStmt->pNextStmt = pPg->pNextStmt; |
|
822 }else{ |
|
823 assert( pPg->pPager->pStmt==pPg ); |
|
824 pPg->pPager->pStmt = pPg->pNextStmt; |
|
825 } |
|
826 if( pPg->pNextStmt ){ |
|
827 assert( pPg->pNextStmt->pPrevStmt==pPg ); |
|
828 pPg->pNextStmt->pPrevStmt = pPg->pPrevStmt; |
|
829 } |
|
830 pPg->pNextStmt = 0; |
|
831 pPg->pPrevStmt = 0; |
|
832 pPg->inStmt = 0; |
|
833 } |
|
834 |
|
835 /* |
|
836 ** Find a page in the hash table given its page number. Return |
|
837 ** a pointer to the page or NULL if not found. |
|
838 */ |
|
839 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){ |
|
840 PgHdr *p; |
|
841 if( pPager->aHash==0 ) return 0; |
|
842 p = pPager->aHash[pgno & (pPager->nHash-1)]; |
|
843 while( p && p->pgno!=pgno ){ |
|
844 p = p->pNextHash; |
|
845 } |
|
846 return p; |
|
847 } |
|
848 |
|
849 /* |
|
850 ** Unlock the database and clear the in-memory cache. This routine |
|
851 ** sets the state of the pager back to what it was when it was first |
|
852 ** opened. Any outstanding pages are invalidated and subsequent attempts |
|
853 ** to access those pages will likely result in a coredump. |
|
854 */ |
|
855 static void pager_reset(Pager *pPager){ |
|
856 PgHdr *pPg, *pNext; |
|
857 if( pPager->errCode ) return; |
|
858 for(pPg=pPager->pAll; pPg; pPg=pNext){ |
|
859 pNext = pPg->pNextAll; |
|
860 sqliteFree(pPg); |
|
861 } |
|
862 pPager->pFirst = 0; |
|
863 pPager->pFirstSynced = 0; |
|
864 pPager->pLast = 0; |
|
865 pPager->pAll = 0; |
|
866 pPager->nHash = 0; |
|
867 sqliteFree(pPager->aHash); |
|
868 pPager->nPage = 0; |
|
869 pPager->aHash = 0; |
|
870 if( pPager->state>=PAGER_RESERVED ){ |
|
871 sqlite3pager_rollback(pPager); |
|
872 } |
|
873 sqlite3OsUnlock(pPager->fd, NO_LOCK); |
|
874 pPager->state = PAGER_UNLOCK; |
|
875 pPager->dbSize = -1; |
|
876 pPager->nRef = 0; |
|
877 assert( pPager->journalOpen==0 ); |
|
878 } |
|
879 |
|
880 /* |
|
881 ** When this routine is called, the pager has the journal file open and |
|
882 ** a RESERVED or EXCLUSIVE lock on the database. This routine releases |
|
883 ** the database lock and acquires a SHARED lock in its place. The journal |
|
884 ** file is deleted and closed. |
|
885 ** |
|
886 ** TODO: Consider keeping the journal file open for temporary databases. |
|
887 ** This might give a performance improvement on windows where opening |
|
888 ** a file is an expensive operation. |
|
889 */ |
|
890 static int pager_unwritelock(Pager *pPager){ |
|
891 PgHdr *pPg; |
|
892 int rc; |
|
893 assert( !MEMDB ); |
|
894 if( pPager->state<PAGER_RESERVED ){ |
|
895 return SQLITE_OK; |
|
896 } |
|
897 sqlite3pager_stmt_commit(pPager); |
|
898 if( pPager->stmtOpen ){ |
|
899 sqlite3OsClose(&pPager->stfd); |
|
900 pPager->stmtOpen = 0; |
|
901 } |
|
902 if( pPager->journalOpen ){ |
|
903 sqlite3OsClose(&pPager->jfd); |
|
904 pPager->journalOpen = 0; |
|
905 sqlite3OsDelete(pPager->zJournal); |
|
906 sqliteFree( pPager->aInJournal ); |
|
907 pPager->aInJournal = 0; |
|
908 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ |
|
909 pPg->inJournal = 0; |
|
910 pPg->dirty = 0; |
|
911 pPg->needSync = 0; |
|
912 #ifdef SQLITE_CHECK_PAGES |
|
913 pPg->pageHash = pager_pagehash(pPg); |
|
914 #endif |
|
915 } |
|
916 pPager->pDirty = 0; |
|
917 pPager->dirtyCache = 0; |
|
918 pPager->nRec = 0; |
|
919 }else{ |
|
920 assert( pPager->aInJournal==0 ); |
|
921 assert( pPager->dirtyCache==0 || pPager->useJournal==0 ); |
|
922 } |
|
923 rc = sqlite3OsUnlock(pPager->fd, SHARED_LOCK); |
|
924 pPager->state = PAGER_SHARED; |
|
925 pPager->origDbSize = 0; |
|
926 pPager->setMaster = 0; |
|
927 pPager->needSync = 0; |
|
928 pPager->pFirstSynced = pPager->pFirst; |
|
929 return rc; |
|
930 } |
|
931 |
|
932 /* |
|
933 ** Compute and return a checksum for the page of data. |
|
934 ** |
|
935 ** This is not a real checksum. It is really just the sum of the |
|
936 ** random initial value and the page number. We experimented with |
|
937 ** a checksum of the entire data, but that was found to be too slow. |
|
938 ** |
|
939 ** Note that the page number is stored at the beginning of data and |
|
940 ** the checksum is stored at the end. This is important. If journal |
|
941 ** corruption occurs due to a power failure, the most likely scenario |
|
942 ** is that one end or the other of the record will be changed. It is |
|
943 ** much less likely that the two ends of the journal record will be |
|
944 ** correct and the middle be corrupt. Thus, this "checksum" scheme, |
|
945 ** though fast and simple, catches the mostly likely kind of corruption. |
|
946 ** |
|
947 ** FIX ME: Consider adding every 200th (or so) byte of the data to the |
|
948 ** checksum. That way if a single page spans 3 or more disk sectors and |
|
949 ** only the middle sector is corrupt, we will still have a reasonable |
|
950 ** chance of failing the checksum and thus detecting the problem. |
|
951 */ |
|
952 static u32 pager_cksum(Pager *pPager, const u8 *aData){ |
|
953 u32 cksum = pPager->cksumInit; |
|
954 int i = pPager->pageSize-200; |
|
955 while( i>0 ){ |
|
956 cksum += aData[i]; |
|
957 i -= 200; |
|
958 } |
|
959 return cksum; |
|
960 } |
|
961 |
|
962 /* Forward declaration */ |
|
963 static void makeClean(PgHdr*); |
|
964 |
|
965 /* |
|
966 ** Read a single page from the journal file opened on file descriptor |
|
967 ** jfd. Playback this one page. |
|
968 ** |
|
969 ** If useCksum==0 it means this journal does not use checksums. Checksums |
|
970 ** are not used in statement journals because statement journals do not |
|
971 ** need to survive power failures. |
|
972 */ |
|
973 static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int useCksum){ |
|
974 int rc; |
|
975 PgHdr *pPg; /* An existing page in the cache */ |
|
976 Pgno pgno; /* The page number of a page in journal */ |
|
977 u32 cksum; /* Checksum used for sanity checking */ |
|
978 u8 aData[SQLITE_MAX_PAGE_SIZE]; /* Temp storage for a page */ |
|
979 |
|
980 /* useCksum should be true for the main journal and false for |
|
981 ** statement journals. Verify that this is always the case |
|
982 */ |
|
983 assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) ); |
|
984 |
|
985 |
|
986 rc = read32bits(jfd, &pgno); |
|
987 if( rc!=SQLITE_OK ) return rc; |
|
988 rc = sqlite3OsRead(jfd, &aData, pPager->pageSize); |
|
989 if( rc!=SQLITE_OK ) return rc; |
|
990 pPager->journalOff += pPager->pageSize + 4; |
|
991 |
|
992 /* Sanity checking on the page. This is more important that I originally |
|
993 ** thought. If a power failure occurs while the journal is being written, |
|
994 ** it could cause invalid data to be written into the journal. We need to |
|
995 ** detect this invalid data (with high probability) and ignore it. |
|
996 */ |
|
997 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ |
|
998 return SQLITE_DONE; |
|
999 } |
|
1000 if( pgno>(unsigned)pPager->dbSize ){ |
|
1001 return SQLITE_OK; |
|
1002 } |
|
1003 if( useCksum ){ |
|
1004 rc = read32bits(jfd, &cksum); |
|
1005 if( rc ) return rc; |
|
1006 pPager->journalOff += 4; |
|
1007 if( pager_cksum(pPager, aData)!=cksum ){ |
|
1008 return SQLITE_DONE; |
|
1009 } |
|
1010 } |
|
1011 |
|
1012 assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE ); |
|
1013 |
|
1014 /* If the pager is in RESERVED state, then there must be a copy of this |
|
1015 ** page in the pager cache. In this case just update the pager cache, |
|
1016 ** not the database file. The page is left marked dirty in this case. |
|
1017 ** |
|
1018 ** If in EXCLUSIVE state, then we update the pager cache if it exists |
|
1019 ** and the main file. The page is then marked not dirty. |
|
1020 ** |
|
1021 ** Ticket #1171: The statement journal might contain page content that is |
|
1022 ** different from the page content at the start of the transaction. |
|
1023 ** This occurs when a page is changed prior to the start of a statement |
|
1024 ** then changed again within the statement. When rolling back such a |
|
1025 ** statement we must not write to the original database unless we know |
|
1026 ** for certain that original page contents are in the main rollback |
|
1027 ** journal. Otherwise, if a full ROLLBACK occurs after the statement |
|
1028 ** rollback the full ROLLBACK will not restore the page to its original |
|
1029 ** content. Two conditions must be met before writing to the database |
|
1030 ** files. (1) the database must be locked. (2) we know that the original |
|
1031 ** page content is in the main journal either because the page is not in |
|
1032 ** cache or else it is marked as needSync==0. |
|
1033 */ |
|
1034 pPg = pager_lookup(pPager, pgno); |
|
1035 assert( pPager->state>=PAGER_EXCLUSIVE || pPg!=0 ); |
|
1036 TRACE3("PLAYBACK %d page %d\n", PAGERID(pPager), pgno); |
|
1037 if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) ){ |
|
1038 rc = sqlite3OsSeek(pPager->fd, (pgno-1)*(i64)pPager->pageSize); |
|
1039 if( rc==SQLITE_OK ){ |
|
1040 rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize); |
|
1041 } |
|
1042 if( pPg ){ |
|
1043 makeClean(pPg); |
|
1044 } |
|
1045 } |
|
1046 if( pPg ){ |
|
1047 /* No page should ever be explicitly rolled back that is in use, except |
|
1048 ** for page 1 which is held in use in order to keep the lock on the |
|
1049 ** database active. However such a page may be rolled back as a result |
|
1050 ** of an internal error resulting in an automatic call to |
|
1051 ** sqlite3pager_rollback(). |
|
1052 */ |
|
1053 void *pData; |
|
1054 /* assert( pPg->nRef==0 || pPg->pgno==1 ); */ |
|
1055 pData = PGHDR_TO_DATA(pPg); |
|
1056 memcpy(pData, aData, pPager->pageSize); |
|
1057 if( pPager->xDestructor ){ /*** FIX ME: Should this be xReinit? ***/ |
|
1058 pPager->xDestructor(pData, pPager->pageSize); |
|
1059 } |
|
1060 #ifdef SQLITE_CHECK_PAGES |
|
1061 pPg->pageHash = pager_pagehash(pPg); |
|
1062 #endif |
|
1063 CODEC1(pPager, pData, pPg->pgno, 3); |
|
1064 } |
|
1065 return rc; |
|
1066 } |
|
1067 |
|
1068 /* |
|
1069 ** Parameter zMaster is the name of a master journal file. A single journal |
|
1070 ** file that referred to the master journal file has just been rolled back. |
|
1071 ** This routine checks if it is possible to delete the master journal file, |
|
1072 ** and does so if it is. |
|
1073 ** |
|
1074 ** The master journal file contains the names of all child journals. |
|
1075 ** To tell if a master journal can be deleted, check to each of the |
|
1076 ** children. If all children are either missing or do not refer to |
|
1077 ** a different master journal, then this master journal can be deleted. |
|
1078 */ |
|
1079 static int pager_delmaster(const char *zMaster){ |
|
1080 int rc; |
|
1081 int master_open = 0; |
|
1082 OsFile *master = 0; |
|
1083 char *zMasterJournal = 0; /* Contents of master journal file */ |
|
1084 i64 nMasterJournal; /* Size of master journal file */ |
|
1085 |
|
1086 /* Open the master journal file exclusively in case some other process |
|
1087 ** is running this routine also. Not that it makes too much difference. |
|
1088 */ |
|
1089 rc = sqlite3OsOpenReadOnly(zMaster, &master); |
|
1090 if( rc!=SQLITE_OK ) goto delmaster_out; |
|
1091 master_open = 1; |
|
1092 rc = sqlite3OsFileSize(master, &nMasterJournal); |
|
1093 if( rc!=SQLITE_OK ) goto delmaster_out; |
|
1094 |
|
1095 if( nMasterJournal>0 ){ |
|
1096 char *zJournal; |
|
1097 char *zMasterPtr = 0; |
|
1098 |
|
1099 /* Load the entire master journal file into space obtained from |
|
1100 ** sqliteMalloc() and pointed to by zMasterJournal. |
|
1101 */ |
|
1102 zMasterJournal = (char *)sqliteMalloc(nMasterJournal); |
|
1103 if( !zMasterJournal ){ |
|
1104 rc = SQLITE_NOMEM; |
|
1105 goto delmaster_out; |
|
1106 } |
|
1107 rc = sqlite3OsRead(master, zMasterJournal, nMasterJournal); |
|
1108 if( rc!=SQLITE_OK ) goto delmaster_out; |
|
1109 |
|
1110 zJournal = zMasterJournal; |
|
1111 while( (zJournal-zMasterJournal)<nMasterJournal ){ |
|
1112 if( sqlite3OsFileExists(zJournal) ){ |
|
1113 /* One of the journals pointed to by the master journal exists. |
|
1114 ** Open it and check if it points at the master journal. If |
|
1115 ** so, return without deleting the master journal file. |
|
1116 */ |
|
1117 OsFile *journal = 0; |
|
1118 int c; |
|
1119 |
|
1120 rc = sqlite3OsOpenReadOnly(zJournal, &journal); |
|
1121 if( rc!=SQLITE_OK ){ |
|
1122 goto delmaster_out; |
|
1123 } |
|
1124 |
|
1125 rc = readMasterJournal(journal, &zMasterPtr); |
|
1126 sqlite3OsClose(&journal); |
|
1127 if( rc!=SQLITE_OK ){ |
|
1128 goto delmaster_out; |
|
1129 } |
|
1130 |
|
1131 c = zMasterPtr!=0 && strcmp(zMasterPtr, zMaster)==0; |
|
1132 sqliteFree(zMasterPtr); |
|
1133 if( c ){ |
|
1134 /* We have a match. Do not delete the master journal file. */ |
|
1135 goto delmaster_out; |
|
1136 } |
|
1137 } |
|
1138 zJournal += (strlen(zJournal)+1); |
|
1139 } |
|
1140 } |
|
1141 |
|
1142 sqlite3OsDelete(zMaster); |
|
1143 |
|
1144 delmaster_out: |
|
1145 if( zMasterJournal ){ |
|
1146 sqliteFree(zMasterJournal); |
|
1147 } |
|
1148 if( master_open ){ |
|
1149 sqlite3OsClose(&master); |
|
1150 } |
|
1151 return rc; |
|
1152 } |
|
1153 |
|
1154 /* |
|
1155 ** Make every page in the cache agree with what is on disk. In other words, |
|
1156 ** reread the disk to reset the state of the cache. |
|
1157 ** |
|
1158 ** This routine is called after a rollback in which some of the dirty cache |
|
1159 ** pages had never been written out to disk. We need to roll back the |
|
1160 ** cache content and the easiest way to do that is to reread the old content |
|
1161 ** back from the disk. |
|
1162 */ |
|
1163 static int pager_reload_cache(Pager *pPager){ |
|
1164 PgHdr *pPg; |
|
1165 int rc = SQLITE_OK; |
|
1166 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ |
|
1167 char zBuf[SQLITE_MAX_PAGE_SIZE]; |
|
1168 if( !pPg->dirty ) continue; |
|
1169 if( (int)pPg->pgno <= pPager->origDbSize ){ |
|
1170 rc = sqlite3OsSeek(pPager->fd, pPager->pageSize*(i64)(pPg->pgno-1)); |
|
1171 if( rc==SQLITE_OK ){ |
|
1172 rc = sqlite3OsRead(pPager->fd, zBuf, pPager->pageSize); |
|
1173 } |
|
1174 TRACE3("REFETCH %d page %d\n", PAGERID(pPager), pPg->pgno); |
|
1175 if( rc ) break; |
|
1176 CODEC1(pPager, zBuf, pPg->pgno, 2); |
|
1177 }else{ |
|
1178 memset(zBuf, 0, pPager->pageSize); |
|
1179 } |
|
1180 if( pPg->nRef==0 || memcmp(zBuf, PGHDR_TO_DATA(pPg), pPager->pageSize) ){ |
|
1181 memcpy(PGHDR_TO_DATA(pPg), zBuf, pPager->pageSize); |
|
1182 if( pPager->xReiniter ){ |
|
1183 pPager->xReiniter(PGHDR_TO_DATA(pPg), pPager->pageSize); |
|
1184 }else{ |
|
1185 memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra); |
|
1186 } |
|
1187 } |
|
