webengine/webkitutils/SqliteSymbian/select.c
changeset 0 dd21522fd290
equal deleted inserted replaced
-1:000000000000 0:dd21522fd290
       
     1 /*
       
     2 ** 2001 September 15
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** This file contains C code routines that are called by the parser
       
    13 ** to handle SELECT statements in SQLite.
       
    14 **
       
    15 ** $Id: select.c,v 1.320 2006/08/11 19:08:27 drh Exp $
       
    16 */
       
    17 #include "sqliteInt.h"
       
    18 
       
    19 
       
    20 /*
       
    21 ** Delete all the content of a Select structure but do not deallocate
       
    22 ** the select structure itself.
       
    23 */
       
    24 static void clearSelect(Select *p){
       
    25   sqlite3ExprListDelete(p->pEList);
       
    26   sqlite3SrcListDelete(p->pSrc);
       
    27   sqlite3ExprDelete(p->pWhere);
       
    28   sqlite3ExprListDelete(p->pGroupBy);
       
    29   sqlite3ExprDelete(p->pHaving);
       
    30   sqlite3ExprListDelete(p->pOrderBy);
       
    31   sqlite3SelectDelete(p->pPrior);
       
    32   sqlite3ExprDelete(p->pLimit);
       
    33   sqlite3ExprDelete(p->pOffset);
       
    34 }
       
    35 
       
    36 
       
    37 /*
       
    38 ** Allocate a new Select structure and return a pointer to that
       
    39 ** structure.
       
    40 */
       
    41 Select *sqlite3SelectNew(
       
    42   ExprList *pEList,     /* which columns to include in the result */
       
    43   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
       
    44   Expr *pWhere,         /* the WHERE clause */
       
    45   ExprList *pGroupBy,   /* the GROUP BY clause */
       
    46   Expr *pHaving,        /* the HAVING clause */
       
    47   ExprList *pOrderBy,   /* the ORDER BY clause */
       
    48   int isDistinct,       /* true if the DISTINCT keyword is present */
       
    49   Expr *pLimit,         /* LIMIT value.  NULL means not used */
       
    50   Expr *pOffset         /* OFFSET value.  NULL means no offset */
       
    51 ){
       
    52   Select *pNew;
       
    53   Select standin;
       
    54   pNew = sqliteMalloc( sizeof(*pNew) );
       
    55   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
       
    56   if( pNew==0 ){
       
    57     pNew = &standin;
       
    58     memset(pNew, 0, sizeof(*pNew));
       
    59   }
       
    60   if( pEList==0 ){
       
    61     pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0);
       
    62   }
       
    63   pNew->pEList = pEList;
       
    64   pNew->pSrc = pSrc;
       
    65   pNew->pWhere = pWhere;
       
    66   pNew->pGroupBy = pGroupBy;
       
    67   pNew->pHaving = pHaving;
       
    68   pNew->pOrderBy = pOrderBy;
       
    69   pNew->isDistinct = isDistinct;
       
    70   pNew->op = TK_SELECT;
       
    71   pNew->pLimit = pLimit;
       
    72   pNew->pOffset = pOffset;
       
    73   pNew->iLimit = -1;
       
    74   pNew->iOffset = -1;
       
    75   pNew->addrOpenEphm[0] = -1;
       
    76   pNew->addrOpenEphm[1] = -1;
       
    77   pNew->addrOpenEphm[2] = -1;
       
    78   if( pNew==&standin) {
       
    79     clearSelect(pNew);
       
    80     pNew = 0;
       
    81   }
       
    82   return pNew;
       
    83 }
       
    84 
       
    85 /*
       
    86 ** Delete the given Select structure and all of its substructures.
       
    87 */
       
    88 void sqlite3SelectDelete(Select *p){
       
    89   if( p ){
       
    90     clearSelect(p);
       
    91     sqliteFree(p);
       
    92   }
       
    93 }
       
    94 
       
    95 /*
       
    96 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
       
    97 ** type of join.  Return an integer constant that expresses that type
       
    98 ** in terms of the following bit values:
       
    99 **
       
   100 **     JT_INNER
       
   101 **     JT_CROSS
       
   102 **     JT_OUTER
       
   103 **     JT_NATURAL
       
   104 **     JT_LEFT
       
   105 **     JT_RIGHT
       
   106 **
       
   107 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
       
   108 **
       
   109 ** If an illegal or unsupported join type is seen, then still return
       
   110 ** a join type, but put an error in the pParse structure.
       
   111 */
       
   112 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
       
   113   int jointype = 0;
       
   114   Token *apAll[3];
       
   115   Token *p;
       
   116   static const struct {
       
   117     const char zKeyword[8];
       
   118     u8 nChar;
       
   119     u8 code;
       
   120   } keywords[] = {
       
   121     { "natural", 7, JT_NATURAL },
       
   122     { "left",    4, JT_LEFT|JT_OUTER },
       
   123     { "right",   5, JT_RIGHT|JT_OUTER },
       
   124     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
       
   125     { "outer",   5, JT_OUTER },
       
   126     { "inner",   5, JT_INNER },
       
   127     { "cross",   5, JT_INNER|JT_CROSS },
       
   128   };
       
   129   int i, j;
       
   130   apAll[0] = pA;
       
   131   apAll[1] = pB;
       
   132   apAll[2] = pC;
       
   133   for(i=0; i<3 && apAll[i]; i++){
       
   134     p = apAll[i];
       
   135     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
       
   136       if( p->n==keywords[j].nChar 
       
   137           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
       
   138         jointype |= keywords[j].code;
       
   139         break;
       
   140       }
       
   141     }
       
   142     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
       
   143       jointype |= JT_ERROR;
       
   144       break;
       
   145     }
       
   146   }
       
   147   if(
       
   148      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
       
   149      (jointype & JT_ERROR)!=0
       
   150   ){
       
   151     const char *zSp1 = " ";
       
   152     const char *zSp2 = " ";
       
   153     if( pB==0 ){ zSp1++; }
       
   154     if( pC==0 ){ zSp2++; }
       
   155     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
       
   156        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
       
   157     jointype = JT_INNER;
       
   158   }else if( jointype & JT_RIGHT ){
       
   159     sqlite3ErrorMsg(pParse, 
       
   160       "RIGHT and FULL OUTER JOINs are not currently supported");
       
   161     jointype = JT_INNER;
       
   162   }
       
   163   return jointype;
       
   164 }
       
   165 
       
   166 /*
       
   167 ** Return the index of a column in a table.  Return -1 if the column
       
   168 ** is not contained in the table.
       
   169 */
       
   170 static int columnIndex(Table *pTab, const char *zCol){
       
   171   int i;
       
   172   for(i=0; i<pTab->nCol; i++){
       
   173     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
       
   174   }
       
   175   return -1;
       
   176 }
       
   177 
       
   178 /*
       
   179 ** Set the value of a token to a '\000'-terminated string.
       
   180 */
       
   181 static void setToken(Token *p, const char *z){
       
   182   p->z = (u8*)z;
       
   183   p->n = z ? strlen(z) : 0;
       
   184   p->dyn = 0;
       
   185 }
       
   186 
       
   187 /*
       
   188 ** Create an expression node for an identifier with the name of zName
       
   189 */
       
   190 Expr *sqlite3CreateIdExpr(const char *zName){
       
   191   Token dummy;
       
   192   setToken(&dummy, zName);
       
   193   return sqlite3Expr(TK_ID, 0, 0, &dummy);
       
   194 }
       
   195 
       
   196 
       
   197 /*
       
   198 ** Add a term to the WHERE expression in *ppExpr that requires the
       
   199 ** zCol column to be equal in the two tables pTab1 and pTab2.
       
   200 */
       
   201 static void addWhereTerm(
       
   202   const char *zCol,        /* Name of the column */
       
   203   const Table *pTab1,      /* First table */
       
   204   const char *zAlias1,     /* Alias for first table.  May be NULL */
       
   205   const Table *pTab2,      /* Second table */
       
   206   const char *zAlias2,     /* Alias for second table.  May be NULL */
       
   207   int iRightJoinTable,     /* VDBE cursor for the right table */
       
   208   Expr **ppExpr            /* Add the equality term to this expression */
       
   209 ){
       
   210   Expr *pE1a, *pE1b, *pE1c;
       
   211   Expr *pE2a, *pE2b, *pE2c;
       
   212   Expr *pE;
       
   213 
       
   214   pE1a = sqlite3CreateIdExpr(zCol);
       
   215   pE2a = sqlite3CreateIdExpr(zCol);
       
   216   if( zAlias1==0 ){
       
   217     zAlias1 = pTab1->zName;
       
   218   }
       
   219   pE1b = sqlite3CreateIdExpr(zAlias1);
       
   220   if( zAlias2==0 ){
       
   221     zAlias2 = pTab2->zName;
       
   222   }
       
   223   pE2b = sqlite3CreateIdExpr(zAlias2);
       
   224   pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0);
       
   225   pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0);
       
   226   pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0);
       
   227   if( pE ){
       
   228     ExprSetProperty(pE, EP_FromJoin);
       
   229     pE->iRightJoinTable = iRightJoinTable;
       
   230   }
       
   231   pE = sqlite3ExprAnd(*ppExpr, pE);
       
   232   if( pE ){
       
   233     *ppExpr = pE;
       
   234   }
       
   235 }
       
   236 
       
   237 /*
       
   238 ** Set the EP_FromJoin property on all terms of the given expression.
       
   239 ** And set the Expr.iRightJoinTable to iTable for every term in the
       
   240 ** expression.
       
   241 **
       
   242 ** The EP_FromJoin property is used on terms of an expression to tell
       
   243 ** the LEFT OUTER JOIN processing logic that this term is part of the
       
   244 ** join restriction specified in the ON or USING clause and not a part
       
   245 ** of the more general WHERE clause.  These terms are moved over to the
       
   246 ** WHERE clause during join processing but we need to remember that they
       
   247 ** originated in the ON or USING clause.
       
   248 **
       
   249 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
       
   250 ** expression depends on table iRightJoinTable even if that table is not
       
   251 ** explicitly mentioned in the expression.  That information is needed
       
   252 ** for cases like this:
       
   253 **
       
   254 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
       
   255 **
       
   256 ** The where clause needs to defer the handling of the t1.x=5
       
   257 ** term until after the t2 loop of the join.  In that way, a
       
   258 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
       
   259 ** defer the handling of t1.x=5, it will be processed immediately
       
   260 ** after the t1 loop and rows with t1.x!=5 will never appear in
       
   261 ** the output, which is incorrect.
       
   262 */
       
   263 static void setJoinExpr(Expr *p, int iTable){
       
   264   while( p ){
       
   265     ExprSetProperty(p, EP_FromJoin);
       
   266     p->iRightJoinTable = iTable;
       
   267     setJoinExpr(p->pLeft, iTable);
       
   268     p = p->pRight;
       
   269   } 
       
   270 }
       
   271 
       
   272 /*
       
   273 ** This routine processes the join information for a SELECT statement.
       
   274 ** ON and USING clauses are converted into extra terms of the WHERE clause.
       
   275 ** NATURAL joins also create extra WHERE clause terms.
       
   276 **
       
   277 ** The terms of a FROM clause are contained in the Select.pSrc structure.
       
   278 ** The left most table is the first entry in Select.pSrc.  The right-most
       
   279 ** table is the last entry.  The join operator is held in the entry to
       
   280 ** the left.  Thus entry 0 contains the join operator for the join between
       
   281 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
       
   282 ** also attached to the left entry.
       
   283 **
       
   284 ** This routine returns the number of errors encountered.
       
   285 */
       
   286 static int sqliteProcessJoin(Parse *pParse, Select *p){
       
   287   SrcList *pSrc;                  /* All tables in the FROM clause */
       
   288   int i, j;                       /* Loop counters */
       
   289   struct SrcList_item *pLeft;     /* Left table being joined */
       
   290   struct SrcList_item *pRight;    /* Right table being joined */
       
   291 
       
   292   pSrc = p->pSrc;
       
   293   pLeft = &pSrc->a[0];
       
   294   pRight = &pLeft[1];
       
   295   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
       
   296     Table *pLeftTab = pLeft->pTab;
       
   297     Table *pRightTab = pRight->pTab;
       
   298 
       
   299     if( pLeftTab==0 || pRightTab==0 ) continue;
       
   300 
       
   301     /* When the NATURAL keyword is present, add WHERE clause terms for
       
   302     ** every column that the two tables have in common.
       
   303     */
       
   304     if( pLeft->jointype & JT_NATURAL ){
       
   305       if( pLeft->pOn || pLeft->pUsing ){
       
   306         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
       
   307            "an ON or USING clause", 0);
       
   308         return 1;
       
   309       }
       
   310       for(j=0; j<pLeftTab->nCol; j++){
       
   311         char *zName = pLeftTab->aCol[j].zName;
       
   312         if( columnIndex(pRightTab, zName)>=0 ){
       
   313           addWhereTerm(zName, pLeftTab, pLeft->zAlias, 
       
   314                               pRightTab, pRight->zAlias,
       
   315                               pRight->iCursor, &p->pWhere);
       
   316           
       
   317         }
       
   318       }
       
   319     }
       
   320 
       
   321     /* Disallow both ON and USING clauses in the same join
       
   322     */
       
   323     if( pLeft->pOn && pLeft->pUsing ){
       
   324       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
       
   325         "clauses in the same join");
       
   326       return 1;
       
   327     }
       
   328 
       
   329     /* Add the ON clause to the end of the WHERE clause, connected by
       
   330     ** an AND operator.
       
   331     */
       
   332     if( pLeft->pOn ){
       
   333       setJoinExpr(pLeft->pOn, pRight->iCursor);
       
   334       p->pWhere = sqlite3ExprAnd(p->pWhere, pLeft->pOn);
       
   335       pLeft->pOn = 0;
       
   336     }
       
   337 
       
   338     /* Create extra terms on the WHERE clause for each column named
       
   339     ** in the USING clause.  Example: If the two tables to be joined are 
       
   340     ** A and B and the USING clause names X, Y, and Z, then add this
       
   341     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
       
   342     ** Report an error if any column mentioned in the USING clause is
       
   343     ** not contained in both tables to be joined.
       
   344     */
       
   345     if( pLeft->pUsing ){
       
   346       IdList *pList = pLeft->pUsing;
       
   347       for(j=0; j<pList->nId; j++){
       
   348         char *zName = pList->a[j].zName;
       
   349         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
       
   350           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
       
   351             "not present in both tables", zName);
       
   352           return 1;
       
   353         }
       
   354         addWhereTerm(zName, pLeftTab, pLeft->zAlias, 
       
   355                             pRightTab, pRight->zAlias,
       
   356                             pRight->iCursor, &p->pWhere);
       
   357       }
       
   358     }
       
   359   }
       
   360   return 0;
       
   361 }
       
   362 
       
   363 /*
       
   364 ** Insert code into "v" that will push the record on the top of the
       
   365 ** stack into the sorter.
       
   366 */
       
   367 static void pushOntoSorter(
       
   368   Parse *pParse,         /* Parser context */
       
   369   ExprList *pOrderBy,    /* The ORDER BY clause */
       
   370   Select *pSelect        /* The whole SELECT statement */
       
   371 ){
       
   372   Vdbe *v = pParse->pVdbe;
       
   373   sqlite3ExprCodeExprList(pParse, pOrderBy);
       
   374   sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
       
   375   sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
       
   376   sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
       
   377   sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
       
   378   if( pSelect->iLimit>=0 ){
       
   379     int addr1, addr2;
       
   380     addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
       
   381     sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
       
   382     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
       
   383     sqlite3VdbeJumpHere(v, addr1);
       
   384     sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
       
   385     sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
       
   386     sqlite3VdbeJumpHere(v, addr2);
       
   387     pSelect->iLimit = -1;
       
   388   }
       
   389 }
       
   390 
       
   391 /*
       
   392 ** Add code to implement the OFFSET
       
   393 */
       
   394 static void codeOffset(
       
   395   Vdbe *v,          /* Generate code into this VM */
       
   396   Select *p,        /* The SELECT statement being coded */
       
   397   int iContinue,    /* Jump here to skip the current record */
       
   398   int nPop          /* Number of times to pop stack when jumping */
       
   399 ){
       
   400   if( p->iOffset>=0 && iContinue!=0 ){
       
   401     int addr;
       
   402     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
       
   403     addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
       
   404     if( nPop>0 ){
       
   405       sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
       
   406     }
       
   407     sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
       
   408     VdbeComment((v, "# skip OFFSET records"));
       
   409     sqlite3VdbeJumpHere(v, addr);
       
   410   }
       
   411 }
       
   412 
       
   413 /*
       
   414 ** Add code that will check to make sure the top N elements of the
       
   415 ** stack are distinct.  iTab is a sorting index that holds previously
       
   416 ** seen combinations of the N values.  A new entry is made in iTab
       
   417 ** if the current N values are new.
       
   418 **
       
   419 ** A jump to addrRepeat is made and the N+1 values are popped from the
       
   420 ** stack if the top N elements are not distinct.
       
