|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This file contains C code routines that are called by the parser |
|
13 ** to handle SELECT statements in SQLite. |
|
14 ** |
|
15 ** $Id: select.c,v 1.320 2006/08/11 19:08:27 drh Exp $ |
|
16 */ |
|
17 #include "sqliteInt.h" |
|
18 |
|
19 |
|
20 /* |
|
21 ** Delete all the content of a Select structure but do not deallocate |
|
22 ** the select structure itself. |
|
23 */ |
|
24 static void clearSelect(Select *p){ |
|
25 sqlite3ExprListDelete(p->pEList); |
|
26 sqlite3SrcListDelete(p->pSrc); |
|
27 sqlite3ExprDelete(p->pWhere); |
|
28 sqlite3ExprListDelete(p->pGroupBy); |
|
29 sqlite3ExprDelete(p->pHaving); |
|
30 sqlite3ExprListDelete(p->pOrderBy); |
|
31 sqlite3SelectDelete(p->pPrior); |
|
32 sqlite3ExprDelete(p->pLimit); |
|
33 sqlite3ExprDelete(p->pOffset); |
|
34 } |
|
35 |
|
36 |
|
37 /* |
|
38 ** Allocate a new Select structure and return a pointer to that |
|
39 ** structure. |
|
40 */ |
|
41 Select *sqlite3SelectNew( |
|
42 ExprList *pEList, /* which columns to include in the result */ |
|
43 SrcList *pSrc, /* the FROM clause -- which tables to scan */ |
|
44 Expr *pWhere, /* the WHERE clause */ |
|
45 ExprList *pGroupBy, /* the GROUP BY clause */ |
|
46 Expr *pHaving, /* the HAVING clause */ |
|
47 ExprList *pOrderBy, /* the ORDER BY clause */ |
|
48 int isDistinct, /* true if the DISTINCT keyword is present */ |
|
49 Expr *pLimit, /* LIMIT value. NULL means not used */ |
|
50 Expr *pOffset /* OFFSET value. NULL means no offset */ |
|
51 ){ |
|
52 Select *pNew; |
|
53 Select standin; |
|
54 pNew = sqliteMalloc( sizeof(*pNew) ); |
|
55 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ |
|
56 if( pNew==0 ){ |
|
57 pNew = &standin; |
|
58 memset(pNew, 0, sizeof(*pNew)); |
|
59 } |
|
60 if( pEList==0 ){ |
|
61 pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0); |
|
62 } |
|
63 pNew->pEList = pEList; |
|
64 pNew->pSrc = pSrc; |
|
65 pNew->pWhere = pWhere; |
|
66 pNew->pGroupBy = pGroupBy; |
|
67 pNew->pHaving = pHaving; |
|
68 pNew->pOrderBy = pOrderBy; |
|
69 pNew->isDistinct = isDistinct; |
|
70 pNew->op = TK_SELECT; |
|
71 pNew->pLimit = pLimit; |
|
72 pNew->pOffset = pOffset; |
|
73 pNew->iLimit = -1; |
|
74 pNew->iOffset = -1; |
|
75 pNew->addrOpenEphm[0] = -1; |
|
76 pNew->addrOpenEphm[1] = -1; |
|
77 pNew->addrOpenEphm[2] = -1; |
|
78 if( pNew==&standin) { |
|
79 clearSelect(pNew); |
|
80 pNew = 0; |
|
81 } |
|
82 return pNew; |
|
83 } |
|
84 |
|
85 /* |
|
86 ** Delete the given Select structure and all of its substructures. |
|
87 */ |
|
88 void sqlite3SelectDelete(Select *p){ |
|
89 if( p ){ |
|
90 clearSelect(p); |
|
91 sqliteFree(p); |
|
92 } |
|
93 } |
|
94 |
|
95 /* |
|
96 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the |
|
97 ** type of join. Return an integer constant that expresses that type |
|
98 ** in terms of the following bit values: |
|
99 ** |
|
100 ** JT_INNER |
|
101 ** JT_CROSS |
|
102 ** JT_OUTER |
|
103 ** JT_NATURAL |
|
104 ** JT_LEFT |
|
105 ** JT_RIGHT |
|
106 ** |
|
107 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. |
|
108 ** |
|
109 ** If an illegal or unsupported join type is seen, then still return |
|
110 ** a join type, but put an error in the pParse structure. |
|
111 */ |
|
112 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ |
|
113 int jointype = 0; |
|
114 Token *apAll[3]; |
|
115 Token *p; |
|
116 static const struct { |
|
117 const char zKeyword[8]; |
|
118 u8 nChar; |
|
119 u8 code; |
|
120 } keywords[] = { |
|
121 { "natural", 7, JT_NATURAL }, |
|
122 { "left", 4, JT_LEFT|JT_OUTER }, |
|
123 { "right", 5, JT_RIGHT|JT_OUTER }, |
|
124 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, |
|
125 { "outer", 5, JT_OUTER }, |
|
126 { "inner", 5, JT_INNER }, |
|
127 { "cross", 5, JT_INNER|JT_CROSS }, |
|
128 }; |
|
129 int i, j; |
|
130 apAll[0] = pA; |
|
131 apAll[1] = pB; |
|
132 apAll[2] = pC; |
|
133 for(i=0; i<3 && apAll[i]; i++){ |
|
134 p = apAll[i]; |
|
135 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ |
|
136 if( p->n==keywords[j].nChar |
|
137 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ |
|
138 jointype |= keywords[j].code; |
|
139 break; |
|
140 } |
|
141 } |
|
142 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ |
|
143 jointype |= JT_ERROR; |
|
144 break; |
|
145 } |
|
146 } |
|
147 if( |
|
148 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || |
|
149 (jointype & JT_ERROR)!=0 |
|
150 ){ |
|
151 const char *zSp1 = " "; |
|
152 const char *zSp2 = " "; |
|
153 if( pB==0 ){ zSp1++; } |
|
154 if( pC==0 ){ zSp2++; } |
|
155 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " |
|
156 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); |
|
157 jointype = JT_INNER; |
|
158 }else if( jointype & JT_RIGHT ){ |
|
159 sqlite3ErrorMsg(pParse, |
|
160 "RIGHT and FULL OUTER JOINs are not currently supported"); |
|
161 jointype = JT_INNER; |
|
162 } |
|
163 return jointype; |
|
164 } |
|
165 |
|
166 /* |
|
167 ** Return the index of a column in a table. Return -1 if the column |
|
168 ** is not contained in the table. |
|
169 */ |
|
170 static int columnIndex(Table *pTab, const char *zCol){ |
|
171 int i; |
|
172 for(i=0; i<pTab->nCol; i++){ |
|
173 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; |
|
174 } |
|
175 return -1; |
|
176 } |
|
177 |
|
178 /* |
|
179 ** Set the value of a token to a '\000'-terminated string. |
|
180 */ |
|
181 static void setToken(Token *p, const char *z){ |
|
182 p->z = (u8*)z; |
|
183 p->n = z ? strlen(z) : 0; |
|
184 p->dyn = 0; |
|
185 } |
|
186 |
|
187 /* |
|
188 ** Create an expression node for an identifier with the name of zName |
|
189 */ |
|
190 Expr *sqlite3CreateIdExpr(const char *zName){ |
|
191 Token dummy; |
|
192 setToken(&dummy, zName); |
|
193 return sqlite3Expr(TK_ID, 0, 0, &dummy); |
|
194 } |
|
195 |
|
196 |
|
197 /* |
|
198 ** Add a term to the WHERE expression in *ppExpr that requires the |
|
199 ** zCol column to be equal in the two tables pTab1 and pTab2. |
|
200 */ |
|
201 static void addWhereTerm( |
|
202 const char *zCol, /* Name of the column */ |
|
203 const Table *pTab1, /* First table */ |
|
204 const char *zAlias1, /* Alias for first table. May be NULL */ |
|
205 const Table *pTab2, /* Second table */ |
|
206 const char *zAlias2, /* Alias for second table. May be NULL */ |
|
207 int iRightJoinTable, /* VDBE cursor for the right table */ |
|
208 Expr **ppExpr /* Add the equality term to this expression */ |
|
209 ){ |
|
210 Expr *pE1a, *pE1b, *pE1c; |
|
211 Expr *pE2a, *pE2b, *pE2c; |
|
212 Expr *pE; |
|
213 |
|
214 pE1a = sqlite3CreateIdExpr(zCol); |
|
215 pE2a = sqlite3CreateIdExpr(zCol); |
|
216 if( zAlias1==0 ){ |
|
217 zAlias1 = pTab1->zName; |
|
218 } |
|
219 pE1b = sqlite3CreateIdExpr(zAlias1); |
|
220 if( zAlias2==0 ){ |
|
221 zAlias2 = pTab2->zName; |
|
222 } |
|
223 pE2b = sqlite3CreateIdExpr(zAlias2); |
|
224 pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0); |
|
225 pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0); |
|
226 pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0); |
|
227 if( pE ){ |
|
228 ExprSetProperty(pE, EP_FromJoin); |
|
229 pE->iRightJoinTable = iRightJoinTable; |
|
230 } |
|
231 pE = sqlite3ExprAnd(*ppExpr, pE); |
|
232 if( pE ){ |
|
233 *ppExpr = pE; |
|
234 } |
|
235 } |
|
236 |
|
237 /* |
|
238 ** Set the EP_FromJoin property on all terms of the given expression. |
|
239 ** And set the Expr.iRightJoinTable to iTable for every term in the |
|
240 ** expression. |
|
241 ** |
|
242 ** The EP_FromJoin property is used on terms of an expression to tell |
|
243 ** the LEFT OUTER JOIN processing logic that this term is part of the |
|
244 ** join restriction specified in the ON or USING clause and not a part |
|
245 ** of the more general WHERE clause. These terms are moved over to the |
|
246 ** WHERE clause during join processing but we need to remember that they |
|
247 ** originated in the ON or USING clause. |
|
248 ** |
|
249 ** The Expr.iRightJoinTable tells the WHERE clause processing that the |
|
250 ** expression depends on table iRightJoinTable even if that table is not |
|
251 ** explicitly mentioned in the expression. That information is needed |
|
252 ** for cases like this: |
|
253 ** |
|
254 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 |
|
255 ** |
|
256 ** The where clause needs to defer the handling of the t1.x=5 |
|
257 ** term until after the t2 loop of the join. In that way, a |
|
258 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not |
|
259 ** defer the handling of t1.x=5, it will be processed immediately |
|
260 ** after the t1 loop and rows with t1.x!=5 will never appear in |
|
261 ** the output, which is incorrect. |
|
262 */ |
|
263 static void setJoinExpr(Expr *p, int iTable){ |
|
264 while( p ){ |
|
265 ExprSetProperty(p, EP_FromJoin); |
|
266 p->iRightJoinTable = iTable; |
|
267 setJoinExpr(p->pLeft, iTable); |
|
268 p = p->pRight; |
|
269 } |
|
270 } |
|
271 |
|
272 /* |
|
273 ** This routine processes the join information for a SELECT statement. |
|
274 ** ON and USING clauses are converted into extra terms of the WHERE clause. |
|
275 ** NATURAL joins also create extra WHERE clause terms. |
|
276 ** |
|
277 ** The terms of a FROM clause are contained in the Select.pSrc structure. |
|
278 ** The left most table is the first entry in Select.pSrc. The right-most |
|
279 ** table is the last entry. The join operator is held in the entry to |
|
280 ** the left. Thus entry 0 contains the join operator for the join between |
|
281 ** entries 0 and 1. Any ON or USING clauses associated with the join are |
|
282 ** also attached to the left entry. |
|
283 ** |
|
284 ** This routine returns the number of errors encountered. |
|
285 */ |
|
286 static int sqliteProcessJoin(Parse *pParse, Select *p){ |
|
287 SrcList *pSrc; /* All tables in the FROM clause */ |
|
288 int i, j; /* Loop counters */ |
|
289 struct SrcList_item *pLeft; /* Left table being joined */ |
|
290 struct SrcList_item *pRight; /* Right table being joined */ |
|
291 |
|
292 pSrc = p->pSrc; |
|
293 pLeft = &pSrc->a[0]; |
|
294 pRight = &pLeft[1]; |
|
295 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ |
|
296 Table *pLeftTab = pLeft->pTab; |
|
297 Table *pRightTab = pRight->pTab; |
|
298 |
|
299 if( pLeftTab==0 || pRightTab==0 ) continue; |
|
300 |
|
301 /* When the NATURAL keyword is present, add WHERE clause terms for |
|
302 ** every column that the two tables have in common. |
|
303 */ |
|
304 if( pLeft->jointype & JT_NATURAL ){ |
|
305 if( pLeft->pOn || pLeft->pUsing ){ |
|
306 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " |
|
307 "an ON or USING clause", 0); |
|
308 return 1; |
|
309 } |
|
310 for(j=0; j<pLeftTab->nCol; j++){ |
|
311 char *zName = pLeftTab->aCol[j].zName; |
|
312 if( columnIndex(pRightTab, zName)>=0 ){ |
|
313 addWhereTerm(zName, pLeftTab, pLeft->zAlias, |
|
314 pRightTab, pRight->zAlias, |
|
315 pRight->iCursor, &p->pWhere); |
|
316 |
|
317 } |
|
318 } |
|
319 } |
|
320 |
|
321 /* Disallow both ON and USING clauses in the same join |
|
322 */ |
|
323 if( pLeft->pOn && pLeft->pUsing ){ |
|
324 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " |
|
325 "clauses in the same join"); |
|
326 return 1; |
|
327 } |
|
328 |
|
329 /* Add the ON clause to the end of the WHERE clause, connected by |
|
330 ** an AND operator. |
|
331 */ |
|
332 if( pLeft->pOn ){ |
|
333 setJoinExpr(pLeft->pOn, pRight->iCursor); |
|
334 p->pWhere = sqlite3ExprAnd(p->pWhere, pLeft->pOn); |
|
335 pLeft->pOn = 0; |
|
336 } |
|
337 |
|
338 /* Create extra terms on the WHERE clause for each column named |
|
339 ** in the USING clause. Example: If the two tables to be joined are |
|
340 ** A and B and the USING clause names X, Y, and Z, then add this |
|
341 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z |
|
342 ** Report an error if any column mentioned in the USING clause is |
|
343 ** not contained in both tables to be joined. |
|
344 */ |
|
345 if( pLeft->pUsing ){ |
|
346 IdList *pList = pLeft->pUsing; |
|
347 for(j=0; j<pList->nId; j++){ |
|
348 char *zName = pList->a[j].zName; |
|
349 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ |
|
350 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " |
|
351 "not present in both tables", zName); |
|
352 return 1; |
|
353 } |
|
354 addWhereTerm(zName, pLeftTab, pLeft->zAlias, |
|
355 pRightTab, pRight->zAlias, |
|
356 pRight->iCursor, &p->pWhere); |
|
357 } |
|
358 } |
|
359 } |
|
360 return 0; |
|
361 } |
|
362 |
|
363 /* |
|
364 ** Insert code into "v" that will push the record on the top of the |
|
365 ** stack into the sorter. |
|
366 */ |
|
367 static void pushOntoSorter( |