1188 pPg->needSync = 0; |
|
1189 pPg->dirty = 0; |
|
1190 #ifdef SQLITE_CHECK_PAGES |
|
1191 pPg->pageHash = pager_pagehash(pPg); |
|
1192 #endif |
|
1193 } |
|
1194 pPager->pDirty = 0; |
|
1195 return rc; |
|
1196 } |
|
1197 |
|
1198 /* |
|
1199 ** Truncate the main file of the given pager to the number of pages |
|
1200 ** indicated. |
|
1201 */ |
|
1202 static int pager_truncate(Pager *pPager, int nPage){ |
|
1203 assert( pPager->state>=PAGER_EXCLUSIVE ); |
|
1204 return sqlite3OsTruncate(pPager->fd, pPager->pageSize*(i64)nPage); |
|
1205 } |
|
1206 |
|
1207 /* |
|
1208 ** Playback the journal and thus restore the database file to |
|
1209 ** the state it was in before we started making changes. |
|
1210 ** |
|
1211 ** The journal file format is as follows: |
|
1212 ** |
|
1213 ** (1) 8 byte prefix. A copy of aJournalMagic[]. |
|
1214 ** (2) 4 byte big-endian integer which is the number of valid page records |
|
1215 ** in the journal. If this value is 0xffffffff, then compute the |
|
1216 ** number of page records from the journal size. |
|
1217 ** (3) 4 byte big-endian integer which is the initial value for the |
|
1218 ** sanity checksum. |
|
1219 ** (4) 4 byte integer which is the number of pages to truncate the |
|
1220 ** database to during a rollback. |
|
1221 ** (5) 4 byte integer which is the number of bytes in the master journal |
|
1222 ** name. The value may be zero (indicate that there is no master |
|
1223 ** journal.) |
|
1224 ** (6) N bytes of the master journal name. The name will be nul-terminated |
|
1225 ** and might be shorter than the value read from (5). If the first byte |
|
1226 ** of the name is \000 then there is no master journal. The master |
|
1227 ** journal name is stored in UTF-8. |
|
1228 ** (7) Zero or more pages instances, each as follows: |
|
1229 ** + 4 byte page number. |
|
1230 ** + pPager->pageSize bytes of data. |
|
1231 ** + 4 byte checksum |
|
1232 ** |
|
1233 ** When we speak of the journal header, we mean the first 6 items above. |
|
1234 ** Each entry in the journal is an instance of the 7th item. |
|
1235 ** |
|
1236 ** Call the value from the second bullet "nRec". nRec is the number of |
|
1237 ** valid page entries in the journal. In most cases, you can compute the |
|
1238 ** value of nRec from the size of the journal file. But if a power |
|
1239 ** failure occurred while the journal was being written, it could be the |
|
1240 ** case that the size of the journal file had already been increased but |
|
1241 ** the extra entries had not yet made it safely to disk. In such a case, |
|
1242 ** the value of nRec computed from the file size would be too large. For |
|
1243 ** that reason, we always use the nRec value in the header. |
|
1244 ** |
|
1245 ** If the nRec value is 0xffffffff it means that nRec should be computed |
|
1246 ** from the file size. This value is used when the user selects the |
|
1247 ** no-sync option for the journal. A power failure could lead to corruption |
|
1248 ** in this case. But for things like temporary table (which will be |
|
1249 ** deleted when the power is restored) we don't care. |
|
1250 ** |
|
1251 ** If the file opened as the journal file is not a well-formed |
|
1252 ** journal file then all pages up to the first corrupted page are rolled |
|
1253 ** back (or no pages if the journal header is corrupted). The journal file |
|
1254 ** is then deleted and SQLITE_OK returned, just as if no corruption had |
|
1255 ** been encountered. |
|
1256 ** |
|
1257 ** If an I/O or malloc() error occurs, the journal-file is not deleted |
|
1258 ** and an error code is returned. |
|
1259 */ |
|
1260 static int pager_playback(Pager *pPager){ |
|
1261 i64 szJ; /* Size of the journal file in bytes */ |
|
1262 u32 nRec; /* Number of Records in the journal */ |
|
1263 int i; /* Loop counter */ |
|
1264 Pgno mxPg = 0; /* Size of the original file in pages */ |
|
1265 int rc; /* Result code of a subroutine */ |
|
1266 char *zMaster = 0; /* Name of master journal file if any */ |
|
1267 |
|
1268 /* Figure out how many records are in the journal. Abort early if |
|
1269 ** the journal is empty. |
|
1270 */ |
|
1271 assert( pPager->journalOpen ); |
|
1272 rc = sqlite3OsFileSize(pPager->jfd, &szJ); |
|
1273 if( rc!=SQLITE_OK ){ |
|
1274 goto end_playback; |
|
1275 } |
|
1276 |
|
1277 /* Read the master journal name from the journal, if it is present. |
|
1278 ** If a master journal file name is specified, but the file is not |
|
1279 ** present on disk, then the journal is not hot and does not need to be |
|
1280 ** played back. |
|
1281 */ |
|
1282 rc = readMasterJournal(pPager->jfd, &zMaster); |
|
1283 assert( rc!=SQLITE_DONE ); |
|
1284 if( rc!=SQLITE_OK || (zMaster && !sqlite3OsFileExists(zMaster)) ){ |
|
1285 sqliteFree(zMaster); |
|
1286 zMaster = 0; |
|
1287 if( rc==SQLITE_DONE ) rc = SQLITE_OK; |
|
1288 goto end_playback; |
|
1289 } |
|
1290 sqlite3OsSeek(pPager->jfd, 0); |
|
1291 pPager->journalOff = 0; |
|
1292 |
|
1293 /* This loop terminates either when the readJournalHdr() call returns |
|
1294 ** SQLITE_DONE or an IO error occurs. */ |
|
1295 while( 1 ){ |
|
1296 |
|
1297 /* Read the next journal header from the journal file. If there are |
|
1298 ** not enough bytes left in the journal file for a complete header, or |
|
1299 ** it is corrupted, then a process must of failed while writing it. |
|
1300 ** This indicates nothing more needs to be rolled back. |
|
1301 */ |
|
1302 rc = readJournalHdr(pPager, szJ, &nRec, &mxPg); |
|
1303 if( rc!=SQLITE_OK ){ |
|
1304 if( rc==SQLITE_DONE ){ |
|
1305 rc = SQLITE_OK; |
|
1306 } |
|
1307 goto end_playback; |
|
1308 } |
|
1309 |
|
1310 /* If nRec is 0xffffffff, then this journal was created by a process |
|
1311 ** working in no-sync mode. This means that the rest of the journal |
|
1312 ** file consists of pages, there are no more journal headers. Compute |
|
1313 ** the value of nRec based on this assumption. |
|
1314 */ |
|
1315 if( nRec==0xffffffff ){ |
|
1316 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); |
|
1317 nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager); |
|
1318 } |
|
1319 |
|
1320 /* If this is the first header read from the journal, truncate the |
|
1321 ** database file back to it's original size. |
|
1322 */ |
|
1323 if( pPager->state>=PAGER_EXCLUSIVE && |
|
1324 pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ |
|
1325 assert( pPager->origDbSize==0 || pPager->origDbSize==mxPg ); |
|
1326 rc = pager_truncate(pPager, mxPg); |
|
1327 if( rc!=SQLITE_OK ){ |
|
1328 goto end_playback; |
|
1329 } |
|
1330 pPager->dbSize = mxPg; |
|
1331 } |
|
1332 |
|
1333 /* Copy original pages out of the journal and back into the database file. |
|
1334 */ |
|
1335 for(i=0; i<nRec; i++){ |
|
1336 rc = pager_playback_one_page(pPager, pPager->jfd, 1); |
|
1337 if( rc!=SQLITE_OK ){ |
|
1338 if( rc==SQLITE_DONE ){ |
|
1339 rc = SQLITE_OK; |
|
1340 pPager->journalOff = szJ; |
|
1341 break; |
|
1342 }else{ |
|
1343 goto end_playback; |
|
1344 } |
|
1345 } |
|
1346 } |
|
1347 } |
|
1348 /*NOTREACHED*/ |
|
1349 assert( 0 ); |
|
1350 |
|
1351 end_playback: |
|
1352 if( rc==SQLITE_OK ){ |
|
1353 rc = pager_unwritelock(pPager); |
|
1354 } |
|
1355 if( zMaster ){ |
|
1356 /* If there was a master journal and this routine will return true, |
|
1357 ** see if it is possible to delete the master journal. |
|
1358 */ |
|
1359 if( rc==SQLITE_OK ){ |
|
1360 rc = pager_delmaster(zMaster); |
|
1361 } |
|
1362 sqliteFree(zMaster); |
|
1363 } |
|
1364 |
|
1365 /* The Pager.sectorSize variable may have been updated while rolling |
|
1366 ** back a journal created by a process with a different PAGER_SECTOR_SIZE |
|
1367 ** value. Reset it to the correct value for this process. |
|
1368 */ |
|
1369 pPager->sectorSize = PAGER_SECTOR_SIZE; |
|
1370 return rc; |
|
1371 } |
|
1372 |
|
1373 /* |
|
1374 ** Playback the statement journal. |
|
1375 ** |
|
1376 ** This is similar to playing back the transaction journal but with |
|
1377 ** a few extra twists. |
|
1378 ** |
|
1379 ** (1) The number of pages in the database file at the start of |
|
1380 ** the statement is stored in pPager->stmtSize, not in the |
|
1381 ** journal file itself. |
|
1382 ** |
|
1383 ** (2) In addition to playing back the statement journal, also |
|
1384 ** playback all pages of the transaction journal beginning |
|
1385 ** at offset pPager->stmtJSize. |
|
1386 */ |
|
1387 static int pager_stmt_playback(Pager *pPager){ |
|
1388 i64 szJ; /* Size of the full journal */ |
|
1389 i64 hdrOff; |
|
1390 int nRec; /* Number of Records */ |
|
1391 int i; /* Loop counter */ |
|
1392 int rc; |
|
1393 |
|
1394 szJ = pPager->journalOff; |
|
1395 #ifndef NDEBUG |
|
1396 { |
|
1397 i64 os_szJ; |
|
1398 rc = sqlite3OsFileSize(pPager->jfd, &os_szJ); |
|
1399 if( rc!=SQLITE_OK ) return rc; |
|
1400 assert( szJ==os_szJ ); |
|
1401 } |
|
1402 #endif |
|
1403 |
|
1404 /* Set hdrOff to be the offset to the first journal header written |
|
1405 ** this statement transaction, or the end of the file if no journal |
|
1406 ** header was written. |
|
1407 */ |
|
1408 hdrOff = pPager->stmtHdrOff; |
|
1409 assert( pPager->fullSync || !hdrOff ); |
|
1410 if( !hdrOff ){ |
|
1411 hdrOff = szJ; |
|
1412 } |
|
1413 |
|
1414 /* Truncate the database back to its original size. |
|
1415 */ |
|
1416 if( pPager->state>=PAGER_EXCLUSIVE ){ |
|
1417 rc = pager_truncate(pPager, pPager->stmtSize); |
|
1418 } |
|
1419 pPager->dbSize = pPager->stmtSize; |
|
1420 |
|
1421 /* Figure out how many records are in the statement journal. |
|
1422 */ |
|
1423 assert( pPager->stmtInUse && pPager->journalOpen ); |
|
1424 sqlite3OsSeek(pPager->stfd, 0); |
|
1425 nRec = pPager->stmtNRec; |
|
1426 |
|
1427 /* Copy original pages out of the statement journal and back into the |
|
1428 ** database file. Note that the statement journal omits checksums from |
|
1429 ** each record since power-failure recovery is not important to statement |
|
1430 ** journals. |
|
1431 */ |
|
1432 for(i=nRec-1; i>=0; i--){ |
|
1433 rc = pager_playback_one_page(pPager, pPager->stfd, 0); |
|
1434 assert( rc!=SQLITE_DONE ); |
|
1435 if( rc!=SQLITE_OK ) goto end_stmt_playback; |
|
1436 } |
|
1437 |
|
1438 /* Now roll some pages back from the transaction journal. Pager.stmtJSize |
|
1439 ** was the size of the journal file when this statement was started, so |
|
1440 ** everything after that needs to be rolled back, either into the |
|
1441 ** database, the memory cache, or both. |
|
1442 ** |
|
1443 ** If it is not zero, then Pager.stmtHdrOff is the offset to the start |
|
1444 ** of the first journal header written during this statement transaction. |
|
1445 */ |
|
1446 rc = sqlite3OsSeek(pPager->jfd, pPager->stmtJSize); |
|
1447 if( rc!=SQLITE_OK ){ |
|
1448 goto end_stmt_playback; |
|
1449 } |
|
1450 pPager->journalOff = pPager->stmtJSize; |
|
1451 pPager->cksumInit = pPager->stmtCksum; |
|
1452 assert( JOURNAL_HDR_SZ(pPager)<(pPager->pageSize+8) ); |
|
1453 while( pPager->journalOff <= (hdrOff-(pPager->pageSize+8)) ){ |
|
1454 rc = pager_playback_one_page(pPager, pPager->jfd, 1); |
|
1455 assert( rc!=SQLITE_DONE ); |
|
1456 if( rc!=SQLITE_OK ) goto end_stmt_playback; |
|
1457 } |
|
1458 |
|
1459 while( pPager->journalOff < szJ ){ |
|
1460 u32 nJRec; /* Number of Journal Records */ |
|
1461 u32 dummy; |
|
1462 rc = readJournalHdr(pPager, szJ, &nJRec, &dummy); |
|
1463 if( rc!=SQLITE_OK ){ |
|
1464 assert( rc!=SQLITE_DONE ); |
|
1465 goto end_stmt_playback; |
|
1466 } |
|
1467 if( nJRec==0 ){ |
|
1468 nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8); |
|
1469 } |
|
1470 for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){ |
|
1471 rc = pager_playback_one_page(pPager, pPager->jfd, 1); |
|
1472 assert( rc!=SQLITE_DONE ); |
|
1473 if( rc!=SQLITE_OK ) goto end_stmt_playback; |
|
1474 } |
|
1475 } |
|
1476 |
|
1477 pPager->journalOff = szJ; |
|
1478 |
|
1479 end_stmt_playback: |
|
1480 if( rc==SQLITE_OK) { |
|
1481 pPager->journalOff = szJ; |
|
1482 /* pager_reload_cache(pPager); */ |
|
1483 } |
|
1484 return rc; |
|
1485 } |
|
1486 |
|
1487 /* |
|
1488 ** Change the maximum number of in-memory pages that are allowed. |
|
1489 */ |
|
1490 void sqlite3pager_set_cachesize(Pager *pPager, int mxPage){ |
|
1491 if( mxPage>10 ){ |
|
1492 pPager->mxPage = mxPage; |
|
1493 }else{ |
|
1494 pPager->mxPage = 10; |
|
1495 } |
|
1496 } |
|
1497 |
|
1498 /* |
|
1499 ** Adjust the robustness of the database to damage due to OS crashes |
|
1500 ** or power failures by changing the number of syncs()s when writing |
|
1501 ** the rollback journal. There are three levels: |
|
1502 ** |
|
1503 ** OFF sqlite3OsSync() is never called. This is the default |
|
1504 ** for temporary and transient files. |
|
1505 ** |
|
1506 ** NORMAL The journal is synced once before writes begin on the |
|
1507 ** database. This is normally adequate protection, but |
|
1508 ** it is theoretically possible, though very unlikely, |
|
1509 ** that an inopertune power failure could leave the journal |
|
1510 ** in a state which would cause damage to the database |
|
1511 ** when it is rolled back. |
|
1512 ** |
|
1513 ** FULL The journal is synced twice before writes begin on the |
|
1514 ** database (with some additional information - the nRec field |
|
1515 ** of the journal header - being written in between the two |
|
1516 ** syncs). If we assume that writing a |
|
1517 ** single disk sector is atomic, then this mode provides |
|
1518 ** assurance that the journal will not be corrupted to the |
|
1519 ** point of causing damage to the database during rollback. |
|
1520 ** |
|
1521 ** Numeric values associated with these states are OFF==1, NORMAL=2, |
|
1522 ** and FULL=3. |
|
1523 */ |
|
1524 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
|
1525 void sqlite3pager_set_safety_level(Pager *pPager, int level, int full_fsync){ |
|
1526 pPager->noSync = level==1 || pPager->tempFile; |
|
1527 pPager->fullSync = level==3 && !pPager->tempFile; |
|
1528 pPager->full_fsync = full_fsync; |
|
1529 if( pPager->noSync ) pPager->needSync = 0; |
|
1530 } |
|
1531 #endif |
|
1532 |
|
1533 /* |
|
1534 ** The following global variable is incremented whenever the library |
|
1535 ** attempts to open a temporary file. This information is used for |
|
1536 ** testing and analysis only. |
|
1537 */ |
|
1538 #ifdef SQLITE_TEST |
|
1539 int sqlite3_opentemp_count = 0; |
|
1540 #endif |
|
1541 |
|
1542 /* |
|
1543 ** Open a temporary file. Write the name of the file into zFile |
|
1544 ** (zFile must be at least SQLITE_TEMPNAME_SIZE bytes long.) Write |
|
1545 ** the file descriptor into *fd. Return SQLITE_OK on success or some |