   421 */
       
   422 static void codeDistinct(
       
   423   Vdbe *v,           /* Generate code into this VM */
       
   424   int iTab,          /* A sorting index used to test for distinctness */
       
   425   int addrRepeat,    /* Jump to here if not distinct */
       
   426   int N              /* The top N elements of the stack must be distinct */
       
   427 ){
       
   428   sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
       
   429   sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
       
   430   sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
       
   431   sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
       
   432   VdbeComment((v, "# skip indistinct records"));
       
   433   sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
       
   434 }
       
   435 
       
   436 
       
   437 /*
       
   438 ** This routine generates the code for the inside of the inner loop
       
   439 ** of a SELECT.
       
   440 **
       
   441 ** If srcTab and nColumn are both zero, then the pEList expressions
       
   442 ** are evaluated in order to get the data for this row.  If nColumn>0
       
   443 ** then data is pulled from srcTab and pEList is used only to get the
       
   444 ** datatypes for each column.
       
   445 */
       
   446 static int selectInnerLoop(
       
   447   Parse *pParse,          /* The parser context */
       
   448   Select *p,              /* The complete select statement being coded */
       
   449   ExprList *pEList,       /* List of values being extracted */
       
   450   int srcTab,             /* Pull data from this table */
       
   451   int nColumn,            /* Number of columns in the source table */
       
   452   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
       
   453   int distinct,           /* If >=0, make sure results are distinct */
       
   454   int eDest,              /* How to dispose of the results */
       
   455   int iParm,              /* An argument to the disposal method */
       
   456   int iContinue,          /* Jump here to continue with next row */
       
   457   int iBreak,             /* Jump here to break out of the inner loop */
       
   458   char *aff               /* affinity string if eDest is SRT_Union */
       
   459 ){
       
   460   Vdbe *v = pParse->pVdbe;
       
   461   int i;
       
   462   int hasDistinct;        /* True if the DISTINCT keyword is present */
       
   463 
       
   464   if( v==0 ) return 0;
       
   465   assert( pEList!=0 );
       
   466 
       
   467   /* If there was a LIMIT clause on the SELECT statement, then do the check
       
   468   ** to see if this row should be output.
       
   469   */
       
   470   hasDistinct = distinct>=0 && pEList->nExpr>0;
       
   471   if( pOrderBy==0 && !hasDistinct ){
       
   472     codeOffset(v, p, iContinue, 0);
       
   473   }
       
   474 
       
   475   /* Pull the requested columns.
       
   476   */
       
   477   if( nColumn>0 ){
       
   478     for(i=0; i<nColumn; i++){
       
   479       sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
       
   480     }
       
   481   }else{
       
   482     nColumn = pEList->nExpr;
       
   483     sqlite3ExprCodeExprList(pParse, pEList);
       
   484   }
       
   485 
       
   486   /* If the DISTINCT keyword was present on the SELECT statement
       
   487   ** and this row has been seen before, then do not make this row
       
   488   ** part of the result.
       
   489   */
       
   490   if( hasDistinct ){
       
   491     assert( pEList!=0 );
       
   492     assert( pEList->nExpr==nColumn );
       
   493     codeDistinct(v, distinct, iContinue, nColumn);
       
   494     if( pOrderBy==0 ){
       
   495       codeOffset(v, p, iContinue, nColumn);
       
   496     }
       
   497   }
       
   498 
       
   499   switch( eDest ){
       
   500     /* In this mode, write each query result to the key of the temporary
       
   501     ** table iParm.
       
   502     */
       
   503 #ifndef SQLITE_OMIT_COMPOUND_SELECT
       
   504     case SRT_Union: {
       
   505       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
       
   506       if( aff ){
       
   507         sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
       
   508       }
       
   509       sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
       
   510       break;
       
   511     }
       
   512 
       
   513     /* Construct a record from the query result, but instead of
       
   514     ** saving that record, use it as a key to delete elements from
       
   515     ** the temporary table iParm.
       
   516     */
       
   517     case SRT_Except: {
       
   518       int addr;
       
   519       addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
       
   520       sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
       
   521       sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
       
   522       sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
       
   523       break;
       
   524     }
       
   525 #endif
       
   526 
       
   527     /* Store the result as data using a unique key.
       
   528     */
       
   529     case SRT_Table:
       
   530     case SRT_EphemTab: {
       
   531       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
       
   532       if( pOrderBy ){
       
   533         pushOntoSorter(pParse, pOrderBy, p);
       
   534       }else{
       
   535         sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
       
   536         sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
       
   537         sqlite3VdbeAddOp(v, OP_Insert, iParm, 0);
       
   538       }
       
   539       break;
       
   540     }
       
   541 
       
   542 #ifndef SQLITE_OMIT_SUBQUERY
       
   543     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
       
   544     ** then there should be a single item on the stack.  Write this
       
   545     ** item into the set table with bogus data.
       
   546     */
       
   547     case SRT_Set: {
       
   548       int addr1 = sqlite3VdbeCurrentAddr(v);
       
   549       int addr2;
       
   550 
       
   551       assert( nColumn==1 );
       
   552       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
       
   553       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
   554       addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
       
   555       if( pOrderBy ){
       
   556         /* At first glance you would think we could optimize out the
       
   557         ** ORDER BY in this case since the order of entries in the set
       
   558         ** does not matter.  But there might be a LIMIT clause, in which
       
   559         ** case the order does matter */
       
   560         pushOntoSorter(pParse, pOrderBy, p);
       
   561       }else{
       
   562         char affinity = (iParm>>16)&0xFF;
       
   563         affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, affinity);
       
   564         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
       
   565         sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
       
   566       }
       
   567       sqlite3VdbeJumpHere(v, addr2);
       
   568       break;
       
   569     }
       
   570 
       
   571     /* If any row exist in the result set, record that fact and abort.
       
   572     */
       
   573     case SRT_Exists: {
       
   574       sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
       
   575       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
       
   576       /* The LIMIT clause will terminate the loop for us */
       
   577       break;
       
   578     }
       
   579 
       
   580     /* If this is a scalar select that is part of an expression, then
       
   581     ** store the results in the appropriate memory cell and break out
       
   582     ** of the scan loop.
       
   583     */
       
   584     case SRT_Mem: {
       
   585       assert( nColumn==1 );
       
   586       if( pOrderBy ){
       
   587         pushOntoSorter(pParse, pOrderBy, p);
       
   588       }else{
       
   589         sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
       
   590         /* The LIMIT clause will jump out of the loop for us */
       
   591       }
       
   592       break;
       
   593     }
       
   594 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
       
   595 
       
   596     /* Send the data to the callback function or to a subroutine.  In the
       
   597     ** case of a subroutine, the subroutine itself is responsible for
       
   598     ** popping the data from the stack.
       
   599     */
       
   600     case SRT_Subroutine:
       
   601     case SRT_Callback: {
       
   602       if( pOrderBy ){
       
   603         sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
       
   604         pushOntoSorter(pParse, pOrderBy, p);
       
   605       }else if( eDest==SRT_Subroutine ){
       
   606         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
       
   607       }else{
       
   608         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
       
   609       }
       
   610       break;
       
   611     }
       
   612 
       
   613 #if !defined(SQLITE_OMIT_TRIGGER)
       
   614     /* Discard the results.  This is used for SELECT statements inside
       
   615     ** the body of a TRIGGER.  The purpose of such selects is to call
       
   616     ** user-defined functions that have side effects.  We do not care
       
   617     ** about the actual results of the select.
       
   618     */
       
   619     default: {
       
   620       assert( eDest==SRT_Discard );
       
   621       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
       
   622       break;
       
   623     }
       
   624 #endif
       
   625   }
       
   626 
       
   627   /* Jump to the end of the loop if the LIMIT is reached.
       
   628   */
       
   629   if( p->iLimit>=0 && pOrderBy==0 ){
       
   630     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
       
   631     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
       
   632   }
       
   633   return 0;
       
   634 }
       
   635 
       
   636 /*
       
   637 ** Given an expression list, generate a KeyInfo structure that records
       
   638 ** the collating sequence for each expression in that expression list.
       
   639 **
       
   640 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
       
   641 ** KeyInfo structure is appropriate for initializing a virtual index to
       
   642 ** implement that clause.  If the ExprList is the result set of a SELECT
       
   643 ** then the KeyInfo structure is appropriate for initializing a virtual
       
   644 ** index to implement a DISTINCT test.
       
   645 **
       
   646 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
       
   647 ** function is responsible for seeing that this structure is eventually
       
   648 ** freed.  Add the KeyInfo structure to the P3 field of an opcode using
       
   649 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
       
   650 */
       
   651 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
       
   652   sqlite3 *db = pParse->db;
       
   653   int nExpr;
       
   654   KeyInfo *pInfo;
       
   655   struct ExprList_item *pItem;
       
   656   int i;
       
   657 
       
   658   nExpr = pList->nExpr;
       
   659   pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
       
   660   if( pInfo ){
       
   661     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
       
   662     pInfo->nField = nExpr;
       
   663     pInfo->enc = ENC(db);
       
   664     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
       
   665       CollSeq *pColl;
       
   666       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
       
   667       if( !pColl ){
       
   668         pColl = db->pDfltColl;
       
   669       }
       
   670       pInfo->aColl[i] = pColl;
       
   671       pInfo->aSortOrder[i] = pItem->sortOrder;
       
   672     }
       
   673   }
       
   674   return pInfo;
       
   675 }
       
   676 
       
   677 
       
   678 /*
       
   679 ** If the inner loop was generated using a non-null pOrderBy argument,
       
   680 ** then the results were placed in a sorter.  After the loop is terminated
       
   681 ** we need to run the sorter and output the results.  The following
       
   682 ** routine generates the code needed to do that.
       
   683 */
       
   684 static void generateSortTail(
       
   685   Parse *pParse,   /* Parsing context */
       
   686   Select *p,       /* The SELECT statement */
       
   687   Vdbe *v,         /* Generate code into this VDBE */
       
   688   int nColumn,     /* Number of columns of data */
       
   689   int eDest,       /* Write the sorted results here */
       
   690   int iParm        /* Optional parameter associated with eDest */
       
   691 ){
       
   692   int brk = sqlite3VdbeMakeLabel(v);
       
   693   int cont = sqlite3VdbeMakeLabel(v);
       
   694   int addr;
       
   695   int iTab;
       
   696   int pseudoTab;
       
   697   ExprList *pOrderBy = p->pOrderBy;
       
   698 
       
   699   iTab = pOrderBy->iECursor;
       
   700   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
       
   701     pseudoTab = pParse->nTab++;
       
   702     sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
       
   703     sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
       
   704   }
       
   705   addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
       
   706   codeOffset(v, p, cont, 0);
       
   707   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
       
   708     sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
       
   709   }
       
   710   sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
       
   711   switch( eDest ){
       
   712     case SRT_Table:
       
   713     case SRT_EphemTab: {
       
   714       sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
       
   715       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
       
   716       sqlite3VdbeAddOp(v, OP_Insert, iParm, 0);
       
   717       break;
       
   718     }
       
   719 #ifndef SQLITE_OMIT_SUBQUERY
       
   720     case SRT_Set: {
       
   721       assert( nColumn==1 );
       
   722       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
       
   723       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
   724       sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
       
   725       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, "c", P3_STATIC);
       
   726       sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
       
   727       break;
       
   728     }
       
   729     case SRT_Mem: {
       
   730       assert( nColumn==1 );
       
   731       sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
       
   732       /* The LIMIT clause will terminate the loop for us */
       
   733       break;
       
   734     }
       
   735 #endif
       
   736     case SRT_Callback:
       
   737     case SRT_Subroutine: {
       
   738       int i;
       
   739       sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
       
   740       for(i=0; i<nColumn; i++){
       
   741         sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
       
   742       }
       
   743       if( eDest==SRT_Callback ){
       
   744         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
       
   745       }else{
       
   746         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
       
   747       }
       
   748       break;
       
   749     }
       
   750     default: {
       
   751       /* Do nothing */
       
   752       break;
       
   753     }
       
   754   }
       
   755 
       
   756   /* Jump to the end of the loop when the LIMIT is reached
       
   757   */
       
   758   if( p->iLimit>=0 ){
       
   759     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
       
   760     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
       
   761   }
       
   762 
       
   763   /* The bottom of the loop
       
   764   */
       
   765   sqlite3VdbeResolveLabel(v, cont);
       
   766   sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
       
   767   sqlite3VdbeResolveLabel(v, brk);
       
   768   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
       
   769     sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
       
   770   }
       
   771 
       
   772 }
       
   773 
       
   774 /*
       
   775 ** Return a pointer to a string containing the 'declaration type' of the
       
   776 ** expression pExpr. The string may be treated as static by the caller.
       
   777 **
       
   778 ** The declaration type is the exact datatype definition extracted from the
       
   779 ** original CREATE TABLE statement if the expression is a column. The
       
   780 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
       
   781 ** is considered a column can be complex in the presence of subqueries. The
       
   782 ** result-set expression in all of the following SELECT statements is 
       
   783 ** considered a column by this function.
       
   784 **
       
   785 **   SELECT col FROM tbl;
       
   786 **   SELECT (SELECT col FROM tbl;
       
   787 **   SELECT (SELECT col FROM tbl);
       
   788 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
       
   789 ** 
       
   790 ** The declaration type for any expression other than a column is NULL.
       
   791 */
       
   792 static const char *columnType(
       
   793   NameContext *pNC, 
       
   794   Expr *pExpr,
       
   795   const char **pzOriginDb,
       
   796   const char **pzOriginTab,
       
   797   const char **pzOriginCol
       
   798 ){
       
   799   char const *zType = 0;
       
   800   char const *zOriginDb = 0;
       
   801   char const *zOriginTab = 0;
       
   802   char const *zOriginCol = 0;
       
   803   int j;
       
   804   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
       
   805 
       
   806   /* The TK_AS operator can only occur in ORDER BY, GROUP BY, HAVING,
       
   807   ** and LIMIT clauses.  But pExpr originates in the result set of a
       
   808   ** SELECT.  So pExpr can never contain an AS operator.
       
   809   */
       
   810   assert( pExpr->op!=TK_AS );
       
   811 
       
   812   switch( pExpr->op ){
       
   813     case TK_AGG_COLUMN:
       
   814     case TK_COLUMN: {
       
   815       /* The expression is a column. Locate the table the column is being
       
   816       ** extracted from in NameContext.pSrcList. This table may be real
       
   817       ** database table or a subquery.
       
   818       */
       
   819       Table *pTab = 0;            /* Table structure column is extracted from */
       
   820       Select *pS = 0;             /* Select the column is extracted from */
       
   821       int iCol = pExpr->iColumn;  /* Index of column in pTab */
       
   822       while( pNC && !pTab ){
       
   823         SrcList *pTabList = pNC->pSrcList;
       
   824         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
       
   825         if( j<pTabList->nSrc ){
       
   826           pTab = pTabList->a[j].pTab;
       
   827           pS = pTabList->a[j].pSelect;
       
   828         }else{
       
   829           pNC = pNC->pNext;
       
   830         }
       
   831       }
       
   832 
       
   833       if( pTab==0 ){
       
   834         /* FIX ME:
       
   835         ** This can occurs if you have something like "SELECT new.x;" inside
       
   836         ** a trigger.  In other words, if you reference the special "new"
       
   837         ** table in the result set of a select.  We do not have a good way
       
   838         ** to find the actual table type, so call it "TEXT".  This is really
       
   839         ** something of a bug, but I do not know how to fix it.
       
   840         **
       
   841         ** This code does not produce the correct answer - it just prevents
       
   842         ** a segfault.  See ticket #1229.
       
   843         */
       
   844         zType = "TEXT";
       
   845         break;
       
   846       }
       
   847 
       
   848       assert( pTab );
       
   849       if( pS ){
       
   850         /* The "table" is actually a sub-select or a view in the FROM clause
       
   851         ** of the SELECT statement. Return the declaration type and origin
       
   852         ** data for the result-set column of the sub-select.
       
   853         */
       
   854         if( iCol>=0 && iCol<pS->pEList->nExpr ){
       
   855           /* If iCol is less than zero, then the expression requests the
       
   856           ** rowid of the sub-select or view. This expression is legal (see 
       
   857           ** test case misc2.2.2) - it always evaluates to NULL.
       
   858           */
       
   859           NameContext sNC;
       
   860           Expr *p = pS->pEList->a[iCol].pExpr;
       
   861           sNC.pSrcList = pS->pSrc;
       
   862           sNC.pNext = 0;
       
   863           sNC.pParse = pNC->pParse;
       
   864           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
       
   865         }
       
   866       }else if( pTab->pSchema ){
       
   867         /* A real table */
       
   868         assert( !pS );
       
   869         if( iCol<0 ) iCol = pTab->iPKey;
       
   870         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
       
   871         if( iCol<0 ){
       
   872           zType = "INTEGER";
       
   873           zOriginCol = "rowid";
       
   874         }else{
       
   875           zType = pTab->aCol[iCol].zType;
       
   876           zOriginCol = pTab->aCol[iCol].zName;
       
   877         }
       
   878         zOriginTab = pTab->zName;
       
   879         if( pNC->pParse ){
       
   880           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
       
   881           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
       
   882         }
       
   883       }
       
   884       break;
       
   885     }
       
   886 #ifndef SQLITE_OMIT_SUBQUERY
       
   887     case TK_SELECT: {
       
   888       /* The expression is a sub-select. Return the declaration type and
       
   889       ** origin info for the single column in the result set of the SELECT
       
   890       ** statement.
       