|
368 Parse *pParse, /* Parser context */ |
|
369 ExprList *pOrderBy, /* The ORDER BY clause */ |
|
370 Select *pSelect /* The whole SELECT statement */ |
|
371 ){ |
|
372 Vdbe *v = pParse->pVdbe; |
|
373 sqlite3ExprCodeExprList(pParse, pOrderBy); |
|
374 sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0); |
|
375 sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0); |
|
376 sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0); |
|
377 sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0); |
|
378 if( pSelect->iLimit>=0 ){ |
|
379 int addr1, addr2; |
|
380 addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0); |
|
381 sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1); |
|
382 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); |
|
383 sqlite3VdbeJumpHere(v, addr1); |
|
384 sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0); |
|
385 sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0); |
|
386 sqlite3VdbeJumpHere(v, addr2); |
|
387 pSelect->iLimit = -1; |
|
388 } |
|
389 } |
|
390 |
|
391 /* |
|
392 ** Add code to implement the OFFSET |
|
393 */ |
|
394 static void codeOffset( |
|
395 Vdbe *v, /* Generate code into this VM */ |
|
396 Select *p, /* The SELECT statement being coded */ |
|
397 int iContinue, /* Jump here to skip the current record */ |
|
398 int nPop /* Number of times to pop stack when jumping */ |
|
399 ){ |
|
400 if( p->iOffset>=0 && iContinue!=0 ){ |
|
401 int addr; |
|
402 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset); |
|
403 addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0); |
|
404 if( nPop>0 ){ |
|
405 sqlite3VdbeAddOp(v, OP_Pop, nPop, 0); |
|
406 } |
|
407 sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue); |
|
408 VdbeComment((v, "# skip OFFSET records")); |
|
409 sqlite3VdbeJumpHere(v, addr); |
|
410 } |
|
411 } |
|
412 |
|
413 /* |
|
414 ** Add code that will check to make sure the top N elements of the |
|
415 ** stack are distinct. iTab is a sorting index that holds previously |
|
416 ** seen combinations of the N values. A new entry is made in iTab |
|
417 ** if the current N values are new. |
|
418 ** |
|
419 ** A jump to addrRepeat is made and the N+1 values are popped from the |
|
420 ** stack if the top N elements are not distinct. |
|
421 */ |
|
422 static void codeDistinct( |
|
423 Vdbe *v, /* Generate code into this VM */ |
|
424 int iTab, /* A sorting index used to test for distinctness */ |
|
425 int addrRepeat, /* Jump to here if not distinct */ |
|
426 int N /* The top N elements of the stack must be distinct */ |
|
427 ){ |
|
428 sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0); |
|
429 sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3); |
|
430 sqlite3VdbeAddOp(v, OP_Pop, N+1, 0); |
|
431 sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat); |
|
432 VdbeComment((v, "# skip indistinct records")); |
|
433 sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0); |
|
434 } |
|
435 |
|
436 |
|
437 /* |
|
438 ** This routine generates the code for the inside of the inner loop |
|
439 ** of a SELECT. |
|
440 ** |
|
441 ** If srcTab and nColumn are both zero, then the pEList expressions |
|
442 ** are evaluated in order to get the data for this row. If nColumn>0 |
|
443 ** then data is pulled from srcTab and pEList is used only to get the |
|
444 ** datatypes for each column. |
|
445 */ |
|
446 static int selectInnerLoop( |
|
447 Parse *pParse, /* The parser context */ |
|
448 Select *p, /* The complete select statement being coded */ |
|
449 ExprList *pEList, /* List of values being extracted */ |
|
450 int srcTab, /* Pull data from this table */ |
|
451 int nColumn, /* Number of columns in the source table */ |
|
452 ExprList *pOrderBy, /* If not NULL, sort results using this key */ |
|
453 int distinct, /* If >=0, make sure results are distinct */ |
|
454 int eDest, /* How to dispose of the results */ |
|
455 int iParm, /* An argument to the disposal method */ |
|
456 int iContinue, /* Jump here to continue with next row */ |
|
457 int iBreak, /* Jump here to break out of the inner loop */ |
|
458 char *aff /* affinity string if eDest is SRT_Union */ |
|
459 ){ |
|
460 Vdbe *v = pParse->pVdbe; |
|
461 int i; |
|
462 int hasDistinct; /* True if the DISTINCT keyword is present */ |
|
463 |
|
464 if( v==0 ) return 0; |
|
465 assert( pEList!=0 ); |
|
466 |
|
467 /* If there was a LIMIT clause on the SELECT statement, then do the check |
|
468 ** to see if this row should be output. |
|
469 */ |
|
470 hasDistinct = distinct>=0 && pEList->nExpr>0; |
|
471 if( pOrderBy==0 && !hasDistinct ){ |
|
472 codeOffset(v, p, iContinue, 0); |
|
473 } |
|
474 |
|
475 /* Pull the requested columns. |
|
476 */ |
|
477 if( nColumn>0 ){ |
|
478 for(i=0; i<nColumn; i++){ |
|
479 sqlite3VdbeAddOp(v, OP_Column, srcTab, i); |
|
480 } |
|
481 }else{ |
|
482 nColumn = pEList->nExpr; |
|
483 sqlite3ExprCodeExprList(pParse, pEList); |
|
484 } |
|
485 |
|
486 /* If the DISTINCT keyword was present on the SELECT statement |
|
487 ** and this row has been seen before, then do not make this row |
|
488 ** part of the result. |
|
489 */ |
|
490 if( hasDistinct ){ |
|
491 assert( pEList!=0 ); |
|
492 assert( pEList->nExpr==nColumn ); |
|
493 codeDistinct(v, distinct, iContinue, nColumn); |
|
494 if( pOrderBy==0 ){ |
|
495 codeOffset(v, p, iContinue, nColumn); |
|
496 } |
|
497 } |
|
498 |
|
499 switch( eDest ){ |
|
500 /* In this mode, write each query result to the key of the temporary |
|
501 ** table iParm. |
|
502 */ |
|
503 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
504 case SRT_Union: { |
|
505 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
|
506 if( aff ){ |
|
507 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); |
|
508 } |
|
509 sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0); |
|
510 break; |
|
511 } |
|
512 |
|
513 /* Construct a record from the query result, but instead of |
|
514 ** saving that record, use it as a key to delete elements from |
|
515 ** the temporary table iParm. |
|
516 */ |
|
517 case SRT_Except: { |
|
518 int addr; |
|
519 addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
|
520 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); |
|
521 sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3); |
|
522 sqlite3VdbeAddOp(v, OP_Delete, iParm, 0); |
|
523 break; |
|
524 } |
|
525 #endif |
|
526 |
|
527 /* Store the result as data using a unique key. |
|
528 */ |
|
529 case SRT_Table: |
|
530 case SRT_EphemTab: { |
|
531 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
|
532 if( pOrderBy ){ |
|
533 pushOntoSorter(pParse, pOrderBy, p); |
|
534 }else{ |
|
535 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); |
|
536 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); |
|
537 sqlite3VdbeAddOp(v, OP_Insert, iParm, 0); |
|
538 } |
|
539 break; |
|
540 } |
|
541 |
|
542 #ifndef SQLITE_OMIT_SUBQUERY |
|
543 /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
|
544 ** then there should be a single item on the stack. Write this |
|
545 ** item into the set table with bogus data. |
|
546 */ |
|
547 case SRT_Set: { |
|
548 int addr1 = sqlite3VdbeCurrentAddr(v); |
|
549 int addr2; |
|
550 |
|
551 assert( nColumn==1 ); |
|
552 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3); |
|
553 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
554 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); |
|
555 if( pOrderBy ){ |
|
556 /* At first glance you would think we could optimize out the |
|
557 ** ORDER BY in this case since the order of entries in the set |
|
558 ** does not matter. But there might be a LIMIT clause, in which |
|
559 ** case the order does matter */ |
|
560 pushOntoSorter(pParse, pOrderBy, p); |
|
561 }else{ |
|
562 char affinity = (iParm>>16)&0xFF; |
|
563 affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, affinity); |
|
564 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); |
|
565 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); |
|
566 } |
|
567 sqlite3VdbeJumpHere(v, addr2); |
|
568 break; |
|
569 } |
|
570 |
|
571 /* If any row exist in the result set, record that fact and abort. |
|
572 */ |
|
573 case SRT_Exists: { |
|
574 sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm); |
|
575 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); |
|
576 /* The LIMIT clause will terminate the loop for us */ |
|
577 break; |
|
578 } |
|
579 |
|
580 /* If this is a scalar select that is part of an expression, then |
|
581 ** store the results in the appropriate memory cell and break out |
|
582 ** of the scan loop. |
|
583 */ |
|
584 case SRT_Mem: { |
|
585 assert( nColumn==1 ); |
|
586 if( pOrderBy ){ |
|
587 pushOntoSorter(pParse, pOrderBy, p); |
|
588 }else{ |
|
589 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); |
|
590 /* The LIMIT clause will jump out of the loop for us */ |
|
591 } |
|
592 break; |
|
593 } |
|
594 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ |
|
595 |
|
596 /* Send the data to the callback function or to a subroutine. In the |
|
597 ** case of a subroutine, the subroutine itself is responsible for |
|
598 ** popping the data from the stack. |
|
599 */ |
|
600 case SRT_Subroutine: |
|
601 case SRT_Callback: { |
|
602 if( pOrderBy ){ |
|
603 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
|
604 pushOntoSorter(pParse, pOrderBy, p); |
|
605 }else if( eDest==SRT_Subroutine ){ |
|
606 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); |
|
607 }else{ |
|
608 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); |
|
609 } |
|
610 break; |
|
611 } |
|
612 |
|
613 #if !defined(SQLITE_OMIT_TRIGGER) |
|
614 /* Discard the results. This is used for SELECT statements inside |
|
615 ** the body of a TRIGGER. The purpose of such selects is to call |
|
616 ** user-defined functions that have side effects. We do not care |
|
617 ** about the actual results of the select. |
|
618 */ |
|
619 default: { |
|
620 assert( eDest==SRT_Discard ); |
|
621 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); |
|
622 break; |
|
623 } |
|
624 #endif |
|
625 } |
|
626 |
|
627 /* Jump to the end of the loop if the LIMIT is reached. |
|
628 */ |
|
629 if( p->iLimit>=0 && pOrderBy==0 ){ |
|
630 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); |
|
631 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak); |
|
632 } |
|
633 return 0; |
|
634 } |
|
635 |
|
636 /* |
|
637 ** Given an expression list, generate a KeyInfo structure that records |
|
638 ** the collating sequence for each expression in that expression list. |
|
639 ** |
|
640 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting |
|
641 ** KeyInfo structure is appropriate for initializing a virtual index to |
|
642 ** implement that clause. If the ExprList is the result set of a SELECT |
|
643 ** then the KeyInfo structure is appropriate for initializing a virtual |
|
644 ** index to implement a DISTINCT test. |
|
645 ** |
|
646 ** Space to hold the KeyInfo structure is obtain from malloc. The calling |
|
647 ** function is responsible for seeing that this structure is eventually |
|
648 ** freed. Add the KeyInfo structure to the P3 field of an opcode using |
|
649 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this. |
|
650 */ |
|
651 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ |
|
652 sqlite3 *db = pParse->db; |
|
653 int nExpr; |
|
654 KeyInfo *pInfo; |
|
655 struct ExprList_item *pItem; |
|
656 int i; |
|
657 |
|
658 nExpr = pList->nExpr; |
|
659 pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); |
|
660 if( pInfo ){ |
|
661 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; |
|
662 pInfo->nField = nExpr; |
|
663 pInfo->enc = ENC(db); |
|
664 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ |
|
665 CollSeq *pColl; |
|
666 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
|
667 if( !pColl ){ |
|
668 pColl = db->pDfltColl; |
|
669 } |
|
670 pInfo->aColl[i] = pColl; |
|
671 pInfo->aSortOrder[i] = pItem->sortOrder; |
|
672 } |
|
673 } |
|
674 return pInfo; |
|
675 } |
|
676 |
|
677 |
|
678 /* |
|
679 ** If the inner loop was generated using a non-null pOrderBy argument, |
|
680 ** then the results were placed in a sorter. After the loop is terminated |
|
681 ** we need to run the sorter and output the results. The following |
|
682 ** routine generates the code needed to do that. |
|
683 */ |
|
684 static void generateSortTail( |
|
685 Parse *pParse, /* Parsing context */ |
|
686 Select *p, /* The SELECT statement */ |
|
687 Vdbe *v, /* Generate code into this VDBE */ |
|
688 int nColumn, /* Number of columns of data */ |
|
689 int eDest, /* Write the sorted results here */ |