|
1546 ** other error code if we fail. |
|
1547 ** |
|
1548 ** The OS will automatically delete the temporary file when it is |
|
1549 ** closed. |
|
1550 */ |
|
1551 static int sqlite3pager_opentemp(char *zFile, OsFile **pFd){ |
|
1552 int cnt = 8; |
|
1553 int rc; |
|
1554 #ifdef SQLITE_TEST |
|
1555 sqlite3_opentemp_count++; /* Used for testing and analysis only */ |
|
1556 #endif |
|
1557 do{ |
|
1558 cnt--; |
|
1559 sqlite3OsTempFileName(zFile); |
|
1560 rc = sqlite3OsOpenExclusive(zFile, pFd, 1); |
|
1561 }while( cnt>0 && rc!=SQLITE_OK && rc!=SQLITE_NOMEM ); |
|
1562 return rc; |
|
1563 } |
|
1564 |
|
1565 /* |
|
1566 ** Create a new page cache and put a pointer to the page cache in *ppPager. |
|
1567 ** The file to be cached need not exist. The file is not locked until |
|
1568 ** the first call to sqlite3pager_get() and is only held open until the |
|
1569 ** last page is released using sqlite3pager_unref(). |
|
1570 ** |
|
1571 ** If zFilename is NULL then a randomly-named temporary file is created |
|
1572 ** and used as the file to be cached. The file will be deleted |
|
1573 ** automatically when it is closed. |
|
1574 ** |
|
1575 ** If zFilename is ":memory:" then all information is held in cache. |
|
1576 ** It is never written to disk. This can be used to implement an |
|
1577 ** in-memory database. |
|
1578 */ |
|
1579 int sqlite3pager_open( |
|
1580 Pager **ppPager, /* Return the Pager structure here */ |
|
1581 const char *zFilename, /* Name of the database file to open */ |
|
1582 int nExtra, /* Extra bytes append to each in-memory page */ |
|
1583 int flags /* flags controlling this file */ |
|
1584 ){ |
|
1585 Pager *pPager = 0; |
|
1586 char *zFullPathname = 0; |
|
1587 int nameLen; /* Compiler is wrong. This is always initialized before use */ |
|
1588 OsFile *fd; |
|
1589 int rc = SQLITE_OK; |
|
1590 int i; |
|
1591 int tempFile = 0; |
|
1592 int memDb = 0; |
|
1593 int readOnly = 0; |
|
1594 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; |
|
1595 int noReadlock = (flags & PAGER_NO_READLOCK)!=0; |
|
1596 char zTemp[SQLITE_TEMPNAME_SIZE]; |
|
1597 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
1598 /* A malloc() cannot fail in sqlite3ThreadData() as one or more calls to |
|
1599 ** malloc() must have already been made by this thread before it gets |
|
1600 ** to this point. This means the ThreadData must have been allocated already |
|
1601 ** so that ThreadData.nAlloc can be set. It would be nice to assert |
|
1602 ** that ThreadData.nAlloc is non-zero, but alas this breaks test cases |
|
1603 ** written to invoke the pager directly. |
|
1604 */ |
|
1605 ThreadData *pTsd = sqlite3ThreadData(); |
|
1606 assert( pTsd ); |
|
1607 #endif |
|
1608 |
|
1609 /* If malloc() has already failed return SQLITE_NOMEM. Before even |
|
1610 ** testing for this, set *ppPager to NULL so the caller knows the pager |
|
1611 ** structure was never allocated. |
|
1612 */ |
|
1613 *ppPager = 0; |
|
1614 if( sqlite3MallocFailed() ){ |
|
1615 return SQLITE_NOMEM; |
|
1616 } |
|
1617 memset(&fd, 0, sizeof(fd)); |
|
1618 |
|
1619 /* Open the pager file and set zFullPathname to point at malloc()ed |
|
1620 ** memory containing the complete filename (i.e. including the directory). |
|
1621 */ |
|
1622 if( zFilename && zFilename[0] ){ |
|
1623 #ifndef SQLITE_OMIT_MEMORYDB |
|
1624 if( strcmp(zFilename,":memory:")==0 ){ |
|
1625 memDb = 1; |
|
1626 zFullPathname = sqliteStrDup(""); |
|
1627 }else |
|
1628 #endif |
|
1629 { |
|
1630 zFullPathname = sqlite3OsFullPathname(zFilename); |
|
1631 if( zFullPathname ){ |
|
1632 rc = sqlite3OsOpenReadWrite(zFullPathname, &fd, &readOnly); |
|
1633 } |
|
1634 } |
|
1635 }else{ |
|
1636 rc = sqlite3pager_opentemp(zTemp, &fd); |
|
1637 zFilename = zTemp; |
|
1638 zFullPathname = sqlite3OsFullPathname(zFilename); |
|
1639 if( rc==SQLITE_OK ){ |
|
1640 tempFile = 1; |
|
1641 } |
|
1642 } |
|
1643 |
|
1644 /* Allocate the Pager structure. As part of the same allocation, allocate |
|
1645 ** space for the full paths of the file, directory and journal |
|
1646 ** (Pager.zFilename, Pager.zDirectory and Pager.zJournal). |
|
1647 */ |
|
1648 if( zFullPathname ){ |
|
1649 nameLen = strlen(zFullPathname); |
|
1650 pPager = sqliteMalloc( sizeof(*pPager) + nameLen*3 + 30 ); |
|
1651 } |
|
1652 |
|
1653 /* If an error occured in either of the blocks above, free the memory |
|
1654 ** pointed to by zFullPathname, free the Pager structure and close the |
|
1655 ** file. Since the pager is not allocated there is no need to set |
|
1656 ** any Pager.errMask variables. |
|
1657 */ |
|
1658 if( !pPager || !zFullPathname || rc!=SQLITE_OK ){ |
|
1659 sqlite3OsClose(&fd); |
|
1660 sqliteFree(zFullPathname); |
|
1661 sqliteFree(pPager); |
|
1662 return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc); |
|
1663 } |
|
1664 |
|
1665 TRACE3("OPEN %d %s\n", FILEHANDLEID(fd), zFullPathname); |
|
1666 pPager->zFilename = (char*)&pPager[1]; |
|
1667 pPager->zDirectory = &pPager->zFilename[nameLen+1]; |
|
1668 pPager->zJournal = &pPager->zDirectory[nameLen+1]; |
|
1669 strcpy(pPager->zFilename, zFullPathname); |
|
1670 strcpy(pPager->zDirectory, zFullPathname); |
|
1671 |
|
1672 for(i=nameLen; i>0 && pPager->zDirectory[i-1]!='/'; i--){} |
|
1673 if( i>0 ) pPager->zDirectory[i-1] = 0; |
|
1674 strcpy(pPager->zJournal, zFullPathname); |
|
1675 sqliteFree(zFullPathname); |
|
1676 strcpy(&pPager->zJournal[nameLen], "-journal"); |
|
1677 pPager->fd = fd; |
|
1678 /* pPager->journalOpen = 0; */ |
|
1679 pPager->useJournal = useJournal && !memDb; |
|
1680 pPager->noReadlock = noReadlock && readOnly; |
|
1681 /* pPager->stmtOpen = 0; */ |
|
1682 /* pPager->stmtInUse = 0; */ |
|
1683 /* pPager->nRef = 0; */ |
|
1684 pPager->dbSize = memDb-1; |
|
1685 pPager->pageSize = SQLITE_DEFAULT_PAGE_SIZE; |
|
1686 /* pPager->stmtSize = 0; */ |
|
1687 /* pPager->stmtJSize = 0; */ |
|
1688 /* pPager->nPage = 0; */ |
|
1689 /* pPager->nMaxPage = 0; */ |
|
1690 pPager->mxPage = 100; |
|
1691 assert( PAGER_UNLOCK==0 ); |
|
1692 /* pPager->state = PAGER_UNLOCK; */ |
|
1693 /* pPager->errMask = 0; */ |
|
1694 pPager->tempFile = tempFile; |
|
1695 pPager->memDb = memDb; |
|
1696 pPager->readOnly = readOnly; |
|
1697 /* pPager->needSync = 0; */ |
|
1698 pPager->noSync = pPager->tempFile || !useJournal; |
|
1699 pPager->fullSync = (pPager->noSync?0:1); |
|
1700 /* pPager->pFirst = 0; */ |
|
1701 /* pPager->pFirstSynced = 0; */ |
|
1702 /* pPager->pLast = 0; */ |
|
1703 pPager->nExtra = FORCE_ALIGNMENT(nExtra); |
|
1704 pPager->sectorSize = PAGER_SECTOR_SIZE; |
|
1705 /* pPager->pBusyHandler = 0; */ |
|
1706 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ |
|
1707 *ppPager = pPager; |
|
1708 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
1709 pPager->pNext = pTsd->pPager; |
|
1710 pTsd->pPager = pPager; |
|
1711 #endif |
|
1712 return SQLITE_OK; |
|
1713 } |
|
1714 |
|
1715 /* |
|
1716 ** Set the busy handler function. |
|
1717 */ |
|
1718 void sqlite3pager_set_busyhandler(Pager *pPager, BusyHandler *pBusyHandler){ |
|
1719 pPager->pBusyHandler = pBusyHandler; |
|
1720 } |
|
1721 |
|
1722 /* |
|
1723 ** Set the destructor for this pager. If not NULL, the destructor is called |
|
1724 ** when the reference count on each page reaches zero. The destructor can |
|
1725 ** be used to clean up information in the extra segment appended to each page. |
|
1726 ** |
|
1727 ** The destructor is not called as a result sqlite3pager_close(). |
|
1728 ** Destructors are only called by sqlite3pager_unref(). |
|
1729 */ |
|
1730 void sqlite3pager_set_destructor(Pager *pPager, void (*xDesc)(void*,int)){ |
|
1731 pPager->xDestructor = xDesc; |
|
1732 } |
|
1733 |
|
1734 /* |
|
1735 ** Set the reinitializer for this pager. If not NULL, the reinitializer |
|
1736 ** is called when the content of a page in cache is restored to its original |
|
1737 ** value as a result of a rollback. The callback gives higher-level code |
|
1738 ** an opportunity to restore the EXTRA section to agree with the restored |
|
1739 ** page data. |
|
1740 */ |
|
1741 void sqlite3pager_set_reiniter(Pager *pPager, void (*xReinit)(void*,int)){ |
|
1742 pPager->xReiniter = xReinit; |
|
1743 } |
|
1744 |
|
1745 /* |
|
1746 ** Set the page size. Return the new size. If the suggest new page |
|
1747 ** size is inappropriate, then an alternative page size is selected |
|
1748 ** and returned. |
|
1749 */ |
|
1750 int sqlite3pager_set_pagesize(Pager *pPager, int pageSize){ |
|
1751 assert( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE ); |
|
1752 if( !pPager->memDb ){ |
|
1753 pPager->pageSize = pageSize; |
|
1754 } |
|
1755 return pPager->pageSize; |
|
1756 } |
|
1757 |
|
1758 /* |
|
1759 ** The following set of routines are used to disable the simulated |
|
1760 ** I/O error mechanism. These routines are used to avoid simulated |
|
1761 ** errors in places where we do not care about errors. |
|
1762 ** |
|
1763 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops |
|
1764 ** and generate no code. |
|
1765 */ |
|
1766 #ifdef SQLITE_TEST |
|
1767 extern int sqlite3_io_error_pending; |
|
1768 extern int sqlite3_io_error_hit; |
|
1769 static int saved_cnt; |
|
1770 void clear_simulated_io_error(){ |
|
1771 sqlite3_io_error_hit = 0; |
|
1772 } |
|
1773 void disable_simulated_io_errors(void){ |
|
1774 saved_cnt = sqlite3_io_error_pending; |
|
1775 sqlite3_io_error_pending = -1; |
|
1776 } |
|
1777 void enable_simulated_io_errors(void){ |
|
1778 sqlite3_io_error_pending = saved_cnt; |
|
1779 } |
|
1780 #else |
|
1781 # define clear_simulated_io_error() |
|
1782 # define disable_simulated_io_errors() |
|
1783 # define enable_simulated_io_errors() |
|
1784 #endif |
|
1785 |
|
1786 /* |
|
1787 ** Read the first N bytes from the beginning of the file into memory |
|
1788 ** that pDest points to. |
|
1789 ** |
|
1790 ** No error checking is done. The rational for this is that this function |
|
1791 ** may be called even if the file does not exist or contain a header. In |
|
1792 ** these cases sqlite3OsRead() will return an error, to which the correct |
|
1793 ** response is to zero the memory at pDest and continue. A real IO error |
|
1794 ** will presumably recur and be picked up later (Todo: Think about this). |
|
1795 */ |
|
1796 void sqlite3pager_read_fileheader(Pager *pPager, int N, unsigned char *pDest){ |
|
1797 memset(pDest, 0, N); |
|
1798 if( MEMDB==0 ){ |
|
1799 disable_simulated_io_errors(); |
|
1800 sqlite3OsSeek(pPager->fd, 0); |
|
1801 sqlite3OsRead(pPager->fd, pDest, N); |
|
1802 enable_simulated_io_errors(); |
|
1803 } |
|
1804 } |
|
1805 |
|
1806 /* |
|
1807 ** Return the total number of pages in the disk file associated with |
|
1808 ** pPager. |
|
1809 ** |
|
1810 ** If the PENDING_BYTE lies on the page directly after the end of the |
|
1811 ** file, then consider this page part of the file too. For example, if |
|
1812 ** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the |
|
1813 ** file is 4096 bytes, 5 is returned instead of 4. |
|
1814 */ |
|
1815 int sqlite3pager_pagecount(Pager *pPager){ |
|
1816 i64 n; |
|
1817 assert( pPager!=0 ); |
|
1818 if( pPager->dbSize>=0 ){ |
|
1819 n = pPager->dbSize; |
|
1820 } else { |
|
1821 if( sqlite3OsFileSize(pPager->fd, &n)!=SQLITE_OK ){ |
|
1822 pager_error(pPager, SQLITE_IOERR); |
|
1823 return 0; |
|
1824 } |
|
1825 if( n>0 && n<pPager->pageSize ){ |
|
1826 n = 1; |
|
1827 }else{ |
|
1828 n /= pPager->pageSize; |
|
1829 } |
|
1830 if( pPager->state!=PAGER_UNLOCK ){ |
|
1831 pPager->dbSize = n; |
|
1832 } |
|
1833 } |
|
1834 if( n==(PENDING_BYTE/pPager->pageSize) ){ |
|
1835 n++; |
|
1836 } |
|
1837 return n; |
|
1838 } |
|
1839 |
|
1840 |
|
1841 #ifndef SQLITE_OMIT_MEMORYDB |
|
1842 /* |
|
1843 ** Clear a PgHistory block |
|
1844 */ |
|
1845 static void clearHistory(PgHistory *pHist){ |
|
1846 sqliteFree(pHist->pOrig); |
|
1847 sqliteFree(pHist->pStmt); |
|
1848 pHist->pOrig = 0; |
|
1849 pHist->pStmt = 0; |
|
1850 } |
|
1851 #else |
|
1852 #define clearHistory(x) |
|
1853 #endif |
|
1854 |
|
1855 /* |
|
1856 ** Forward declaration |
|
1857 */ |
|
1858 static int syncJournal(Pager*); |
|
1859 |
|
1860 /* |
|
1861 ** Unlink pPg from it's hash chain. Also set the page number to 0 to indicate |
|
1862 ** that the page is not part of any hash chain. This is required because the |
|
1863 ** sqlite3pager_movepage() routine can leave a page in the |
|
1864 ** pNextFree/pPrevFree list that is not a part of any hash-chain. |
|
1865 */ |
|
1866 static void unlinkHashChain(Pager *pPager, PgHdr *pPg){ |
|
1867 if( pPg->pgno==0 ){ |
|
1868 assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); |
|
1869 return; |
|
1870 } |
|
1871 if( pPg->pNextHash ){ |
|
1872 pPg->pNextHash->pPrevHash = pPg->pPrevHash; |
|
1873 } |
|
1874 if( pPg->pPrevHash ){ |
|
1875 assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg ); |
|
1876 pPg->pPrevHash->pNextHash = pPg->pNextHash; |
|
1877 }else{ |
|
1878 int h = pPg->pgno & (pPager->nHash-1); |
|
1879 pPager->aHash[h] = pPg->pNextHash; |
|
1880 } |
|
1881 if( MEMDB ){ |
|
1882 clearHistory(PGHDR_TO_HIST(pPg, pPager)); |
|
1883 } |
|
1884 pPg->pgno = 0; |
|
1885 pPg->pNextHash = pPg->pPrevHash = 0; |
|
1886 } |
|
1887 |
|
1888 /* |
|
1889 ** Unlink a page from the free list (the list of all pages where nRef==0) |
|
1890 ** and from its hash collision chain. |
|
1891 */ |
|
1892 static void unlinkPage(PgHdr *pPg){ |
|
1893 Pager *pPager = pPg->pPager; |
|
1894 |
|
1895 /* Keep the pFirstSynced pointer pointing at the first synchronized page */ |
|
1896 if( pPg==pPager->pFirstSynced ){ |
|
1897 PgHdr *p = pPg->pNextFree; |
|
1898 while( p && p->needSync ){ p = p->pNextFree; } |
|
1899 pPager->pFirstSynced = p; |
|
1900 } |
|
1901 |
|
1902 /* Unlink from the freelist */ |
|
1903 if( pPg->pPrevFree ){ |
|
1904 pPg->pPrevFree->pNextFree = pPg->pNextFree; |
|
1905 }else{ |
|
1906 assert( pPager->pFirst==pPg ); |
|
1907 pPager->pFirst = pPg->pNextFree; |
|
1908 } |
|
1909 if( pPg->pNextFree ){ |
|
1910 pPg->pNextFree->pPrevFree = pPg->pPrevFree; |
|
1911 }else{ |
|
1912 assert( pPager->pLast==pPg ); |
|
1913 pPager->pLast = pPg->pPrevFree; |
|
1914 } |
|
1915 pPg->pNextFree = pPg->pPrevFree = 0; |
|
1916 |
|
1917 /* Unlink from the pgno hash table */ |
|
1918 unlinkHashChain(pPager, pPg); |
|
1919 } |
|
1920 |
|
1921 #ifndef SQLITE_OMIT_MEMORYDB |
|
1922 /* |
|
1923 ** This routine is used to truncate an in-memory database. Delete |
|
1924 ** all pages whose pgno is larger than pPager->dbSize and is unreferenced. |
|
1925 ** Referenced pages larger than pPager->dbSize are zeroed. |
|
1926 */ |
|