   891       */
       
   892       NameContext sNC;
       
   893       Select *pS = pExpr->pSelect;
       
   894       Expr *p = pS->pEList->a[0].pExpr;
       
   895       sNC.pSrcList = pS->pSrc;
       
   896       sNC.pNext = pNC;
       
   897       sNC.pParse = pNC->pParse;
       
   898       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
       
   899       break;
       
   900     }
       
   901 #endif
       
   902   }
       
   903   
       
   904   if( pzOriginDb ){
       
   905     assert( pzOriginTab && pzOriginCol );
       
   906     *pzOriginDb = zOriginDb;
       
   907     *pzOriginTab = zOriginTab;
       
   908     *pzOriginCol = zOriginCol;
       
   909   }
       
   910   return zType;
       
   911 }
       
   912 
       
   913 /*
       
   914 ** Generate code that will tell the VDBE the declaration types of columns
       
   915 ** in the result set.
       
   916 */
       
   917 static void generateColumnTypes(
       
   918   Parse *pParse,      /* Parser context */
       
   919   SrcList *pTabList,  /* List of tables */
       
   920   ExprList *pEList    /* Expressions defining the result set */
       
   921 ){
       
   922   Vdbe *v = pParse->pVdbe;
       
   923   int i;
       
   924   NameContext sNC;
       
   925   sNC.pSrcList = pTabList;
       
   926   sNC.pParse = pParse;
       
   927   for(i=0; i<pEList->nExpr; i++){
       
   928     Expr *p = pEList->a[i].pExpr;
       
   929     const char *zOrigDb = 0;
       
   930     const char *zOrigTab = 0;
       
   931     const char *zOrigCol = 0;
       
   932     const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
       
   933 
       
   934     /* The vdbe must make it's own copy of the column-type and other 
       
   935     ** column specific strings, in case the schema is reset before this
       
   936     ** virtual machine is deleted.
       
   937     */
       
   938     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
       
   939     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
       
   940     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
       
   941     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
       
   942   }
       
   943 }
       
   944 
       
   945 /*
       
   946 ** Generate code that will tell the VDBE the names of columns
       
   947 ** in the result set.  This information is used to provide the
       
   948 ** azCol[] values in the callback.
       
   949 */
       
   950 static void generateColumnNames(
       
   951   Parse *pParse,      /* Parser context */
       
   952   SrcList *pTabList,  /* List of tables */
       
   953   ExprList *pEList    /* Expressions defining the result set */
       
   954 ){
       
   955   Vdbe *v = pParse->pVdbe;
       
   956   int i, j;
       
   957   sqlite3 *db = pParse->db;
       
   958   int fullNames, shortNames;
       
   959 
       
   960 #ifndef SQLITE_OMIT_EXPLAIN
       
   961   /* If this is an EXPLAIN, skip this step */
       
   962   if( pParse->explain ){
       
   963     return;
       
   964   }
       
   965 #endif
       
   966 
       
   967   assert( v!=0 );
       
   968   if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return;
       
   969   pParse->colNamesSet = 1;
       
   970   fullNames = (db->flags & SQLITE_FullColNames)!=0;
       
   971   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
       
   972   sqlite3VdbeSetNumCols(v, pEList->nExpr);
       
   973   for(i=0; i<pEList->nExpr; i++){
       
   974     Expr *p;
       
   975     p = pEList->a[i].pExpr;
       
   976     if( p==0 ) continue;
       
   977     if( pEList->a[i].zName ){
       
   978       char *zName = pEList->a[i].zName;
       
   979       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
       
   980       continue;
       
   981     }
       
   982     if( p->op==TK_COLUMN && pTabList ){
       
   983       Table *pTab;
       
   984       char *zCol;
       
   985       int iCol = p->iColumn;
       
   986       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
       
   987       assert( j<pTabList->nSrc );
       
   988       pTab = pTabList->a[j].pTab;
       
   989       if( iCol<0 ) iCol = pTab->iPKey;
       
   990       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
       
   991       if( iCol<0 ){
       
   992         zCol = "rowid";
       
   993       }else{
       
   994         zCol = pTab->aCol[iCol].zName;
       
   995       }
       
   996       if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
       
   997         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
       
   998       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
       
   999         char *zName = 0;
       
  1000         char *zTab;
       
  1001  
       
  1002         zTab = pTabList->a[j].zAlias;
       
  1003         if( fullNames || zTab==0 ) zTab = pTab->zName;
       
  1004         sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
       
  1005         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
       
  1006       }else{
       
  1007         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
       
  1008       }
       
  1009     }else if( p->span.z && p->span.z[0] ){
       
  1010       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
       
  1011       /* sqlite3VdbeCompressSpace(v, addr); */
       
  1012     }else{
       
  1013       char zName[30];
       
  1014       assert( p->op!=TK_COLUMN || pTabList==0 );
       
  1015       sprintf(zName, "column%d", i+1);
       
  1016       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
       
  1017     }
       
  1018   }
       
  1019   generateColumnTypes(pParse, pTabList, pEList);
       
  1020 }
       
  1021 
       
  1022 #ifndef SQLITE_OMIT_COMPOUND_SELECT
       
  1023 /*
       
  1024 ** Name of the connection operator, used for error messages.
       
  1025 */
       
  1026 static const char *selectOpName(int id){
       
  1027   char *z;
       
  1028   switch( id ){
       
  1029     case TK_ALL:       z = "UNION ALL";   break;
       
  1030     case TK_INTERSECT: z = "INTERSECT";   break;
       
  1031     case TK_EXCEPT:    z = "EXCEPT";      break;
       
  1032     default:           z = "UNION";       break;
       
  1033   }
       
  1034   return z;
       
  1035 }
       
  1036 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
       
  1037 
       
  1038 /*
       
  1039 ** Forward declaration
       
  1040 */
       
  1041 static int prepSelectStmt(Parse*, Select*);
       
  1042 
       
  1043 /*
       
  1044 ** Given a SELECT statement, generate a Table structure that describes
       
  1045 ** the result set of that SELECT.
       
  1046 */
       
  1047 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
       
  1048   Table *pTab;
       
  1049   int i, j;
       
  1050   ExprList *pEList;
       
  1051   Column *aCol, *pCol;
       
  1052 
       
  1053   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
       
  1054   if( prepSelectStmt(pParse, pSelect) ){
       
  1055     return 0;
       
  1056   }
       
  1057   if( sqlite3SelectResolve(pParse, pSelect, 0) ){
       
  1058     return 0;
       
  1059   }
       
  1060   pTab = sqliteMalloc( sizeof(Table) );
       
  1061   if( pTab==0 ){
       
  1062     return 0;
       
  1063   }
       
  1064   pTab->nRef = 1;
       
  1065   pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
       
  1066   pEList = pSelect->pEList;
       
  1067   pTab->nCol = pEList->nExpr;
       
  1068   assert( pTab->nCol>0 );
       
  1069   pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
       
  1070   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
       
  1071     Expr *p, *pR;
       
  1072     char *zType;
       
  1073     char *zName;
       
  1074     char *zBasename;
       
  1075     CollSeq *pColl;
       
  1076     int cnt;
       
  1077     NameContext sNC;
       
  1078     
       
  1079     /* Get an appropriate name for the column
       
  1080     */
       
  1081     p = pEList->a[i].pExpr;
       
  1082     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
       
  1083     if( (zName = pEList->a[i].zName)!=0 ){
       
  1084       /* If the column contains an "AS <name>" phrase, use <name> as the name */
       
  1085       zName = sqliteStrDup(zName);
       
  1086     }else if( p->op==TK_DOT 
       
  1087               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
       
  1088       /* For columns of the from A.B use B as the name */
       
  1089       zName = sqlite3MPrintf("%T", &pR->token);
       
  1090     }else if( p->span.z && p->span.z[0] ){
       
  1091       /* Use the original text of the column expression as its name */
       
  1092       zName = sqlite3MPrintf("%T", &p->span);
       
  1093     }else{
       
  1094       /* If all else fails, make up a name */
       
  1095       zName = sqlite3MPrintf("column%d", i+1);
       
  1096     }
       
  1097     sqlite3Dequote(zName);
       
  1098     if( sqlite3MallocFailed() ){
       
  1099       sqliteFree(zName);
       
  1100       sqlite3DeleteTable(0, pTab);
       
  1101       return 0;
       
  1102     }
       
  1103 
       
  1104     /* Make sure the column name is unique.  If the name is not unique,
       
  1105     ** append a integer to the name so that it becomes unique.
       
  1106     */
       
  1107     zBasename = zName;
       
  1108     for(j=cnt=0; j<i; j++){
       
  1109       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
       
  1110         zName = sqlite3MPrintf("%s:%d", zBasename, ++cnt);
       
  1111         j = -1;
       
  1112         if( zName==0 ) break;
       
  1113       }
       
  1114     }
       
  1115     if( zBasename!=zName ){
       
  1116       sqliteFree(zBasename);
       
  1117     }
       
  1118     pCol->zName = zName;
       
  1119 
       
  1120     /* Get the typename, type affinity, and collating sequence for the
       
  1121     ** column.
       
  1122     */
       
  1123     memset(&sNC, 0, sizeof(sNC));
       
  1124     sNC.pSrcList = pSelect->pSrc;
       
  1125     zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0));
       
  1126     pCol->zType = zType;
       
  1127     pCol->affinity = sqlite3ExprAffinity(p);
       
  1128     pColl = sqlite3ExprCollSeq(pParse, p);
       
  1129     if( pColl ){
       
  1130       pCol->zColl = sqliteStrDup(pColl->zName);
       
  1131     }
       
  1132   }
       
  1133   pTab->iPKey = -1;
       
  1134   return pTab;
       
  1135 }
       
  1136 
       
  1137 /*
       
  1138 ** Prepare a SELECT statement for processing by doing the following
       
  1139 ** things:
       
  1140 **
       
  1141 **    (1)  Make sure VDBE cursor numbers have been assigned to every
       
  1142 **         element of the FROM clause.
       
  1143 **
       
  1144 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
       
  1145 **         defines FROM clause.  When views appear in the FROM clause,
       
  1146 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
       
  1147 **         that implements the view.  A copy is made of the view's SELECT
       
  1148 **         statement so that we can freely modify or delete that statement
       
  1149 **         without worrying about messing up the presistent representation
       
  1150 **         of the view.
       
  1151 **
       
  1152 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
       
  1153 **         on joins and the ON and USING clause of joins.
       
  1154 **
       
  1155 **    (4)  Scan the list of columns in the result set (pEList) looking
       
  1156 **         for instances of the "*" operator or the TABLE.* operator.
       
  1157 **         If found, expand each "*" to be every column in every table
       
  1158 **         and TABLE.* to be every column in TABLE.
       
  1159 **
       
  1160 ** Return 0 on success.  If there are problems, leave an error message
       
  1161 ** in pParse and return non-zero.
       
  1162 */
       
  1163 static int prepSelectStmt(Parse *pParse, Select *p){
       
  1164   int i, j, k, rc;
       
  1165   SrcList *pTabList;
       
  1166   ExprList *pEList;
       
  1167   struct SrcList_item *pFrom;
       
  1168 
       
  1169   if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){
       
  1170     return 1;
       
  1171   }
       
  1172   pTabList = p->pSrc;
       
  1173   pEList = p->pEList;
       
  1174 
       
  1175   /* Make sure cursor numbers have been assigned to all entries in
       
  1176   ** the FROM clause of the SELECT statement.
       
  1177   */
       
  1178   sqlite3SrcListAssignCursors(pParse, p->pSrc);
       
  1179 
       
  1180   /* Look up every table named in the FROM clause of the select.  If
       
  1181   ** an entry of the FROM clause is a subquery instead of a table or view,
       
  1182   ** then create a transient table structure to describe the subquery.
       
  1183   */
       
  1184   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
       
  1185     Table *pTab;
       
  1186     if( pFrom->pTab!=0 ){
       
  1187       /* This statement has already been prepared.  There is no need
       
  1188       ** to go further. */
       
  1189       assert( i==0 );
       
  1190       return 0;
       
  1191     }
       
  1192     if( pFrom->zName==0 ){
       
  1193 #ifndef SQLITE_OMIT_SUBQUERY
       
  1194       /* A sub-query in the FROM clause of a SELECT */
       
  1195       assert( pFrom->pSelect!=0 );
       
  1196       if( pFrom->zAlias==0 ){
       
  1197         pFrom->zAlias =
       
  1198           sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect);
       
  1199       }
       
  1200       assert( pFrom->pTab==0 );
       
  1201       pFrom->pTab = pTab = 
       
  1202         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
       
  1203       if( pTab==0 ){
       
  1204         return 1;
       
  1205       }
       
  1206       /* The isEphem flag indicates that the Table structure has been
       
  1207       ** dynamically allocated and may be freed at any time.  In other words,
       
  1208       ** pTab is not pointing to a persistent table structure that defines
       
  1209       ** part of the schema. */
       
  1210       pTab->isEphem = 1;
       
  1211 #endif
       
  1212     }else{
       
  1213       /* An ordinary table or view name in the FROM clause */
       
  1214       assert( pFrom->pTab==0 );
       
  1215       pFrom->pTab = pTab = 
       
  1216         sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
       
  1217       if( pTab==0 ){
       
  1218         return 1;
       
  1219       }
       
  1220       pTab->nRef++;
       
  1221 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
       
  1222       if( pTab->pSelect || IsVirtual(pTab) ){
       
  1223         /* We reach here if the named table is a really a view */
       
  1224         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
       
  1225           return 1;
       
  1226         }
       
  1227         /* If pFrom->pSelect!=0 it means we are dealing with a
       
  1228         ** view within a view.  The SELECT structure has already been
       
  1229         ** copied by the outer view so we can skip the copy step here
       
  1230         ** in the inner view.
       
  1231         */
       
  1232         if( pFrom->pSelect==0 ){
       
  1233           pFrom->pSelect = sqlite3SelectDup(pTab->pSelect);
       
  1234         }
       
  1235       }
       
  1236 #endif
       
  1237     }
       
  1238   }
       
  1239 
       
  1240   /* Process NATURAL keywords, and ON and USING clauses of joins.
       
  1241   */
       
  1242   if( sqliteProcessJoin(pParse, p) ) return 1;
       
  1243 
       
  1244   /* For every "*" that occurs in the column list, insert the names of
       
  1245   ** all columns in all tables.  And for every TABLE.* insert the names
       
  1246   ** of all columns in TABLE.  The parser inserted a special expression
       
  1247   ** with the TK_ALL operator for each "*" that it found in the column list.
       
  1248   ** The following code just has to locate the TK_ALL expressions and expand
       
  1249   ** each one to the list of all columns in all tables.
       
  1250   **
       
  1251   ** The first loop just checks to see if there are any "*" operators
       
  1252   ** that need expanding.
       
  1253   */
       
  1254   for(k=0; k<pEList->nExpr; k++){
       
  1255     Expr *pE = pEList->a[k].pExpr;
       
  1256     if( pE->op==TK_ALL ) break;
       
  1257     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
       
  1258          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
       
  1259   }
       
  1260   rc = 0;
       
  1261   if( k<pEList->nExpr ){
       
  1262     /*
       
  1263     ** If we get here it means the result set contains one or more "*"
       
  1264     ** operators that need to be expanded.  Loop through each expression
       
  1265     ** in the result set and expand them one by one.
       
  1266     */
       
  1267     struct ExprList_item *a = pEList->a;
       
  1268     ExprList *pNew = 0;
       
  1269     int flags = pParse->db->flags;
       
  1270     int longNames = (flags & SQLITE_FullColNames)!=0 &&
       
  1271                       (flags & SQLITE_ShortColNames)==0;
       
  1272 
       
  1273     for(k=0; k<pEList->nExpr; k++){
       
  1274       Expr *pE = a[k].pExpr;
       
  1275       if( pE->op!=TK_ALL &&
       
  1276            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
       
  1277         /* This particular expression does not need to be expanded.
       