|
690 int iParm /* Optional parameter associated with eDest */ |
|
691 ){ |
|
692 int brk = sqlite3VdbeMakeLabel(v); |
|
693 int cont = sqlite3VdbeMakeLabel(v); |
|
694 int addr; |
|
695 int iTab; |
|
696 int pseudoTab; |
|
697 ExprList *pOrderBy = p->pOrderBy; |
|
698 |
|
699 iTab = pOrderBy->iECursor; |
|
700 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ |
|
701 pseudoTab = pParse->nTab++; |
|
702 sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0); |
|
703 sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn); |
|
704 } |
|
705 addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk); |
|
706 codeOffset(v, p, cont, 0); |
|
707 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ |
|
708 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); |
|
709 } |
|
710 sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1); |
|
711 switch( eDest ){ |
|
712 case SRT_Table: |
|
713 case SRT_EphemTab: { |
|
714 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); |
|
715 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); |
|
716 sqlite3VdbeAddOp(v, OP_Insert, iParm, 0); |
|
717 break; |
|
718 } |
|
719 #ifndef SQLITE_OMIT_SUBQUERY |
|
720 case SRT_Set: { |
|
721 assert( nColumn==1 ); |
|
722 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); |
|
723 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
724 sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); |
|
725 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, "c", P3_STATIC); |
|
726 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); |
|
727 break; |
|
728 } |
|
729 case SRT_Mem: { |
|
730 assert( nColumn==1 ); |
|
731 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); |
|
732 /* The LIMIT clause will terminate the loop for us */ |
|
733 break; |
|
734 } |
|
735 #endif |
|
736 case SRT_Callback: |
|
737 case SRT_Subroutine: { |
|
738 int i; |
|
739 sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0); |
|
740 for(i=0; i<nColumn; i++){ |
|
741 sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i); |
|
742 } |
|
743 if( eDest==SRT_Callback ){ |
|
744 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); |
|
745 }else{ |
|
746 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); |
|
747 } |
|
748 break; |
|
749 } |
|
750 default: { |
|
751 /* Do nothing */ |
|
752 break; |
|
753 } |
|
754 } |
|
755 |
|
756 /* Jump to the end of the loop when the LIMIT is reached |
|
757 */ |
|
758 if( p->iLimit>=0 ){ |
|
759 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); |
|
760 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk); |
|
761 } |
|
762 |
|
763 /* The bottom of the loop |
|
764 */ |
|
765 sqlite3VdbeResolveLabel(v, cont); |
|
766 sqlite3VdbeAddOp(v, OP_Next, iTab, addr); |
|
767 sqlite3VdbeResolveLabel(v, brk); |
|
768 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ |
|
769 sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0); |
|
770 } |
|
771 |
|
772 } |
|
773 |
|
774 /* |
|
775 ** Return a pointer to a string containing the 'declaration type' of the |
|
776 ** expression pExpr. The string may be treated as static by the caller. |
|
777 ** |
|
778 ** The declaration type is the exact datatype definition extracted from the |
|
779 ** original CREATE TABLE statement if the expression is a column. The |
|
780 ** declaration type for a ROWID field is INTEGER. Exactly when an expression |
|
781 ** is considered a column can be complex in the presence of subqueries. The |
|
782 ** result-set expression in all of the following SELECT statements is |
|
783 ** considered a column by this function. |
|
784 ** |
|
785 ** SELECT col FROM tbl; |
|
786 ** SELECT (SELECT col FROM tbl; |
|
787 ** SELECT (SELECT col FROM tbl); |
|
788 ** SELECT abc FROM (SELECT col AS abc FROM tbl); |
|
789 ** |
|
790 ** The declaration type for any expression other than a column is NULL. |
|
791 */ |
|
792 static const char *columnType( |
|
793 NameContext *pNC, |
|
794 Expr *pExpr, |
|
795 const char **pzOriginDb, |
|
796 const char **pzOriginTab, |
|
797 const char **pzOriginCol |
|
798 ){ |
|
799 char const *zType = 0; |
|
800 char const *zOriginDb = 0; |
|
801 char const *zOriginTab = 0; |
|
802 char const *zOriginCol = 0; |
|
803 int j; |
|
804 if( pExpr==0 || pNC->pSrcList==0 ) return 0; |
|
805 |
|
806 /* The TK_AS operator can only occur in ORDER BY, GROUP BY, HAVING, |
|
807 ** and LIMIT clauses. But pExpr originates in the result set of a |
|
808 ** SELECT. So pExpr can never contain an AS operator. |
|
809 */ |
|
810 assert( pExpr->op!=TK_AS ); |
|
811 |
|
812 switch( pExpr->op ){ |
|
813 case TK_AGG_COLUMN: |
|
814 case TK_COLUMN: { |
|
815 /* The expression is a column. Locate the table the column is being |
|
816 ** extracted from in NameContext.pSrcList. This table may be real |
|
817 ** database table or a subquery. |
|
818 */ |
|
819 Table *pTab = 0; /* Table structure column is extracted from */ |
|
820 Select *pS = 0; /* Select the column is extracted from */ |
|
821 int iCol = pExpr->iColumn; /* Index of column in pTab */ |
|
822 while( pNC && !pTab ){ |
|
823 SrcList *pTabList = pNC->pSrcList; |
|
824 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); |
|
825 if( j<pTabList->nSrc ){ |
|
826 pTab = pTabList->a[j].pTab; |
|
827 pS = pTabList->a[j].pSelect; |
|
828 }else{ |
|
829 pNC = pNC->pNext; |
|
830 } |
|
831 } |
|
832 |
|
833 if( pTab==0 ){ |
|
834 /* FIX ME: |
|
835 ** This can occurs if you have something like "SELECT new.x;" inside |
|
836 ** a trigger. In other words, if you reference the special "new" |
|
837 ** table in the result set of a select. We do not have a good way |
|
838 ** to find the actual table type, so call it "TEXT". This is really |
|
839 ** something of a bug, but I do not know how to fix it. |
|
840 ** |
|
841 ** This code does not produce the correct answer - it just prevents |
|
842 ** a segfault. See ticket #1229. |
|
843 */ |
|
844 zType = "TEXT"; |
|
845 break; |
|
846 } |
|
847 |
|
848 assert( pTab ); |
|
849 if( pS ){ |
|
850 /* The "table" is actually a sub-select or a view in the FROM clause |
|
851 ** of the SELECT statement. Return the declaration type and origin |
|
852 ** data for the result-set column of the sub-select. |
|
853 */ |
|
854 if( iCol>=0 && iCol<pS->pEList->nExpr ){ |
|
855 /* If iCol is less than zero, then the expression requests the |
|
856 ** rowid of the sub-select or view. This expression is legal (see |
|
857 ** test case misc2.2.2) - it always evaluates to NULL. |
|
858 */ |
|
859 NameContext sNC; |
|
860 Expr *p = pS->pEList->a[iCol].pExpr; |
|
861 sNC.pSrcList = pS->pSrc; |
|
862 sNC.pNext = 0; |
|
863 sNC.pParse = pNC->pParse; |
|
864 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); |
|
865 } |
|
866 }else if( pTab->pSchema ){ |
|
867 /* A real table */ |
|
868 assert( !pS ); |
|
869 if( iCol<0 ) iCol = pTab->iPKey; |
|
870 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
|
871 if( iCol<0 ){ |
|
872 zType = "INTEGER"; |
|
873 zOriginCol = "rowid"; |
|
874 }else{ |
|
875 zType = pTab->aCol[iCol].zType; |
|
876 zOriginCol = pTab->aCol[iCol].zName; |
|
877 } |
|
878 zOriginTab = pTab->zName; |
|
879 if( pNC->pParse ){ |
|
880 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); |
|
881 zOriginDb = pNC->pParse->db->aDb[iDb].zName; |
|
882 } |
|
883 } |
|
884 break; |
|
885 } |
|
886 #ifndef SQLITE_OMIT_SUBQUERY |
|
887 case TK_SELECT: { |
|
888 /* The expression is a sub-select. Return the declaration type and |
|
889 ** origin info for the single column in the result set of the SELECT |
|
890 ** statement. |
|
891 */ |
|
892 NameContext sNC; |
|
893 Select *pS = pExpr->pSelect; |
|
894 Expr *p = pS->pEList->a[0].pExpr; |
|
895 sNC.pSrcList = pS->pSrc; |
|
896 sNC.pNext = pNC; |
|
897 sNC.pParse = pNC->pParse; |
|
898 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); |
|
899 break; |
|
900 } |
|
901 #endif |
|
902 } |
|
903 |
|
904 if( pzOriginDb ){ |
|
905 assert( pzOriginTab && pzOriginCol ); |
|
906 *pzOriginDb = zOriginDb; |
|
907 *pzOriginTab = zOriginTab; |
|
908 *pzOriginCol = zOriginCol; |
|
909 } |
|
910 return zType; |
|
911 } |
|
912 |
|
913 /* |
|
914 ** Generate code that will tell the VDBE the declaration types of columns |
|
915 ** in the result set. |
|
916 */ |
|
917 static void generateColumnTypes( |
|
918 Parse *pParse, /* Parser context */ |
|
919 SrcList *pTabList, /* List of tables */ |
|
920 ExprList *pEList /* Expressions defining the result set */ |
|
921 ){ |
|
922 Vdbe *v = pParse->pVdbe; |
|
923 int i; |
|
924 NameContext sNC; |
|
925 sNC.pSrcList = pTabList; |
|
926 sNC.pParse = pParse; |
|
927 for(i=0; i<pEList->nExpr; i++){ |
|
928 Expr *p = pEList->a[i].pExpr; |
|
929 const char *zOrigDb = 0; |
|
930 const char *zOrigTab = 0; |
|
931 const char *zOrigCol = 0; |
|
932 const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); |
|
933 |
|
934 /* The vdbe must make it's own copy of the column-type and other |
|
935 ** column specific strings, in case the schema is reset before this |
|
936 ** virtual machine is deleted. |
|
937 */ |
|
938 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT); |
|
939 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT); |
|
940 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT); |
|
941 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT); |
|
942 } |
|
943 } |
|
944 |
|
945 /* |
|
946 ** Generate code that will tell the VDBE the names of columns |
|
947 ** in the result set. This information is used to provide the |
|
948 ** azCol[] values in the callback. |
|
949 */ |
|
950 static void generateColumnNames( |
|
951 Parse *pParse, /* Parser context */ |
|
952 SrcList *pTabList, /* List of tables */ |
|
953 ExprList *pEList /* Expressions defining the result set */ |
|
954 ){ |
|
955 Vdbe *v = pParse->pVdbe; |
|
956 int i, j; |
|
957 sqlite3 *db = pParse->db; |
|
958 int fullNames, shortNames; |
|
959 |
|
960 #ifndef SQLITE_OMIT_EXPLAIN |
|
961 /* If this is an EXPLAIN, skip this step */ |
|
962 if( pParse->explain ){ |
|
963 return; |
|
964 } |
|
965 #endif |
|
966 |
|
967 assert( v!=0 ); |
|
968 if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return; |
|
969 pParse->colNamesSet = 1; |
|
970 fullNames = (db->flags & SQLITE_FullColNames)!=0; |
|
971 shortNames = (db->flags & SQLITE_ShortColNames)!=0; |
|
972 sqlite3VdbeSetNumCols(v, pEList->nExpr); |
|
973 for(i=0; i<pEList->nExpr; i++){ |
|
974 Expr *p; |
|
975 p = pEList->a[i].pExpr; |
|
976 if( p==0 ) continue; |
|
977 if( pEList->a[i].zName ){ |
|
978 char *zName = pEList->a[i].zName; |
|
979 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); |
|
980 continue; |
|
981 } |
|
982 if( p->op==TK_COLUMN && pTabList ){ |
|
983 Table *pTab; |
|
984 char *zCol; |
|
985 int iCol = p->iColumn; |
|
986 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} |
|
987 assert( j<pTabList->nSrc ); |
|
988 pTab = pTabList->a[j].pTab; |
|
989 if( iCol<0 ) iCol = pTab->iPKey; |
|
990 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
|
991 if( iCol<0 ){ |
|
992 zCol = "rowid"; |
|
993 }else{ |
|
994 zCol = pTab->aCol[iCol].zName; |
|
995 } |
|
996 if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ |
|
997 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); |
|
998 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ |
|
999 char *zName = 0; |
|
1000 char *zTab; |
|
1001 |
|
1002 zTab = pTabList->a[j].zAlias; |
|
1003 if( fullNames || zTab==0 ) zTab = pTab->zName; |
|
1004 sqlite3SetString(&zName, zTab, ".", zCol, (char*)0); |
|
1005 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC); |
|
1006 }else{ |
|
1007 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); |
|
1008 } |
|
1009 }else if( p->span.z && p->span.z[0] ){ |
|
1010 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); |
|
1011 /* sqlite3VdbeCompressSpace(v, addr); */ |
|
1012 }else{ |
|
1013 char zName[30]; |
|
1014 assert( p->op!=TK_COLUMN || pTabList==0 ); |
|
1015 sprintf(zName, "column%d", i+1); |
|
1016 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0); |
|
1017 } |
|
1018 } |
|
1019 generateColumnTypes(pParse, pTabList, pEList); |
|
1020 } |
|
1021 |
|
1022 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
1023 /* |
|
1024 ** Name of the connection operator, used for error messages. |
|
1025 */ |
|
1026 static const char *selectOpName(int id){ |
|
1027 char *z; |
|
1028 switch( id ){ |
|
1029 case TK_ALL: z = "UNION ALL"; break; |
|
1030 case TK_INTERSECT: z = "INTERSECT"; break; |
|
1031 case TK_EXCEPT: z = "EXCEPT"; break; |
|
1032 default: z = "UNION"; break; |
|
1033 } |
|
1034 return z; |
|
1035 } |
|
1036 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
|
1037 |
|
1038 /* |
|