1927 static void memoryTruncate(Pager *pPager){ |
|
1928 PgHdr *pPg; |
|
1929 PgHdr **ppPg; |
|
1930 int dbSize = pPager->dbSize; |
|
1931 |
|
1932 ppPg = &pPager->pAll; |
|
1933 while( (pPg = *ppPg)!=0 ){ |
|
1934 if( pPg->pgno<=dbSize ){ |
|
1935 ppPg = &pPg->pNextAll; |
|
1936 }else if( pPg->nRef>0 ){ |
|
1937 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); |
|
1938 ppPg = &pPg->pNextAll; |
|
1939 }else{ |
|
1940 *ppPg = pPg->pNextAll; |
|
1941 unlinkPage(pPg); |
|
1942 makeClean(pPg); |
|
1943 sqliteFree(pPg); |
|
1944 pPager->nPage--; |
|
1945 } |
|
1946 } |
|
1947 } |
|
1948 #else |
|
1949 #define memoryTruncate(p) |
|
1950 #endif |
|
1951 |
|
1952 /* |
|
1953 ** Try to obtain a lock on a file. Invoke the busy callback if the lock |
|
1954 ** is currently not available. Repeat until the busy callback returns |
|
1955 ** false or until the lock succeeds. |
|
1956 ** |
|
1957 ** Return SQLITE_OK on success and an error code if we cannot obtain |
|
1958 ** the lock. |
|
1959 */ |
|
1960 static int pager_wait_on_lock(Pager *pPager, int locktype){ |
|
1961 int rc; |
|
1962 assert( PAGER_SHARED==SHARED_LOCK ); |
|
1963 assert( PAGER_RESERVED==RESERVED_LOCK ); |
|
1964 assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK ); |
|
1965 if( pPager->state>=locktype ){ |
|
1966 rc = SQLITE_OK; |
|
1967 }else{ |
|
1968 do { |
|
1969 rc = sqlite3OsLock(pPager->fd, locktype); |
|
1970 }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) ); |
|
1971 if( rc==SQLITE_OK ){ |
|
1972 pPager->state = locktype; |
|
1973 } |
|
1974 } |
|
1975 return rc; |
|
1976 } |
|
1977 |
|
1978 /* |
|
1979 ** Truncate the file to the number of pages specified. |
|
1980 */ |
|
1981 int sqlite3pager_truncate(Pager *pPager, Pgno nPage){ |
|
1982 int rc; |
|
1983 sqlite3pager_pagecount(pPager); |
|
1984 if( pPager->errCode ){ |
|
1985 rc = pPager->errCode; |
|
1986 return rc; |
|
1987 } |
|
1988 if( nPage>=(unsigned)pPager->dbSize ){ |
|
1989 return SQLITE_OK; |
|
1990 } |
|
1991 if( MEMDB ){ |
|
1992 pPager->dbSize = nPage; |
|
1993 memoryTruncate(pPager); |
|
1994 return SQLITE_OK; |
|
1995 } |
|
1996 rc = syncJournal(pPager); |
|
1997 if( rc!=SQLITE_OK ){ |
|
1998 return rc; |
|
1999 } |
|
2000 |
|
2001 /* Get an exclusive lock on the database before truncating. */ |
|
2002 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); |
|
2003 if( rc!=SQLITE_OK ){ |
|
2004 return rc; |
|
2005 } |
|
2006 |
|
2007 rc = pager_truncate(pPager, nPage); |
|
2008 if( rc==SQLITE_OK ){ |
|
2009 pPager->dbSize = nPage; |
|
2010 } |
|
2011 return rc; |
|
2012 } |
|
2013 |
|
2014 /* |
|
2015 ** Shutdown the page cache. Free all memory and close all files. |
|
2016 ** |
|
2017 ** If a transaction was in progress when this routine is called, that |
|
2018 ** transaction is rolled back. All outstanding pages are invalidated |
|
2019 ** and their memory is freed. Any attempt to use a page associated |
|
2020 ** with this page cache after this function returns will likely |
|
2021 ** result in a coredump. |
|
2022 ** |
|
2023 ** This function always succeeds. If a transaction is active an attempt |
|
2024 ** is made to roll it back. If an error occurs during the rollback |
|
2025 ** a hot journal may be left in the filesystem but no error is returned |
|
2026 ** to the caller. |
|
2027 */ |
|
2028 int sqlite3pager_close(Pager *pPager){ |
|
2029 PgHdr *pPg, *pNext; |
|
2030 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
2031 /* A malloc() cannot fail in sqlite3ThreadData() as one or more calls to |
|
2032 ** malloc() must have already been made by this thread before it gets |
|
2033 ** to this point. This means the ThreadData must have been allocated already |
|
2034 ** so that ThreadData.nAlloc can be set. |
|
2035 */ |
|
2036 ThreadData *pTsd = sqlite3ThreadData(); |
|
2037 assert( pPager ); |
|
2038 assert( pTsd && pTsd->nAlloc ); |
|
2039 #endif |
|
2040 |
|
2041 switch( pPager->state ){ |
|
2042 case PAGER_RESERVED: |
|
2043 case PAGER_SYNCED: |
|
2044 case PAGER_EXCLUSIVE: { |
|
2045 /* We ignore any IO errors that occur during the rollback |
|
2046 ** operation. So disable IO error simulation so that testing |
|
2047 ** works more easily. |
|
2048 */ |
|
2049 disable_simulated_io_errors(); |
|
2050 sqlite3pager_rollback(pPager); |
|
2051 enable_simulated_io_errors(); |
|
2052 if( !MEMDB ){ |
|
2053 sqlite3OsUnlock(pPager->fd, NO_LOCK); |
|
2054 } |
|
2055 assert( pPager->errCode || pPager->journalOpen==0 ); |
|
2056 break; |
|
2057 } |
|
2058 case PAGER_SHARED: { |
|
2059 if( !MEMDB ){ |
|
2060 sqlite3OsUnlock(pPager->fd, NO_LOCK); |
|
2061 } |
|
2062 break; |
|
2063 } |
|
2064 default: { |
|
2065 /* Do nothing */ |
|
2066 break; |
|
2067 } |
|
2068 } |
|
2069 for(pPg=pPager->pAll; pPg; pPg=pNext){ |
|
2070 #ifndef NDEBUG |
|
2071 if( MEMDB ){ |
|
2072 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); |
|
2073 assert( !pPg->alwaysRollback ); |
|
2074 assert( !pHist->pOrig ); |
|
2075 assert( !pHist->pStmt ); |
|
2076 } |
|
2077 #endif |
|
2078 pNext = pPg->pNextAll; |
|
2079 sqliteFree(pPg); |
|
2080 } |
|
2081 TRACE2("CLOSE %d\n", PAGERID(pPager)); |
|
2082 assert( pPager->errCode || (pPager->journalOpen==0 && pPager->stmtOpen==0) ); |
|
2083 if( pPager->journalOpen ){ |
|
2084 sqlite3OsClose(&pPager->jfd); |
|
2085 } |
|
2086 sqliteFree(pPager->aInJournal); |
|
2087 if( pPager->stmtOpen ){ |
|
2088 sqlite3OsClose(&pPager->stfd); |
|
2089 } |
|
2090 sqlite3OsClose(&pPager->fd); |
|
2091 /* Temp files are automatically deleted by the OS |
|
2092 ** if( pPager->tempFile ){ |
|
2093 ** sqlite3OsDelete(pPager->zFilename); |
|
2094 ** } |
|
2095 */ |
|
2096 |
|
2097 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
2098 /* Remove the pager from the linked list of pagers starting at |
|
2099 ** ThreadData.pPager if memory-management is enabled. |
|
2100 */ |
|
2101 if( pPager==pTsd->pPager ){ |
|
2102 pTsd->pPager = pPager->pNext; |
|
2103 }else{ |
|
2104 Pager *pTmp; |
|
2105 for(pTmp = pTsd->pPager; pTmp->pNext!=pPager; pTmp=pTmp->pNext){} |
|
2106 pTmp->pNext = pPager->pNext; |
|
2107 } |
|
2108 #endif |
|
2109 sqliteFree(pPager->aHash); |
|
2110 sqliteFree(pPager); |
|
2111 return SQLITE_OK; |
|
2112 } |
|
2113 |
|
2114 /* |
|
2115 ** Return the page number for the given page data. |
|
2116 */ |
|
2117 Pgno sqlite3pager_pagenumber(void *pData){ |
|
2118 PgHdr *p = DATA_TO_PGHDR(pData); |
|
2119 return p->pgno; |
|
2120 } |
|
2121 |
|
2122 /* |
|
2123 ** The page_ref() function increments the reference count for a page. |
|
2124 ** If the page is currently on the freelist (the reference count is zero) then |
|
2125 ** remove it from the freelist. |
|
2126 ** |
|
2127 ** For non-test systems, page_ref() is a macro that calls _page_ref() |
|
2128 ** online of the reference count is zero. For test systems, page_ref() |
|
2129 ** is a real function so that we can set breakpoints and trace it. |
|
2130 */ |
|
2131 static void _page_ref(PgHdr *pPg){ |
|
2132 if( pPg->nRef==0 ){ |
|
2133 /* The page is currently on the freelist. Remove it. */ |
|
2134 if( pPg==pPg->pPager->pFirstSynced ){ |
|
2135 PgHdr *p = pPg->pNextFree; |
|
2136 while( p && p->needSync ){ p = p->pNextFree; } |
|
2137 pPg->pPager->pFirstSynced = p; |
|
2138 } |
|
2139 if( pPg->pPrevFree ){ |
|
2140 pPg->pPrevFree->pNextFree = pPg->pNextFree; |
|
2141 }else{ |
|
2142 pPg->pPager->pFirst = pPg->pNextFree; |
|
2143 } |
|
2144 if( pPg->pNextFree ){ |
|
2145 pPg->pNextFree->pPrevFree = pPg->pPrevFree; |
|
2146 }else{ |
|
2147 pPg->pPager->pLast = pPg->pPrevFree; |
|
2148 } |
|
2149 pPg->pPager->nRef++; |
|
2150 } |
|
2151 pPg->nRef++; |
|
2152 REFINFO(pPg); |
|
2153 } |
|
2154 #ifdef SQLITE_DEBUG |
|
2155 static void page_ref(PgHdr *pPg){ |
|
2156 if( pPg->nRef==0 ){ |
|
2157 _page_ref(pPg); |
|
2158 }else{ |
|
2159 pPg->nRef++; |
|
2160 REFINFO(pPg); |
|
2161 } |
|
2162 } |
|
2163 #else |
|
2164 # define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++) |
|
2165 #endif |
|
2166 |
|
2167 /* |
|
2168 ** Increment the reference count for a page. The input pointer is |
|
2169 ** a reference to the page data. |
|
2170 */ |
|
2171 int sqlite3pager_ref(void *pData){ |
|
2172 PgHdr *pPg = DATA_TO_PGHDR(pData); |
|
2173 page_ref(pPg); |
|
2174 return SQLITE_OK; |
|
2175 } |
|
2176 |
|
2177 /* |
|
2178 ** Sync the journal. In other words, make sure all the pages that have |
|
2179 ** been written to the journal have actually reached the surface of the |
|
2180 ** disk. It is not safe to modify the original database file until after |
|
2181 ** the journal has been synced. If the original database is modified before |
|
2182 ** the journal is synced and a power failure occurs, the unsynced journal |
|
2183 ** data would be lost and we would be unable to completely rollback the |
|
2184 ** database changes. Database corruption would occur. |
|
2185 ** |
|
2186 ** This routine also updates the nRec field in the header of the journal. |
|
2187 ** (See comments on the pager_playback() routine for additional information.) |
|
2188 ** If the sync mode is FULL, two syncs will occur. First the whole journal |
|
2189 ** is synced, then the nRec field is updated, then a second sync occurs. |
|
2190 ** |
|
2191 ** For temporary databases, we do not care if we are able to rollback |
|
2192 ** after a power failure, so sync occurs. |
|
2193 ** |
|
2194 ** This routine clears the needSync field of every page current held in |
|
2195 ** memory. |
|
2196 */ |
|
2197 static int syncJournal(Pager *pPager){ |
|
2198 PgHdr *pPg; |
|
2199 int rc = SQLITE_OK; |
|
2200 |
|
2201 /* Sync the journal before modifying the main database |
|
2202 ** (assuming there is a journal and it needs to be synced.) |
|
2203 */ |
|
2204 if( pPager->needSync ){ |
|
2205 if( !pPager->tempFile ){ |
|
2206 assert( pPager->journalOpen ); |
|
2207 /* assert( !pPager->noSync ); // noSync might be set if synchronous |
|
2208 ** was turned off after the transaction was started. Ticket #615 */ |
|
2209 #ifndef NDEBUG |
|
2210 { |
|
2211 /* Make sure the pPager->nRec counter we are keeping agrees |
|
2212 ** with the nRec computed from the size of the journal file. |
|
2213 */ |
|
2214 i64 jSz; |
|
2215 rc = sqlite3OsFileSize(pPager->jfd, &jSz); |
|
2216 if( rc!=0 ) return rc; |
|
2217 assert( pPager->journalOff==jSz ); |
|
2218 } |
|
2219 #endif |
|
2220 { |
|
2221 /* Write the nRec value into the journal file header. If in |
|
2222 ** full-synchronous mode, sync the journal first. This ensures that |
|
2223 ** all data has really hit the disk before nRec is updated to mark |
|
2224 ** it as a candidate for rollback. |
|
2225 */ |
|
2226 if( pPager->fullSync ){ |
|
2227 TRACE2("SYNC journal of %d\n", PAGERID(pPager)); |
|
2228 rc = sqlite3OsSync(pPager->jfd, 0); |
|
2229 if( rc!=0 ) return rc; |
|
2230 } |
|
2231 rc = sqlite3OsSeek(pPager->jfd, |
|
2232 pPager->journalHdr + sizeof(aJournalMagic)); |
|
2233 if( rc ) return rc; |
|
2234 rc = write32bits(pPager->jfd, pPager->nRec); |
|
2235 if( rc ) return rc; |
|
2236 |
|
2237 rc = sqlite3OsSeek(pPager->jfd, pPager->journalOff); |
|
2238 if( rc ) return rc; |
|
2239 } |
|
2240 TRACE2("SYNC journal of %d\n", PAGERID(pPager)); |
|
2241 rc = sqlite3OsSync(pPager->jfd, pPager->full_fsync); |
|
2242 if( rc!=0 ) return rc; |
|
2243 pPager->journalStarted = 1; |
|
2244 } |
|
2245 pPager->needSync = 0; |
|
2246 |
|
2247 /* Erase the needSync flag from every page. |
|
2248 */ |
|
2249 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ |
|
2250 pPg->needSync = 0; |
|
2251 } |
|
2252 pPager->pFirstSynced = pPager->pFirst; |
|
2253 } |
|
2254 |
|
2255 #ifndef NDEBUG |
|
2256 /* If the Pager.needSync flag is clear then the PgHdr.needSync |
|
2257 ** flag must also be clear for all pages. Verify that this |
|
2258 ** invariant is true. |
|
2259 */ |
|
2260 else{ |
|
2261 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ |
|
2262 assert( pPg->needSync==0 ); |
|
2263 } |
|
2264 assert( pPager->pFirstSynced==pPager->pFirst ); |
|
2265 } |
|
2266 #endif |
|
2267 |
|
2268 return rc; |
|
2269 } |
|
2270 |
|
2271 /* |
|
2272 ** Merge two lists of pages connected by pDirty and in pgno order. |
|
2273 ** Do not both fixing the pPrevDirty pointers. |
|
2274 */ |
|
2275 static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){ |
|
2276 PgHdr result, *pTail; |
|
2277 pTail = &result; |
|
2278 while( pA && pB ){ |
|
2279 if( pA->pgno<pB->pgno ){ |
|
2280 pTail->pDirty = pA; |
|
2281 pTail = pA; |
|
2282 pA = pA->pDirty; |
|
2283 }else{ |
|
2284 pTail->pDirty = pB; |
|
2285 pTail = pB; |
|
2286 pB = pB->pDirty; |
|
2287 } |
|
2288 } |
|
2289 if( pA ){ |
|
2290 pTail->pDirty = pA; |
|
2291 }else if( pB ){ |
|
2292 pTail->pDirty = pB; |
|
2293 }else{ |
|
2294 pTail->pDirty = 0; |
|
2295 } |
|
2296 return result.pDirty; |
|
2297 } |
|
2298 |
|
2299 /* |
|
2300 ** Sort the list of pages in accending order by pgno. Pages are |
|
2301 ** connected by pDirty pointers. The pPrevDirty pointers are |
|
2302 ** corrupted by this sort. |
|
2303 */ |
|
2304 #define N_SORT_BUCKET 25 |
|
2305 static PgHdr *sort_pagelist(PgHdr *pIn){ |
|
2306 PgHdr *a[N_SORT_BUCKET], *p; |
|
2307 int i; |
|
2308 memset(a, 0, sizeof(a)); |
|
2309 while( pIn ){ |
|
2310 p = pIn; |
|
2311 pIn = p->pDirty; |
|
2312 p->pDirty = 0; |
|
2313 for(i=0; i<N_SORT_BUCKET-1; i++){ |
|
2314 if( a[i]==0 ){ |
|
2315 a[i] = p; |
|
2316 break; |
|
2317 }else{ |
|
2318 p = merge_pagelist(a[i], p); |
|
2319 a[i] = 0; |
|
2320 } |
|
2321 } |
|
2322 if( i==N_SORT_BUCKET-1 ){ |
|
2323 a[i] = merge_pagelist(a[i], p); |
|
2324 } |
|
2325 } |
|
2326 p = a[0]; |
|
2327 for(i=1; i<N_SORT_BUCKET; i++){ |
|
2328 p = merge_pagelist(p, a[i]); |
|
2329 } |
|
2330 return p; |
|
2331 } |
|
2332 |
|
2333 /* |
|
2334 ** Given a list of pages (connected by the PgHdr.pDirty pointer) write |
|
2335 ** every one of those pages out to the database file and mark them all |
|
2336 ** as clean. |
|
2337 */ |
|
2338 static int pager_write_pagelist(PgHdr *pList){ |
|
2339 Pager *pPager; |
|
2340 int rc; |
|
2341 |
|
2342 if( pList==0 ) return SQLITE_OK; |
|
2343 pPager = pList->pPager; |
|
2344 |
|
2345 /* At this point there may be either a RESERVED or EXCLUSIVE lock on the |
|
2346 ** database file. If there is already an EXCLUSIVE lock, the following |
|
2347 ** calls to sqlite3OsLock() are no-ops. |
|
2348 ** |
|
2349 ** Moving the lock from RESERVED to EXCLUSIVE actually involves going |
|
2350 ** through an intermediate state PENDING. A PENDING lock prevents new |
|
2351 ** readers from attaching to the database but is unsufficient for us to |
|
2352 ** write. The idea of a PENDING lock is to prevent new readers from |
|