  1278         */
       
  1279         pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0);
       
  1280         if( pNew ){
       
  1281           pNew->a[pNew->nExpr-1].zName = a[k].zName;
       
  1282         }else{
       
  1283           rc = 1;
       
  1284         }
       
  1285         a[k].pExpr = 0;
       
  1286         a[k].zName = 0;
       
  1287       }else{
       
  1288         /* This expression is a "*" or a "TABLE.*" and needs to be
       
  1289         ** expanded. */
       
  1290         int tableSeen = 0;      /* Set to 1 when TABLE matches */
       
  1291         char *zTName;            /* text of name of TABLE */
       
  1292         if( pE->op==TK_DOT && pE->pLeft ){
       
  1293           zTName = sqlite3NameFromToken(&pE->pLeft->token);
       
  1294         }else{
       
  1295           zTName = 0;
       
  1296         }
       
  1297         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
       
  1298           Table *pTab = pFrom->pTab;
       
  1299           char *zTabName = pFrom->zAlias;
       
  1300           if( zTabName==0 || zTabName[0]==0 ){ 
       
  1301             zTabName = pTab->zName;
       
  1302           }
       
  1303           if( zTName && (zTabName==0 || zTabName[0]==0 || 
       
  1304                  sqlite3StrICmp(zTName, zTabName)!=0) ){
       
  1305             continue;
       
  1306           }
       
  1307           tableSeen = 1;
       
  1308           for(j=0; j<pTab->nCol; j++){
       
  1309             Expr *pExpr, *pRight;
       
  1310             char *zName = pTab->aCol[j].zName;
       
  1311 
       
  1312             if( i>0 ){
       
  1313               struct SrcList_item *pLeft = &pTabList->a[i-1];
       
  1314               if( (pLeft->jointype & JT_NATURAL)!=0 &&
       
  1315                         columnIndex(pLeft->pTab, zName)>=0 ){
       
  1316                 /* In a NATURAL join, omit the join columns from the 
       
  1317                 ** table on the right */
       
  1318                 continue;
       
  1319               }
       
  1320               if( sqlite3IdListIndex(pLeft->pUsing, zName)>=0 ){
       
  1321                 /* In a join with a USING clause, omit columns in the
       
  1322                 ** using clause from the table on the right. */
       
  1323                 continue;
       
  1324               }
       
  1325             }
       
  1326             pRight = sqlite3Expr(TK_ID, 0, 0, 0);
       
  1327             if( pRight==0 ) break;
       
  1328             setToken(&pRight->token, zName);
       
  1329             if( zTabName && (longNames || pTabList->nSrc>1) ){
       
  1330               Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0);
       
  1331               pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0);
       
  1332               if( pExpr==0 ) break;
       
  1333               setToken(&pLeft->token, zTabName);
       
  1334               setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName));
       
  1335               pExpr->span.dyn = 1;
       
  1336               pExpr->token.z = 0;
       
  1337               pExpr->token.n = 0;
       
  1338               pExpr->token.dyn = 0;
       
  1339             }else{
       
  1340               pExpr = pRight;
       
  1341               pExpr->span = pExpr->token;
       
  1342             }
       
  1343             if( longNames ){
       
  1344               pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span);
       
  1345             }else{
       
  1346               pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token);
       
  1347             }
       
  1348           }
       
  1349         }
       
  1350         if( !tableSeen ){
       
  1351           if( zTName ){
       
  1352             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
       
  1353           }else{
       
  1354             sqlite3ErrorMsg(pParse, "no tables specified");
       
  1355           }
       
  1356           rc = 1;
       
  1357         }
       
  1358         sqliteFree(zTName);
       
  1359       }
       
  1360     }
       
  1361     sqlite3ExprListDelete(pEList);
       
  1362     p->pEList = pNew;
       
  1363   }
       
  1364   return rc;
       
  1365 }
       
  1366 
       
  1367 #ifndef SQLITE_OMIT_COMPOUND_SELECT
       
  1368 /*
       
  1369 ** This routine associates entries in an ORDER BY expression list with
       
  1370 ** columns in a result.  For each ORDER BY expression, the opcode of
       
  1371 ** the top-level node is changed to TK_COLUMN and the iColumn value of
       
  1372 ** the top-level node is filled in with column number and the iTable
       
  1373 ** value of the top-level node is filled with iTable parameter.
       
  1374 **
       
  1375 ** If there are prior SELECT clauses, they are processed first.  A match
       
  1376 ** in an earlier SELECT takes precedence over a later SELECT.
       
  1377 **
       
  1378 ** Any entry that does not match is flagged as an error.  The number
       
  1379 ** of errors is returned.
       
  1380 */
       
  1381 static int matchOrderbyToColumn(
       
  1382   Parse *pParse,          /* A place to leave error messages */
       
  1383   Select *pSelect,        /* Match to result columns of this SELECT */
       
  1384   ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
       
  1385   int iTable,             /* Insert this value in iTable */
       
  1386   int mustComplete        /* If TRUE all ORDER BYs must match */
       
  1387 ){
       
  1388   int nErr = 0;
       
  1389   int i, j;
       
  1390   ExprList *pEList;
       
  1391 
       
  1392   if( pSelect==0 || pOrderBy==0 ) return 1;
       
  1393   if( mustComplete ){
       
  1394     for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
       
  1395   }
       
  1396   if( prepSelectStmt(pParse, pSelect) ){
       
  1397     return 1;
       
  1398   }
       
  1399   if( pSelect->pPrior ){
       
  1400     if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
       
  1401       return 1;
       
  1402     }
       
  1403   }
       
  1404   pEList = pSelect->pEList;
       
  1405   for(i=0; i<pOrderBy->nExpr; i++){
       
  1406     Expr *pE = pOrderBy->a[i].pExpr;
       
  1407     int iCol = -1;
       
  1408     if( pOrderBy->a[i].done ) continue;
       
  1409     if( sqlite3ExprIsInteger(pE, &iCol) ){
       
  1410       if( iCol<=0 || iCol>pEList->nExpr ){
       
  1411         sqlite3ErrorMsg(pParse,
       
  1412           "ORDER BY position %d should be between 1 and %d",
       
  1413           iCol, pEList->nExpr);
       
  1414         nErr++;
       
  1415         break;
       
  1416       }
       
  1417       if( !mustComplete ) continue;
       
  1418       iCol--;
       
  1419     }
       
  1420     for(j=0; iCol<0 && j<pEList->nExpr; j++){
       
  1421       if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
       
  1422         char *zName, *zLabel;
       
  1423         zName = pEList->a[j].zName;
       
  1424         zLabel = sqlite3NameFromToken(&pE->token);
       
  1425         assert( zLabel!=0 );
       
  1426         if( sqlite3StrICmp(zName, zLabel)==0 ){ 
       
  1427           iCol = j;
       
  1428         }
       
  1429         sqliteFree(zLabel);
       
  1430       }
       
  1431       if( iCol<0 && sqlite3ExprCompare(pE, pEList->a[j].pExpr) ){
       
  1432         iCol = j;
       
  1433       }
       
  1434     }
       
  1435     if( iCol>=0 ){
       
  1436       pE->op = TK_COLUMN;
       
  1437       pE->iColumn = iCol;
       
  1438       pE->iTable = iTable;
       
  1439       pE->iAgg = -1;
       
  1440       pOrderBy->a[i].done = 1;
       
  1441     }
       
  1442     if( iCol<0 && mustComplete ){
       
  1443       sqlite3ErrorMsg(pParse,
       
  1444         "ORDER BY term number %d does not match any result column", i+1);
       
  1445       nErr++;
       
  1446       break;
       
  1447     }
       
  1448   }
       
  1449   return nErr;  
       
  1450 }
       
  1451 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */
       
  1452 
       
  1453 /*
       
  1454 ** Get a VDBE for the given parser context.  Create a new one if necessary.
       
  1455 ** If an error occurs, return NULL and leave a message in pParse.
       
  1456 */
       
  1457 Vdbe *sqlite3GetVdbe(Parse *pParse){
       
  1458   Vdbe *v = pParse->pVdbe;
       
  1459   if( v==0 ){
       
  1460     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
       
  1461   }
       
  1462   return v;
       
  1463 }
       
  1464 
       
  1465 
       
  1466 /*
       
  1467 ** Compute the iLimit and iOffset fields of the SELECT based on the
       
  1468 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
       
  1469 ** that appear in the original SQL statement after the LIMIT and OFFSET
       
  1470 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset 
       
  1471 ** are the integer memory register numbers for counters used to compute 
       
  1472 ** the limit and offset.  If there is no limit and/or offset, then 
       
  1473 ** iLimit and iOffset are negative.
       
  1474 **
       
  1475 ** This routine changes the values of iLimit and iOffset only if
       
  1476 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
       
  1477 ** iOffset should have been preset to appropriate default values
       
  1478 ** (usually but not always -1) prior to calling this routine.
       
  1479 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
       
  1480 ** redefined.  The UNION ALL operator uses this property to force
       
  1481 ** the reuse of the same limit and offset registers across multiple
       
  1482 ** SELECT statements.
       
  1483 */
       
  1484 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
       
  1485   Vdbe *v = 0;
       
  1486   int iLimit = 0;
       
  1487   int iOffset;
       
  1488   int addr1, addr2;
       
  1489 
       
  1490   /* 
       
  1491   ** "LIMIT -1" always shows all rows.  There is some
       
  1492   ** contraversy about what the correct behavior should be.
       
  1493   ** The current implementation interprets "LIMIT 0" to mean
       
  1494   ** no rows.
       
  1495   */
       
  1496   if( p->pLimit ){
       
  1497     p->iLimit = iLimit = pParse->nMem;
       
  1498     pParse->nMem += 2;
       
  1499     v = sqlite3GetVdbe(pParse);
       
  1500     if( v==0 ) return;
       
  1501     sqlite3ExprCode(pParse, p->pLimit);
       
  1502     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
       
  1503     sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 0);
       
  1504     VdbeComment((v, "# LIMIT counter"));
       
  1505     sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
       
  1506   }
       
  1507   if( p->pOffset ){
       
  1508     p->iOffset = iOffset = pParse->nMem++;
       
  1509     v = sqlite3GetVdbe(pParse);
       
  1510     if( v==0 ) return;
       
  1511     sqlite3ExprCode(pParse, p->pOffset);
       
  1512     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
       
  1513     sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
       
  1514     VdbeComment((v, "# OFFSET counter"));
       
  1515     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
       
  1516     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  1517     sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
       
  1518     sqlite3VdbeJumpHere(v, addr1);
       
  1519     if( p->pLimit ){
       
  1520       sqlite3VdbeAddOp(v, OP_Add, 0, 0);
       
  1521     }
       
  1522   }
       
  1523   if( p->pLimit ){
       
  1524     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
       
  1525     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  1526     sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
       
  1527     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
       
  1528     sqlite3VdbeJumpHere(v, addr1);
       
  1529     sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
       
  1530     VdbeComment((v, "# LIMIT+OFFSET"));
       
  1531     sqlite3VdbeJumpHere(v, addr2);
       
  1532   }
       
  1533 }
       
  1534 
       
  1535 /*
       
  1536 ** Allocate a virtual index to use for sorting.
       
  1537 */
       
  1538 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
       
  1539   if( pOrderBy ){
       
  1540     int addr;
       
  1541     assert( pOrderBy->iECursor==0 );
       
  1542     pOrderBy->iECursor = pParse->nTab++;
       
  1543     addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
       
  1544                             pOrderBy->iECursor, pOrderBy->nExpr+1);
       
  1545     assert( p->addrOpenEphm[2] == -1 );
       
  1546     p->addrOpenEphm[2] = addr;
       
  1547   }
       
  1548 }
       
  1549 
       
  1550 #ifndef SQLITE_OMIT_COMPOUND_SELECT
       
  1551 /*
       
  1552 ** Return the appropriate collating sequence for the iCol-th column of
       
  1553 ** the result set for the compound-select statement "p".  Return NULL if
       
  1554 ** the column has no default collating sequence.
       
  1555 **
       
  1556 ** The collating sequence for the compound select is taken from the
       
  1557 ** left-most term of the select that has a collating sequence.
       
  1558 */
       
  1559 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
       
  1560   CollSeq *pRet;
       
  1561   if( p->pPrior ){
       
  1562     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
       
  1563   }else{
       
  1564     pRet = 0;
       
  1565   }
       
  1566   if( pRet==0 ){
       
  1567     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
       
  1568   }
       
  1569   return pRet;
       
  1570 }
       
  1571 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
       
  1572 
       
  1573 #ifndef SQLITE_OMIT_COMPOUND_SELECT
       
  1574 /*
       
  1575 ** This routine is called to process a query that is really the union
       
  1576 ** or intersection of two or more separate queries.
       
  1577 **
       
  1578 ** "p" points to the right-most of the two queries.  the query on the
       
  1579 ** left is p->pPrior.  The left query could also be a compound query
       
  1580 ** in which case this routine will be called recursively. 
       
  1581 **
       
  1582 ** The results of the total query are to be written into a destination
       
  1583 ** of type eDest with parameter iParm.
       
  1584 **
       
  1585 ** Example 1:  Consider a three-way compound SQL statement.
       
  1586 **
       
  1587 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
       
  1588 **
       
  1589 ** This statement is parsed up as follows:
       
  1590 **
       
  1591 **     SELECT c FROM t3
       
  1592 **      |
       
  1593 **      `----->  SELECT b FROM t2
       
  1594 **                |
       
  1595 **                `------>  SELECT a FROM t1
       
  1596 **
       
  1597 ** The arrows in the diagram above represent the Select.pPrior pointer.
       
  1598 ** So if this routine is called with p equal to the t3 query, then
       
  1599 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
       
  1600 **
       
  1601 ** Notice that because of the way SQLite parses compound SELECTs, the
       
  1602 ** individual selects always group from left to right.
       
  1603 */
       
  1604 static int multiSelect(
       
  1605   Parse *pParse,        /* Parsing context */
       
  1606   Select *p,            /* The right-most of SELECTs to be coded */
       
  1607   int eDest,            /* \___  Store query results as specified */
       
  1608   int iParm,            /* /     by these two parameters.         */
       
  1609   char *aff             /* If eDest is SRT_Union, the affinity string */
       
  1610 ){
       
  1611   int rc = SQLITE_OK;   /* Success code from a subroutine */
       
  1612   Select *pPrior;       /* Another SELECT immediately to our left */
       
  1613   Vdbe *v;              /* Generate code to this VDBE */
       
  1614   int nCol;             /* Number of columns in the result set */
       
  1615   ExprList *pOrderBy;   /* The ORDER BY clause on p */
       
  1616   int aSetP2[2];        /* Set P2 value of these op to number of columns */
       
  1617   int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
       
  1618 
       
  1619   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
       
  1620   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
       
  1621   */
       
  1622   if( p==0 || p->pPrior==0 ){
       
  1623     rc = 1;
       
  1624     goto multi_select_end;
       
  1625   }
       
  1626   pPrior = p->pPrior;
       
  1627   assert( pPrior->pRightmost!=pPrior );
       
  1628   assert( pPrior->pRightmost==p->pRightmost );
       
  1629   if( pPrior->pOrderBy ){
       
  1630     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
       
  1631       selectOpName(p->op));
       
  1632     rc = 1;
       
  1633     goto multi_select_end;
       
  1634   }
       
  1635   if( pPrior->pLimit ){
       
  1636     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
       
  1637       selectOpName(p->op));
       
  1638     rc = 1;
       
  1639     goto multi_select_end;
       
  1640   }
       
  1641 
       
  1642   /* Make sure we have a valid query engine.  If not, create a new one.
       
  1643   */
       
  1644   v = sqlite3GetVdbe(pParse);
       
  1645   if( v==0 ){
       
  1646     rc = 1;
       
  1647     goto multi_select_end;
       
  1648   }
       
  1649 
       
  1650   /* Create the destination temporary table if necessary
       
  1651   */
       
  1652   if( eDest==SRT_EphemTab ){
       
  1653     assert( p->pEList );
       
  1654     assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
       
  1655     aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
       
  1656     eDest = SRT_Table;
       
  1657   }
       
  1658 
       
  1659   /* Generate code for the left and right SELECT statements.
       
  1660   */
       
  1661   pOrderBy = p->pOrderBy;
       
  1662   switch( p->op ){
       
  1663     case TK_ALL: {
       
  1664       if( pOrderBy==0 ){
       
  1665         int addr = 0;
       
  1666         assert( !pPrior->pLimit );
       
  1667         pPrior->pLimit = p->pLimit;
       
  1668         pPrior->pOffset = p->pOffset;
       
  1669         rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
       
  1670         p->pLimit = 0;
       
  1671         p->pOffset = 0;
       
  1672         if( rc ){
       
  1673           goto multi_select_end;
       
  1674         }
       
  1675         p->pPrior = 0;
       
  1676         p->iLimit = pPrior->iLimit;
       
  1677         p->iOffset = pPrior->iOffset;
       
  1678         if( p->iLimit>=0 ){
       
  1679           addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
       
  1680           VdbeComment((v, "# Jump ahead if LIMIT reached"));
       
  1681         }
       
  1682         rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
       
  1683         p->pPrior = pPrior;
       
  1684         if( rc ){
       
  1685           goto multi_select_end;
       
  1686         }
       
  1687         if( addr ){
       
  1688           sqlite3VdbeJumpHere(v, addr);
       
  1689         }
       
  1690         break;
       
  1691       }
       
  1692       /* For UNION ALL ... ORDER BY fall through to the next case */
       
  1693     }
       
  1694     case TK_EXCEPT:
       
  1695     case TK_UNION: {
       
  1696       int unionTab;    /* Cursor number of the temporary table holding result */
       
  1697       int op = 0;      /* One of the SRT_ operations to apply to self */
       
  1698       int priorOp;     /* The SRT_ operation to apply to prior selects */
       
  1699       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
       
  1700       int addr;
       
  1701 
       
  1702       priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
       
  1703       if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
       
  1704         /* We can reuse a temporary table generated by a SELECT to our
       
  1705         ** right.
       