1039 ** Forward declaration |
|
1040 */ |
|
1041 static int prepSelectStmt(Parse*, Select*); |
|
1042 |
|
1043 /* |
|
1044 ** Given a SELECT statement, generate a Table structure that describes |
|
1045 ** the result set of that SELECT. |
|
1046 */ |
|
1047 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ |
|
1048 Table *pTab; |
|
1049 int i, j; |
|
1050 ExprList *pEList; |
|
1051 Column *aCol, *pCol; |
|
1052 |
|
1053 while( pSelect->pPrior ) pSelect = pSelect->pPrior; |
|
1054 if( prepSelectStmt(pParse, pSelect) ){ |
|
1055 return 0; |
|
1056 } |
|
1057 if( sqlite3SelectResolve(pParse, pSelect, 0) ){ |
|
1058 return 0; |
|
1059 } |
|
1060 pTab = sqliteMalloc( sizeof(Table) ); |
|
1061 if( pTab==0 ){ |
|
1062 return 0; |
|
1063 } |
|
1064 pTab->nRef = 1; |
|
1065 pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0; |
|
1066 pEList = pSelect->pEList; |
|
1067 pTab->nCol = pEList->nExpr; |
|
1068 assert( pTab->nCol>0 ); |
|
1069 pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol ); |
|
1070 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ |
|
1071 Expr *p, *pR; |
|
1072 char *zType; |
|
1073 char *zName; |
|
1074 char *zBasename; |
|
1075 CollSeq *pColl; |
|
1076 int cnt; |
|
1077 NameContext sNC; |
|
1078 |
|
1079 /* Get an appropriate name for the column |
|
1080 */ |
|
1081 p = pEList->a[i].pExpr; |
|
1082 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); |
|
1083 if( (zName = pEList->a[i].zName)!=0 ){ |
|
1084 /* If the column contains an "AS <name>" phrase, use <name> as the name */ |
|
1085 zName = sqliteStrDup(zName); |
|
1086 }else if( p->op==TK_DOT |
|
1087 && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ |
|
1088 /* For columns of the from A.B use B as the name */ |
|
1089 zName = sqlite3MPrintf("%T", &pR->token); |
|
1090 }else if( p->span.z && p->span.z[0] ){ |
|
1091 /* Use the original text of the column expression as its name */ |
|
1092 zName = sqlite3MPrintf("%T", &p->span); |
|
1093 }else{ |
|
1094 /* If all else fails, make up a name */ |
|
1095 zName = sqlite3MPrintf("column%d", i+1); |
|
1096 } |
|
1097 sqlite3Dequote(zName); |
|
1098 if( sqlite3MallocFailed() ){ |
|
1099 sqliteFree(zName); |
|
1100 sqlite3DeleteTable(0, pTab); |
|
1101 return 0; |
|
1102 } |
|
1103 |
|
1104 /* Make sure the column name is unique. If the name is not unique, |
|
1105 ** append a integer to the name so that it becomes unique. |
|
1106 */ |
|
1107 zBasename = zName; |
|
1108 for(j=cnt=0; j<i; j++){ |
|
1109 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ |
|
1110 zName = sqlite3MPrintf("%s:%d", zBasename, ++cnt); |
|
1111 j = -1; |
|
1112 if( zName==0 ) break; |
|
1113 } |
|
1114 } |
|
1115 if( zBasename!=zName ){ |
|
1116 sqliteFree(zBasename); |
|
1117 } |
|
1118 pCol->zName = zName; |
|
1119 |
|
1120 /* Get the typename, type affinity, and collating sequence for the |
|
1121 ** column. |
|
1122 */ |
|
1123 memset(&sNC, 0, sizeof(sNC)); |
|
1124 sNC.pSrcList = pSelect->pSrc; |
|
1125 zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0)); |
|
1126 pCol->zType = zType; |
|
1127 pCol->affinity = sqlite3ExprAffinity(p); |
|
1128 pColl = sqlite3ExprCollSeq(pParse, p); |
|
1129 if( pColl ){ |
|
1130 pCol->zColl = sqliteStrDup(pColl->zName); |
|
1131 } |
|
1132 } |
|
1133 pTab->iPKey = -1; |
|
1134 return pTab; |
|
1135 } |
|
1136 |
|
1137 /* |
|
1138 ** Prepare a SELECT statement for processing by doing the following |
|
1139 ** things: |
|
1140 ** |
|
1141 ** (1) Make sure VDBE cursor numbers have been assigned to every |
|
1142 ** element of the FROM clause. |
|
1143 ** |
|
1144 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that |
|
1145 ** defines FROM clause. When views appear in the FROM clause, |
|
1146 ** fill pTabList->a[].pSelect with a copy of the SELECT statement |
|
1147 ** that implements the view. A copy is made of the view's SELECT |
|
1148 ** statement so that we can freely modify or delete that statement |
|
1149 ** without worrying about messing up the presistent representation |
|
1150 ** of the view. |
|
1151 ** |
|
1152 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword |
|
1153 ** on joins and the ON and USING clause of joins. |
|
1154 ** |
|
1155 ** (4) Scan the list of columns in the result set (pEList) looking |
|
1156 ** for instances of the "*" operator or the TABLE.* operator. |
|
1157 ** If found, expand each "*" to be every column in every table |
|
1158 ** and TABLE.* to be every column in TABLE. |
|
1159 ** |
|
1160 ** Return 0 on success. If there are problems, leave an error message |
|
1161 ** in pParse and return non-zero. |
|
1162 */ |
|
1163 static int prepSelectStmt(Parse *pParse, Select *p){ |
|
1164 int i, j, k, rc; |
|
1165 SrcList *pTabList; |
|
1166 ExprList *pEList; |
|
1167 struct SrcList_item *pFrom; |
|
1168 |
|
1169 if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){ |
|
1170 return 1; |
|
1171 } |
|
1172 pTabList = p->pSrc; |
|
1173 pEList = p->pEList; |
|
1174 |
|
1175 /* Make sure cursor numbers have been assigned to all entries in |
|
1176 ** the FROM clause of the SELECT statement. |
|
1177 */ |
|
1178 sqlite3SrcListAssignCursors(pParse, p->pSrc); |
|
1179 |
|
1180 /* Look up every table named in the FROM clause of the select. If |
|
1181 ** an entry of the FROM clause is a subquery instead of a table or view, |
|
1182 ** then create a transient table structure to describe the subquery. |
|
1183 */ |
|
1184 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
|
1185 Table *pTab; |
|
1186 if( pFrom->pTab!=0 ){ |
|
1187 /* This statement has already been prepared. There is no need |
|
1188 ** to go further. */ |
|
1189 assert( i==0 ); |
|
1190 return 0; |
|
1191 } |
|
1192 if( pFrom->zName==0 ){ |
|
1193 #ifndef SQLITE_OMIT_SUBQUERY |
|
1194 /* A sub-query in the FROM clause of a SELECT */ |
|
1195 assert( pFrom->pSelect!=0 ); |
|
1196 if( pFrom->zAlias==0 ){ |
|
1197 pFrom->zAlias = |
|
1198 sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect); |
|
1199 } |
|
1200 assert( pFrom->pTab==0 ); |
|
1201 pFrom->pTab = pTab = |
|
1202 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); |
|
1203 if( pTab==0 ){ |
|
1204 return 1; |
|
1205 } |
|
1206 /* The isEphem flag indicates that the Table structure has been |
|
1207 ** dynamically allocated and may be freed at any time. In other words, |
|
1208 ** pTab is not pointing to a persistent table structure that defines |
|
1209 ** part of the schema. */ |
|
1210 pTab->isEphem = 1; |
|
1211 #endif |
|
1212 }else{ |
|
1213 /* An ordinary table or view name in the FROM clause */ |
|
1214 assert( pFrom->pTab==0 ); |
|
1215 pFrom->pTab = pTab = |
|
1216 sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase); |
|
1217 if( pTab==0 ){ |
|
1218 return 1; |
|
1219 } |
|
1220 pTab->nRef++; |
|
1221 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) |
|
1222 if( pTab->pSelect || IsVirtual(pTab) ){ |
|
1223 /* We reach here if the named table is a really a view */ |
|
1224 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ |
|
1225 return 1; |
|
1226 } |
|
1227 /* If pFrom->pSelect!=0 it means we are dealing with a |
|
1228 ** view within a view. The SELECT structure has already been |
|
1229 ** copied by the outer view so we can skip the copy step here |
|
1230 ** in the inner view. |
|
1231 */ |
|
1232 if( pFrom->pSelect==0 ){ |
|
1233 pFrom->pSelect = sqlite3SelectDup(pTab->pSelect); |
|
1234 } |
|
1235 } |
|
1236 #endif |
|
1237 } |
|
1238 } |
|
1239 |
|
1240 /* Process NATURAL keywords, and ON and USING clauses of joins. |
|
1241 */ |
|
1242 if( sqliteProcessJoin(pParse, p) ) return 1; |
|
1243 |
|
1244 /* For every "*" that occurs in the column list, insert the names of |
|
1245 ** all columns in all tables. And for every TABLE.* insert the names |
|
1246 ** of all columns in TABLE. The parser inserted a special expression |
|
1247 ** with the TK_ALL operator for each "*" that it found in the column list. |
|
1248 ** The following code just has to locate the TK_ALL expressions and expand |
|
1249 ** each one to the list of all columns in all tables. |
|
1250 ** |
|
1251 ** The first loop just checks to see if there are any "*" operators |
|
1252 ** that need expanding. |
|
1253 */ |
|
1254 for(k=0; k<pEList->nExpr; k++){ |
|
1255 Expr *pE = pEList->a[k].pExpr; |
|
1256 if( pE->op==TK_ALL ) break; |
|
1257 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL |
|
1258 && pE->pLeft && pE->pLeft->op==TK_ID ) break; |
|
1259 } |
|
1260 rc = 0; |
|
1261 if( k<pEList->nExpr ){ |
|
1262 /* |
|
1263 ** If we get here it means the result set contains one or more "*" |
|
1264 ** operators that need to be expanded. Loop through each expression |
|
1265 ** in the result set and expand them one by one. |
|
1266 */ |
|
1267 struct ExprList_item *a = pEList->a; |
|
1268 ExprList *pNew = 0; |
|
1269 int flags = pParse->db->flags; |
|
1270 int longNames = (flags & SQLITE_FullColNames)!=0 && |
|
1271 (flags & SQLITE_ShortColNames)==0; |
|
1272 |
|
1273 for(k=0; k<pEList->nExpr; k++){ |
|
1274 Expr *pE = a[k].pExpr; |
|
1275 if( pE->op!=TK_ALL && |
|
1276 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ |
|
1277 /* This particular expression does not need to be expanded. |
|
1278 */ |
|
1279 pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0); |
|
1280 if( pNew ){ |
|
1281 pNew->a[pNew->nExpr-1].zName = a[k].zName; |
|
1282 }else{ |
|
1283 rc = 1; |
|
1284 } |
|
1285 a[k].pExpr = 0; |
|
1286 a[k].zName = 0; |
|
1287 }else{ |
|
1288 /* This expression is a "*" or a "TABLE.*" and needs to be |
|
1289 ** expanded. */ |
|
1290 int tableSeen = 0; /* Set to 1 when TABLE matches */ |
|
1291 char *zTName; /* text of name of TABLE */ |
|
1292 if( pE->op==TK_DOT && pE->pLeft ){ |
|
1293 zTName = sqlite3NameFromToken(&pE->pLeft->token); |
|
1294 }else{ |
|
1295 zTName = 0; |
|
1296 } |
|
1297 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
|
1298 Table *pTab = pFrom->pTab; |
|
1299 char *zTabName = pFrom->zAlias; |
|
1300 if( zTabName==0 || zTabName[0]==0 ){ |
|
1301 zTabName = pTab->zName; |
|
1302 } |
|
1303 if( zTName && (zTabName==0 || zTabName[0]==0 || |
|
1304 sqlite3StrICmp(zTName, zTabName)!=0) ){ |
|
1305 continue; |
|
1306 } |
|
1307 tableSeen = 1; |
|
1308 for(j=0; j<pTab->nCol; j++){ |
|
1309 Expr *pExpr, *pRight; |
|
1310 char *zName = pTab->aCol[j].zName; |
|
1311 |
|
1312 if( i>0 ){ |
|
1313 struct SrcList_item *pLeft = &pTabList->a[i-1]; |
|
1314 if( (pLeft->jointype & JT_NATURAL)!=0 && |
|
1315 columnIndex(pLeft->pTab, zName)>=0 ){ |
|
1316 /* In a NATURAL join, omit the join columns from the |
|
1317 ** table on the right */ |
|
1318 continue; |
|
1319 } |
|
1320 if( sqlite3IdListIndex(pLeft->pUsing, zName)>=0 ){ |
|
1321 /* In a join with a USING clause, omit columns in the |
|
1322 ** using clause from the table on the right. */ |
|
1323 continue; |
|
1324 } |
|
1325 } |
|
1326 pRight = sqlite3Expr(TK_ID, 0, 0, 0); |
|
1327 if( pRight==0 ) break; |
|
1328 setToken(&pRight->token, zName); |
|
1329 if( zTabName && (longNames || pTabList->nSrc>1) ){ |
|
1330 Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0); |
|
1331 pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0); |
|
1332 if( pExpr==0 ) break; |
|
1333 setToken(&pLeft->token, zTabName); |
|
1334 setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName)); |
|
1335 pExpr->span.dyn = 1; |
|
1336 pExpr->token.z = 0; |
|
1337 pExpr->token.n = 0; |
|
1338 pExpr->token.dyn = 0; |
|
1339 }else{ |
|
1340 pExpr = pRight; |
|
1341 pExpr->span = pExpr->token; |
|
1342 } |
|
1343 if( longNames ){ |
|
1344 pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span); |
|
1345 }else{ |
|
1346 pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token); |
|
1347 } |
|
1348 } |
|
1349 } |
|
1350 if( !tableSeen ){ |
|
1351 if( zTName ){ |
|
1352 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); |
|
1353 }else{ |
|
1354 sqlite3ErrorMsg(pParse, "no tables specified"); |
|
1355 } |
|
1356 rc = 1; |
|
1357 } |
|
1358 sqliteFree(zTName); |
|
1359 } |
|
1360 } |
|
1361 sqlite3ExprListDelete(pEList); |
|
1362 p->pEList = pNew; |
|
1363 } |
|
1364 return rc; |
|
1365 } |
|
1366 |
|
1367 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
1368 /* |
|
1369 ** This routine associates entries in an ORDER BY expression list with |
|
1370 ** columns in a result. For each ORDER BY expression, the opcode of |
|
1371 ** the top-level node is changed to TK_COLUMN and the iColumn value of |
|
1372 ** the top-level node is filled in with column number and the iTable |
|
1373 ** value of the top-level node is filled with iTable parameter. |
|
1374 ** |
|
1375 ** If there are prior SELECT clauses, they are processed first. A match |