2353 ** coming in while we wait for existing readers to clear. |
|
2354 ** |
|
2355 ** While the pager is in the RESERVED state, the original database file |
|
2356 ** is unchanged and we can rollback without having to playback the |
|
2357 ** journal into the original database file. Once we transition to |
|
2358 ** EXCLUSIVE, it means the database file has been changed and any rollback |
|
2359 ** will require a journal playback. |
|
2360 */ |
|
2361 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); |
|
2362 if( rc!=SQLITE_OK ){ |
|
2363 return rc; |
|
2364 } |
|
2365 |
|
2366 pList = sort_pagelist(pList); |
|
2367 while( pList ){ |
|
2368 assert( pList->dirty ); |
|
2369 rc = sqlite3OsSeek(pPager->fd, (pList->pgno-1)*(i64)pPager->pageSize); |
|
2370 if( rc ) return rc; |
|
2371 /* If there are dirty pages in the page cache with page numbers greater |
|
2372 ** than Pager.dbSize, this means sqlite3pager_truncate() was called to |
|
2373 ** make the file smaller (presumably by auto-vacuum code). Do not write |
|
2374 ** any such pages to the file. |
|
2375 */ |
|
2376 if( pList->pgno<=pPager->dbSize ){ |
|
2377 char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6); |
|
2378 TRACE3("STORE %d page %d\n", PAGERID(pPager), pList->pgno); |
|
2379 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize); |
|
2380 TEST_INCR(pPager->nWrite); |
|
2381 } |
|
2382 #ifndef NDEBUG |
|
2383 else{ |
|
2384 TRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno); |
|
2385 } |
|
2386 #endif |
|
2387 if( rc ) return rc; |
|
2388 pList->dirty = 0; |
|
2389 #ifdef SQLITE_CHECK_PAGES |
|
2390 pList->pageHash = pager_pagehash(pList); |
|
2391 #endif |
|
2392 pList = pList->pDirty; |
|
2393 } |
|
2394 return SQLITE_OK; |
|
2395 } |
|
2396 |
|
2397 /* |
|
2398 ** Collect every dirty page into a dirty list and |
|
2399 ** return a pointer to the head of that list. All pages are |
|
2400 ** collected even if they are still in use. |
|
2401 */ |
|
2402 static PgHdr *pager_get_all_dirty_pages(Pager *pPager){ |
|
2403 return pPager->pDirty; |
|
2404 } |
|
2405 |
|
2406 /* |
|
2407 ** Return TRUE if there is a hot journal on the given pager. |
|
2408 ** A hot journal is one that needs to be played back. |
|
2409 ** |
|
2410 ** If the current size of the database file is 0 but a journal file |
|
2411 ** exists, that is probably an old journal left over from a prior |
|
2412 ** database with the same name. Just delete the journal. |
|
2413 */ |
|
2414 static int hasHotJournal(Pager *pPager){ |
|
2415 if( !pPager->useJournal ) return 0; |
|
2416 if( !sqlite3OsFileExists(pPager->zJournal) ) return 0; |
|
2417 if( sqlite3OsCheckReservedLock(pPager->fd) ) return 0; |
|
2418 if( sqlite3pager_pagecount(pPager)==0 ){ |
|
2419 sqlite3OsDelete(pPager->zJournal); |
|
2420 return 0; |
|
2421 }else{ |
|
2422 return 1; |
|
2423 } |
|
2424 } |
|
2425 |
|
2426 /* |
|
2427 ** Try to find a page in the cache that can be recycled. |
|
2428 ** |
|
2429 ** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It |
|
2430 ** does not set the pPager->errCode variable. |
|
2431 */ |
|
2432 static int pager_recycle(Pager *pPager, int syncOk, PgHdr **ppPg){ |
|
2433 PgHdr *pPg; |
|
2434 *ppPg = 0; |
|
2435 |
|
2436 /* Find a page to recycle. Try to locate a page that does not |
|
2437 ** require us to do an fsync() on the journal. |
|
2438 */ |
|
2439 pPg = pPager->pFirstSynced; |
|
2440 |
|
2441 /* If we could not find a page that does not require an fsync() |
|
2442 ** on the journal file then fsync the journal file. This is a |
|
2443 ** very slow operation, so we work hard to avoid it. But sometimes |
|
2444 ** it can't be helped. |
|
2445 */ |
|
2446 if( pPg==0 && pPager->pFirst && syncOk && !MEMDB){ |
|
2447 int rc = syncJournal(pPager); |
|
2448 if( rc!=0 ){ |
|
2449 return rc; |
|
2450 } |
|
2451 if( pPager->fullSync ){ |
|
2452 /* If in full-sync mode, write a new journal header into the |
|
2453 ** journal file. This is done to avoid ever modifying a journal |
|
2454 ** header that is involved in the rollback of pages that have |
|
2455 ** already been written to the database (in case the header is |
|
2456 ** trashed when the nRec field is updated). |
|
2457 */ |
|
2458 pPager->nRec = 0; |
|
2459 assert( pPager->journalOff > 0 ); |
|
2460 rc = writeJournalHdr(pPager); |
|
2461 if( rc!=0 ){ |
|
2462 return rc; |
|
2463 } |
|
2464 } |
|
2465 pPg = pPager->pFirst; |
|
2466 } |
|
2467 if( pPg==0 ){ |
|
2468 return SQLITE_OK; |
|
2469 } |
|
2470 |
|
2471 assert( pPg->nRef==0 ); |
|
2472 |
|
2473 /* Write the page to the database file if it is dirty. |
|
2474 */ |
|
2475 if( pPg->dirty ){ |
|
2476 int rc; |
|
2477 assert( pPg->needSync==0 ); |
|
2478 makeClean(pPg); |
|
2479 pPg->dirty = 1; |
|
2480 pPg->pDirty = 0; |
|
2481 rc = pager_write_pagelist( pPg ); |
|
2482 if( rc!=SQLITE_OK ){ |
|
2483 return rc; |
|
2484 } |
|
2485 } |
|
2486 assert( pPg->dirty==0 ); |
|
2487 |
|
2488 /* If the page we are recycling is marked as alwaysRollback, then |
|
2489 ** set the global alwaysRollback flag, thus disabling the |
|
2490 ** sqlite_dont_rollback() optimization for the rest of this transaction. |
|
2491 ** It is necessary to do this because the page marked alwaysRollback |
|
2492 ** might be reloaded at a later time but at that point we won't remember |
|
2493 ** that is was marked alwaysRollback. This means that all pages must |
|
2494 ** be marked as alwaysRollback from here on out. |
|
2495 */ |
|
2496 if( pPg->alwaysRollback ){ |
|
2497 pPager->alwaysRollback = 1; |
|
2498 } |
|
2499 |
|
2500 /* Unlink the old page from the free list and the hash table |
|
2501 */ |
|
2502 unlinkPage(pPg); |
|
2503 TEST_INCR(pPager->nOvfl); |
|
2504 |
|
2505 *ppPg = pPg; |
|
2506 return SQLITE_OK; |
|
2507 } |
|
2508 |
|
2509 /* |
|
2510 ** This function is called to free superfluous dynamically allocated memory |
|
2511 ** held by the pager system. Memory in use by any SQLite pager allocated |
|
2512 ** by the current thread may be sqliteFree()ed. |
|
2513 ** |
|
2514 ** nReq is the number of bytes of memory required. Once this much has |
|
2515 ** been released, the function returns. A negative value for nReq means |
|
2516 ** free as much memory as possible. The return value is the total number |
|
2517 ** of bytes of memory released. |
|
2518 */ |
|
2519 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
2520 int sqlite3pager_release_memory(int nReq){ |
|
2521 const ThreadData *pTsdro = sqlite3ThreadDataReadOnly(); |
|
2522 Pager *p; |
|
2523 int nReleased = 0; |
|
2524 int i; |
|
2525 |
|
2526 /* If the the global mutex is held, this subroutine becomes a |
|
2527 ** o-op; zero bytes of memory are freed. This is because |
|
2528 ** some of the code invoked by this function may also |
|
2529 ** try to obtain the mutex, resulting in a deadlock. |
|
2530 */ |
|
2531 if( sqlite3OsInMutex(0) ){ |
|
2532 return 0; |
|
2533 } |
|
2534 |
|
2535 /* Outermost loop runs for at most two iterations. First iteration we |
|
2536 ** try to find memory that can be released without calling fsync(). Second |
|
2537 ** iteration (which only runs if the first failed to free nReq bytes of |
|
2538 ** memory) is permitted to call fsync(). This is of course much more |
|
2539 ** expensive. |
|
2540 */ |
|
2541 for(i=0; i<=1; i++){ |
|
2542 |
|
2543 /* Loop through all the SQLite pagers opened by the current thread. */ |
|
2544 for(p=pTsdro->pPager; p && (nReq<0 || nReleased<nReq); p=p->pNext){ |
|
2545 PgHdr *pPg; |
|
2546 int rc; |
|
2547 |
|
2548 /* For each pager, try to free as many pages as possible (without |
|
2549 ** calling fsync() if this is the first iteration of the outermost |
|
2550 ** loop). |
|
2551 */ |
|
2552 while( SQLITE_OK==(rc = pager_recycle(p, i, &pPg)) && pPg) { |
|
2553 /* We've found a page to free. At this point the page has been |
|
2554 ** removed from the page hash-table, free-list and synced-list |
|
2555 ** (pFirstSynced). It is still in the all pages (pAll) list. |
|
2556 ** Remove it from this list before freeing. |
|
2557 ** |
|
2558 ** Todo: Check the Pager.pStmt list to make sure this is Ok. It |
|
2559 ** probably is though. |
|
2560 */ |
|
2561 PgHdr *pTmp; |
|
2562 assert( pPg ); |
|
2563 page_remove_from_stmt_list(pPg); |
|
2564 if( pPg==p->pAll ){ |
|
2565 p->pAll = pPg->pNextAll; |
|
2566 }else{ |
|
2567 for( pTmp=p->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){} |
|
2568 pTmp->pNextAll = pPg->pNextAll; |
|
2569 } |
|
2570 nReleased += sqliteAllocSize(pPg); |
|
2571 sqliteFree(pPg); |
|
2572 } |
|
2573 |
|
2574 if( rc!=SQLITE_OK ){ |
|
2575 /* An error occured whilst writing to the database file or |
|
2576 ** journal in pager_recycle(). The error is not returned to the |
|
2577 ** caller of this function. Instead, set the Pager.errCode variable. |
|
2578 ** The error will be returned to the user (or users, in the case |
|
2579 ** of a shared pager cache) of the pager for which the error occured. |
|
2580 */ |
|
2581 assert( rc==SQLITE_IOERR || rc==SQLITE_FULL ); |
|
2582 assert( p->state>=PAGER_RESERVED ); |
|
2583 pager_error(p, rc); |
|
2584 } |
|
2585 } |
|
2586 } |
|
2587 |
|
2588 return nReleased; |
|
2589 } |
|
2590 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ |
|
2591 |
|
2592 /* |
|
2593 ** Acquire a page. |
|
2594 ** |
|
2595 ** A read lock on the disk file is obtained when the first page is acquired. |
|
2596 ** This read lock is dropped when the last page is released. |
|
2597 ** |
|
2598 ** A _get works for any page number greater than 0. If the database |
|
2599 ** file is smaller than the requested page, then no actual disk |
|
2600 ** read occurs and the memory image of the page is initialized to |
|
2601 ** all zeros. The extra data appended to a page is always initialized |
|
2602 ** to zeros the first time a page is loaded into memory. |
|
2603 ** |
|
2604 ** The acquisition might fail for several reasons. In all cases, |
|
2605 ** an appropriate error code is returned and *ppPage is set to NULL. |
|
2606 ** |
|
2607 ** See also sqlite3pager_lookup(). Both this routine and _lookup() attempt |
|
2608 ** to find a page in the in-memory cache first. If the page is not already |
|
2609 ** in memory, this routine goes to disk to read it in whereas _lookup() |
|
2610 ** just returns 0. This routine acquires a read-lock the first time it |
|
2611 ** has to go to disk, and could also playback an old journal if necessary. |
|
2612 ** Since _lookup() never goes to disk, it never has to deal with locks |
|
2613 ** or journal files. |
|
2614 */ |
|
2615 int sqlite3pager_get(Pager *pPager, Pgno pgno, void **ppPage){ |
|
2616 PgHdr *pPg; |
|
2617 int rc; |
|
2618 |
|
2619 /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page |
|
2620 ** number greater than this, or zero, is requested. |
|
2621 */ |
|
2622 if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ |
|
2623 return SQLITE_CORRUPT_BKPT; |
|
2624 } |
|
2625 |
|
2626 /* Make sure we have not hit any critical errors. |
|
2627 */ |
|
2628 assert( pPager!=0 ); |
|
2629 *ppPage = 0; |
|
2630 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ |
|
2631 return pPager->errCode; |
|
2632 } |
|
2633 |
|
2634 /* If this is the first page accessed, then get a SHARED lock |
|
2635 ** on the database file. |
|
2636 */ |
|
2637 if( pPager->nRef==0 && !MEMDB ){ |
|
2638 if( !pPager->noReadlock ){ |
|
2639 rc = pager_wait_on_lock(pPager, SHARED_LOCK); |
|
2640 if( rc!=SQLITE_OK ){ |
|
2641 return pager_error(pPager, rc); |
|
2642 } |
|
2643 } |
|
2644 |
|
2645 /* If a journal file exists, and there is no RESERVED lock on the |
|
2646 ** database file, then it either needs to be played back or deleted. |
|
2647 */ |
|
2648 if( hasHotJournal(pPager) ){ |
|
2649 /* Get an EXCLUSIVE lock on the database file. At this point it is |
|
2650 ** important that a RESERVED lock is not obtained on the way to the |
|
2651 ** EXCLUSIVE lock. If it were, another process might open the |
|
2652 ** database file, detect the RESERVED lock, and conclude that the |
|
2653 ** database is safe to read while this process is still rolling it |
|
2654 ** back. |
|
2655 ** |
|
2656 ** Because the intermediate RESERVED lock is not requested, the |
|
2657 ** second process will get to this point in the code and fail to |
|
2658 ** obtain it's own EXCLUSIVE lock on the database file. |
|
2659 */ |
|
2660 rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK); |
|
2661 if( rc!=SQLITE_OK ){ |
|
2662 sqlite3OsUnlock(pPager->fd, NO_LOCK); |
|
2663 pPager->state = PAGER_UNLOCK; |
|
2664 return pager_error(pPager, rc); |
|
2665 } |
|
2666 pPager->state = PAGER_EXCLUSIVE; |
|
2667 |
|
2668 /* Open the journal for reading only. Return SQLITE_BUSY if |
|
2669 ** we are unable to open the journal file. |
|
2670 ** |
|
2671 ** The journal file does not need to be locked itself. The |
|
2672 ** journal file is never open unless the main database file holds |
|
2673 ** a write lock, so there is never any chance of two or more |
|
2674 ** processes opening the journal at the same time. |
|
2675 */ |
|
2676 rc = sqlite3OsOpenReadOnly(pPager->zJournal, &pPager->jfd); |
|
2677 if( rc!=SQLITE_OK ){ |
|
2678 sqlite3OsUnlock(pPager->fd, NO_LOCK); |
|
2679 pPager->state = PAGER_UNLOCK; |
|
2680 return SQLITE_BUSY; |
|
2681 } |
|
2682 pPager->journalOpen = 1; |
|
2683 pPager->journalStarted = 0; |
|
2684 pPager->journalOff = 0; |
|
2685 pPager->setMaster = 0; |
|
2686 pPager->journalHdr = 0; |
|
2687 |
|
2688 /* Playback and delete the journal. Drop the database write |
|
2689 ** lock and reacquire the read lock. |
|
2690 */ |
|
2691 rc = pager_playback(pPager); |
|
2692 if( rc!=SQLITE_OK ){ |
|
2693 return pager_error(pPager, rc); |
|
2694 } |
|
2695 } |
|
2696 pPg = 0; |
|
2697 }else{ |
|
2698 /* Search for page in cache */ |
|
2699 pPg = pager_lookup(pPager, pgno); |
|
2700 if( MEMDB && pPager->state==PAGER_UNLOCK ){ |
|
2701 pPager->state = PAGER_SHARED; |
|
2702 } |
|
2703 } |
|
2704 if( pPg==0 ){ |
|
2705 /* The requested page is not in the page cache. */ |
|
2706 int h; |
|
2707 TEST_INCR(pPager->nMiss); |
|
2708 if( pPager->nPage<pPager->mxPage || pPager->pFirst==0 || MEMDB ){ |
|
2709 /* Create a new page */ |
|
2710 if( pPager->nPage>=pPager->nHash ){ |
|
2711 pager_resize_hash_table(pPager, |
|
2712 pPager->nHash<256 ? 256 : pPager->nHash*2); |
|
2713 if( pPager->nHash==0 ){ |
|
2714 return SQLITE_NOMEM; |
|
2715 } |
|
2716 } |
|
2717 pPg = sqliteMallocRaw( sizeof(*pPg) + pPager->pageSize |
|
2718 + sizeof(u32) + pPager->nExtra |
|
2719 + MEMDB*sizeof(PgHistory) ); |
|
2720 if( pPg==0 ){ |
|
2721 return SQLITE_NOMEM; |
|
2722 } |
|
2723 memset(pPg, 0, sizeof(*pPg)); |