  1706         */
       
  1707         unionTab = iParm;
       
  1708       }else{
       
  1709         /* We will need to create our own temporary table to hold the
       
  1710         ** intermediate results.
       
  1711         */
       
  1712         unionTab = pParse->nTab++;
       
  1713         if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){
       
  1714           rc = 1;
       
  1715           goto multi_select_end;
       
  1716         }
       
  1717         addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
       
  1718         if( priorOp==SRT_Table ){
       
  1719           assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
       
  1720           aSetP2[nSetP2++] = addr;
       
  1721         }else{
       
  1722           assert( p->addrOpenEphm[0] == -1 );
       
  1723           p->addrOpenEphm[0] = addr;
       
  1724           p->pRightmost->usesEphm = 1;
       
  1725         }
       
  1726         createSortingIndex(pParse, p, pOrderBy);
       
  1727         assert( p->pEList );
       
  1728       }
       
  1729 
       
  1730       /* Code the SELECT statements to our left
       
  1731       */
       
  1732       assert( !pPrior->pOrderBy );
       
  1733       rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
       
  1734       if( rc ){
       
  1735         goto multi_select_end;
       
  1736       }
       
  1737 
       
  1738       /* Code the current SELECT statement
       
  1739       */
       
  1740       switch( p->op ){
       
  1741          case TK_EXCEPT:  op = SRT_Except;   break;
       
  1742          case TK_UNION:   op = SRT_Union;    break;
       
  1743          case TK_ALL:     op = SRT_Table;    break;
       
  1744       }
       
  1745       p->pPrior = 0;
       
  1746       p->pOrderBy = 0;
       
  1747       p->disallowOrderBy = pOrderBy!=0;
       
  1748       pLimit = p->pLimit;
       
  1749       p->pLimit = 0;
       
  1750       pOffset = p->pOffset;
       
  1751       p->pOffset = 0;
       
  1752       rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
       
  1753       p->pPrior = pPrior;
       
  1754       p->pOrderBy = pOrderBy;
       
  1755       sqlite3ExprDelete(p->pLimit);
       
  1756       p->pLimit = pLimit;
       
  1757       p->pOffset = pOffset;
       
  1758       p->iLimit = -1;
       
  1759       p->iOffset = -1;
       
  1760       if( rc ){
       
  1761         goto multi_select_end;
       
  1762       }
       
  1763 
       
  1764 
       
  1765       /* Convert the data in the temporary table into whatever form
       
  1766       ** it is that we currently need.
       
  1767       */      
       
  1768       if( eDest!=priorOp || unionTab!=iParm ){
       
  1769         int iCont, iBreak, iStart;
       
  1770         assert( p->pEList );
       
  1771         if( eDest==SRT_Callback ){
       
  1772           Select *pFirst = p;
       
  1773           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
       
  1774           generateColumnNames(pParse, 0, pFirst->pEList);
       
  1775         }
       
  1776         iBreak = sqlite3VdbeMakeLabel(v);
       
  1777         iCont = sqlite3VdbeMakeLabel(v);
       
  1778         computeLimitRegisters(pParse, p, iBreak);
       
  1779         sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
       
  1780         iStart = sqlite3VdbeCurrentAddr(v);
       
  1781         rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
       
  1782                              pOrderBy, -1, eDest, iParm, 
       
  1783                              iCont, iBreak, 0);
       
  1784         if( rc ){
       
  1785           rc = 1;
       
  1786           goto multi_select_end;
       
  1787         }
       
  1788         sqlite3VdbeResolveLabel(v, iCont);
       
  1789         sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
       
  1790         sqlite3VdbeResolveLabel(v, iBreak);
       
  1791         sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
       
  1792       }
       
  1793       break;
       
  1794     }
       
  1795     case TK_INTERSECT: {
       
  1796       int tab1, tab2;
       
  1797       int iCont, iBreak, iStart;
       
  1798       Expr *pLimit, *pOffset;
       
  1799       int addr;
       
  1800 
       
  1801       /* INTERSECT is different from the others since it requires
       
  1802       ** two temporary tables.  Hence it has its own case.  Begin
       
  1803       ** by allocating the tables we will need.
       
  1804       */
       
  1805       tab1 = pParse->nTab++;
       
  1806       tab2 = pParse->nTab++;
       
  1807       if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){
       
  1808         rc = 1;
       
  1809         goto multi_select_end;
       
  1810       }
       
  1811       createSortingIndex(pParse, p, pOrderBy);
       
  1812 
       
  1813       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
       
  1814       assert( p->addrOpenEphm[0] == -1 );
       
  1815       p->addrOpenEphm[0] = addr;
       
  1816       p->pRightmost->usesEphm = 1;
       
  1817       assert( p->pEList );
       
  1818 
       
  1819       /* Code the SELECTs to our left into temporary table "tab1".
       
  1820       */
       
  1821       rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
       
  1822       if( rc ){
       
  1823         goto multi_select_end;
       
  1824       }
       
  1825 
       
  1826       /* Code the current SELECT into temporary table "tab2"
       
  1827       */
       
  1828       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
       
  1829       assert( p->addrOpenEphm[1] == -1 );
       
  1830       p->addrOpenEphm[1] = addr;
       
  1831       p->pPrior = 0;
       
  1832       pLimit = p->pLimit;
       
  1833       p->pLimit = 0;
       
  1834       pOffset = p->pOffset;
       
  1835       p->pOffset = 0;
       
  1836       rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
       
  1837       p->pPrior = pPrior;
       
  1838       sqlite3ExprDelete(p->pLimit);
       
  1839       p->pLimit = pLimit;
       
  1840       p->pOffset = pOffset;
       
  1841       if( rc ){
       
  1842         goto multi_select_end;
       
  1843       }
       
  1844 
       
  1845       /* Generate code to take the intersection of the two temporary
       
  1846       ** tables.
       
  1847       */
       
  1848       assert( p->pEList );
       
  1849       if( eDest==SRT_Callback ){
       
  1850         Select *pFirst = p;
       
  1851         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
       
  1852         generateColumnNames(pParse, 0, pFirst->pEList);
       
  1853       }
       
  1854       iBreak = sqlite3VdbeMakeLabel(v);
       
  1855       iCont = sqlite3VdbeMakeLabel(v);
       
  1856       computeLimitRegisters(pParse, p, iBreak);
       
  1857       sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
       
  1858       iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
       
  1859       sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
       
  1860       rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
       
  1861                              pOrderBy, -1, eDest, iParm, 
       
  1862                              iCont, iBreak, 0);
       
  1863       if( rc ){
       
  1864         rc = 1;
       
  1865         goto multi_select_end;
       
  1866       }
       
  1867       sqlite3VdbeResolveLabel(v, iCont);
       
  1868       sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
       
  1869       sqlite3VdbeResolveLabel(v, iBreak);
       
  1870       sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
       
  1871       sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
       
  1872       break;
       
  1873     }
       
  1874   }
       
  1875 
       
  1876   /* Make sure all SELECTs in the statement have the same number of elements
       
  1877   ** in their result sets.
       
  1878   */
       
  1879   assert( p->pEList && pPrior->pEList );
       
  1880   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
       
  1881     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
       
  1882       " do not have the same number of result columns", selectOpName(p->op));
       
  1883     rc = 1;
       
  1884     goto multi_select_end;
       
  1885   }
       
  1886 
       
  1887   /* Set the number of columns in temporary tables
       
  1888   */
       
  1889   nCol = p->pEList->nExpr;
       
  1890   while( nSetP2 ){
       
  1891     sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
       
  1892   }
       
  1893 
       
  1894   /* Compute collating sequences used by either the ORDER BY clause or
       
  1895   ** by any temporary tables needed to implement the compound select.
       
  1896   ** Attach the KeyInfo structure to all temporary tables.  Invoke the
       
  1897   ** ORDER BY processing if there is an ORDER BY clause.
       
  1898   **
       
  1899   ** This section is run by the right-most SELECT statement only.
       
  1900   ** SELECT statements to the left always skip this part.  The right-most
       
  1901   ** SELECT might also skip this part if it has no ORDER BY clause and
       
  1902   ** no temp tables are required.
       
  1903   */
       
  1904   if( pOrderBy || p->usesEphm ){
       
  1905     int i;                        /* Loop counter */
       
  1906     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
       
  1907     Select *pLoop;                /* For looping through SELECT statements */
       
  1908     int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
       
  1909     CollSeq **apColl;
       
  1910     CollSeq **aCopy;
       
  1911 
       
  1912     assert( p->pRightmost==p );
       
  1913     nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
       
  1914     pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
       
  1915     if( !pKeyInfo ){
       
  1916       rc = SQLITE_NOMEM;
       
  1917       goto multi_select_end;
       
  1918     }
       
  1919 
       
  1920     pKeyInfo->enc = ENC(pParse->db);
       
  1921     pKeyInfo->nField = nCol;
       
  1922 
       
  1923     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
       
  1924       *apColl = multiSelectCollSeq(pParse, p, i);
       
  1925       if( 0==*apColl ){
       
  1926         *apColl = pParse->db->pDfltColl;
       
  1927       }
       
  1928     }
       
  1929 
       
  1930     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
       
  1931       for(i=0; i<2; i++){
       
  1932         int addr = pLoop->addrOpenEphm[i];
       
  1933         if( addr<0 ){
       
  1934           /* If [0] is unused then [1] is also unused.  So we can
       
  1935           ** always safely abort as soon as the first unused slot is found */
       
  1936           assert( pLoop->addrOpenEphm[1]<0 );
       
  1937           break;
       
  1938         }
       
  1939         sqlite3VdbeChangeP2(v, addr, nCol);
       
  1940         sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
       
  1941       }
       
  1942     }
       
  1943 
       
  1944     if( pOrderBy ){
       
  1945       struct ExprList_item *pOTerm = pOrderBy->a;
       
  1946       int nOrderByExpr = pOrderBy->nExpr;
       
  1947       int addr;
       
  1948       u8 *pSortOrder;
       
  1949 
       
  1950       aCopy = &pKeyInfo->aColl[nOrderByExpr];
       
  1951       pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
       
  1952       memcpy(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
       
  1953       apColl = pKeyInfo->aColl;
       
  1954       for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
       
  1955         Expr *pExpr = pOTerm->pExpr;
       
  1956         char *zName = pOTerm->zName;
       
  1957         assert( pExpr->op==TK_COLUMN && pExpr->iColumn<nCol );
       
  1958         if( zName ){
       
  1959           *apColl = sqlite3LocateCollSeq(pParse, zName, -1);
       
  1960         }else{
       
  1961           *apColl = aCopy[pExpr->iColumn];
       
  1962         }
       
  1963         *pSortOrder = pOTerm->sortOrder;
       
  1964       }
       
  1965       assert( p->pRightmost==p );
       
  1966       assert( p->addrOpenEphm[2]>=0 );
       
  1967       addr = p->addrOpenEphm[2];
       
  1968       sqlite3VdbeChangeP2(v, addr, p->pEList->nExpr+2);
       
  1969       pKeyInfo->nField = nOrderByExpr;
       
  1970       sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
       
  1971       pKeyInfo = 0;
       
  1972       generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
       
  1973     }
       
  1974 
       
  1975     sqliteFree(pKeyInfo);
       
  1976   }
       
  1977 
       
  1978 multi_select_end:
       
  1979   return rc;
       
  1980 }
       
  1981 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
       
  1982 
       
  1983 #ifndef SQLITE_OMIT_VIEW
       
  1984 /*
       
  1985 ** Scan through the expression pExpr.  Replace every reference to
       
  1986 ** a column in table number iTable with a copy of the iColumn-th
       
  1987 ** entry in pEList.  (But leave references to the ROWID column 
       
  1988 ** unchanged.)
       
  1989 **
       
  1990 ** This routine is part of the flattening procedure.  A subquery
       
  1991 ** whose result set is defined by pEList appears as entry in the
       
  1992 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
       
  1993 ** FORM clause entry is iTable.  This routine make the necessary 
       
  1994 ** changes to pExpr so that it refers directly to the source table
       
  1995 ** of the subquery rather the result set of the subquery.
       
  1996 */
       
  1997 static void substExprList(ExprList*,int,ExprList*);  /* Forward Decl */
       
  1998 static void substSelect(Select *, int, ExprList *);  /* Forward Decl */
       
  1999 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
       
  2000   if( pExpr==0 ) return;
       
  2001   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
       
  2002     if( pExpr->iColumn<0 ){
       
  2003       pExpr->op = TK_NULL;
       
  2004     }else{
       
  2005       Expr *pNew;
       
  2006       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
       
  2007       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
       
  2008       pNew = pEList->a[pExpr->iColumn].pExpr;
       
  2009       assert( pNew!=0 );
       
  2010       pExpr->op = pNew->op;
       
  2011       assert( pExpr->pLeft==0 );
       
  2012       pExpr->pLeft = sqlite3ExprDup(pNew->pLeft);
       
  2013       assert( pExpr->pRight==0 );
       
  2014       pExpr->pRight = sqlite3ExprDup(pNew->pRight);
       
  2015       assert( pExpr->pList==0 );
       
  2016       pExpr->pList = sqlite3ExprListDup(pNew->pList);
       
  2017       pExpr->iTable = pNew->iTable;
       
  2018       pExpr->pTab = pNew->pTab;
       
  2019       pExpr->iColumn = pNew->iColumn;
       
  2020       pExpr->iAgg = pNew->iAgg;
       
  2021       sqlite3TokenCopy(&pExpr->token, &pNew->token);
       
  2022       sqlite3TokenCopy(&pExpr->span, &pNew->span);
       
  2023       pExpr->pSelect = sqlite3SelectDup(pNew->pSelect);
       
  2024       pExpr->flags = pNew->flags;
       
  2025     }
       
  2026   }else{
       
  2027     substExpr(pExpr->pLeft, iTable, pEList);
       
  2028     substExpr(pExpr->pRight, iTable, pEList);
       
  2029     substSelect(pExpr->pSelect, iTable, pEList);
       
  2030     substExprList(pExpr->pList, iTable, pEList);
       
  2031   }
       
  2032 }
       
  2033 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){
       
  2034   int i;
       
  2035   if( pList==0 ) return;
       
  2036   for(i=0; i<pList->nExpr; i++){
       
  2037     substExpr(pList->a[i].pExpr, iTable, pEList);
       
  2038   }
       
  2039 }
       
  2040 static void substSelect(Select *p, int iTable, ExprList *pEList){
       
  2041   if( !p ) return;
       
  2042   substExprList(p->pEList, iTable, pEList);
       
  2043   substExprList(p->pGroupBy, iTable, pEList);
       
  2044   substExprList(p->pOrderBy, iTable, pEList);
       
  2045   substExpr(p->pHaving, iTable, pEList);
       
  2046   substExpr(p->pWhere, iTable, pEList);
       
  2047 }
       
  2048 #endif /* !defined(SQLITE_OMIT_VIEW) */
       
  2049 
       
  2050 #ifndef SQLITE_OMIT_VIEW
       
  2051 /*
       
  2052 ** This routine attempts to flatten subqueries in order to speed
       
  2053 ** execution.  It returns 1 if it makes changes and 0 if no flattening
       
  2054 ** occurs.
       
  2055 **
       
  2056 ** To understand the concept of flattening, consider the following
       
  2057 ** query:
       
  2058 **
       
  2059 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
       
  2060 **
       
  2061 ** The default way of implementing this query is to execute the
       
  2062 ** subquery first and store the results in a temporary table, then
       
  2063 ** run the outer query on that temporary table.  This requires two
       
  2064 ** passes over the data.  Furthermore, because the temporary table
       
  2065 ** has no indices, the WHERE clause on the outer query cannot be
       
  2066 ** optimized.
       
  2067 **
       
  2068 ** This routine attempts to rewrite queries such as the above into
       
  2069 ** a single flat select, like this:
       
  2070 **
       
  2071 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
       
  2072 **
       
  2073 ** The code generated for this simpification gives the same result
       
  2074 ** but only has to scan the data once.  And because indices might 
       
  2075 ** exist on the table t1, a complete scan of the data might be
       
  2076 ** avoided.
       
  2077 **
       
  2078 ** Flattening is only attempted if all of the following are true:
       
  2079 **
       
  2080 **   (1)  The subquery and the outer query do not both use aggregates.
       
  2081 **
       
  2082 **   (2)  The subquery is not an aggregate or the outer query is not a join.
       
  2083 **
       
  2084 **   (3)  The subquery is not the right operand of a left outer join, or
       
  2085 **        the subquery is not itself a join.  (Ticket #306)
       
  2086 **
       
  2087 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
       
  2088 **
       
  2089 **   (5)  The subquery is not DISTINCT or the outer query does not use
       
  2090 **        aggregates.
       