|
1376 ** in an earlier SELECT takes precedence over a later SELECT. |
|
1377 ** |
|
1378 ** Any entry that does not match is flagged as an error. The number |
|
1379 ** of errors is returned. |
|
1380 */ |
|
1381 static int matchOrderbyToColumn( |
|
1382 Parse *pParse, /* A place to leave error messages */ |
|
1383 Select *pSelect, /* Match to result columns of this SELECT */ |
|
1384 ExprList *pOrderBy, /* The ORDER BY values to match against columns */ |
|
1385 int iTable, /* Insert this value in iTable */ |
|
1386 int mustComplete /* If TRUE all ORDER BYs must match */ |
|
1387 ){ |
|
1388 int nErr = 0; |
|
1389 int i, j; |
|
1390 ExprList *pEList; |
|
1391 |
|
1392 if( pSelect==0 || pOrderBy==0 ) return 1; |
|
1393 if( mustComplete ){ |
|
1394 for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; } |
|
1395 } |
|
1396 if( prepSelectStmt(pParse, pSelect) ){ |
|
1397 return 1; |
|
1398 } |
|
1399 if( pSelect->pPrior ){ |
|
1400 if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){ |
|
1401 return 1; |
|
1402 } |
|
1403 } |
|
1404 pEList = pSelect->pEList; |
|
1405 for(i=0; i<pOrderBy->nExpr; i++){ |
|
1406 Expr *pE = pOrderBy->a[i].pExpr; |
|
1407 int iCol = -1; |
|
1408 if( pOrderBy->a[i].done ) continue; |
|
1409 if( sqlite3ExprIsInteger(pE, &iCol) ){ |
|
1410 if( iCol<=0 || iCol>pEList->nExpr ){ |
|
1411 sqlite3ErrorMsg(pParse, |
|
1412 "ORDER BY position %d should be between 1 and %d", |
|
1413 iCol, pEList->nExpr); |
|
1414 nErr++; |
|
1415 break; |
|
1416 } |
|
1417 if( !mustComplete ) continue; |
|
1418 iCol--; |
|
1419 } |
|
1420 for(j=0; iCol<0 && j<pEList->nExpr; j++){ |
|
1421 if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){ |
|
1422 char *zName, *zLabel; |
|
1423 zName = pEList->a[j].zName; |
|
1424 zLabel = sqlite3NameFromToken(&pE->token); |
|
1425 assert( zLabel!=0 ); |
|
1426 if( sqlite3StrICmp(zName, zLabel)==0 ){ |
|
1427 iCol = j; |
|
1428 } |
|
1429 sqliteFree(zLabel); |
|
1430 } |
|
1431 if( iCol<0 && sqlite3ExprCompare(pE, pEList->a[j].pExpr) ){ |
|
1432 iCol = j; |
|
1433 } |
|
1434 } |
|
1435 if( iCol>=0 ){ |
|
1436 pE->op = TK_COLUMN; |
|
1437 pE->iColumn = iCol; |
|
1438 pE->iTable = iTable; |
|
1439 pE->iAgg = -1; |
|
1440 pOrderBy->a[i].done = 1; |
|
1441 } |
|
1442 if( iCol<0 && mustComplete ){ |
|
1443 sqlite3ErrorMsg(pParse, |
|
1444 "ORDER BY term number %d does not match any result column", i+1); |
|
1445 nErr++; |
|
1446 break; |
|
1447 } |
|
1448 } |
|
1449 return nErr; |
|
1450 } |
|
1451 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */ |
|
1452 |
|
1453 /* |
|
1454 ** Get a VDBE for the given parser context. Create a new one if necessary. |
|
1455 ** If an error occurs, return NULL and leave a message in pParse. |
|
1456 */ |
|
1457 Vdbe *sqlite3GetVdbe(Parse *pParse){ |
|
1458 Vdbe *v = pParse->pVdbe; |
|
1459 if( v==0 ){ |
|
1460 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); |
|
1461 } |
|
1462 return v; |
|
1463 } |
|
1464 |
|
1465 |
|
1466 /* |
|
1467 ** Compute the iLimit and iOffset fields of the SELECT based on the |
|
1468 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions |
|
1469 ** that appear in the original SQL statement after the LIMIT and OFFSET |
|
1470 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset |
|
1471 ** are the integer memory register numbers for counters used to compute |
|
1472 ** the limit and offset. If there is no limit and/or offset, then |
|
1473 ** iLimit and iOffset are negative. |
|
1474 ** |
|
1475 ** This routine changes the values of iLimit and iOffset only if |
|
1476 ** a limit or offset is defined by pLimit and pOffset. iLimit and |
|
1477 ** iOffset should have been preset to appropriate default values |
|
1478 ** (usually but not always -1) prior to calling this routine. |
|
1479 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get |
|
1480 ** redefined. The UNION ALL operator uses this property to force |
|
1481 ** the reuse of the same limit and offset registers across multiple |
|
1482 ** SELECT statements. |
|
1483 */ |
|
1484 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ |
|
1485 Vdbe *v = 0; |
|
1486 int iLimit = 0; |
|
1487 int iOffset; |
|
1488 int addr1, addr2; |
|
1489 |
|
1490 /* |
|
1491 ** "LIMIT -1" always shows all rows. There is some |
|
1492 ** contraversy about what the correct behavior should be. |
|
1493 ** The current implementation interprets "LIMIT 0" to mean |
|
1494 ** no rows. |
|
1495 */ |
|
1496 if( p->pLimit ){ |
|
1497 p->iLimit = iLimit = pParse->nMem; |
|
1498 pParse->nMem += 2; |
|
1499 v = sqlite3GetVdbe(pParse); |
|
1500 if( v==0 ) return; |
|
1501 sqlite3ExprCode(pParse, p->pLimit); |
|
1502 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); |
|
1503 sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 0); |
|
1504 VdbeComment((v, "# LIMIT counter")); |
|
1505 sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak); |
|
1506 } |
|
1507 if( p->pOffset ){ |
|
1508 p->iOffset = iOffset = pParse->nMem++; |
|
1509 v = sqlite3GetVdbe(pParse); |
|
1510 if( v==0 ) return; |
|
1511 sqlite3ExprCode(pParse, p->pOffset); |
|
1512 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); |
|
1513 sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0); |
|
1514 VdbeComment((v, "# OFFSET counter")); |
|
1515 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0); |
|
1516 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
1517 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); |
|
1518 sqlite3VdbeJumpHere(v, addr1); |
|
1519 if( p->pLimit ){ |
|
1520 sqlite3VdbeAddOp(v, OP_Add, 0, 0); |
|
1521 } |
|
1522 } |
|
1523 if( p->pLimit ){ |
|
1524 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0); |
|
1525 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
|
1526 sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1); |
|
1527 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); |
|
1528 sqlite3VdbeJumpHere(v, addr1); |
|
1529 sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1); |
|
1530 VdbeComment((v, "# LIMIT+OFFSET")); |
|
1531 sqlite3VdbeJumpHere(v, addr2); |
|
1532 } |
|
1533 } |
|
1534 |
|
1535 /* |
|
1536 ** Allocate a virtual index to use for sorting. |
|
1537 */ |
|
1538 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){ |
|
1539 if( pOrderBy ){ |
|
1540 int addr; |
|
1541 assert( pOrderBy->iECursor==0 ); |
|
1542 pOrderBy->iECursor = pParse->nTab++; |
|
1543 addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral, |
|
1544 pOrderBy->iECursor, pOrderBy->nExpr+1); |
|
1545 assert( p->addrOpenEphm[2] == -1 ); |
|
1546 p->addrOpenEphm[2] = addr; |
|
1547 } |
|
1548 } |
|
1549 |
|
1550 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
1551 /* |
|
1552 ** Return the appropriate collating sequence for the iCol-th column of |
|
1553 ** the result set for the compound-select statement "p". Return NULL if |
|
1554 ** the column has no default collating sequence. |
|
1555 ** |
|
1556 ** The collating sequence for the compound select is taken from the |
|
1557 ** left-most term of the select that has a collating sequence. |
|
1558 */ |
|
1559 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ |
|
1560 CollSeq *pRet; |
|
1561 if( p->pPrior ){ |
|
1562 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); |
|
1563 }else{ |
|
1564 pRet = 0; |
|
1565 } |
|
1566 if( pRet==0 ){ |
|
1567 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); |
|
1568 } |
|
1569 return pRet; |
|
1570 } |
|
1571 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
|
1572 |
|
1573 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
1574 /* |
|
1575 ** This routine is called to process a query that is really the union |
|
1576 ** or intersection of two or more separate queries. |
|
1577 ** |
|
1578 ** "p" points to the right-most of the two queries. the query on the |
|
1579 ** left is p->pPrior. The left query could also be a compound query |
|
1580 ** in which case this routine will be called recursively. |
|
1581 ** |
|
1582 ** The results of the total query are to be written into a destination |
|
1583 ** of type eDest with parameter iParm. |
|
1584 ** |
|
1585 ** Example 1: Consider a three-way compound SQL statement. |
|
1586 ** |
|
1587 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 |
|
1588 ** |
|
1589 ** This statement is parsed up as follows: |
|
1590 ** |
|
1591 ** SELECT c FROM t3 |
|
1592 ** | |
|
1593 ** `-----> SELECT b FROM t2 |
|
1594 ** | |
|
1595 ** `------> SELECT a FROM t1 |
|
1596 ** |
|
1597 ** The arrows in the diagram above represent the Select.pPrior pointer. |
|
1598 ** So if this routine is called with p equal to the t3 query, then |
|
1599 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. |
|
1600 ** |
|
1601 ** Notice that because of the way SQLite parses compound SELECTs, the |
|
1602 ** individual selects always group from left to right. |
|
1603 */ |
|
1604 static int multiSelect( |
|
1605 Parse *pParse, /* Parsing context */ |
|
1606 Select *p, /* The right-most of SELECTs to be coded */ |
|
1607 int eDest, /* \___ Store query results as specified */ |
|
1608 int iParm, /* / by these two parameters. */ |
|
1609 char *aff /* If eDest is SRT_Union, the affinity string */ |
|
1610 ){ |
|
1611 int rc = SQLITE_OK; /* Success code from a subroutine */ |
|
1612 Select *pPrior; /* Another SELECT immediately to our left */ |
|
1613 Vdbe *v; /* Generate code to this VDBE */ |
|
1614 int nCol; /* Number of columns in the result set */ |
|
1615 ExprList *pOrderBy; /* The ORDER BY clause on p */ |
|
1616 int aSetP2[2]; /* Set P2 value of these op to number of columns */ |
|
1617 int nSetP2 = 0; /* Number of slots in aSetP2[] used */ |
|
1618 |
|
1619 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only |
|
1620 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. |
|
1621 */ |
|
1622 if( p==0 || p->pPrior==0 ){ |
|
1623 rc = 1; |
|
1624 goto multi_select_end; |
|
1625 } |
|
1626 pPrior = p->pPrior; |
|
1627 assert( pPrior->pRightmost!=pPrior ); |
|
1628 assert( pPrior->pRightmost==p->pRightmost ); |
|
1629 if( pPrior->pOrderBy ){ |
|
1630 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", |
|
1631 selectOpName(p->op)); |
|
1632 rc = 1; |
|
1633 goto multi_select_end; |
|
1634 } |
|
1635 if( pPrior->pLimit ){ |
|
1636 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", |
|
1637 selectOpName(p->op)); |
|
1638 rc = 1; |
|
1639 goto multi_select_end; |
|
1640 } |
|
1641 |
|
1642 /* Make sure we have a valid query engine. If not, create a new one. |
|
1643 */ |
|
1644 v = sqlite3GetVdbe(pParse); |
|
1645 if( v==0 ){ |
|
1646 rc = 1; |
|
1647 goto multi_select_end; |
|
1648 } |
|
1649 |
|
1650 /* Create the destination temporary table if necessary |
|
1651 */ |
|
1652 if( eDest==SRT_EphemTab ){ |
|
1653 assert( p->pEList ); |
|
1654 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); |
|
1655 aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0); |
|
1656 eDest = SRT_Table; |
|
1657 } |
|
1658 |
|
1659 /* Generate code for the left and right SELECT statements. |
|
1660 */ |
|
1661 pOrderBy = p->pOrderBy; |
|
1662 switch( p->op ){ |
|
1663 case TK_ALL: { |
|
1664 if( pOrderBy==0 ){ |
|
1665 int addr = 0; |
|
1666 assert( !pPrior->pLimit ); |
|
1667 pPrior->pLimit = p->pLimit; |
|
1668 pPrior->pOffset = p->pOffset; |
|
1669 rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff); |
|
1670 p->pLimit = 0; |
|
1671 p->pOffset = 0; |
|
1672 if( rc ){ |
|
1673 goto multi_select_end; |
|
1674 } |
|
1675 p->pPrior = 0; |
|
1676 p->iLimit = pPrior->iLimit; |
|
1677 p->iOffset = pPrior->iOffset; |
|
1678 if( p->iLimit>=0 ){ |
|
1679 addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0); |
|
1680 VdbeComment((v, "# Jump ahead if LIMIT reached")); |
|
1681 } |
|
1682 rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff); |
|
1683 p->pPrior = pPrior; |
|
1684 if( rc ){ |
|
1685 goto multi_select_end; |
|
1686 } |
|
1687 if( addr ){ |
|
1688 sqlite3VdbeJumpHere(v, addr); |
|
1689 } |
|
1690 break; |
|
1691 } |
|
1692 /* For UNION ALL ... ORDER BY fall through to the next case */ |
|
1693 } |
|
1694 case TK_EXCEPT: |
|
1695 case TK_UNION: { |
|
1696 int unionTab; /* Cursor number of the temporary table holding result */ |
|
1697 int op = 0; /* One of the SRT_ operations to apply to self */ |
|
1698 int priorOp; /* The SRT_ operation to apply to prior selects */ |
|
1699 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ |
|
1700 int addr; |
|
1701 |
|
1702 priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; |
|
1703 if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){ |
|
1704 /* We can reuse a temporary table generated by a SELECT to our |
|