|
2724 if( MEMDB ){ |
|
2725 memset(PGHDR_TO_HIST(pPg, pPager), 0, sizeof(PgHistory)); |
|
2726 } |
|
2727 pPg->pPager = pPager; |
|
2728 pPg->pNextAll = pPager->pAll; |
|
2729 pPager->pAll = pPg; |
|
2730 pPager->nPage++; |
|
2731 if( pPager->nPage>pPager->nMaxPage ){ |
|
2732 assert( pPager->nMaxPage==(pPager->nPage-1) ); |
|
2733 pPager->nMaxPage++; |
|
2734 } |
|
2735 }else{ |
|
2736 rc = pager_recycle(pPager, 1, &pPg); |
|
2737 if( rc!=SQLITE_OK ){ |
|
2738 return rc; |
|
2739 } |
|
2740 assert(pPg) ; |
|
2741 } |
|
2742 pPg->pgno = pgno; |
|
2743 if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){ |
|
2744 sqlite3CheckMemory(pPager->aInJournal, pgno/8); |
|
2745 assert( pPager->journalOpen ); |
|
2746 pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0; |
|
2747 pPg->needSync = 0; |
|
2748 }else{ |
|
2749 pPg->inJournal = 0; |
|
2750 pPg->needSync = 0; |
|
2751 } |
|
2752 if( pPager->aInStmt && (int)pgno<=pPager->stmtSize |
|
2753 && (pPager->aInStmt[pgno/8] & (1<<(pgno&7)))!=0 ){ |
|
2754 page_add_to_stmt_list(pPg); |
|
2755 }else{ |
|
2756 page_remove_from_stmt_list(pPg); |
|
2757 } |
|
2758 makeClean(pPg); |
|
2759 pPg->nRef = 1; |
|
2760 REFINFO(pPg); |
|
2761 |
|
2762 pPager->nRef++; |
|
2763 if( pPager->nExtra>0 ){ |
|
2764 memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra); |
|
2765 } |
|
2766 if( pPager->errCode ){ |
|
2767 sqlite3pager_unref(PGHDR_TO_DATA(pPg)); |
|
2768 rc = pPager->errCode; |
|
2769 return rc; |
|
2770 } |
|
2771 |
|
2772 /* Populate the page with data, either by reading from the database |
|
2773 ** file, or by setting the entire page to zero. |
|
2774 */ |
|
2775 if( sqlite3pager_pagecount(pPager)<(int)pgno || MEMDB ){ |
|
2776 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); |
|
2777 }else{ |
|
2778 assert( MEMDB==0 ); |
|
2779 rc = sqlite3OsSeek(pPager->fd, (pgno-1)*(i64)pPager->pageSize); |
|
2780 if( rc==SQLITE_OK ){ |
|
2781 rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), |
|
2782 pPager->pageSize); |
|
2783 } |
|
2784 TRACE3("FETCH %d page %d\n", PAGERID(pPager), pPg->pgno); |
|
2785 CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3); |
|
2786 if( rc!=SQLITE_OK ){ |
|
2787 i64 fileSize; |
|
2788 int rc2 = sqlite3OsFileSize(pPager->fd, &fileSize); |
|
2789 if( rc2!=SQLITE_OK || fileSize>=pgno*pPager->pageSize ){ |
|
2790 /* An IO error occured in one of the the sqlite3OsSeek() or |
|
2791 ** sqlite3OsRead() calls above. */ |
|
2792 pPg->pgno = 0; |
|
2793 sqlite3pager_unref(PGHDR_TO_DATA(pPg)); |
|
2794 return rc; |
|
2795 }else{ |
|
2796 clear_simulated_io_error(); |
|
2797 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); |
|
2798 } |
|
2799 }else{ |
|
2800 TEST_INCR(pPager->nRead); |
|
2801 } |
|
2802 } |
|
2803 |
|
2804 /* Link the page into the page hash table */ |
|
2805 h = pgno & (pPager->nHash-1); |
|
2806 assert( pgno!=0 ); |
|
2807 pPg->pNextHash = pPager->aHash[h]; |
|
2808 pPager->aHash[h] = pPg; |
|
2809 if( pPg->pNextHash ){ |
|
2810 assert( pPg->pNextHash->pPrevHash==0 ); |
|
2811 pPg->pNextHash->pPrevHash = pPg; |
|
2812 } |
|
2813 |
|
2814 #ifdef SQLITE_CHECK_PAGES |
|
2815 pPg->pageHash = pager_pagehash(pPg); |
|
2816 #endif |
|
2817 }else{ |
|
2818 /* The requested page is in the page cache. */ |
|
2819 TEST_INCR(pPager->nHit); |
|
2820 page_ref(pPg); |
|
2821 } |
|
2822 *ppPage = PGHDR_TO_DATA(pPg); |
|
2823 return SQLITE_OK; |
|
2824 } |
|
2825 |
|
2826 /* |
|
2827 ** Acquire a page if it is already in the in-memory cache. Do |
|
2828 ** not read the page from disk. Return a pointer to the page, |
|
2829 ** or 0 if the page is not in cache. |
|
2830 ** |
|
2831 ** See also sqlite3pager_get(). The difference between this routine |
|
2832 ** and sqlite3pager_get() is that _get() will go to the disk and read |
|
2833 ** in the page if the page is not already in cache. This routine |
|
2834 ** returns NULL if the page is not in cache or if a disk I/O error |
|
2835 ** has ever happened. |
|
2836 */ |
|
2837 void *sqlite3pager_lookup(Pager *pPager, Pgno pgno){ |
|
2838 PgHdr *pPg; |
|
2839 |
|
2840 assert( pPager!=0 ); |
|
2841 assert( pgno!=0 ); |
|
2842 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ |
|
2843 return 0; |
|
2844 } |
|
2845 pPg = pager_lookup(pPager, pgno); |
|
2846 if( pPg==0 ) return 0; |
|
2847 page_ref(pPg); |
|
2848 return PGHDR_TO_DATA(pPg); |
|
2849 } |
|
2850 |
|
2851 /* |
|
2852 ** Release a page. |
|
2853 ** |
|
2854 ** If the number of references to the page drop to zero, then the |
|
2855 ** page is added to the LRU list. When all references to all pages |
|
2856 ** are released, a rollback occurs and the lock on the database is |
|
2857 ** removed. |
|
2858 */ |
|
2859 int sqlite3pager_unref(void *pData){ |
|
2860 PgHdr *pPg; |
|
2861 |
|
2862 /* Decrement the reference count for this page |
|
2863 */ |
|
2864 pPg = DATA_TO_PGHDR(pData); |
|
2865 assert( pPg->nRef>0 ); |
|
2866 pPg->nRef--; |
|
2867 REFINFO(pPg); |
|
2868 |
|
2869 CHECK_PAGE(pPg); |
|
2870 |
|
2871 /* When the number of references to a page reach 0, call the |
|
2872 ** destructor and add the page to the freelist. |
|
2873 */ |
|
2874 if( pPg->nRef==0 ){ |
|
2875 Pager *pPager; |
|
2876 pPager = pPg->pPager; |
|
2877 pPg->pNextFree = 0; |
|
2878 pPg->pPrevFree = pPager->pLast; |
|
2879 pPager->pLast = pPg; |
|
2880 if( pPg->pPrevFree ){ |
|
2881 pPg->pPrevFree->pNextFree = pPg; |
|
2882 }else{ |
|
2883 pPager->pFirst = pPg; |
|
2884 } |
|
2885 if( pPg->needSync==0 && pPager->pFirstSynced==0 ){ |
|
2886 pPager->pFirstSynced = pPg; |
|
2887 } |
|
2888 if( pPager->xDestructor ){ |
|
2889 pPager->xDestructor(pData, pPager->pageSize); |
|
2890 } |
|
2891 |
|
2892 /* When all pages reach the freelist, drop the read lock from |
|
2893 ** the database file. |
|
2894 */ |
|
2895 pPager->nRef--; |
|
2896 assert( pPager->nRef>=0 ); |
|
2897 if( pPager->nRef==0 && !MEMDB ){ |
|
2898 pager_reset(pPager); |
|
2899 } |
|
2900 } |
|
2901 return SQLITE_OK; |
|
2902 } |
|
2903 |
|
2904 /* |
|
2905 ** Create a journal file for pPager. There should already be a RESERVED |
|
2906 ** or EXCLUSIVE lock on the database file when this routine is called. |
|
2907 ** |
|
2908 ** Return SQLITE_OK if everything. Return an error code and release the |
|
2909 ** write lock if anything goes wrong. |
|
2910 */ |
|
2911 static int pager_open_journal(Pager *pPager){ |
|
2912 int rc; |
|
2913 assert( !MEMDB ); |
|
2914 assert( pPager->state>=PAGER_RESERVED ); |
|
2915 assert( pPager->journalOpen==0 ); |
|
2916 assert( pPager->useJournal ); |
|
2917 assert( pPager->aInJournal==0 ); |
|
2918 sqlite3pager_pagecount(pPager); |
|
2919 pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 ); |
|
2920 if( pPager->aInJournal==0 ){ |
|
2921 rc = SQLITE_NOMEM; |
|
2922 goto failed_to_open_journal; |
|
2923 } |
|
2924 rc = sqlite3OsOpenExclusive(pPager->zJournal, &pPager->jfd, |
|
2925 pPager->tempFile); |
|
2926 pPager->journalOff = 0; |
|
2927 pPager->setMaster = 0; |
|
2928 pPager->journalHdr = 0; |
|
2929 if( rc!=SQLITE_OK ){ |
|
2930 goto failed_to_open_journal; |
|
2931 } |
|
2932 sqlite3OsSetFullSync(pPager->jfd, pPager->full_fsync); |
|
2933 sqlite3OsSetFullSync(pPager->fd, pPager->full_fsync); |
|
2934 sqlite3OsOpenDirectory(pPager->jfd, pPager->zDirectory); |
|
2935 pPager->journalOpen = 1; |
|
2936 pPager->journalStarted = 0; |
|
2937 pPager->needSync = 0; |
|
2938 pPager->alwaysRollback = 0; |
|
2939 pPager->nRec = 0; |
|
2940 if( pPager->errCode ){ |
|
2941 rc = pPager->errCode; |
|
2942 goto failed_to_open_journal; |
|
2943 } |
|
2944 pPager->origDbSize = pPager->dbSize; |
|
2945 |
|
2946 rc = writeJournalHdr(pPager); |
|
2947 |
|
2948 if( pPager->stmtAutoopen && rc==SQLITE_OK ){ |
|
2949 rc = sqlite3pager_stmt_begin(pPager); |
|
2950 } |
|
2951 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM ){ |
|
2952 rc = pager_unwritelock(pPager); |
|
2953 if( rc==SQLITE_OK ){ |
|
2954 rc = SQLITE_FULL; |
|
2955 } |
|
2956 } |
|
2957 return rc; |
|
2958 |
|
2959 failed_to_open_journal: |
|
2960 sqliteFree(pPager->aInJournal); |
|
2961 pPager->aInJournal = 0; |
|
2962 if( rc==SQLITE_NOMEM ){ |
|
2963 /* If this was a malloc() failure, then we will not be closing the pager |
|
2964 ** file. So delete any journal file we may have just created. Otherwise, |
|
2965 ** the system will get confused, we have a read-lock on the file and a |
|
2966 ** mysterious journal has appeared in the filesystem. |
|
2967 */ |
|
2968 sqlite3OsDelete(pPager->zJournal); |
|
2969 }else{ |
|
2970 sqlite3OsUnlock(pPager->fd, NO_LOCK); |
|
2971 pPager->state = PAGER_UNLOCK; |
|
2972 } |
|
2973 return rc; |
|
2974 } |
|
2975 |
|
2976 /* |
|
2977 ** Acquire a write-lock on the database. The lock is removed when |
|
2978 ** the any of the following happen: |
|
2979 ** |
|
2980 ** * sqlite3pager_commit() is called. |
|
2981 ** * sqlite3pager_rollback() is called. |
|
2982 ** * sqlite3pager_close() is called. |
|
2983 ** * sqlite3pager_unref() is called to on every outstanding page. |
|
2984 ** |
|
2985 ** The first parameter to this routine is a pointer to any open page of the |
|
2986 ** database file. Nothing changes about the page - it is used merely to |
|
2987 ** acquire a pointer to the Pager structure and as proof that there is |
|
2988 ** already a read-lock on the database. |
|
2989 ** |
|
2990 ** The second parameter indicates how much space in bytes to reserve for a |
|
2991 ** master journal file-name at the start of the journal when it is created. |
|
2992 ** |
|
2993 ** A journal file is opened if this is not a temporary file. For temporary |
|
2994 ** files, the opening of the journal file is deferred until there is an |
|
2995 ** actual need to write to the journal. |
|
2996 ** |
|
2997 ** If the database is already reserved for writing, this routine is a no-op. |
|
2998 ** |
|
2999 ** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file |
|
3000 ** immediately instead of waiting until we try to flush the cache. The |
|
3001 ** exFlag is ignored if a transaction is already active. |
|
3002 */ |
|
3003 int sqlite3pager_begin(void *pData, int exFlag){ |
|
3004 PgHdr *pPg = DATA_TO_PGHDR(pData); |
|
3005 Pager *pPager = pPg->pPager; |
|
3006 int rc = SQLITE_OK; |
|
3007 assert( pPg->nRef>0 ); |
|
3008 assert( pPager->state!=PAGER_UNLOCK ); |
|
3009 if( pPager->state==PAGER_SHARED ){ |
|
3010 assert( pPager->aInJournal==0 ); |
|
3011 if( MEMDB ){ |
|
3012 pPager->state = PAGER_EXCLUSIVE; |
|
3013 pPager->origDbSize = pPager->dbSize; |
|
3014 }else{ |
|
3015 rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK); |
|
3016 if( rc==SQLITE_OK ){ |
|
3017 pPager->state = PAGER_RESERVED; |
|
3018 if( exFlag ){ |
|
3019 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); |
|
3020 } |
|
3021 } |
|
3022 if( rc!=SQLITE_OK ){ |
|
3023 return rc; |
|
3024 } |
|
3025 pPager->dirtyCache = 0; |
|
3026 TRACE2("TRANSACTION %d\n", PAGERID(pPager)); |
|
3027 if( pPager->useJournal && !pPager->tempFile ){ |
|
3028 rc = pager_open_journal(pPager); |
|
3029 } |
|
3030 } |
|
3031 } |
|
3032 return rc; |
|
3033 } |
|
3034 |
|
3035 /* |
|
3036 ** Make a page dirty. Set its dirty flag and add it to the dirty |
|
3037 ** page list. |
|
3038 */ |
|
3039 static void makeDirty(PgHdr *pPg){ |
|
3040 if( pPg->dirty==0 ){ |
|
3041 Pager *pPager = pPg->pPager; |
|
3042 pPg->dirty = 1; |
|
3043 pPg->pDirty = pPager->pDirty; |
|
3044 if( pPager->pDirty ){ |
|
3045 pPager->pDirty->pPrevDirty = pPg; |
|
3046 } |
|
3047 pPg->pPrevDirty = 0; |
|
3048 pPager->pDirty = pPg; |
|
3049 } |
|
3050 } |
|
3051 |
|
3052 /* |
|
3053 ** Make a page clean. Clear its dirty bit and remove it from the |
|
3054 ** dirty page list. |
|
3055 */ |
|
3056 static void makeClean(PgHdr *pPg){ |
|
3057 if( pPg->dirty ){ |
|
3058 pPg->dirty = 0; |
|
3059 if( pPg->pDirty ){ |
|
3060 pPg->pDirty->pPrevDirty = pPg->pPrevDirty; |
|
3061 } |
|
3062 if( pPg->pPrevDirty ){ |
|
3063 pPg->pPrevDirty->pDirty = pPg->pDirty; |
|
3064 }else{ |
|
3065 pPg->pPager->pDirty = pPg->pDirty; |
|
3066 } |
|
3067 } |
|
3068 } |
|
3069 |
|
3070 |
|
3071 /* |
|
3072 ** Mark a data page as writeable. The page is written into the journal |
|
3073 ** if it is not there already. This routine must be called before making |
|
3074 ** changes to a page. |
|
3075 ** |
|
3076 ** The first time this routine is called, the pager creates a new |
|
3077 ** journal and acquires a RESERVED lock on the database. If the RESERVED |
|
3078 ** lock could not be acquired, this routine returns SQLITE_BUSY. The |
|
3079 ** calling routine must check for that return value and be careful not to |
|
3080 ** change any page data until this routine returns SQLITE_OK. |
|
3081 ** |
|
3082 ** If the journal file could not be written because the disk is full, |
|
3083 ** then this routine returns SQLITE_FULL and does an immediate rollback. |
|
3084 ** All subsequent write attempts also return SQLITE_FULL until there |
|
3085 ** is a call to sqlite3pager_commit() or sqlite3pager_rollback() to |
|
3086 ** reset. |
|
3087 */ |
|
3088 int sqlite3pager_write(void *pData){ |
|
3089 PgHdr *pPg = DATA_TO_PGHDR(pData); |
|
3090 Pager *pPager = pPg->pPager; |
|
3091 int rc = SQLITE_OK; |
|
3092 |
|
3093 /* Check for errors |
|
3094 */ |
|
3095 if( pPager->errCode ){ |
|
3096 return pPager->errCode; |
|
3097 } |
|
3098 if( pPager->readOnly ){ |
|
3099 return SQLITE_PERM; |
|
3100 } |
|
3101 |
|
3102 assert( !pPager->setMaster ); |
|
3103 |
|
3104 CHECK_PAGE(pPg); |
|
3105 |
|
3106 /* Mark the page as dirty. If the page has already been written |
|
3107 ** to the journal then we can return right away. |
|
3108 */ |
|
3109 makeDirty(pPg); |
|
3110 if( pPg->inJournal && (pPg->inStmt || pPager->stmtInUse==0) ){ |
|
3111 pPager->dirtyCache = 1; |
|
3112 }else{ |
|
3113 |
|
3114 /* If we get this far, it means that the page needs to be |
|
3115 ** written to the transaction journal or the ckeckpoint journal |
|
3116 ** or both. |
|
3117 ** |
|
3118 ** First check to see that the transaction journal exists and |
|
3119 ** create it if it does not. |
|
3120 */ |
|
3121 assert( pPager->state!=PAGER_UNLOCK ); |
|
3122 rc = sqlite3pager_begin(pData, 0); |
|
3123 if( rc!=SQLITE_OK ){ |
|
3124 return rc; |
|
3125 } |
|
3126 assert( pPager->state>=PAGER_RESERVED ); |
|
3127 if( !pPager->journalOpen && pPager->useJournal ){ |
|
3128 rc = pager_open_journal(pPager); |
|
3129 if( rc!=SQLITE_OK ) return rc; |
|
3130 } |
|
3131 assert( pPager->journalOpen || !pPager->useJournal ); |
|
3132 pPager->dirtyCache = 1; |
|
3133 |
|
3134 /* The transaction journal now exists and we have a RESERVED or an |
|
3135 ** EXCLUSIVE lock on the main database file. Write the current page to |