  2091 **
       
  2092 **   (6)  The subquery does not use aggregates or the outer query is not
       
  2093 **        DISTINCT.
       
  2094 **
       
  2095 **   (7)  The subquery has a FROM clause.
       
  2096 **
       
  2097 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
       
  2098 **
       
  2099 **   (9)  The subquery does not use LIMIT or the outer query does not use
       
  2100 **        aggregates.
       
  2101 **
       
  2102 **  (10)  The subquery does not use aggregates or the outer query does not
       
  2103 **        use LIMIT.
       
  2104 **
       
  2105 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
       
  2106 **
       
  2107 **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
       
  2108 **        subquery has no WHERE clause.  (added by ticket #350)
       
  2109 **
       
  2110 **  (13)  The subquery and outer query do not both use LIMIT
       
  2111 **
       
  2112 **  (14)  The subquery does not use OFFSET
       
  2113 **
       
  2114 ** In this routine, the "p" parameter is a pointer to the outer query.
       
  2115 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
       
  2116 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
       
  2117 **
       
  2118 ** If flattening is not attempted, this routine is a no-op and returns 0.
       
  2119 ** If flattening is attempted this routine returns 1.
       
  2120 **
       
  2121 ** All of the expression analysis must occur on both the outer query and
       
  2122 ** the subquery before this routine runs.
       
  2123 */
       
  2124 static int flattenSubquery(
       
  2125   Select *p,           /* The parent or outer SELECT statement */
       
  2126   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
       
  2127   int isAgg,           /* True if outer SELECT uses aggregate functions */
       
  2128   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
       
  2129 ){
       
  2130   Select *pSub;       /* The inner query or "subquery" */
       
  2131   SrcList *pSrc;      /* The FROM clause of the outer query */
       
  2132   SrcList *pSubSrc;   /* The FROM clause of the subquery */
       
  2133   ExprList *pList;    /* The result set of the outer query */
       
  2134   int iParent;        /* VDBE cursor number of the pSub result set temp table */
       
  2135   int i;              /* Loop counter */
       
  2136   Expr *pWhere;                    /* The WHERE clause */
       
  2137   struct SrcList_item *pSubitem;   /* The subquery */
       
  2138 
       
  2139   /* Check to see if flattening is permitted.  Return 0 if not.
       
  2140   */
       
  2141   if( p==0 ) return 0;
       
  2142   pSrc = p->pSrc;
       
  2143   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
       
  2144   pSubitem = &pSrc->a[iFrom];
       
  2145   pSub = pSubitem->pSelect;
       
  2146   assert( pSub!=0 );
       
  2147   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
       
  2148   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
       
  2149   pSubSrc = pSub->pSrc;
       
  2150   assert( pSubSrc );
       
  2151   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
       
  2152   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
       
  2153   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
       
  2154   ** became arbitrary expressions, we were forced to add restrictions (13)
       
  2155   ** and (14). */
       
  2156   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
       
  2157   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
       
  2158   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
       
  2159   if( (pSub->isDistinct || pSub->pLimit) 
       
  2160          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
       
  2161      return 0;       
       
  2162   }
       
  2163   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
       
  2164   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
       
  2165      return 0;                                           /* Restriction (11) */
       
  2166   }
       
  2167 
       
  2168   /* Restriction 3:  If the subquery is a join, make sure the subquery is 
       
  2169   ** not used as the right operand of an outer join.  Examples of why this
       
  2170   ** is not allowed:
       
  2171   **
       
  2172   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
       
  2173   **
       
  2174   ** If we flatten the above, we would get
       
  2175   **
       
  2176   **         (t1 LEFT OUTER JOIN t2) JOIN t3
       
  2177   **
       
  2178   ** which is not at all the same thing.
       
  2179   */
       
  2180   if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){
       
  2181     return 0;
       
  2182   }
       
  2183 
       
  2184   /* Restriction 12:  If the subquery is the right operand of a left outer
       
  2185   ** join, make sure the subquery has no WHERE clause.
       
  2186   ** An examples of why this is not allowed:
       
  2187   **
       
  2188   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
       
  2189   **
       
  2190   ** If we flatten the above, we would get
       
  2191   **
       
  2192   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
       
  2193   **
       
  2194   ** But the t2.x>0 test will always fail on a NULL row of t2, which
       
  2195   ** effectively converts the OUTER JOIN into an INNER JOIN.
       
  2196   */
       
  2197   if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 
       
  2198       && pSub->pWhere!=0 ){
       
  2199     return 0;
       
  2200   }
       
  2201 
       
  2202   /* If we reach this point, it means flattening is permitted for the
       
  2203   ** iFrom-th entry of the FROM clause in the outer query.
       
  2204   */
       
  2205 
       
  2206   /* Move all of the FROM elements of the subquery into the
       
  2207   ** the FROM clause of the outer query.  Before doing this, remember
       
  2208   ** the cursor number for the original outer query FROM element in
       
  2209   ** iParent.  The iParent cursor will never be used.  Subsequent code
       
  2210   ** will scan expressions looking for iParent references and replace
       
  2211   ** those references with expressions that resolve to the subquery FROM
       
  2212   ** elements we are now copying in.
       
  2213   */
       
  2214   iParent = pSubitem->iCursor;
       
  2215   {
       
  2216     int nSubSrc = pSubSrc->nSrc;
       
  2217     int jointype = pSubitem->jointype;
       
  2218 
       
  2219     sqlite3DeleteTable(0, pSubitem->pTab);
       
  2220     sqliteFree(pSubitem->zDatabase);
       
  2221     sqliteFree(pSubitem->zName);
       
  2222     sqliteFree(pSubitem->zAlias);
       
  2223     if( nSubSrc>1 ){
       
  2224       int extra = nSubSrc - 1;
       
  2225       for(i=1; i<nSubSrc; i++){
       
  2226         pSrc = sqlite3SrcListAppend(pSrc, 0, 0);
       
  2227       }
       
  2228       p->pSrc = pSrc;
       
  2229       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
       
  2230         pSrc->a[i] = pSrc->a[i-extra];
       
  2231       }
       
  2232     }
       
  2233     for(i=0; i<nSubSrc; i++){
       
  2234       pSrc->a[i+iFrom] = pSubSrc->a[i];
       
  2235       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
       
  2236     }
       
  2237     pSrc->a[iFrom+nSubSrc-1].jointype = jointype;
       
  2238   }
       
  2239 
       
  2240   /* Now begin substituting subquery result set expressions for 
       
  2241   ** references to the iParent in the outer query.
       
  2242   ** 
       
  2243   ** Example:
       
  2244   **
       
  2245   **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
       
  2246   **   \                     \_____________ subquery __________/          /
       
  2247   **    \_____________________ outer query ______________________________/
       
  2248   **
       
  2249   ** We look at every expression in the outer query and every place we see
       
  2250   ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
       
  2251   */
       
  2252   pList = p->pEList;
       
  2253   for(i=0; i<pList->nExpr; i++){
       
  2254     Expr *pExpr;
       
  2255     if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
       
  2256       pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n);
       
  2257     }
       
  2258   }
       
  2259   substExprList(p->pEList, iParent, pSub->pEList);
       
  2260   if( isAgg ){
       
  2261     substExprList(p->pGroupBy, iParent, pSub->pEList);
       
  2262     substExpr(p->pHaving, iParent, pSub->pEList);
       
  2263   }
       
  2264   if( pSub->pOrderBy ){
       
  2265     assert( p->pOrderBy==0 );
       
  2266     p->pOrderBy = pSub->pOrderBy;
       
  2267     pSub->pOrderBy = 0;
       
  2268   }else if( p->pOrderBy ){
       
  2269     substExprList(p->pOrderBy, iParent, pSub->pEList);
       
  2270   }
       
  2271   if( pSub->pWhere ){
       
  2272     pWhere = sqlite3ExprDup(pSub->pWhere);
       
  2273   }else{
       
  2274     pWhere = 0;
       
  2275   }
       
  2276   if( subqueryIsAgg ){
       
  2277     assert( p->pHaving==0 );
       
  2278     p->pHaving = p->pWhere;
       
  2279     p->pWhere = pWhere;
       
  2280     substExpr(p->pHaving, iParent, pSub->pEList);
       
  2281     p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving));
       
  2282     assert( p->pGroupBy==0 );
       
  2283     p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy);
       
  2284   }else{
       
  2285     substExpr(p->pWhere, iParent, pSub->pEList);
       
  2286     p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere);
       
  2287   }
       
  2288 
       
  2289   /* The flattened query is distinct if either the inner or the
       
  2290   ** outer query is distinct. 
       
  2291   */
       
  2292   p->isDistinct = p->isDistinct || pSub->isDistinct;
       
  2293 
       
  2294   /*
       
  2295   ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
       
  2296   **
       
  2297   ** One is tempted to try to add a and b to combine the limits.  But this
       
  2298   ** does not work if either limit is negative.
       
  2299   */
       
  2300   if( pSub->pLimit ){
       
  2301     p->pLimit = pSub->pLimit;
       
  2302     pSub->pLimit = 0;
       
  2303   }
       
  2304 
       
  2305   /* Finially, delete what is left of the subquery and return
       
  2306   ** success.
       
  2307   */
       
  2308   sqlite3SelectDelete(pSub);
       
  2309   return 1;
       
  2310 }
       
  2311 #endif /* SQLITE_OMIT_VIEW */
       
  2312 
       
  2313 /*
       
  2314 ** Analyze the SELECT statement passed in as an argument to see if it
       
  2315 ** is a simple min() or max() query.  If it is and this query can be
       
  2316 ** satisfied using a single seek to the beginning or end of an index,
       
  2317 ** then generate the code for this SELECT and return 1.  If this is not a 
       
  2318 ** simple min() or max() query, then return 0;
       
  2319 **
       
  2320 ** A simply min() or max() query looks like this:
       
  2321 **
       
  2322 **    SELECT min(a) FROM table;
       
  2323 **    SELECT max(a) FROM table;
       
  2324 **
       
  2325 ** The query may have only a single table in its FROM argument.  There
       
  2326 ** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
       
  2327 ** be the min() or max() of a single column of the table.  The column
       
  2328 ** in the min() or max() function must be indexed.
       
  2329 **
       
  2330 ** The parameters to this routine are the same as for sqlite3Select().
       
  2331 ** See the header comment on that routine for additional information.
       
  2332 */
       
  2333 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
       
  2334   Expr *pExpr;
       
  2335   int iCol;
       
  2336   Table *pTab;
       
  2337   Index *pIdx;
       
  2338   int base;
       
  2339   Vdbe *v;
       
  2340   int seekOp;
       
  2341   ExprList *pEList, *pList, eList;
       
  2342   struct ExprList_item eListItem;
       
  2343   SrcList *pSrc;
       
  2344   int brk;
       
  2345   int iDb;
       
  2346 
       
  2347   /* Check to see if this query is a simple min() or max() query.  Return
       
  2348   ** zero if it is  not.
       
  2349   */
       
  2350   if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
       
  2351   pSrc = p->pSrc;
       
  2352   if( pSrc->nSrc!=1 ) return 0;
       
  2353   pEList = p->pEList;
       
  2354   if( pEList->nExpr!=1 ) return 0;
       
  2355   pExpr = pEList->a[0].pExpr;
       
  2356   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
       
  2357   pList = pExpr->pList;
       
  2358   if( pList==0 || pList->nExpr!=1 ) return 0;
       
  2359   if( pExpr->token.n!=3 ) return 0;
       
  2360   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
       
  2361     seekOp = OP_Rewind;
       
  2362   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
       
  2363     seekOp = OP_Last;
       
  2364   }else{
       
  2365     return 0;
       
  2366   }
       
  2367   pExpr = pList->a[0].pExpr;
       
  2368   if( pExpr->op!=TK_COLUMN ) return 0;
       
  2369   iCol = pExpr->iColumn;
       
  2370   pTab = pSrc->a[0].pTab;
       
  2371 
       
  2372 
       
  2373   /* If we get to here, it means the query is of the correct form.
       
  2374   ** Check to make sure we have an index and make pIdx point to the
       
  2375   ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
       
  2376   ** key column, no index is necessary so set pIdx to NULL.  If no
       
  2377   ** usable index is found, return 0.
       
  2378   */
       
  2379   if( iCol<0 ){
       
  2380     pIdx = 0;
       
  2381   }else{
       
  2382     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
       
  2383     if( pColl==0 ) return 0;
       
  2384     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
       
  2385       assert( pIdx->nColumn>=1 );
       
  2386       if( pIdx->aiColumn[0]==iCol && 
       
  2387           0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
       
  2388         break;
       
  2389       }
       
  2390     }
       
  2391     if( pIdx==0 ) return 0;
       
  2392   }
       
  2393 
       
  2394   /* Identify column types if we will be using the callback.  This
       
  2395   ** step is skipped if the output is going to a table or a memory cell.
       
  2396   ** The column names have already been generated in the calling function.
       
  2397   */
       
  2398   v = sqlite3GetVdbe(pParse);
       
  2399   if( v==0 ) return 0;
       
  2400 
       
  2401   /* If the output is destined for a temporary table, open that table.
       
  2402   */
       
  2403   if( eDest==SRT_EphemTab ){
       
  2404     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
       
  2405   }
       
  2406 
       
  2407   /* Generating code to find the min or the max.  Basically all we have
       
  2408   ** to do is find the first or the last entry in the chosen index.  If
       
  2409   ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
       
  2410   ** or last entry in the main table.
       
  2411   */
       
  2412   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
       
  2413   assert( iDb>=0 || pTab->isEphem );
       
  2414   sqlite3CodeVerifySchema(pParse, iDb);
       
  2415   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
       
  2416   base = pSrc->a[0].iCursor;
       
  2417   brk = sqlite3VdbeMakeLabel(v);
       
  2418   computeLimitRegisters(pParse, p, brk);
       
  2419   if( pSrc->a[0].pSelect==0 ){
       
  2420     sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
       
  2421   }
       
  2422   if( pIdx==0 ){
       
  2423     sqlite3VdbeAddOp(v, seekOp, base, 0);
       
  2424   }else{
       
  2425     /* Even though the cursor used to open the index here is closed
       
  2426     ** as soon as a single value has been read from it, allocate it
       
  2427     ** using (pParse->nTab++) to prevent the cursor id from being 
       
  2428     ** reused. This is important for statements of the form 
       
  2429     ** "INSERT INTO x SELECT max() FROM x".
       
  2430     */
       
  2431     int iIdx;
       
  2432     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
       
  2433     iIdx = pParse->nTab++;
       
  2434     assert( pIdx->pSchema==pTab->pSchema );
       
  2435     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
       
  2436     sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 
       
  2437         (char*)pKey, P3_KEYINFO_HANDOFF);
       
  2438     if( seekOp==OP_Rewind ){
       
  2439       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
  2440       sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
       
  2441       seekOp = OP_MoveGt;
       
  2442     }
       
  2443     sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
       
  2444     sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
       
  2445     sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
       
  2446     sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
       
  2447   }
       
  2448   eList.nExpr = 1;
       
  2449   memset(&eListItem, 0, sizeof(eListItem));
       
  2450   eList.a = &eListItem;
       
  2451   eList.a[0].pExpr = pExpr;
       
  2452   selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
       
  2453   sqlite3VdbeResolveLabel(v, brk);
       
  2454   sqlite3VdbeAddOp(v, OP_Close, base, 0);
       
  2455   
       
  2456   return 1;
       
  2457 }
       
  2458 
       
  2459 /*
       
  2460 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
       
  2461 ** the number of errors seen.
       
  2462 **
       
  2463 ** An ORDER BY or GROUP BY is a list of expressions.  If any expression
       
  2464 ** is an integer constant, then that expression is replaced by the
       
  2465 ** corresponding entry in the result set.
       
  2466 */
       
  2467 static int processOrderGroupBy(
       
  2468   NameContext *pNC,     /* Name context of the SELECT statement. */
       
  2469   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
       
  2470   const char *zType     /* Either "ORDER" or "GROUP", as appropriate */
       
  2471 ){
       
  2472   int i;
       
  2473   ExprList *pEList = pNC->pEList;     /* The result set of the SELECT */
       
  2474   Parse *pParse = pNC->pParse;     /* The result set of the SELECT */
       
  2475   assert( pEList );
       
  2476 
       
  2477   if( pOrderBy==0 ) return 0;
       
  2478   for(i=0; i<pOrderBy->nExpr; i++){
       
  2479     int iCol;
       
  2480     Expr *pE = pOrderBy->a[i].pExpr;
       
  2481     if( sqlite3ExprIsInteger(pE, &iCol) ){
       
  2482       if( iCol>0 && iCol<=pEList->nExpr ){
       
  2483         sqlite3ExprDelete(pE);
       
  2484         pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr);
       
  2485       }else{
       
  2486         sqlite3ErrorMsg(pParse, 
       
  2487            "%s BY column number %d out of range - should be "
       
  2488            "between 1 and %d", zType, iCol, pEList->nExpr);
       
  2489         return 1;
       
  2490       }
       
  2491     }
       
  2492     if( sqlite3ExprResolveNames(pNC, pE) ){
       
  2493       return 1;
       
  2494     }
       
  2495   }
       
  2496   return 0;
       
  2497 }
       
  2498 
       
  2499 /*
       
  2500 ** This routine resolves any names used in the result set of the
       
  2501 ** supplied SELECT statement. If the SELECT statement being resolved
       
  2502 ** is a sub-select, then pOuterNC is a pointer to the NameContext 
       
  2503 ** of the parent SELECT.
       