1705 ** right. |
|
1706 */ |
|
1707 unionTab = iParm; |
|
1708 }else{ |
|
1709 /* We will need to create our own temporary table to hold the |
|
1710 ** intermediate results. |
|
1711 */ |
|
1712 unionTab = pParse->nTab++; |
|
1713 if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){ |
|
1714 rc = 1; |
|
1715 goto multi_select_end; |
|
1716 } |
|
1717 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0); |
|
1718 if( priorOp==SRT_Table ){ |
|
1719 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); |
|
1720 aSetP2[nSetP2++] = addr; |
|
1721 }else{ |
|
1722 assert( p->addrOpenEphm[0] == -1 ); |
|
1723 p->addrOpenEphm[0] = addr; |
|
1724 p->pRightmost->usesEphm = 1; |
|
1725 } |
|
1726 createSortingIndex(pParse, p, pOrderBy); |
|
1727 assert( p->pEList ); |
|
1728 } |
|
1729 |
|
1730 /* Code the SELECT statements to our left |
|
1731 */ |
|
1732 assert( !pPrior->pOrderBy ); |
|
1733 rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff); |
|
1734 if( rc ){ |
|
1735 goto multi_select_end; |
|
1736 } |
|
1737 |
|
1738 /* Code the current SELECT statement |
|
1739 */ |
|
1740 switch( p->op ){ |
|
1741 case TK_EXCEPT: op = SRT_Except; break; |
|
1742 case TK_UNION: op = SRT_Union; break; |
|
1743 case TK_ALL: op = SRT_Table; break; |
|
1744 } |
|
1745 p->pPrior = 0; |
|
1746 p->pOrderBy = 0; |
|
1747 p->disallowOrderBy = pOrderBy!=0; |
|
1748 pLimit = p->pLimit; |
|
1749 p->pLimit = 0; |
|
1750 pOffset = p->pOffset; |
|
1751 p->pOffset = 0; |
|
1752 rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff); |
|
1753 p->pPrior = pPrior; |
|
1754 p->pOrderBy = pOrderBy; |
|
1755 sqlite3ExprDelete(p->pLimit); |
|
1756 p->pLimit = pLimit; |
|
1757 p->pOffset = pOffset; |
|
1758 p->iLimit = -1; |
|
1759 p->iOffset = -1; |
|
1760 if( rc ){ |
|
1761 goto multi_select_end; |
|
1762 } |
|
1763 |
|
1764 |
|
1765 /* Convert the data in the temporary table into whatever form |
|
1766 ** it is that we currently need. |
|
1767 */ |
|
1768 if( eDest!=priorOp || unionTab!=iParm ){ |
|
1769 int iCont, iBreak, iStart; |
|
1770 assert( p->pEList ); |
|
1771 if( eDest==SRT_Callback ){ |
|
1772 Select *pFirst = p; |
|
1773 while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
|
1774 generateColumnNames(pParse, 0, pFirst->pEList); |
|
1775 } |
|
1776 iBreak = sqlite3VdbeMakeLabel(v); |
|
1777 iCont = sqlite3VdbeMakeLabel(v); |
|
1778 computeLimitRegisters(pParse, p, iBreak); |
|
1779 sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak); |
|
1780 iStart = sqlite3VdbeCurrentAddr(v); |
|
1781 rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, |
|
1782 pOrderBy, -1, eDest, iParm, |
|
1783 iCont, iBreak, 0); |
|
1784 if( rc ){ |
|
1785 rc = 1; |
|
1786 goto multi_select_end; |
|
1787 } |
|
1788 sqlite3VdbeResolveLabel(v, iCont); |
|
1789 sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart); |
|
1790 sqlite3VdbeResolveLabel(v, iBreak); |
|
1791 sqlite3VdbeAddOp(v, OP_Close, unionTab, 0); |
|
1792 } |
|
1793 break; |
|
1794 } |
|
1795 case TK_INTERSECT: { |
|
1796 int tab1, tab2; |
|
1797 int iCont, iBreak, iStart; |
|
1798 Expr *pLimit, *pOffset; |
|
1799 int addr; |
|
1800 |
|
1801 /* INTERSECT is different from the others since it requires |
|
1802 ** two temporary tables. Hence it has its own case. Begin |
|
1803 ** by allocating the tables we will need. |
|
1804 */ |
|
1805 tab1 = pParse->nTab++; |
|
1806 tab2 = pParse->nTab++; |
|
1807 if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){ |
|
1808 rc = 1; |
|
1809 goto multi_select_end; |
|
1810 } |
|
1811 createSortingIndex(pParse, p, pOrderBy); |
|
1812 |
|
1813 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0); |
|
1814 assert( p->addrOpenEphm[0] == -1 ); |
|
1815 p->addrOpenEphm[0] = addr; |
|
1816 p->pRightmost->usesEphm = 1; |
|
1817 assert( p->pEList ); |
|
1818 |
|
1819 /* Code the SELECTs to our left into temporary table "tab1". |
|
1820 */ |
|
1821 rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff); |
|
1822 if( rc ){ |
|
1823 goto multi_select_end; |
|
1824 } |
|
1825 |
|
1826 /* Code the current SELECT into temporary table "tab2" |
|
1827 */ |
|
1828 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0); |
|
1829 assert( p->addrOpenEphm[1] == -1 ); |
|
1830 p->addrOpenEphm[1] = addr; |
|
1831 p->pPrior = 0; |
|
1832 pLimit = p->pLimit; |
|
1833 p->pLimit = 0; |
|
1834 pOffset = p->pOffset; |
|
1835 p->pOffset = 0; |
|
1836 rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff); |
|
1837 p->pPrior = pPrior; |
|
1838 sqlite3ExprDelete(p->pLimit); |
|
1839 p->pLimit = pLimit; |
|
1840 p->pOffset = pOffset; |
|
1841 if( rc ){ |
|
1842 goto multi_select_end; |
|
1843 } |
|
1844 |
|
1845 /* Generate code to take the intersection of the two temporary |
|
1846 ** tables. |
|
1847 */ |
|
1848 assert( p->pEList ); |
|
1849 if( eDest==SRT_Callback ){ |
|
1850 Select *pFirst = p; |
|
1851 while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
|
1852 generateColumnNames(pParse, 0, pFirst->pEList); |
|
1853 } |
|
1854 iBreak = sqlite3VdbeMakeLabel(v); |
|
1855 iCont = sqlite3VdbeMakeLabel(v); |
|
1856 computeLimitRegisters(pParse, p, iBreak); |
|
1857 sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak); |
|
1858 iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0); |
|
1859 sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont); |
|
1860 rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, |
|
1861 pOrderBy, -1, eDest, iParm, |
|
1862 iCont, iBreak, 0); |
|
1863 if( rc ){ |
|
1864 rc = 1; |
|
1865 goto multi_select_end; |
|
1866 } |
|
1867 sqlite3VdbeResolveLabel(v, iCont); |
|
1868 sqlite3VdbeAddOp(v, OP_Next, tab1, iStart); |
|
1869 sqlite3VdbeResolveLabel(v, iBreak); |
|
1870 sqlite3VdbeAddOp(v, OP_Close, tab2, 0); |
|
1871 sqlite3VdbeAddOp(v, OP_Close, tab1, 0); |
|
1872 break; |
|
1873 } |
|
1874 } |
|
1875 |
|
1876 /* Make sure all SELECTs in the statement have the same number of elements |
|
1877 ** in their result sets. |
|
1878 */ |
|
1879 assert( p->pEList && pPrior->pEList ); |
|
1880 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ |
|
1881 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" |
|
1882 " do not have the same number of result columns", selectOpName(p->op)); |
|
1883 rc = 1; |
|
1884 goto multi_select_end; |
|
1885 } |
|
1886 |
|
1887 /* Set the number of columns in temporary tables |
|
1888 */ |
|
1889 nCol = p->pEList->nExpr; |
|
1890 while( nSetP2 ){ |
|
1891 sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol); |
|
1892 } |
|
1893 |
|
1894 /* Compute collating sequences used by either the ORDER BY clause or |
|
1895 ** by any temporary tables needed to implement the compound select. |
|
1896 ** Attach the KeyInfo structure to all temporary tables. Invoke the |
|
1897 ** ORDER BY processing if there is an ORDER BY clause. |
|
1898 ** |
|
1899 ** This section is run by the right-most SELECT statement only. |
|
1900 ** SELECT statements to the left always skip this part. The right-most |
|
1901 ** SELECT might also skip this part if it has no ORDER BY clause and |
|
1902 ** no temp tables are required. |
|
1903 */ |
|
1904 if( pOrderBy || p->usesEphm ){ |
|
1905 int i; /* Loop counter */ |
|
1906 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ |
|
1907 Select *pLoop; /* For looping through SELECT statements */ |
|
1908 int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */ |
|
1909 CollSeq **apColl; |
|
1910 CollSeq **aCopy; |
|
1911 |
|
1912 assert( p->pRightmost==p ); |
|
1913 nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0); |
|
1914 pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1)); |
|
1915 if( !pKeyInfo ){ |
|
1916 rc = SQLITE_NOMEM; |
|
1917 goto multi_select_end; |
|
1918 } |
|
1919 |
|
1920 pKeyInfo->enc = ENC(pParse->db); |
|
1921 pKeyInfo->nField = nCol; |
|
1922 |
|
1923 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ |
|
1924 *apColl = multiSelectCollSeq(pParse, p, i); |
|
1925 if( 0==*apColl ){ |
|
1926 *apColl = pParse->db->pDfltColl; |
|
1927 } |
|
1928 } |
|
1929 |
|
1930 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ |
|
1931 for(i=0; i<2; i++){ |
|
1932 int addr = pLoop->addrOpenEphm[i]; |
|
1933 if( addr<0 ){ |
|
1934 /* If [0] is unused then [1] is also unused. So we can |
|
1935 ** always safely abort as soon as the first unused slot is found */ |
|
1936 assert( pLoop->addrOpenEphm[1]<0 ); |
|
1937 break; |
|
1938 } |
|
1939 sqlite3VdbeChangeP2(v, addr, nCol); |
|
1940 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO); |
|
1941 } |
|
1942 } |
|
1943 |
|
1944 if( pOrderBy ){ |
|
1945 struct ExprList_item *pOTerm = pOrderBy->a; |
|
1946 int nOrderByExpr = pOrderBy->nExpr; |
|
1947 int addr; |
|
1948 u8 *pSortOrder; |
|
1949 |
|
1950 aCopy = &pKeyInfo->aColl[nOrderByExpr]; |
|
1951 pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol]; |
|
1952 memcpy(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*)); |
|
1953 apColl = pKeyInfo->aColl; |
|
1954 for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){ |
|
1955 Expr *pExpr = pOTerm->pExpr; |
|
1956 char *zName = pOTerm->zName; |
|
1957 assert( pExpr->op==TK_COLUMN && pExpr->iColumn<nCol ); |
|
1958 if( zName ){ |
|
1959 *apColl = sqlite3LocateCollSeq(pParse, zName, -1); |
|
1960 }else{ |
|
1961 *apColl = aCopy[pExpr->iColumn]; |
|
1962 } |
|
1963 *pSortOrder = pOTerm->sortOrder; |
|
1964 } |
|
1965 assert( p->pRightmost==p ); |
|
1966 assert( p->addrOpenEphm[2]>=0 ); |
|
1967 addr = p->addrOpenEphm[2]; |
|
1968 sqlite3VdbeChangeP2(v, addr, p->pEList->nExpr+2); |
|
1969 pKeyInfo->nField = nOrderByExpr; |
|
1970 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
|
1971 pKeyInfo = 0; |
|
1972 generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm); |
|
1973 } |
|
1974 |
|
1975 sqliteFree(pKeyInfo); |
|
1976 } |
|
1977 |
|
1978 multi_select_end: |
|
1979 return rc; |
|
1980 } |
|
1981 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
|
1982 |
|
1983 #ifndef SQLITE_OMIT_VIEW |
|
1984 /* |
|
1985 ** Scan through the expression pExpr. Replace every reference to |
|
1986 ** a column in table number iTable with a copy of the iColumn-th |
|
1987 ** entry in pEList. (But leave references to the ROWID column |
|
1988 ** unchanged.) |
|
1989 ** |
|
1990 ** This routine is part of the flattening procedure. A subquery |
|
1991 ** whose result set is defined by pEList appears as entry in the |
|
1992 ** FROM clause of a SELECT such that the VDBE cursor assigned to that |
|
1993 ** FORM clause entry is iTable. This routine make the necessary |
|
1994 ** changes to pExpr so that it refers directly to the source table |
|
1995 ** of the subquery rather the result set of the subquery. |
|
1996 */ |
|
1997 static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */ |
|
1998 static void substSelect(Select *, int, ExprList *); /* Forward Decl */ |
|
1999 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){ |
|
2000 if( pExpr==0 ) return; |
|
2001 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ |
|
2002 if( pExpr->iColumn<0 ){ |
|
2003 pExpr->op = TK_NULL; |
|
2004 }else{ |
|
2005 Expr *pNew; |
|
2006 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); |
|
2007 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); |
|
2008 pNew = pEList->a[pExpr->iColumn].pExpr; |
|
2009 assert( pNew!=0 ); |
|
2010 pExpr->op = pNew->op; |
|
2011 assert( pExpr->pLeft==0 ); |
|
2012 pExpr->pLeft = sqlite3ExprDup(pNew->pLeft); |
|
2013 assert( pExpr->pRight==0 ); |
|
2014 pExpr->pRight = sqlite3ExprDup(pNew->pRight); |
|
2015 assert( pExpr->pList==0 ); |
|
2016 pExpr->pList = sqlite3ExprListDup(pNew->pList); |
|
2017 pExpr->iTable = pNew->iTable; |
|
2018 pExpr->pTab = pNew->pTab; |
|
2019 pExpr->iColumn = pNew->iColumn; |
|
2020 pExpr->iAgg = pNew->iAgg; |
|
2021 sqlite3TokenCopy(&pExpr->token, &pNew->token); |
|
2022 sqlite3TokenCopy(&pExpr->span, &pNew->span); |
|
2023 pExpr->pSelect = sqlite3SelectDup(pNew->pSelect); |
|
2024 pExpr->flags = pNew->flags; |
|
2025 } |
|
2026 }else{ |
|
2027 substExpr(pExpr->pLeft, iTable, pEList); |
|
2028 substExpr(pExpr->pRight, iTable, pEList); |
|
2029 substSelect(pExpr->pSelect, iTable, pEList); |
|
2030 substExprList(pExpr->pList, iTable, pEList); |
|
2031 } |
|
2032 } |
|
2033 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){ |
|
2034 int i; |
|
2035 if( pList==0 ) return; |
|
2036 for(i=0; i<pList->nExpr; i++){ |
|
2037 substExpr(pList->a[i].pExpr, iTable, pEList); |
|
2038 } |
|
2039 } |
|
2040 static void substSelect(Select *p, int iTable, ExprList *pEList){ |
|
2041 if( !p ) return; |
|
2042 substExprList(p->pEList, iTable, pEList); |
|
2043 substExprList(p->pGroupBy, iTable, pEList); |
|
2044 substExprList(p->pOrderBy, iTable, pEList); |