|
3136 ** the transaction journal if it is not there already. |
|
3137 */ |
|
3138 if( !pPg->inJournal && (pPager->useJournal || MEMDB) ){ |
|
3139 if( (int)pPg->pgno <= pPager->origDbSize ){ |
|
3140 int szPg; |
|
3141 if( MEMDB ){ |
|
3142 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); |
|
3143 TRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); |
|
3144 assert( pHist->pOrig==0 ); |
|
3145 pHist->pOrig = sqliteMallocRaw( pPager->pageSize ); |
|
3146 if( pHist->pOrig ){ |
|
3147 memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize); |
|
3148 } |
|
3149 }else{ |
|
3150 u32 cksum, saved; |
|
3151 char *pData2, *pEnd; |
|
3152 /* We should never write to the journal file the page that |
|
3153 ** contains the database locks. The following assert verifies |
|
3154 ** that we do not. */ |
|
3155 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); |
|
3156 pData2 = CODEC2(pPager, pData, pPg->pgno, 7); |
|
3157 cksum = pager_cksum(pPager, (u8*)pData2); |
|
3158 pEnd = pData2 + pPager->pageSize; |
|
3159 pData2 -= 4; |
|
3160 saved = *(u32*)pEnd; |
|
3161 put32bits(pEnd, cksum); |
|
3162 szPg = pPager->pageSize+8; |
|
3163 put32bits(pData2, pPg->pgno); |
|
3164 rc = sqlite3OsWrite(pPager->jfd, pData2, szPg); |
|
3165 pPager->journalOff += szPg; |
|
3166 TRACE4("JOURNAL %d page %d needSync=%d\n", |
|
3167 PAGERID(pPager), pPg->pgno, pPg->needSync); |
|
3168 *(u32*)pEnd = saved; |
|
3169 |
|
3170 /* An error has occured writing to the journal file. The |
|
3171 ** transaction will be rolled back by the layer above. |
|
3172 */ |
|
3173 if( rc!=SQLITE_OK ){ |
|
3174 return rc; |
|
3175 } |
|
3176 |
|
3177 pPager->nRec++; |
|
3178 assert( pPager->aInJournal!=0 ); |
|
3179 pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); |
|
3180 pPg->needSync = !pPager->noSync; |
|
3181 if( pPager->stmtInUse ){ |
|
3182 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); |
|
3183 page_add_to_stmt_list(pPg); |
|
3184 } |
|
3185 } |
|
3186 }else{ |
|
3187 pPg->needSync = !pPager->journalStarted && !pPager->noSync; |
|
3188 TRACE4("APPEND %d page %d needSync=%d\n", |
|
3189 PAGERID(pPager), pPg->pgno, pPg->needSync); |
|
3190 } |
|
3191 if( pPg->needSync ){ |
|
3192 pPager->needSync = 1; |
|
3193 } |
|
3194 pPg->inJournal = 1; |
|
3195 } |
|
3196 |
|
3197 /* If the statement journal is open and the page is not in it, |
|
3198 ** then write the current page to the statement journal. Note that |
|
3199 ** the statement journal format differs from the standard journal format |
|
3200 ** in that it omits the checksums and the header. |
|
3201 */ |
|
3202 if( pPager->stmtInUse && !pPg->inStmt && (int)pPg->pgno<=pPager->stmtSize ){ |
|
3203 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); |
|
3204 if( MEMDB ){ |
|
3205 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); |
|
3206 assert( pHist->pStmt==0 ); |
|
3207 pHist->pStmt = sqliteMallocRaw( pPager->pageSize ); |
|
3208 if( pHist->pStmt ){ |
|
3209 memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize); |
|
3210 } |
|
3211 TRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); |
|
3212 }else{ |
|
3213 char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7)-4; |
|
3214 put32bits(pData2, pPg->pgno); |
|
3215 rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize+4); |
|
3216 TRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); |
|
3217 if( rc!=SQLITE_OK ){ |
|
3218 return rc; |
|
3219 } |
|
3220 pPager->stmtNRec++; |
|
3221 assert( pPager->aInStmt!=0 ); |
|
3222 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); |
|
3223 } |
|
3224 page_add_to_stmt_list(pPg); |
|
3225 } |
|
3226 } |
|
3227 |
|
3228 /* Update the database size and return. |
|
3229 */ |
|
3230 if( pPager->dbSize<(int)pPg->pgno ){ |
|
3231 pPager->dbSize = pPg->pgno; |
|
3232 if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){ |
|
3233 pPager->dbSize++; |
|
3234 } |
|
3235 } |
|
3236 return rc; |
|
3237 } |
|
3238 |
|
3239 /* |
|
3240 ** Return TRUE if the page given in the argument was previously passed |
|
3241 ** to sqlite3pager_write(). In other words, return TRUE if it is ok |
|
3242 ** to change the content of the page. |
|
3243 */ |
|
3244 #ifndef NDEBUG |
|
3245 int sqlite3pager_iswriteable(void *pData){ |
|
3246 PgHdr *pPg = DATA_TO_PGHDR(pData); |
|
3247 return pPg->dirty; |
|
3248 } |
|
3249 #endif |
|
3250 |
|
3251 #ifndef SQLITE_OMIT_VACUUM |
|
3252 /* |
|
3253 ** Replace the content of a single page with the information in the third |
|
3254 ** argument. |
|
3255 */ |
|
3256 int sqlite3pager_overwrite(Pager *pPager, Pgno pgno, void *pData){ |
|
3257 void *pPage; |
|
3258 int rc; |
|
3259 |
|
3260 rc = sqlite3pager_get(pPager, pgno, &pPage); |
|
3261 if( rc==SQLITE_OK ){ |
|
3262 rc = sqlite3pager_write(pPage); |
|
3263 if( rc==SQLITE_OK ){ |
|
3264 memcpy(pPage, pData, pPager->pageSize); |
|
3265 } |
|
3266 sqlite3pager_unref(pPage); |
|
3267 } |
|
3268 return rc; |
|
3269 } |
|
3270 #endif |
|
3271 |
|
3272 /* |
|
3273 ** A call to this routine tells the pager that it is not necessary to |
|
3274 ** write the information on page "pgno" back to the disk, even though |
|
3275 ** that page might be marked as dirty. |
|
3276 ** |
|
3277 ** The overlying software layer calls this routine when all of the data |
|
3278 ** on the given page is unused. The pager marks the page as clean so |
|
3279 ** that it does not get written to disk. |
|
3280 ** |
|
3281 ** Tests show that this optimization, together with the |
|
3282 ** sqlite3pager_dont_rollback() below, more than double the speed |
|
3283 ** of large INSERT operations and quadruple the speed of large DELETEs. |
|
3284 ** |
|
3285 ** When this routine is called, set the alwaysRollback flag to true. |
|
3286 ** Subsequent calls to sqlite3pager_dont_rollback() for the same page |
|
3287 ** will thereafter be ignored. This is necessary to avoid a problem |
|
3288 ** where a page with data is added to the freelist during one part of |
|
3289 ** a transaction then removed from the freelist during a later part |
|
3290 ** of the same transaction and reused for some other purpose. When it |
|
3291 ** is first added to the freelist, this routine is called. When reused, |
|
3292 ** the dont_rollback() routine is called. But because the page contains |
|
3293 ** critical data, we still need to be sure it gets rolled back in spite |
|
3294 ** of the dont_rollback() call. |
|
3295 */ |
|
3296 void sqlite3pager_dont_write(Pager *pPager, Pgno pgno){ |
|
3297 PgHdr *pPg; |
|
3298 |
|
3299 if( MEMDB ) return; |
|
3300 |
|
3301 pPg = pager_lookup(pPager, pgno); |
|
3302 assert( pPg!=0 ); /* We never call _dont_write unless the page is in mem */ |
|
3303 pPg->alwaysRollback = 1; |
|
3304 if( pPg->dirty && !pPager->stmtInUse ){ |
|
3305 if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){ |
|
3306 /* If this pages is the last page in the file and the file has grown |
|
3307 ** during the current transaction, then do NOT mark the page as clean. |
|
3308 ** When the database file grows, we must make sure that the last page |
|
3309 ** gets written at least once so that the disk file will be the correct |
|
3310 ** size. If you do not write this page and the size of the file |
|
3311 ** on the disk ends up being too small, that can lead to database |
|
3312 ** corruption during the next transaction. |
|
3313 */ |
|
3314 }else{ |
|
3315 TRACE3("DONT_WRITE page %d of %d\n", pgno, PAGERID(pPager)); |
|
3316 makeClean(pPg); |
|
3317 #ifdef SQLITE_CHECK_PAGES |
|
3318 pPg->pageHash = pager_pagehash(pPg); |
|
3319 #endif |
|
3320 } |
|
3321 } |
|
3322 } |
|
3323 |
|
3324 /* |
|
3325 ** A call to this routine tells the pager that if a rollback occurs, |
|
3326 ** it is not necessary to restore the data on the given page. This |
|
3327 ** means that the pager does not have to record the given page in the |
|
3328 ** rollback journal. |
|
3329 */ |
|
3330 void sqlite3pager_dont_rollback(void *pData){ |
|
3331 PgHdr *pPg = DATA_TO_PGHDR(pData); |
|
3332 Pager *pPager = pPg->pPager; |
|
3333 |
|
3334 if( pPager->state!=PAGER_EXCLUSIVE || pPager->journalOpen==0 ) return; |
|
3335 if( pPg->alwaysRollback || pPager->alwaysRollback || MEMDB ) return; |
|
3336 if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){ |
|
3337 assert( pPager->aInJournal!=0 ); |
|
3338 pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); |
|
3339 pPg->inJournal = 1; |
|
3340 if( pPager->stmtInUse ){ |
|
3341 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); |
|
3342 page_add_to_stmt_list(pPg); |
|
3343 } |
|
3344 TRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager)); |
|
3345 } |
|
3346 if( pPager->stmtInUse && !pPg->inStmt && (int)pPg->pgno<=pPager->stmtSize ){ |
|
3347 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); |
|
3348 assert( pPager->aInStmt!=0 ); |
|
3349 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); |
|
3350 page_add_to_stmt_list(pPg); |
|
3351 } |
|
3352 } |
|
3353 |
|
3354 |
|
3355 /* |
|
3356 ** Commit all changes to the database and release the write lock. |
|
3357 ** |
|
3358 ** If the commit fails for any reason, a rollback attempt is made |
|
3359 ** and an error code is returned. If the commit worked, SQLITE_OK |
|
3360 ** is returned. |
|
3361 */ |
|
3362 int sqlite3pager_commit(Pager *pPager){ |
|
3363 int rc; |
|
3364 PgHdr *pPg; |
|
3365 |
|
3366 if( pPager->errCode ){ |
|
3367 return pPager->errCode; |
|
3368 } |
|
3369 if( pPager->state<PAGER_RESERVED ){ |
|
3370 return SQLITE_ERROR; |
|
3371 } |
|
3372 TRACE2("COMMIT %d\n", PAGERID(pPager)); |
|
3373 if( MEMDB ){ |
|
3374 pPg = pager_get_all_dirty_pages(pPager); |
|
3375 while( pPg ){ |
|
3376 clearHistory(PGHDR_TO_HIST(pPg, pPager)); |
|
3377 pPg->dirty = 0; |
|
3378 pPg->inJournal = 0; |
|
3379 pPg->inStmt = 0; |
|
3380 pPg->needSync = 0; |
|
3381 pPg->pPrevStmt = pPg->pNextStmt = 0; |
|
3382 pPg = pPg->pDirty; |
|
3383 } |
|
3384 pPager->pDirty = 0; |
|
3385 #ifndef NDEBUG |
|
3386 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ |
|
3387 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); |
|
3388 assert( !pPg->alwaysRollback ); |
|
3389 assert( !pHist->pOrig ); |
|
3390 assert( !pHist->pStmt ); |
|
3391 } |
|
3392 #endif |
|
3393 pPager->pStmt = 0; |
|
3394 pPager->state = PAGER_SHARED; |
|
3395 return SQLITE_OK; |
|
3396 } |
|
3397 if( pPager->dirtyCache==0 ){ |
|
3398 /* Exit early (without doing the time-consuming sqlite3OsSync() calls) |
|
3399 ** if there have been no changes to the database file. */ |
|
3400 assert( pPager->needSync==0 ); |
|
3401 rc = pager_unwritelock(pPager); |
|
3402 pPager->dbSize = -1; |
|
3403 return rc; |
|
3404 } |
|
3405 assert( pPager->journalOpen ); |
|
3406 rc = sqlite3pager_sync(pPager, 0, 0); |
|
3407 if( rc==SQLITE_OK ){ |
|
3408 rc = pager_unwritelock(pPager); |
|
3409 pPager->dbSize = -1; |
|
3410 } |
|
3411 return rc; |
|
3412 } |
|
3413 |
|
3414 /* |
|
3415 ** Rollback all changes. The database falls back to PAGER_SHARED mode. |
|
3416 ** All in-memory cache pages revert to their original data contents. |
|
3417 ** The journal is deleted. |
|
3418 ** |
|
3419 ** This routine cannot fail unless some other process is not following |
|
3420 ** the correct locking protocol (SQLITE_PROTOCOL) or unless some other |
|
3421 ** process is writing trash into the journal file (SQLITE_CORRUPT) or |
|
3422 ** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error |
|
3423 ** codes are returned for all these occasions. Otherwise, |
|
3424 ** SQLITE_OK is returned. |
|
3425 */ |
|
3426 int sqlite3pager_rollback(Pager *pPager){ |
|
3427 int rc; |
|
3428 TRACE2("ROLLBACK %d\n", PAGERID(pPager)); |
|
3429 if( MEMDB ){ |
|
3430 PgHdr *p; |
|
3431 for(p=pPager->pAll; p; p=p->pNextAll){ |
|
3432 PgHistory *pHist; |
|
3433 assert( !p->alwaysRollback ); |
|
3434 if( !p->dirty ){ |
|
3435 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig ); |
|
3436 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt ); |
|
3437 continue; |
|
3438 } |
|
3439 |
|
3440 pHist = PGHDR_TO_HIST(p, pPager); |
|
3441 if( pHist->pOrig ){ |
|
3442 memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize); |
|
3443 TRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager)); |
|
3444 }else{ |
|
3445 TRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager)); |
|
3446 } |
|
3447 clearHistory(pHist); |
|
3448 p->dirty = 0; |
|
3449 p->inJournal = 0; |
|
3450 p->inStmt = 0; |
|
3451 p->pPrevStmt = p->pNextStmt = 0; |
|
3452 if( pPager->xReiniter ){ |
|
3453 pPager->xReiniter(PGHDR_TO_DATA(p), pPager->pageSize); |
|
3454 } |
|
3455 } |
|
3456 pPager->pDirty = 0; |
|
3457 pPager->pStmt = 0; |
|
3458 pPager->dbSize = pPager->origDbSize; |
|
3459 memoryTruncate(pPager); |
|
3460 pPager->stmtInUse = 0; |
|
3461 pPager->state = PAGER_SHARED; |
|
3462 return SQLITE_OK; |
|
3463 } |
|
3464 |
|
3465 if( !pPager->dirtyCache || !pPager->journalOpen ){ |
|
3466 rc = pager_unwritelock(pPager); |
|
3467 pPager->dbSize = -1; |
|
3468 return rc; |
|
3469 } |
|
3470 |
|
3471 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ |
|
3472 if( pPager->state>=PAGER_EXCLUSIVE ){ |
|
3473 pager_playback(pPager); |
|
3474 } |
|
3475 return pPager->errCode; |
|
3476 } |
|
3477 if( pPager->state==PAGER_RESERVED ){ |
|
3478 int rc2; |
|
3479 rc = pager_reload_cache(pPager); |
|
3480 rc2 = pager_unwritelock(pPager); |
|
3481 if( rc==SQLITE_OK ){ |
|
3482 rc = rc2; |
|
3483 } |
|
3484 }else{ |
|
3485 rc = pager_playback(pPager); |
|
3486 } |
|
3487 pPager->dbSize = -1; |
|
3488 |
|
3489 /* If an error occurs during a ROLLBACK, we can no longer trust the pager |
|
3490 ** cache. So call pager_error() on the way out to make any error |
|
3491 ** persistent. |
|
3492 */ |
|
3493 return pager_error(pPager, rc); |
|
3494 } |
|
3495 |
|
3496 /* |
|
3497 ** Return TRUE if the database file is opened read-only. Return FALSE |
|
3498 ** if the database is (in theory) writable. |
|
3499 */ |
|
3500 int sqlite3pager_isreadonly(Pager *pPager){ |
|
3501 return pPager->readOnly; |
|
3502 } |
|
3503 |
|
3504 /* |
|
3505 ** Return the number of references to the pager. |
|
3506 */ |
|
3507 int sqlite3pager_refcount(Pager *pPager){ |
|
3508 return pPager->nRef; |
|
3509 } |
|
3510 |
|
3511 #ifdef SQLITE_TEST |
|
3512 /* |
|
3513 ** This routine is used for testing and analysis only. |
|
3514 */ |
|
3515 int *sqlite3pager_stats(Pager *pPager){ |
|
3516 static int a[11]; |
|
3517 a[0] = pPager->nRef; |
|
3518 a[1] = pPager->nPage; |
|
3519 a[2] = pPager->mxPage; |
|
3520 a[3] = pPager->dbSize; |
|
3521 a[4] = pPager->state; |
|
3522 a[5] = pPager->errCode; |
|