  2504 */
       
  2505 int sqlite3SelectResolve(
       
  2506   Parse *pParse,         /* The parser context */
       
  2507   Select *p,             /* The SELECT statement being coded. */
       
  2508   NameContext *pOuterNC  /* The outer name context. May be NULL. */
       
  2509 ){
       
  2510   ExprList *pEList;          /* Result set. */
       
  2511   int i;                     /* For-loop variable used in multiple places */
       
  2512   NameContext sNC;           /* Local name-context */
       
  2513   ExprList *pGroupBy;        /* The group by clause */
       
  2514 
       
  2515   /* If this routine has run before, return immediately. */
       
  2516   if( p->isResolved ){
       
  2517     assert( !pOuterNC );
       
  2518     return SQLITE_OK;
       
  2519   }
       
  2520   p->isResolved = 1;
       
  2521 
       
  2522   /* If there have already been errors, do nothing. */
       
  2523   if( pParse->nErr>0 ){
       
  2524     return SQLITE_ERROR;
       
  2525   }
       
  2526 
       
  2527   /* Prepare the select statement. This call will allocate all cursors
       
  2528   ** required to handle the tables and subqueries in the FROM clause.
       
  2529   */
       
  2530   if( prepSelectStmt(pParse, p) ){
       
  2531     return SQLITE_ERROR;
       
  2532   }
       
  2533 
       
  2534   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
       
  2535   ** are not allowed to refer to any names, so pass an empty NameContext.
       
  2536   */
       
  2537   memset(&sNC, 0, sizeof(sNC));
       
  2538   sNC.pParse = pParse;
       
  2539   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
       
  2540       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
       
  2541     return SQLITE_ERROR;
       
  2542   }
       
  2543 
       
  2544   /* Set up the local name-context to pass to ExprResolveNames() to
       
  2545   ** resolve the expression-list.
       
  2546   */
       
  2547   sNC.allowAgg = 1;
       
  2548   sNC.pSrcList = p->pSrc;
       
  2549   sNC.pNext = pOuterNC;
       
  2550 
       
  2551   /* Resolve names in the result set. */
       
  2552   pEList = p->pEList;
       
  2553   if( !pEList ) return SQLITE_ERROR;
       
  2554   for(i=0; i<pEList->nExpr; i++){
       
  2555     Expr *pX = pEList->a[i].pExpr;
       
  2556     if( sqlite3ExprResolveNames(&sNC, pX) ){
       
  2557       return SQLITE_ERROR;
       
  2558     }
       
  2559   }
       
  2560 
       
  2561   /* If there are no aggregate functions in the result-set, and no GROUP BY 
       
  2562   ** expression, do not allow aggregates in any of the other expressions.
       
  2563   */
       
  2564   assert( !p->isAgg );
       
  2565   pGroupBy = p->pGroupBy;
       
  2566   if( pGroupBy || sNC.hasAgg ){
       
  2567     p->isAgg = 1;
       
  2568   }else{
       
  2569     sNC.allowAgg = 0;
       
  2570   }
       
  2571 
       
  2572   /* If a HAVING clause is present, then there must be a GROUP BY clause.
       
  2573   */
       
  2574   if( p->pHaving && !pGroupBy ){
       
  2575     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
       
  2576     return SQLITE_ERROR;
       
  2577   }
       
  2578 
       
  2579   /* Add the expression list to the name-context before parsing the
       
  2580   ** other expressions in the SELECT statement. This is so that
       
  2581   ** expressions in the WHERE clause (etc.) can refer to expressions by
       
  2582   ** aliases in the result set.
       
  2583   **
       
  2584   ** Minor point: If this is the case, then the expression will be
       
  2585   ** re-evaluated for each reference to it.
       
  2586   */
       
  2587   sNC.pEList = p->pEList;
       
  2588   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
       
  2589       sqlite3ExprResolveNames(&sNC, p->pHaving) ||
       
  2590       processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
       
  2591       processOrderGroupBy(&sNC, pGroupBy, "GROUP")
       
  2592   ){
       
  2593     return SQLITE_ERROR;
       
  2594   }
       
  2595 
       
  2596   /* Make sure the GROUP BY clause does not contain aggregate functions.
       
  2597   */
       
  2598   if( pGroupBy ){
       
  2599     struct ExprList_item *pItem;
       
  2600   
       
  2601     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
       
  2602       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
       
  2603         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
       
  2604             "the GROUP BY clause");
       
  2605         return SQLITE_ERROR;
       
  2606       }
       
  2607     }
       
  2608   }
       
  2609 
       
  2610   return SQLITE_OK;
       
  2611 }
       
  2612 
       
  2613 /*
       
  2614 ** Reset the aggregate accumulator.
       
  2615 **
       
  2616 ** The aggregate accumulator is a set of memory cells that hold
       
  2617 ** intermediate results while calculating an aggregate.  This
       
  2618 ** routine simply stores NULLs in all of those memory cells.
       
  2619 */
       
  2620 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
       
  2621   Vdbe *v = pParse->pVdbe;
       
  2622   int i;
       
  2623   struct AggInfo_func *pFunc;
       
  2624   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
       
  2625     return;
       
  2626   }
       
  2627   for(i=0; i<pAggInfo->nColumn; i++){
       
  2628     sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
       
  2629   }
       
  2630   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
       
  2631     sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
       
  2632     if( pFunc->iDistinct>=0 ){
       
  2633       Expr *pE = pFunc->pExpr;
       
  2634       if( pE->pList==0 || pE->pList->nExpr!=1 ){
       
  2635         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
       
  2636            "by an expression");
       
  2637         pFunc->iDistinct = -1;
       
  2638       }else{
       
  2639         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
       
  2640         sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 
       
  2641                           (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
       
  2642       }
       
  2643     }
       
  2644   }
       
  2645 }
       
  2646 
       
  2647 /*
       
  2648 ** Invoke the OP_AggFinalize opcode for every aggregate function
       
  2649 ** in the AggInfo structure.
       
  2650 */
       
  2651 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
       
  2652   Vdbe *v = pParse->pVdbe;
       
  2653   int i;
       
  2654   struct AggInfo_func *pF;
       
  2655   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
       
  2656     ExprList *pList = pF->pExpr->pList;
       
  2657     sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
       
  2658                       (void*)pF->pFunc, P3_FUNCDEF);
       
  2659   }
       
  2660 }
       
  2661 
       
  2662 /*
       
  2663 ** Update the accumulator memory cells for an aggregate based on
       
  2664 ** the current cursor position.
       
  2665 */
       
  2666 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
       
  2667   Vdbe *v = pParse->pVdbe;
       
  2668   int i;
       
  2669   struct AggInfo_func *pF;
       
  2670   struct AggInfo_col *pC;
       
  2671 
       
  2672   pAggInfo->directMode = 1;
       
  2673   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
       
  2674     int nArg;
       
  2675     int addrNext = 0;
       
  2676     ExprList *pList = pF->pExpr->pList;
       
  2677     if( pList ){
       
  2678       nArg = pList->nExpr;
       
  2679       sqlite3ExprCodeExprList(pParse, pList);
       
  2680     }else{
       
  2681       nArg = 0;
       
  2682     }
       
  2683     if( pF->iDistinct>=0 ){
       
  2684       addrNext = sqlite3VdbeMakeLabel(v);
       
  2685       assert( nArg==1 );
       
  2686       codeDistinct(v, pF->iDistinct, addrNext, 1);
       
  2687     }
       
  2688     if( pF->pFunc->needCollSeq ){
       
  2689       CollSeq *pColl = 0;
       
  2690       struct ExprList_item *pItem;
       
  2691       int j;
       
  2692       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
       
  2693       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
       
  2694         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
       
  2695       }
       
  2696       if( !pColl ){
       
  2697         pColl = pParse->db->pDfltColl;
       
  2698       }
       
  2699       sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
       
  2700     }
       
  2701     sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF);
       
  2702     if( addrNext ){
       
  2703       sqlite3VdbeResolveLabel(v, addrNext);
       
  2704     }
       
  2705   }
       
  2706   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
       
  2707     sqlite3ExprCode(pParse, pC->pExpr);
       
  2708     sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
       
  2709   }
       
  2710   pAggInfo->directMode = 0;
       
  2711 }
       
  2712 
       
  2713 
       
  2714 /*
       
  2715 ** Generate code for the given SELECT statement.
       
  2716 **
       
  2717 ** The results are distributed in various ways depending on the
       
  2718 ** value of eDest and iParm.
       
  2719 **
       
  2720 **     eDest Value       Result
       
  2721 **     ------------    -------------------------------------------
       
  2722 **     SRT_Callback    Invoke the callback for each row of the result.
       
  2723 **
       
  2724 **     SRT_Mem         Store first result in memory cell iParm
       
  2725 **
       
  2726 **     SRT_Set         Store results as keys of table iParm.
       
  2727 **
       
  2728 **     SRT_Union       Store results as a key in a temporary table iParm
       
  2729 **
       
  2730 **     SRT_Except      Remove results from the temporary table iParm.
       
  2731 **
       
  2732 **     SRT_Table       Store results in temporary table iParm
       
  2733 **
       
  2734 ** The table above is incomplete.  Additional eDist value have be added
       
  2735 ** since this comment was written.  See the selectInnerLoop() function for
       
  2736 ** a complete listing of the allowed values of eDest and their meanings.
       
  2737 **
       
  2738 ** This routine returns the number of errors.  If any errors are
       
  2739 ** encountered, then an appropriate error message is left in
       
  2740 ** pParse->zErrMsg.
       
  2741 **
       
  2742 ** This routine does NOT free the Select structure passed in.  The
       
  2743 ** calling function needs to do that.
       
  2744 **
       
  2745 ** The pParent, parentTab, and *pParentAgg fields are filled in if this
       
  2746 ** SELECT is a subquery.  This routine may try to combine this SELECT
       
  2747 ** with its parent to form a single flat query.  In so doing, it might
       
  2748 ** change the parent query from a non-aggregate to an aggregate query.
       
  2749 ** For that reason, the pParentAgg flag is passed as a pointer, so it
       
  2750 ** can be changed.
       
  2751 **
       
  2752 ** Example 1:   The meaning of the pParent parameter.
       
  2753 **
       
  2754 **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
       
  2755 **    \                      \_______ subquery _______/        /
       
  2756 **     \                                                      /
       
  2757 **      \____________________ outer query ___________________/
       
  2758 **
       
  2759 ** This routine is called for the outer query first.   For that call,
       
  2760 ** pParent will be NULL.  During the processing of the outer query, this 
       
  2761 ** routine is called recursively to handle the subquery.  For the recursive
       
  2762 ** call, pParent will point to the outer query.  Because the subquery is
       
  2763 ** the second element in a three-way join, the parentTab parameter will
       
  2764 ** be 1 (the 2nd value of a 0-indexed array.)
       
  2765 */
       
  2766 int sqlite3Select(
       
  2767   Parse *pParse,         /* The parser context */
       
  2768   Select *p,             /* The SELECT statement being coded. */
       
  2769   int eDest,             /* How to dispose of the results */
       
  2770   int iParm,             /* A parameter used by the eDest disposal method */
       
  2771   Select *pParent,       /* Another SELECT for which this is a sub-query */
       
  2772   int parentTab,         /* Index in pParent->pSrc of this query */
       
  2773   int *pParentAgg,       /* True if pParent uses aggregate functions */
       
  2774   char *aff              /* If eDest is SRT_Union, the affinity string */
       
  2775 ){
       
  2776   int i, j;              /* Loop counters */
       
  2777   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
       
  2778   Vdbe *v;               /* The virtual machine under construction */
       
  2779   int isAgg;             /* True for select lists like "count(*)" */
       
  2780   ExprList *pEList;      /* List of columns to extract. */
       
  2781   SrcList *pTabList;     /* List of tables to select from */
       
  2782   Expr *pWhere;          /* The WHERE clause.  May be NULL */
       
  2783   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
       
  2784   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
       
  2785   Expr *pHaving;         /* The HAVING clause.  May be NULL */
       
  2786   int isDistinct;        /* True if the DISTINCT keyword is present */
       
  2787   int distinct;          /* Table to use for the distinct set */
       
  2788   int rc = 1;            /* Value to return from this function */
       
  2789   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
       
  2790   AggInfo sAggInfo;      /* Information used by aggregate queries */
       
  2791   int iEnd;              /* Address of the end of the query */
       
  2792 
       
  2793   if( p==0 || sqlite3MallocFailed() || pParse->nErr ){
       
  2794     return 1;
       
  2795   }
       
  2796   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
       
  2797   memset(&sAggInfo, 0, sizeof(sAggInfo));
       
  2798 
       
  2799 #ifndef SQLITE_OMIT_COMPOUND_SELECT
       
  2800   /* If there is are a sequence of queries, do the earlier ones first.
       
  2801   */
       
  2802   if( p->pPrior ){
       
  2803     if( p->pRightmost==0 ){
       
  2804       Select *pLoop;
       
  2805       for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
       
  2806         pLoop->pRightmost = p;
       
  2807       }
       
  2808     }
       
  2809     return multiSelect(pParse, p, eDest, iParm, aff);
       
  2810   }
       
  2811 #endif
       
  2812 
       
  2813   pOrderBy = p->pOrderBy;
       
  2814   if( IgnorableOrderby(eDest) ){
       
  2815     p->pOrderBy = 0;
       
  2816   }
       
  2817   if( sqlite3SelectResolve(pParse, p, 0) ){
       
  2818     goto select_end;
       
  2819   }
       
  2820   p->pOrderBy = pOrderBy;
       
  2821 
       
  2822   /* Make local copies of the parameters for this query.
       
  2823   */
       
  2824   pTabList = p->pSrc;
       
  2825   pWhere = p->pWhere;
       
  2826   pGroupBy = p->pGroupBy;
       
  2827   pHaving = p->pHaving;
       
  2828   isAgg = p->isAgg;
       
  2829   isDistinct = p->isDistinct;
       
  2830   pEList = p->pEList;
       
  2831   if( pEList==0 ) goto select_end;
       
  2832 
       
  2833   /* 
       
  2834   ** Do not even attempt to generate any code if we have already seen
       
  2835   ** errors before this routine starts.
       
  2836   */
       
  2837   if( pParse->nErr>0 ) goto select_end;
       
  2838 
       
  2839   /* If writing to memory or generating a set
       
  2840   ** only a single column may be output.
       
  2841   */
       
  2842 #ifndef SQLITE_OMIT_SUBQUERY
       
  2843   if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
       
  2844     sqlite3ErrorMsg(pParse, "only a single result allowed for "
       
  2845        "a SELECT that is part of an expression");
       
  2846     goto select_end;
       
  2847   }
       
  2848 #endif
       
  2849 
       
  2850   /* ORDER BY is ignored for some destinations.
       
  2851   */
       
  2852   if( IgnorableOrderby(eDest) ){
       
  2853     pOrderBy = 0;
       
  2854   }
       
  2855 
       
  2856   /* Begin generating code.
       
  2857   */
       
  2858   v = sqlite3GetVdbe(pParse);
       
  2859   if( v==0 ) goto select_end;
       
  2860 
       
  2861   /* Generate code for all sub-queries in the FROM clause
       
  2862   */
       
  2863 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
       
  2864   for(i=0; i<pTabList->nSrc; i++){
       
  2865     const char *zSavedAuthContext = 0;
       
  2866     int needRestoreContext;
       
  2867     struct SrcList_item *pItem = &pTabList->a[i];
       
  2868 
       
  2869     if( pItem->pSelect==0 || pItem->isPopulated ) continue;
       
  2870     if( pItem->zName!=0 ){
       
  2871       zSavedAuthContext = pParse->zAuthContext;
       
  2872       pParse->zAuthContext = pItem->zName;
       
  2873       needRestoreContext = 1;
       
  2874     }else{
       
  2875       needRestoreContext = 0;
       
  2876     }
       
  2877     sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, 
       
  2878                  pItem->iCursor, p, i, &isAgg, 0);
       
  2879     if( needRestoreContext ){
       
  2880       pParse->zAuthContext = zSavedAuthContext;
       
  2881     }
       
  2882     pTabList = p->pSrc;
       
  2883     pWhere = p->pWhere;
       
  2884     if( !IgnorableOrderby(eDest) ){
       
  2885       pOrderBy = p->pOrderBy;
       
  2886     }
       
  2887     pGroupBy = p->pGroupBy;
       
  2888     pHaving = p->pHaving;
       
  2889     isDistinct = p->isDistinct;
       
  2890   }
       
  2891 #endif
       
  2892 
       
  2893   /* Check for the special case of a min() or max() function by itself
       
  2894   ** in the result set.
       