|
2045 substExpr(p->pHaving, iTable, pEList); |
|
2046 substExpr(p->pWhere, iTable, pEList); |
|
2047 } |
|
2048 #endif /* !defined(SQLITE_OMIT_VIEW) */ |
|
2049 |
|
2050 #ifndef SQLITE_OMIT_VIEW |
|
2051 /* |
|
2052 ** This routine attempts to flatten subqueries in order to speed |
|
2053 ** execution. It returns 1 if it makes changes and 0 if no flattening |
|
2054 ** occurs. |
|
2055 ** |
|
2056 ** To understand the concept of flattening, consider the following |
|
2057 ** query: |
|
2058 ** |
|
2059 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 |
|
2060 ** |
|
2061 ** The default way of implementing this query is to execute the |
|
2062 ** subquery first and store the results in a temporary table, then |
|
2063 ** run the outer query on that temporary table. This requires two |
|
2064 ** passes over the data. Furthermore, because the temporary table |
|
2065 ** has no indices, the WHERE clause on the outer query cannot be |
|
2066 ** optimized. |
|
2067 ** |
|
2068 ** This routine attempts to rewrite queries such as the above into |
|
2069 ** a single flat select, like this: |
|
2070 ** |
|
2071 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 |
|
2072 ** |
|
2073 ** The code generated for this simpification gives the same result |
|
2074 ** but only has to scan the data once. And because indices might |
|
2075 ** exist on the table t1, a complete scan of the data might be |
|
2076 ** avoided. |
|
2077 ** |
|
2078 ** Flattening is only attempted if all of the following are true: |
|
2079 ** |
|
2080 ** (1) The subquery and the outer query do not both use aggregates. |
|
2081 ** |
|
2082 ** (2) The subquery is not an aggregate or the outer query is not a join. |
|
2083 ** |
|
2084 ** (3) The subquery is not the right operand of a left outer join, or |
|
2085 ** the subquery is not itself a join. (Ticket #306) |
|
2086 ** |
|
2087 ** (4) The subquery is not DISTINCT or the outer query is not a join. |
|
2088 ** |
|
2089 ** (5) The subquery is not DISTINCT or the outer query does not use |
|
2090 ** aggregates. |
|
2091 ** |
|
2092 ** (6) The subquery does not use aggregates or the outer query is not |
|
2093 ** DISTINCT. |
|
2094 ** |
|
2095 ** (7) The subquery has a FROM clause. |
|
2096 ** |
|
2097 ** (8) The subquery does not use LIMIT or the outer query is not a join. |
|
2098 ** |
|
2099 ** (9) The subquery does not use LIMIT or the outer query does not use |
|
2100 ** aggregates. |
|
2101 ** |
|
2102 ** (10) The subquery does not use aggregates or the outer query does not |
|
2103 ** use LIMIT. |
|
2104 ** |
|
2105 ** (11) The subquery and the outer query do not both have ORDER BY clauses. |
|
2106 ** |
|
2107 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the |
|
2108 ** subquery has no WHERE clause. (added by ticket #350) |
|
2109 ** |
|
2110 ** (13) The subquery and outer query do not both use LIMIT |
|
2111 ** |
|
2112 ** (14) The subquery does not use OFFSET |
|
2113 ** |
|
2114 ** In this routine, the "p" parameter is a pointer to the outer query. |
|
2115 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query |
|
2116 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. |
|
2117 ** |
|
2118 ** If flattening is not attempted, this routine is a no-op and returns 0. |
|
2119 ** If flattening is attempted this routine returns 1. |
|
2120 ** |
|
2121 ** All of the expression analysis must occur on both the outer query and |
|
2122 ** the subquery before this routine runs. |
|
2123 */ |
|
2124 static int flattenSubquery( |
|
2125 Select *p, /* The parent or outer SELECT statement */ |
|
2126 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ |
|
2127 int isAgg, /* True if outer SELECT uses aggregate functions */ |
|
2128 int subqueryIsAgg /* True if the subquery uses aggregate functions */ |
|
2129 ){ |
|
2130 Select *pSub; /* The inner query or "subquery" */ |
|
2131 SrcList *pSrc; /* The FROM clause of the outer query */ |
|
2132 SrcList *pSubSrc; /* The FROM clause of the subquery */ |
|
2133 ExprList *pList; /* The result set of the outer query */ |
|
2134 int iParent; /* VDBE cursor number of the pSub result set temp table */ |
|
2135 int i; /* Loop counter */ |
|
2136 Expr *pWhere; /* The WHERE clause */ |
|
2137 struct SrcList_item *pSubitem; /* The subquery */ |
|
2138 |
|
2139 /* Check to see if flattening is permitted. Return 0 if not. |
|
2140 */ |
|
2141 if( p==0 ) return 0; |
|
2142 pSrc = p->pSrc; |
|
2143 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); |
|
2144 pSubitem = &pSrc->a[iFrom]; |
|
2145 pSub = pSubitem->pSelect; |
|
2146 assert( pSub!=0 ); |
|
2147 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ |
|
2148 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ |
|
2149 pSubSrc = pSub->pSrc; |
|
2150 assert( pSubSrc ); |
|
2151 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, |
|
2152 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET |
|
2153 ** because they could be computed at compile-time. But when LIMIT and OFFSET |
|
2154 ** became arbitrary expressions, we were forced to add restrictions (13) |
|
2155 ** and (14). */ |
|
2156 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ |
|
2157 if( pSub->pOffset ) return 0; /* Restriction (14) */ |
|
2158 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ |
|
2159 if( (pSub->isDistinct || pSub->pLimit) |
|
2160 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ |
|
2161 return 0; |
|
2162 } |
|
2163 if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ |
|
2164 if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ |
|
2165 return 0; /* Restriction (11) */ |
|
2166 } |
|
2167 |
|
2168 /* Restriction 3: If the subquery is a join, make sure the subquery is |
|
2169 ** not used as the right operand of an outer join. Examples of why this |
|
2170 ** is not allowed: |
|
2171 ** |
|
2172 ** t1 LEFT OUTER JOIN (t2 JOIN t3) |
|
2173 ** |
|
2174 ** If we flatten the above, we would get |
|
2175 ** |
|
2176 ** (t1 LEFT OUTER JOIN t2) JOIN t3 |
|
2177 ** |
|
2178 ** which is not at all the same thing. |
|
2179 */ |
|
2180 if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){ |
|
2181 return 0; |
|
2182 } |
|
2183 |
|
2184 /* Restriction 12: If the subquery is the right operand of a left outer |
|
2185 ** join, make sure the subquery has no WHERE clause. |
|
2186 ** An examples of why this is not allowed: |
|
2187 ** |
|
2188 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) |
|
2189 ** |
|
2190 ** If we flatten the above, we would get |
|
2191 ** |
|
2192 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 |
|
2193 ** |
|
2194 ** But the t2.x>0 test will always fail on a NULL row of t2, which |
|
2195 ** effectively converts the OUTER JOIN into an INNER JOIN. |
|
2196 */ |
|
2197 if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 |
|
2198 && pSub->pWhere!=0 ){ |
|
2199 return 0; |
|
2200 } |
|
2201 |
|
2202 /* If we reach this point, it means flattening is permitted for the |
|
2203 ** iFrom-th entry of the FROM clause in the outer query. |
|
2204 */ |
|
2205 |
|
2206 /* Move all of the FROM elements of the subquery into the |
|
2207 ** the FROM clause of the outer query. Before doing this, remember |
|
2208 ** the cursor number for the original outer query FROM element in |
|
2209 ** iParent. The iParent cursor will never be used. Subsequent code |
|
2210 ** will scan expressions looking for iParent references and replace |
|
2211 ** those references with expressions that resolve to the subquery FROM |
|
2212 ** elements we are now copying in. |
|
2213 */ |
|
2214 iParent = pSubitem->iCursor; |
|
2215 { |
|
2216 int nSubSrc = pSubSrc->nSrc; |
|
2217 int jointype = pSubitem->jointype; |
|
2218 |
|
2219 sqlite3DeleteTable(0, pSubitem->pTab); |
|
2220 sqliteFree(pSubitem->zDatabase); |
|
2221 sqliteFree(pSubitem->zName); |
|
2222 sqliteFree(pSubitem->zAlias); |
|
2223 if( nSubSrc>1 ){ |
|
2224 int extra = nSubSrc - 1; |
|
2225 for(i=1; i<nSubSrc; i++){ |
|
2226 pSrc = sqlite3SrcListAppend(pSrc, 0, 0); |
|
2227 } |
|
2228 p->pSrc = pSrc; |
|
2229 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ |
|
2230 pSrc->a[i] = pSrc->a[i-extra]; |
|
2231 } |
|
2232 } |
|
2233 for(i=0; i<nSubSrc; i++){ |
|
2234 pSrc->a[i+iFrom] = pSubSrc->a[i]; |
|
2235 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); |
|
2236 } |
|
2237 pSrc->a[iFrom+nSubSrc-1].jointype = jointype; |
|
2238 } |
|
2239 |
|
2240 /* Now begin substituting subquery result set expressions for |
|
2241 ** references to the iParent in the outer query. |
|
2242 ** |
|
2243 ** Example: |
|
2244 ** |
|
2245 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; |
|
2246 ** \ \_____________ subquery __________/ / |
|
2247 ** \_____________________ outer query ______________________________/ |
|
2248 ** |
|
2249 ** We look at every expression in the outer query and every place we see |
|
2250 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". |
|
2251 */ |
|
2252 pList = p->pEList; |
|
2253 for(i=0; i<pList->nExpr; i++){ |
|
2254 Expr *pExpr; |
|
2255 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ |
|
2256 pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n); |
|
2257 } |
|
2258 } |
|
2259 substExprList(p->pEList, iParent, pSub->pEList); |
|
2260 if( isAgg ){ |
|
2261 substExprList(p->pGroupBy, iParent, pSub->pEList); |
|
2262 substExpr(p->pHaving, iParent, pSub->pEList); |
|
2263 } |
|
2264 if( pSub->pOrderBy ){ |
|
2265 assert( p->pOrderBy==0 ); |
|
2266 p->pOrderBy = pSub->pOrderBy; |
|
2267 pSub->pOrderBy = 0; |
|
2268 }else if( p->pOrderBy ){ |
|
2269 substExprList(p->pOrderBy, iParent, pSub->pEList); |
|
2270 } |
|
2271 if( pSub->pWhere ){ |
|
2272 pWhere = sqlite3ExprDup(pSub->pWhere); |
|
2273 }else{ |
|
2274 pWhere = 0; |
|
2275 } |
|
2276 if( subqueryIsAgg ){ |
|
2277 assert( p->pHaving==0 ); |
|
2278 p->pHaving = p->pWhere; |
|
2279 p->pWhere = pWhere; |
|
2280 substExpr(p->pHaving, iParent, pSub->pEList); |
|
2281 p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving)); |
|
2282 assert( p->pGroupBy==0 ); |
|
2283 p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy); |
|
2284 }else{ |
|
2285 substExpr(p->pWhere, iParent, pSub->pEList); |
|
2286 p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere); |
|
2287 } |
|
2288 |
|
2289 /* The flattened query is distinct if either the inner or the |
|
2290 ** outer query is distinct. |
|
2291 */ |
|
2292 p->isDistinct = p->isDistinct || pSub->isDistinct; |
|
2293 |
|
2294 /* |
|
2295 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; |
|
2296 ** |
|
2297 ** One is tempted to try to add a and b to combine the limits. But this |
|
2298 ** does not work if either limit is negative. |
|
2299 */ |
|
2300 if( pSub->pLimit ){ |
|
2301 p->pLimit = pSub->pLimit; |
|
2302 pSub->pLimit = 0; |
|
2303 } |
|
2304 |
|
2305 /* Finially, delete what is left of the subquery and return |
|
2306 ** success. |
|
2307 */ |
|
2308 sqlite3SelectDelete(pSub); |
|
2309 return 1; |
|
2310 } |
|
2311 #endif /* SQLITE_OMIT_VIEW */ |
|
2312 |
|
2313 /* |
|
2314 ** Analyze the SELECT statement passed in as an argument to see if it |
|
2315 ** is a simple min() or max() query. If it is and this query can be |
|
2316 ** satisfied using a single seek to the beginning or end of an index, |
|
2317 ** then generate the code for this SELECT and return 1. If this is not a |
|
2318 ** simple min() or max() query, then return 0; |
|
2319 ** |
|
2320 ** A simply min() or max() query looks like this: |
|
2321 ** |
|
2322 ** SELECT min(a) FROM table; |
|
2323 ** SELECT max(a) FROM table; |
|
2324 ** |
|
2325 ** The query may have only a single table in its FROM argument. There |
|
2326 ** can be no GROUP BY or HAVING or WHERE clauses. The result set must |
|
2327 ** be the min() or max() of a single column of the table. The column |
|
2328 ** in the min() or max() function must be indexed. |
|
2329 ** |
|
2330 ** The parameters to this routine are the same as for sqlite3Select(). |
|
2331 ** See the header comment on that routine for additional information. |
|
2332 */ |
|
2333 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){ |
|
2334 Expr *pExpr; |
|
2335 int iCol; |
|
2336 Table *pTab; |
|
2337 Index *pIdx; |
|
2338 int base; |
|
2339 Vdbe *v; |
|
2340 int seekOp; |
|
2341 ExprList *pEList, *pList, eList; |
|
2342 struct ExprList_item eListItem; |
|
2343 SrcList *pSrc; |
|
2344 int brk; |
|
2345 int iDb; |
|
2346 |
|
2347 /* Check to see if this query is a simple min() or max() query. Return |
|
2348 ** zero if it is not. |
|
2349 */ |
|
2350 if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; |
|
2351 pSrc = p->pSrc; |
|
2352 if( pSrc->nSrc!=1 ) return 0; |