3523 a[6] = pPager->nHit; |
|
3524 a[7] = pPager->nMiss; |
|
3525 a[8] = pPager->nOvfl; |
|
3526 a[9] = pPager->nRead; |
|
3527 a[10] = pPager->nWrite; |
|
3528 return a; |
|
3529 } |
|
3530 #endif |
|
3531 |
|
3532 /* |
|
3533 ** Set the statement rollback point. |
|
3534 ** |
|
3535 ** This routine should be called with the transaction journal already |
|
3536 ** open. A new statement journal is created that can be used to rollback |
|
3537 ** changes of a single SQL command within a larger transaction. |
|
3538 */ |
|
3539 int sqlite3pager_stmt_begin(Pager *pPager){ |
|
3540 int rc; |
|
3541 char zTemp[SQLITE_TEMPNAME_SIZE]; |
|
3542 assert( !pPager->stmtInUse ); |
|
3543 assert( pPager->dbSize>=0 ); |
|
3544 TRACE2("STMT-BEGIN %d\n", PAGERID(pPager)); |
|
3545 if( MEMDB ){ |
|
3546 pPager->stmtInUse = 1; |
|
3547 pPager->stmtSize = pPager->dbSize; |
|
3548 return SQLITE_OK; |
|
3549 } |
|
3550 if( !pPager->journalOpen ){ |
|
3551 pPager->stmtAutoopen = 1; |
|
3552 return SQLITE_OK; |
|
3553 } |
|
3554 assert( pPager->journalOpen ); |
|
3555 pPager->aInStmt = sqliteMalloc( pPager->dbSize/8 + 1 ); |
|
3556 if( pPager->aInStmt==0 ){ |
|
3557 /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */ |
|
3558 return SQLITE_NOMEM; |
|
3559 } |
|
3560 #ifndef NDEBUG |
|
3561 rc = sqlite3OsFileSize(pPager->jfd, &pPager->stmtJSize); |
|
3562 if( rc ) goto stmt_begin_failed; |
|
3563 assert( pPager->stmtJSize == pPager->journalOff ); |
|
3564 #endif |
|
3565 pPager->stmtJSize = pPager->journalOff; |
|
3566 pPager->stmtSize = pPager->dbSize; |
|
3567 pPager->stmtHdrOff = 0; |
|
3568 pPager->stmtCksum = pPager->cksumInit; |
|
3569 if( !pPager->stmtOpen ){ |
|
3570 rc = sqlite3pager_opentemp(zTemp, &pPager->stfd); |
|
3571 if( rc ) goto stmt_begin_failed; |
|
3572 pPager->stmtOpen = 1; |
|
3573 pPager->stmtNRec = 0; |
|
3574 } |
|
3575 pPager->stmtInUse = 1; |
|
3576 return SQLITE_OK; |
|
3577 |
|
3578 stmt_begin_failed: |
|
3579 if( pPager->aInStmt ){ |
|
3580 sqliteFree(pPager->aInStmt); |
|
3581 pPager->aInStmt = 0; |
|
3582 } |
|
3583 return rc; |
|
3584 } |
|
3585 |
|
3586 /* |
|
3587 ** Commit a statement. |
|
3588 */ |
|
3589 int sqlite3pager_stmt_commit(Pager *pPager){ |
|
3590 if( pPager->stmtInUse ){ |
|
3591 PgHdr *pPg, *pNext; |
|
3592 TRACE2("STMT-COMMIT %d\n", PAGERID(pPager)); |
|
3593 if( !MEMDB ){ |
|
3594 sqlite3OsSeek(pPager->stfd, 0); |
|
3595 /* sqlite3OsTruncate(pPager->stfd, 0); */ |
|
3596 sqliteFree( pPager->aInStmt ); |
|
3597 pPager->aInStmt = 0; |
|
3598 } |
|
3599 for(pPg=pPager->pStmt; pPg; pPg=pNext){ |
|
3600 pNext = pPg->pNextStmt; |
|
3601 assert( pPg->inStmt ); |
|
3602 pPg->inStmt = 0; |
|
3603 pPg->pPrevStmt = pPg->pNextStmt = 0; |
|
3604 if( MEMDB ){ |
|
3605 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); |
|
3606 sqliteFree(pHist->pStmt); |
|
3607 pHist->pStmt = 0; |
|
3608 } |
|
3609 } |
|
3610 pPager->stmtNRec = 0; |
|
3611 pPager->stmtInUse = 0; |
|
3612 pPager->pStmt = 0; |
|
3613 } |
|
3614 pPager->stmtAutoopen = 0; |
|
3615 return SQLITE_OK; |
|
3616 } |
|
3617 |
|
3618 /* |
|
3619 ** Rollback a statement. |
|
3620 */ |
|
3621 int sqlite3pager_stmt_rollback(Pager *pPager){ |
|
3622 int rc; |
|
3623 if( pPager->stmtInUse ){ |
|
3624 TRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager)); |
|
3625 if( MEMDB ){ |
|
3626 PgHdr *pPg; |
|
3627 for(pPg=pPager->pStmt; pPg; pPg=pPg->pNextStmt){ |
|
3628 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); |
|
3629 if( pHist->pStmt ){ |
|
3630 memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize); |
|
3631 sqliteFree(pHist->pStmt); |
|
3632 pHist->pStmt = 0; |
|
3633 } |
|
3634 } |
|
3635 pPager->dbSize = pPager->stmtSize; |
|
3636 memoryTruncate(pPager); |
|
3637 rc = SQLITE_OK; |
|
3638 }else{ |
|
3639 rc = pager_stmt_playback(pPager); |
|
3640 } |
|
3641 sqlite3pager_stmt_commit(pPager); |
|
3642 }else{ |
|
3643 rc = SQLITE_OK; |
|
3644 } |
|
3645 pPager->stmtAutoopen = 0; |
|
3646 return rc; |
|
3647 } |
|
3648 |
|
3649 /* |
|
3650 ** Return the full pathname of the database file. |
|
3651 */ |
|
3652 const char *sqlite3pager_filename(Pager *pPager){ |
|
3653 return pPager->zFilename; |
|
3654 } |
|
3655 |
|
3656 /* |
|
3657 ** Return the directory of the database file. |
|
3658 */ |
|
3659 const char *sqlite3pager_dirname(Pager *pPager){ |
|
3660 return pPager->zDirectory; |
|
3661 } |
|
3662 |
|
3663 /* |
|
3664 ** Return the full pathname of the journal file. |
|
3665 */ |
|
3666 const char *sqlite3pager_journalname(Pager *pPager){ |
|
3667 return pPager->zJournal; |
|
3668 } |
|
3669 |
|
3670 /* |
|
3671 ** Return true if fsync() calls are disabled for this pager. Return FALSE |
|
3672 ** if fsync()s are executed normally. |
|
3673 */ |
|
3674 int sqlite3pager_nosync(Pager *pPager){ |
|
3675 return pPager->noSync; |
|
3676 } |
|
3677 |
|
3678 /* |
|
3679 ** Set the codec for this pager |
|
3680 */ |
|
3681 void sqlite3pager_set_codec( |
|
3682 Pager *pPager, |
|
3683 void *(*xCodec)(void*,void*,Pgno,int), |
|
3684 void *pCodecArg |
|
3685 ){ |
|
3686 pPager->xCodec = xCodec; |
|
3687 pPager->pCodecArg = pCodecArg; |
|
3688 } |
|
3689 |
|
3690 /* |
|
3691 ** This routine is called to increment the database file change-counter, |
|
3692 ** stored at byte 24 of the pager file. |
|
3693 */ |
|
3694 static int pager_incr_changecounter(Pager *pPager){ |
|
3695 void *pPage; |
|
3696 PgHdr *pPgHdr; |
|
3697 u32 change_counter; |
|
3698 int rc; |
|
3699 |
|
3700 /* Open page 1 of the file for writing. */ |
|
3701 rc = sqlite3pager_get(pPager, 1, &pPage); |
|
3702 if( rc!=SQLITE_OK ) return rc; |
|
3703 rc = sqlite3pager_write(pPage); |
|
3704 if( rc!=SQLITE_OK ) return rc; |
|
3705 |
|
3706 /* Read the current value at byte 24. */ |
|
3707 pPgHdr = DATA_TO_PGHDR(pPage); |
|
3708 change_counter = retrieve32bits(pPgHdr, 24); |
|
3709 |
|
3710 /* Increment the value just read and write it back to byte 24. */ |
|
3711 change_counter++; |
|
3712 put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter); |
|
3713 |
|
3714 /* Release the page reference. */ |
|
3715 sqlite3pager_unref(pPage); |
|
3716 return SQLITE_OK; |
|
3717 } |
|
3718 |
|
3719 /* |
|
3720 ** Sync the database file for the pager pPager. zMaster points to the name |
|
3721 ** of a master journal file that should be written into the individual |
|
3722 ** journal file. zMaster may be NULL, which is interpreted as no master |
|
3723 ** journal (a single database transaction). |
|
3724 ** |
|
3725 ** This routine ensures that the journal is synced, all dirty pages written |
|
3726 ** to the database file and the database file synced. The only thing that |
|
3727 ** remains to commit the transaction is to delete the journal file (or |
|
3728 ** master journal file if specified). |
|
3729 ** |
|
3730 ** Note that if zMaster==NULL, this does not overwrite a previous value |
|
3731 ** passed to an sqlite3pager_sync() call. |
|
3732 ** |
|
3733 ** If parameter nTrunc is non-zero, then the pager file is truncated to |
|
3734 ** nTrunc pages (this is used by auto-vacuum databases). |
|
3735 */ |
|
3736 int sqlite3pager_sync(Pager *pPager, const char *zMaster, Pgno nTrunc){ |
|
3737 int rc = SQLITE_OK; |
|
3738 |
|
3739 TRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n", |
|
3740 pPager->zFilename, zMaster, nTrunc); |
|
3741 |
|
3742 /* If this is an in-memory db, or no pages have been written to, or this |
|
3743 ** function has already been called, it is a no-op. |
|
3744 */ |
|
3745 if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){ |
|
3746 PgHdr *pPg; |
|
3747 assert( pPager->journalOpen ); |
|
3748 |
|
3749 /* If a master journal file name has already been written to the |
|
3750 ** journal file, then no sync is required. This happens when it is |
|
3751 ** written, then the process fails to upgrade from a RESERVED to an |
|
3752 ** EXCLUSIVE lock. The next time the process tries to commit the |
|
3753 ** transaction the m-j name will have already been written. |
|
3754 */ |
|
3755 if( !pPager->setMaster ){ |
|
3756 rc = pager_incr_changecounter(pPager); |
|
3757 if( rc!=SQLITE_OK ) goto sync_exit; |
|
3758 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
3759 if( nTrunc!=0 ){ |
|
3760 /* If this transaction has made the database smaller, then all pages |
|
3761 ** being discarded by the truncation must be written to the journal |
|
3762 ** file. |
|
3763 */ |
|
3764 Pgno i; |
|
3765 void *pPage; |
|
3766 int iSkip = PAGER_MJ_PGNO(pPager); |
|
3767 for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){ |
|
3768 if( !(pPager->aInJournal[i/8] & (1<<(i&7))) && i!=iSkip ){ |
|
3769 rc = sqlite3pager_get(pPager, i, &pPage); |
|
3770 if( rc!=SQLITE_OK ) goto sync_exit; |
|
3771 rc = sqlite3pager_write(pPage); |
|
3772 sqlite3pager_unref(pPage); |
|
3773 if( rc!=SQLITE_OK ) goto sync_exit; |
|
3774 } |
|
3775 } |
|
3776 } |
|
3777 #endif |
|
3778 rc = writeMasterJournal(pPager, zMaster); |
|
3779 if( rc!=SQLITE_OK ) goto sync_exit; |
|
3780 rc = syncJournal(pPager); |
|
3781 if( rc!=SQLITE_OK ) goto sync_exit; |
|
3782 } |
|
3783 |
|
3784 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
3785 if( nTrunc!=0 ){ |
|
3786 rc = sqlite3pager_truncate(pPager, nTrunc); |
|
3787 if( rc!=SQLITE_OK ) goto sync_exit; |
|
3788 } |
|
3789 #endif |
|
3790 |
|
3791 /* Write all dirty pages to the database file */ |
|
3792 pPg = pager_get_all_dirty_pages(pPager); |
|
3793 rc = pager_write_pagelist(pPg); |
|
3794 if( rc!=SQLITE_OK ) goto sync_exit; |
|
3795 |
|
3796 /* Sync the database file. */ |
|
3797 if( !pPager->noSync ){ |
|
3798 rc = sqlite3OsSync(pPager->fd, 0); |
|
3799 } |
|
3800 |
|
3801 pPager->state = PAGER_SYNCED; |
|
3802 }else if( MEMDB && nTrunc!=0 ){ |
|
3803 rc = sqlite3pager_truncate(pPager, nTrunc); |
|
3804 } |
|
3805 |
|
3806 sync_exit: |
|
3807 return rc; |
|
3808 } |
|
3809 |
|
3810 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
3811 /* |
|
3812 ** Move the page identified by pData to location pgno in the file. |
|
3813 ** |
|
3814 ** There must be no references to the current page pgno. If current page |
|
3815 ** pgno is not already in the rollback journal, it is not written there by |
|
3816 ** by this routine. The same applies to the page pData refers to on entry to |
|
3817 ** this routine. |
|
3818 ** |
|
3819 ** References to the page refered to by pData remain valid. Updating any |
|
3820 ** meta-data associated with page pData (i.e. data stored in the nExtra bytes |
|
3821 ** allocated along with the page) is the responsibility of the caller. |
|
3822 ** |
|
3823 ** A transaction must be active when this routine is called. It used to be |
|
3824 ** required that a statement transaction was not active, but this restriction |
|
3825 ** has been removed (CREATE INDEX needs to move a page when a statement |
|
3826 ** transaction is active). |
|
3827 */ |
|
3828 int sqlite3pager_movepage(Pager *pPager, void *pData, Pgno pgno){ |
|
3829 PgHdr *pPg = DATA_TO_PGHDR(pData); |
|
3830 PgHdr *pPgOld; |
|
3831 int h; |
|
3832 Pgno needSyncPgno = 0; |
|
3833 |
|
3834 assert( pPg->nRef>0 ); |
|
3835 |
|
3836 TRACE5("MOVE %d page %d (needSync=%d) moves to %d\n", |
|
3837 PAGERID(pPager), pPg->pgno, pPg->needSync, pgno); |
|
3838 |
|
3839 if( pPg->needSync ){ |
|
3840 needSyncPgno = pPg->pgno; |
|
3841 assert( pPg->inJournal ); |
|
3842 assert( pPg->dirty ); |
|
3843 assert( pPager->needSync ); |
|
3844 } |
|
3845 |
|
3846 /* Unlink pPg from it's hash-chain */ |
|
3847 unlinkHashChain(pPager, pPg); |
|
3848 |
|
3849 /* If the cache contains a page with page-number pgno, remove it |
|
3850 ** from it's hash chain. Also, if the PgHdr.needSync was set for |
|
3851 ** page pgno before the 'move' operation, it needs to be retained |
|
3852 ** for the page moved there. |
|
3853 */ |
|
3854 pPgOld = pager_lookup(pPager, pgno); |
|
3855 if( pPgOld ){ |
|
3856 assert( pPgOld->nRef==0 ); |
|
3857 unlinkHashChain(pPager, pPgOld); |
|
3858 makeClean(pPgOld); |
|
3859 if( pPgOld->needSync ){ |
|
3860 assert( pPgOld->inJournal ); |
|
3861 pPg->inJournal = 1; |
|
3862 pPg->needSync = 1; |
|
3863 assert( pPager->needSync ); |
|
3864 } |
|
3865 } |
|
3866 |
|
3867 /* Change the page number for pPg and insert it into the new hash-chain. */ |
|
3868 assert( pgno!=0 ); |
|
3869 pPg->pgno = pgno; |
|
3870 h = pgno & (pPager->nHash-1); |
|
3871 if( pPager->aHash[h] ){ |
|
3872 assert( pPager->aHash[h]->pPrevHash==0 ); |
|
3873 pPager->aHash[h]->pPrevHash = pPg; |
|
3874 } |
|
3875 pPg->pNextHash = pPager->aHash[h]; |
|
3876 pPager->aHash[h] = pPg; |
|
3877 pPg->pPrevHash = 0; |
|
3878 |
|
3879 makeDirty(pPg); |
|
3880 pPager->dirtyCache = 1; |
|
3881 |
|
3882 if( needSyncPgno ){ |
|
3883 /* If needSyncPgno is non-zero, then the journal file needs to be |
|
3884 ** sync()ed before any data is written to database file page needSyncPgno. |
|
3885 ** Currently, no such page exists in the page-cache and the |
|
3886 ** Pager.aInJournal bit has been set. This needs to be remedied by loading |
|
3887 ** the page into the pager-cache and setting the PgHdr.needSync flag. |
|
3888 ** |
|
3889 ** The sqlite3pager_get() call may cause the journal to sync. So make |
|
3890 ** sure the Pager.needSync flag is set too. |
|
3891 */ |
|
3892 int rc; |
|
3893 void *pNeedSync; |
|
3894 assert( pPager->needSync ); |
|
3895 rc = sqlite3pager_get(pPager, needSyncPgno, &pNeedSync); |
|
3896 if( rc!=SQLITE_OK ) return rc; |
|
3897 pPager->needSync = 1; |
|
3898 DATA_TO_PGHDR(pNeedSync)->needSync = 1; |
|
3899 DATA_TO_PGHDR(pNeedSync)->inJournal = 1; |
|
3900 makeDirty(DATA_TO_PGHDR(pNeedSync)); |
|
3901 sqlite3pager_unref(pNeedSync); |
|
3902 } |
|
3903 |
|
3904 return SQLITE_OK; |
|
3905 } |
|
3906 #endif |
|
3907 |
|
3908 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) |
|
3909 /* |
|
3910 ** Return the current state of the file lock for the given pager. |
|
3911 ** The return value is one of NO_LOCK, SHARED_LOCK, RESERVED_LOCK, |
|
3912 ** PENDING_LOCK, or EXCLUSIVE_LOCK. |
|
3913 */ |
|
3914 int sqlite3pager_lockstate(Pager *pPager){ |
|
3915 return sqlite3OsLockState(pPager->fd); |
|
3916 } |
|
3917 #endif |
|
3918 |
|
3919 #ifdef SQLITE_DEBUG |
|
3920 /* |
|
3921 ** Print a listing of all referenced pages and their ref count. |
|
3922 */ |
|
3923 void sqlite3pager_refdump(Pager *pPager){ |
|
3924 PgHdr *pPg; |
|
3925 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ |
|
3926 if( pPg->nRef<=0 ) continue; |
|
3927 sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n", |
|
3928 pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef); |
|
3929 } |
|
3930 } |
|
3931 #endif |
|
3932 |
|
3933 #endif /* SQLITE_OMIT_DISKIO */ |