  2895   */
       
  2896   if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
       
  2897     rc = 0;
       
  2898     goto select_end;
       
  2899   }
       
  2900 
       
  2901   /* Check to see if this is a subquery that can be "flattened" into its parent.
       
  2902   ** If flattening is a possiblity, do so and return immediately.  
       
  2903   */
       
  2904 #ifndef SQLITE_OMIT_VIEW
       
  2905   if( pParent && pParentAgg &&
       
  2906       flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){
       
  2907     if( isAgg ) *pParentAgg = 1;
       
  2908     goto select_end;
       
  2909   }
       
  2910 #endif
       
  2911 
       
  2912   /* If there is an ORDER BY clause, resolve any collation sequences
       
  2913   ** names that have been explicitly specified and create a sorting index.
       
  2914   **
       
  2915   ** This sorting index might end up being unused if the data can be 
       
  2916   ** extracted in pre-sorted order.  If that is the case, then the
       
  2917   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
       
  2918   ** we figure out that the sorting index is not needed.  The addrSortIndex
       
  2919   ** variable is used to facilitate that change.
       
  2920   */
       
  2921   if( pOrderBy ){
       
  2922     struct ExprList_item *pTerm;
       
  2923     KeyInfo *pKeyInfo;
       
  2924     for(i=0, pTerm=pOrderBy->a; i<pOrderBy->nExpr; i++, pTerm++){
       
  2925       if( pTerm->zName ){
       
  2926         pTerm->pExpr->pColl = sqlite3LocateCollSeq(pParse, pTerm->zName, -1);
       
  2927       }
       
  2928     }
       
  2929     if( pParse->nErr ){
       
  2930       goto select_end;
       
  2931     }
       
  2932     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
       
  2933     pOrderBy->iECursor = pParse->nTab++;
       
  2934     p->addrOpenEphm[2] = addrSortIndex =
       
  2935       sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
       
  2936   }else{
       
  2937     addrSortIndex = -1;
       
  2938   }
       
  2939 
       
  2940   /* If the output is destined for a temporary table, open that table.
       
  2941   */
       
  2942   if( eDest==SRT_EphemTab ){
       
  2943     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
       
  2944   }
       
  2945 
       
  2946   /* Set the limiter.
       
  2947   */
       
  2948   iEnd = sqlite3VdbeMakeLabel(v);
       
  2949   computeLimitRegisters(pParse, p, iEnd);
       
  2950 
       
  2951   /* Open a virtual index to use for the distinct set.
       
  2952   */
       
  2953   if( isDistinct ){
       
  2954     KeyInfo *pKeyInfo;
       
  2955     distinct = pParse->nTab++;
       
  2956     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
       
  2957     sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 
       
  2958                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
       
  2959   }else{
       
  2960     distinct = -1;
       
  2961   }
       
  2962 
       
  2963   /* Aggregate and non-aggregate queries are handled differently */
       
  2964   if( !isAgg && pGroupBy==0 ){
       
  2965     /* This case is for non-aggregate queries
       
  2966     ** Begin the database scan
       
  2967     */
       
  2968     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
       
  2969     if( pWInfo==0 ) goto select_end;
       
  2970 
       
  2971     /* If sorting index that was created by a prior OP_OpenEphemeral 
       
  2972     ** instruction ended up not being needed, then change the OP_OpenEphemeral
       
  2973     ** into an OP_Noop.
       
  2974     */
       
  2975     if( addrSortIndex>=0 && pOrderBy==0 ){
       
  2976       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
       
  2977       p->addrOpenEphm[2] = -1;
       
  2978     }
       
  2979 
       
  2980     /* Use the standard inner loop
       
  2981     */
       
  2982     if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
       
  2983                     iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
       
  2984        goto select_end;
       
  2985     }
       
  2986 
       
  2987     /* End the database scan loop.
       
  2988     */
       
  2989     sqlite3WhereEnd(pWInfo);
       
  2990   }else{
       
  2991     /* This is the processing for aggregate queries */
       
  2992     NameContext sNC;    /* Name context for processing aggregate information */
       
  2993     int iAMem;          /* First Mem address for storing current GROUP BY */
       
  2994     int iBMem;          /* First Mem address for previous GROUP BY */
       
  2995     int iUseFlag;       /* Mem address holding flag indicating that at least
       
  2996                         ** one row of the input to the aggregator has been
       
  2997                         ** processed */
       
  2998     int iAbortFlag;     /* Mem address which causes query abort if positive */
       
  2999     int groupBySort;    /* Rows come from source in GROUP BY order */
       
  3000 
       
  3001 
       
  3002     /* The following variables hold addresses or labels for parts of the
       
  3003     ** virtual machine program we are putting together */
       
  3004     int addrOutputRow;      /* Start of subroutine that outputs a result row */
       
  3005     int addrSetAbort;       /* Set the abort flag and return */
       
  3006     int addrInitializeLoop; /* Start of code that initializes the input loop */
       
  3007     int addrTopOfLoop;      /* Top of the input loop */
       
  3008     int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
       
  3009     int addrProcessRow;     /* Code to process a single input row */
       
  3010     int addrEnd;            /* End of all processing */
       
  3011     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
       
  3012     int addrReset;          /* Subroutine for resetting the accumulator */
       
  3013 
       
  3014     addrEnd = sqlite3VdbeMakeLabel(v);
       
  3015 
       
  3016     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
       
  3017     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
       
  3018     ** SELECT statement.
       
  3019     */
       
  3020     memset(&sNC, 0, sizeof(sNC));
       
  3021     sNC.pParse = pParse;
       
  3022     sNC.pSrcList = pTabList;
       
  3023     sNC.pAggInfo = &sAggInfo;
       
  3024     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
       
  3025     sAggInfo.pGroupBy = pGroupBy;
       
  3026     if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
       
  3027       goto select_end;
       
  3028     }
       
  3029     if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
       
  3030       goto select_end;
       
  3031     }
       
  3032     if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
       
  3033       goto select_end;
       
  3034     }
       
  3035     sAggInfo.nAccumulator = sAggInfo.nColumn;
       
  3036     for(i=0; i<sAggInfo.nFunc; i++){
       
  3037       if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
       
  3038         goto select_end;
       
  3039       }
       
  3040     }
       
  3041     if( sqlite3MallocFailed() ) goto select_end;
       
  3042 
       
  3043     /* Processing for aggregates with GROUP BY is very different and
       
  3044     ** much more complex tha aggregates without a GROUP BY.
       
  3045     */
       
  3046     if( pGroupBy ){
       
  3047       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
       
  3048 
       
  3049       /* Create labels that we will be needing
       
  3050       */
       
  3051      
       
  3052       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
       
  3053       addrGroupByChange = sqlite3VdbeMakeLabel(v);
       
  3054       addrProcessRow = sqlite3VdbeMakeLabel(v);
       
  3055 
       
  3056       /* If there is a GROUP BY clause we might need a sorting index to
       
  3057       ** implement it.  Allocate that sorting index now.  If it turns out
       
  3058       ** that we do not need it after all, the OpenEphemeral instruction
       
  3059       ** will be converted into a Noop.  
       
  3060       */
       
  3061       sAggInfo.sortingIdx = pParse->nTab++;
       
  3062       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
       
  3063       addrSortingIdx =
       
  3064           sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
       
  3065                          sAggInfo.nSortingColumn,
       
  3066                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
       
  3067 
       
  3068       /* Initialize memory locations used by GROUP BY aggregate processing
       
  3069       */
       
  3070       iUseFlag = pParse->nMem++;
       
  3071       iAbortFlag = pParse->nMem++;
       
  3072       iAMem = pParse->nMem;
       
  3073       pParse->nMem += pGroupBy->nExpr;
       
  3074       iBMem = pParse->nMem;
       
  3075       pParse->nMem += pGroupBy->nExpr;
       
  3076       sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
       
  3077       VdbeComment((v, "# clear abort flag"));
       
  3078       sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
       
  3079       VdbeComment((v, "# indicate accumulator empty"));
       
  3080       sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
       
  3081 
       
  3082       /* Generate a subroutine that outputs a single row of the result
       
  3083       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
       
  3084       ** is less than or equal to zero, the subroutine is a no-op.  If
       
  3085       ** the processing calls for the query to abort, this subroutine
       
  3086       ** increments the iAbortFlag memory location before returning in
       
  3087       ** order to signal the caller to abort.
       
  3088       */
       
  3089       addrSetAbort = sqlite3VdbeCurrentAddr(v);
       
  3090       sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
       
  3091       VdbeComment((v, "# set abort flag"));
       
  3092       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
       
  3093       addrOutputRow = sqlite3VdbeCurrentAddr(v);
       
  3094       sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
       
  3095       VdbeComment((v, "# Groupby result generator entry point"));
       
  3096       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
       
  3097       finalizeAggFunctions(pParse, &sAggInfo);
       
  3098       if( pHaving ){
       
  3099         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
       
  3100       }
       
  3101       rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
       
  3102                            distinct, eDest, iParm, 
       
  3103                            addrOutputRow+1, addrSetAbort, aff);
       
  3104       if( rc ){
       
  3105         goto select_end;
       
  3106       }
       
  3107       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
       
  3108       VdbeComment((v, "# end groupby result generator"));
       
  3109 
       
  3110       /* Generate a subroutine that will reset the group-by accumulator
       
  3111       */
       
  3112       addrReset = sqlite3VdbeCurrentAddr(v);
       
  3113       resetAccumulator(pParse, &sAggInfo);
       
  3114       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
       
  3115 
       
  3116       /* Begin a loop that will extract all source rows in GROUP BY order.
       
  3117       ** This might involve two separate loops with an OP_Sort in between, or
       
  3118       ** it might be a single loop that uses an index to extract information
       
  3119       ** in the right order to begin with.
       
  3120       */
       
  3121       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
       
  3122       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
       
  3123       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
       
  3124       if( pWInfo==0 ) goto select_end;
       
  3125       if( pGroupBy==0 ){
       
  3126         /* The optimizer is able to deliver rows in group by order so
       
  3127         ** we do not have to sort.  The OP_OpenEphemeral table will be
       
  3128         ** cancelled later because we still need to use the pKeyInfo
       
  3129         */
       
  3130         pGroupBy = p->pGroupBy;
       
  3131         groupBySort = 0;
       
  3132       }else{
       
  3133         /* Rows are coming out in undetermined order.  We have to push
       
  3134         ** each row into a sorting index, terminate the first loop,
       
  3135         ** then loop over the sorting index in order to get the output
       
  3136         ** in sorted order
       
  3137         */
       
  3138         groupBySort = 1;
       
  3139         sqlite3ExprCodeExprList(pParse, pGroupBy);
       
  3140         sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
       
  3141         j = pGroupBy->nExpr+1;
       
  3142         for(i=0; i<sAggInfo.nColumn; i++){
       
  3143           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
       
  3144           if( pCol->iSorterColumn<j ) continue;
       
  3145           if( pCol->iColumn<0 ){
       
  3146             sqlite3VdbeAddOp(v, OP_Rowid, pCol->iTable, 0);
       
  3147           }else{
       
  3148             sqlite3VdbeAddOp(v, OP_Column, pCol->iTable, pCol->iColumn);
       
  3149           }
       
  3150           j++;
       
  3151         }
       
  3152         sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
       
  3153         sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
       
  3154         sqlite3WhereEnd(pWInfo);
       
  3155         sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
       
  3156         VdbeComment((v, "# GROUP BY sort"));
       
  3157         sAggInfo.useSortingIdx = 1;
       
  3158       }
       
  3159 
       
  3160       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
       
  3161       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
       
  3162       ** Then compare the current GROUP BY terms against the GROUP BY terms
       
  3163       ** from the previous row currently stored in a0, a1, a2...
       
  3164       */
       
  3165       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
       
  3166       for(j=0; j<pGroupBy->nExpr; j++){
       
  3167         if( groupBySort ){
       
  3168           sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
       
  3169         }else{
       
  3170           sAggInfo.directMode = 1;
       
  3171           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
       
  3172         }
       
  3173         sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
       
  3174       }
       
  3175       for(j=pGroupBy->nExpr-1; j>=0; j--){
       
  3176         if( j<pGroupBy->nExpr-1 ){
       
  3177           sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
       
  3178         }
       
  3179         sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
       
  3180         if( j==0 ){
       
  3181           sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
       
  3182         }else{
       
  3183           sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
       
  3184         }
       
  3185         sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ);
       
  3186       }
       
  3187 
       
  3188       /* Generate code that runs whenever the GROUP BY changes.
       
  3189       ** Change in the GROUP BY are detected by the previous code
       
  3190       ** block.  If there were no changes, this block is skipped.
       
  3191       **
       
  3192       ** This code copies current group by terms in b0,b1,b2,...
       
  3193       ** over to a0,a1,a2.  It then calls the output subroutine
       
  3194       ** and resets the aggregate accumulator registers in preparation
       
  3195       ** for the next GROUP BY batch.
       
  3196       */
       
  3197       sqlite3VdbeResolveLabel(v, addrGroupByChange);
       
  3198       for(j=0; j<pGroupBy->nExpr; j++){
       
  3199         sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
       
  3200       }
       
  3201       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
       
  3202       VdbeComment((v, "# output one row"));
       
  3203       sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
       
  3204       VdbeComment((v, "# check abort flag"));
       
  3205       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
       
  3206       VdbeComment((v, "# reset accumulator"));
       
  3207 
       
  3208       /* Update the aggregate accumulators based on the content of
       
  3209       ** the current row
       
  3210       */
       
  3211       sqlite3VdbeResolveLabel(v, addrProcessRow);
       
  3212       updateAccumulator(pParse, &sAggInfo);
       
  3213       sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
       
  3214       VdbeComment((v, "# indicate data in accumulator"));
       
  3215 
       
  3216       /* End of the loop
       
  3217       */
       
  3218       if( groupBySort ){
       
  3219         sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
       
  3220       }else{
       
  3221         sqlite3WhereEnd(pWInfo);
       
  3222         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
       
  3223       }
       
  3224 
       
  3225       /* Output the final row of result
       
  3226       */
       
  3227       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
       
  3228       VdbeComment((v, "# output final row"));
       
  3229       
       
  3230     } /* endif pGroupBy */
       
  3231     else {
       
  3232       /* This case runs if the aggregate has no GROUP BY clause.  The
       
  3233       ** processing is much simpler since there is only a single row
       
  3234       ** of output.
       
  3235       */
       
  3236       resetAccumulator(pParse, &sAggInfo);
       
  3237       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
       
  3238       if( pWInfo==0 ) goto select_end;
       
  3239       updateAccumulator(pParse, &sAggInfo);
       
  3240       sqlite3WhereEnd(pWInfo);
       
  3241       finalizeAggFunctions(pParse, &sAggInfo);
       
  3242       pOrderBy = 0;
       
  3243       if( pHaving ){
       
  3244         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
       
  3245       }
       
  3246       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
       
  3247                       eDest, iParm, addrEnd, addrEnd, aff);
       
  3248     }
       
  3249     sqlite3VdbeResolveLabel(v, addrEnd);
       
  3250     
       
  3251   } /* endif aggregate query */
       
  3252 
       
  3253   /* If there is an ORDER BY clause, then we need to sort the results
       
  3254   ** and send them to the callback one by one.
       
  3255   */
       
  3256   if( pOrderBy ){
       
  3257     generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
       
  3258   }
       
  3259 
       
  3260 #ifndef SQLITE_OMIT_SUBQUERY
       
  3261   /* If this was a subquery, we have now converted the subquery into a
       
  3262   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
       
  3263   ** this subquery from being evaluated again and to force the use of
       
  3264   ** the temporary table.
       
  3265   */
       
  3266   if( pParent ){
       
  3267     assert( pParent->pSrc->nSrc>parentTab );
       
  3268     assert( pParent->pSrc->a[parentTab].pSelect==p );
       
  3269     pParent->pSrc->a[parentTab].isPopulated = 1;
       
  3270   }
       
  3271 #endif
       
  3272 
       
  3273   /* Jump here to skip this query
       
  3274   */
       
  3275   sqlite3VdbeResolveLabel(v, iEnd);
       
  3276 
       
  3277   /* The SELECT was successfully coded.   Set the return code to 0
       
  3278   ** to indicate no errors.
       
  3279   */
       
  3280   rc = 0;
       
  3281 
       
  3282   /* Control jumps to here if an error is encountered above, or upon
       
  3283   ** successful coding of the SELECT.
       
  3284   */
       
  3285 select_end:
       
  3286 
       
  3287   /* Identify column names if we will be using them in a callback.  This
       
  3288   ** step is skipped if the output is going to some other destination.
       
  3289   */
       
  3290   if( rc==SQLITE_OK && eDest==SRT_Callback ){
       
  3291     generateColumnNames(pParse, pTabList, pEList);
       
  3292   }
       
  3293 
       
  3294   sqliteFree(sAggInfo.aCol);
       
  3295   sqliteFree(sAggInfo.aFunc);
       
  3296   return rc;
       
  3297 }