|
2353 pEList = p->pEList; |
|
2354 if( pEList->nExpr!=1 ) return 0; |
|
2355 pExpr = pEList->a[0].pExpr; |
|
2356 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; |
|
2357 pList = pExpr->pList; |
|
2358 if( pList==0 || pList->nExpr!=1 ) return 0; |
|
2359 if( pExpr->token.n!=3 ) return 0; |
|
2360 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ |
|
2361 seekOp = OP_Rewind; |
|
2362 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ |
|
2363 seekOp = OP_Last; |
|
2364 }else{ |
|
2365 return 0; |
|
2366 } |
|
2367 pExpr = pList->a[0].pExpr; |
|
2368 if( pExpr->op!=TK_COLUMN ) return 0; |
|
2369 iCol = pExpr->iColumn; |
|
2370 pTab = pSrc->a[0].pTab; |
|
2371 |
|
2372 |
|
2373 /* If we get to here, it means the query is of the correct form. |
|
2374 ** Check to make sure we have an index and make pIdx point to the |
|
2375 ** appropriate index. If the min() or max() is on an INTEGER PRIMARY |
|
2376 ** key column, no index is necessary so set pIdx to NULL. If no |
|
2377 ** usable index is found, return 0. |
|
2378 */ |
|
2379 if( iCol<0 ){ |
|
2380 pIdx = 0; |
|
2381 }else{ |
|
2382 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); |
|
2383 if( pColl==0 ) return 0; |
|
2384 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
|
2385 assert( pIdx->nColumn>=1 ); |
|
2386 if( pIdx->aiColumn[0]==iCol && |
|
2387 0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){ |
|
2388 break; |
|
2389 } |
|
2390 } |
|
2391 if( pIdx==0 ) return 0; |
|
2392 } |
|
2393 |
|
2394 /* Identify column types if we will be using the callback. This |
|
2395 ** step is skipped if the output is going to a table or a memory cell. |
|
2396 ** The column names have already been generated in the calling function. |
|
2397 */ |
|
2398 v = sqlite3GetVdbe(pParse); |
|
2399 if( v==0 ) return 0; |
|
2400 |
|
2401 /* If the output is destined for a temporary table, open that table. |
|
2402 */ |
|
2403 if( eDest==SRT_EphemTab ){ |
|
2404 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1); |
|
2405 } |
|
2406 |
|
2407 /* Generating code to find the min or the max. Basically all we have |
|
2408 ** to do is find the first or the last entry in the chosen index. If |
|
2409 ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first |
|
2410 ** or last entry in the main table. |
|
2411 */ |
|
2412 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
|
2413 assert( iDb>=0 || pTab->isEphem ); |
|
2414 sqlite3CodeVerifySchema(pParse, iDb); |
|
2415 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
|
2416 base = pSrc->a[0].iCursor; |
|
2417 brk = sqlite3VdbeMakeLabel(v); |
|
2418 computeLimitRegisters(pParse, p, brk); |
|
2419 if( pSrc->a[0].pSelect==0 ){ |
|
2420 sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead); |
|
2421 } |
|
2422 if( pIdx==0 ){ |
|
2423 sqlite3VdbeAddOp(v, seekOp, base, 0); |
|
2424 }else{ |
|
2425 /* Even though the cursor used to open the index here is closed |
|
2426 ** as soon as a single value has been read from it, allocate it |
|
2427 ** using (pParse->nTab++) to prevent the cursor id from being |
|
2428 ** reused. This is important for statements of the form |
|
2429 ** "INSERT INTO x SELECT max() FROM x". |
|
2430 */ |
|
2431 int iIdx; |
|
2432 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); |
|
2433 iIdx = pParse->nTab++; |
|
2434 assert( pIdx->pSchema==pTab->pSchema ); |
|
2435 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); |
|
2436 sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, |
|
2437 (char*)pKey, P3_KEYINFO_HANDOFF); |
|
2438 if( seekOp==OP_Rewind ){ |
|
2439 sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
|
2440 sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0); |
|
2441 seekOp = OP_MoveGt; |
|
2442 } |
|
2443 sqlite3VdbeAddOp(v, seekOp, iIdx, 0); |
|
2444 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0); |
|
2445 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); |
|
2446 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); |
|
2447 } |
|
2448 eList.nExpr = 1; |
|
2449 memset(&eListItem, 0, sizeof(eListItem)); |
|
2450 eList.a = &eListItem; |
|
2451 eList.a[0].pExpr = pExpr; |
|
2452 selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0); |
|
2453 sqlite3VdbeResolveLabel(v, brk); |
|
2454 sqlite3VdbeAddOp(v, OP_Close, base, 0); |
|
2455 |
|
2456 return 1; |
|
2457 } |
|
2458 |
|
2459 /* |
|
2460 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return |
|
2461 ** the number of errors seen. |
|
2462 ** |
|
2463 ** An ORDER BY or GROUP BY is a list of expressions. If any expression |
|
2464 ** is an integer constant, then that expression is replaced by the |
|
2465 ** corresponding entry in the result set. |
|
2466 */ |
|
2467 static int processOrderGroupBy( |
|
2468 NameContext *pNC, /* Name context of the SELECT statement. */ |
|
2469 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ |
|
2470 const char *zType /* Either "ORDER" or "GROUP", as appropriate */ |
|
2471 ){ |
|
2472 int i; |
|
2473 ExprList *pEList = pNC->pEList; /* The result set of the SELECT */ |
|
2474 Parse *pParse = pNC->pParse; /* The result set of the SELECT */ |
|
2475 assert( pEList ); |
|
2476 |
|
2477 if( pOrderBy==0 ) return 0; |
|
2478 for(i=0; i<pOrderBy->nExpr; i++){ |
|
2479 int iCol; |
|
2480 Expr *pE = pOrderBy->a[i].pExpr; |
|
2481 if( sqlite3ExprIsInteger(pE, &iCol) ){ |
|
2482 if( iCol>0 && iCol<=pEList->nExpr ){ |
|
2483 sqlite3ExprDelete(pE); |
|
2484 pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr); |
|
2485 }else{ |
|
2486 sqlite3ErrorMsg(pParse, |
|
2487 "%s BY column number %d out of range - should be " |
|
2488 "between 1 and %d", zType, iCol, pEList->nExpr); |
|
2489 return 1; |
|
2490 } |
|
2491 } |
|
2492 if( sqlite3ExprResolveNames(pNC, pE) ){ |
|
2493 return 1; |
|
2494 } |
|
2495 } |
|
2496 return 0; |
|
2497 } |
|
2498 |
|
2499 /* |
|
2500 ** This routine resolves any names used in the result set of the |
|
2501 ** supplied SELECT statement. If the SELECT statement being resolved |
|
2502 ** is a sub-select, then pOuterNC is a pointer to the NameContext |
|
2503 ** of the parent SELECT. |
|
2504 */ |
|
2505 int sqlite3SelectResolve( |
|
2506 Parse *pParse, /* The parser context */ |
|
2507 Select *p, /* The SELECT statement being coded. */ |
|
2508 NameContext *pOuterNC /* The outer name context. May be NULL. */ |
|
2509 ){ |
|
2510 ExprList *pEList; /* Result set. */ |
|
2511 int i; /* For-loop variable used in multiple places */ |
|
2512 NameContext sNC; /* Local name-context */ |
|
2513 ExprList *pGroupBy; /* The group by clause */ |
|
2514 |
|
2515 /* If this routine has run before, return immediately. */ |
|
2516 if( p->isResolved ){ |
|
2517 assert( !pOuterNC ); |
|
2518 return SQLITE_OK; |
|
2519 } |
|
2520 p->isResolved = 1; |
|
2521 |
|
2522 /* If there have already been errors, do nothing. */ |
|
2523 if( pParse->nErr>0 ){ |
|
2524 return SQLITE_ERROR; |
|
2525 } |
|
2526 |
|
2527 /* Prepare the select statement. This call will allocate all cursors |
|
2528 ** required to handle the tables and subqueries in the FROM clause. |
|
2529 */ |
|
2530 if( prepSelectStmt(pParse, p) ){ |
|
2531 return SQLITE_ERROR; |
|
2532 } |
|
2533 |
|
2534 /* Resolve the expressions in the LIMIT and OFFSET clauses. These |
|
2535 ** are not allowed to refer to any names, so pass an empty NameContext. |
|
2536 */ |
|
2537 memset(&sNC, 0, sizeof(sNC)); |
|
2538 sNC.pParse = pParse; |
|
2539 if( sqlite3ExprResolveNames(&sNC, p->pLimit) || |
|
2540 sqlite3ExprResolveNames(&sNC, p->pOffset) ){ |
|
2541 return SQLITE_ERROR; |
|
2542 } |
|
2543 |
|
2544 /* Set up the local name-context to pass to ExprResolveNames() to |
|
2545 ** resolve the expression-list. |
|
2546 */ |
|
2547 sNC.allowAgg = 1; |
|
2548 sNC.pSrcList = p->pSrc; |
|
2549 sNC.pNext = pOuterNC; |
|
2550 |
|
2551 /* Resolve names in the result set. */ |
|
2552 pEList = p->pEList; |
|
2553 if( !pEList ) return SQLITE_ERROR; |
|
2554 for(i=0; i<pEList->nExpr; i++){ |
|
2555 Expr *pX = pEList->a[i].pExpr; |
|
2556 if( sqlite3ExprResolveNames(&sNC, pX) ){ |
|
2557 return SQLITE_ERROR; |
|
2558 } |
|
2559 } |
|
2560 |
|
2561 /* If there are no aggregate functions in the result-set, and no GROUP BY |
|
2562 ** expression, do not allow aggregates in any of the other expressions. |
|
2563 */ |
|
2564 assert( !p->isAgg ); |
|
2565 pGroupBy = p->pGroupBy; |
|
2566 if( pGroupBy || sNC.hasAgg ){ |
|
2567 p->isAgg = 1; |
|
2568 }else{ |
|
2569 sNC.allowAgg = 0; |
|
2570 } |
|
2571 |
|
2572 /* If a HAVING clause is present, then there must be a GROUP BY clause. |
|
2573 */ |
|
2574 if( p->pHaving && !pGroupBy ){ |
|
2575 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); |
|
2576 return SQLITE_ERROR; |
|
2577 } |
|
2578 |
|
2579 /* Add the expression list to the name-context before parsing the |
|
2580 ** other expressions in the SELECT statement. This is so that |
|
2581 ** expressions in the WHERE clause (etc.) can refer to expressions by |
|
2582 ** aliases in the result set. |
|
2583 ** |
|
2584 ** Minor point: If this is the case, then the expression will be |
|
2585 ** re-evaluated for each reference to it. |
|
2586 */ |
|
2587 sNC.pEList = p->pEList; |
|
2588 if( sqlite3ExprResolveNames(&sNC, p->pWhere) || |
|
2589 sqlite3ExprResolveNames(&sNC, p->pHaving) || |
|
2590 processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") || |
|
2591 processOrderGroupBy(&sNC, pGroupBy, "GROUP") |
|
2592 ){ |
|
2593 return SQLITE_ERROR; |
|
2594 } |
|
2595 |
|
2596 /* Make sure the GROUP BY clause does not contain aggregate functions. |
|
2597 */ |
|
2598 if( pGroupBy ){ |
|
2599 struct ExprList_item *pItem; |
|
2600 |
|
2601 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ |
|
2602 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ |
|
2603 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " |
|
2604 "the GROUP BY clause"); |
|
2605 return SQLITE_ERROR; |
|
2606 } |
|
2607 } |
|
2608 } |
|
2609 |
|
2610 return SQLITE_OK; |
|
2611 } |
|
2612 |
|
2613 /* |
|
2614 ** Reset the aggregate accumulator. |
|
2615 ** |
|
2616 ** The aggregate accumulator is a set of memory cells that hold |
|
2617 ** intermediate results while calculating an aggregate. This |
|
2618 ** routine simply stores NULLs in all of those memory cells. |
|
2619 */ |
|
2620 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
|
2621 Vdbe *v = pParse->pVdbe; |
|
2622 int i; |
|
2623 struct AggInfo_func *pFunc; |
|
2624 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ |
|
2625 return; |
|
2626 } |
|
2627 for(i=0; i<pAggInfo->nColumn; i++){ |
|
2628 sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0); |
|
2629 } |
|
2630 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ |
|
2631 sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0); |
|
2632 if( pFunc->iDistinct>=0 ){ |
|
2633 Expr *pE = pFunc->pExpr; |
|
2634 if( pE->pList==0 || pE->pList->nExpr!=1 ){ |
|
2635 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " |
|
2636 "by an expression"); |
|
2637 pFunc->iDistinct = -1; |
|
2638 }else{ |
|
2639 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); |
|
2640 sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, |
|
2641 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
|
2642 } |
|
2643 } |
|
2644 } |
|
2645 } |
|
2646 |
|
2647 /* |
|
2648 ** Invoke the OP_AggFinalize opcode for every aggregate function |
|
2649 ** in the AggInfo structure. |
|
2650 */ |
|
2651 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ |
|
2652 Vdbe *v = pParse->pVdbe; |
|
2653 int i; |
|
2654 struct AggInfo_func *pF; |
|
2655 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
|
2656 ExprList *pList = pF->pExpr->pList; |
|
2657 sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, |
|
2658 (void*)pF->pFunc, P3_FUNCDEF); |
|
2659 } |
|
2660 } |
|
2661 |
|
2662 /* |
|
2663 ** Update the accumulator memory cells for an aggregate based on |
|
2664 ** the current cursor position. |
|
2665 */ |
|
2666 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
|
2667 Vdbe *v = pParse->pVdbe; |
|
2668 int i; |
|
2669 struct AggInfo_func *pF; |
|
2670 struct AggInfo_col *pC; |
|
2671 |
|
2672 pAggInfo->directMode = 1; |
|
2673 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
|
2674 int nArg; |
|
2675 int addrNext = 0; |
|
2676 ExprList *pList = pF->pExpr->pList; |
|
2677 if( pList ){ |
|
2678 nArg = pList->nExpr; |
|
2679 sqlite3ExprCodeExprList(pParse, pList); |
|
2680 }else{ |
|
2681 nArg = 0; |
|
2682 } |
|
2683 if( pF->iDistinct>=0 ){ |
|
2684 addrNext = sqlite3VdbeMakeLabel(v); |
|
2685 assert( nArg==1 ); |
|
2686 codeDistinct(v, pF->iDistinct, addrNext, 1); |
|
2687 } |
|
2688 if( pF->pFunc->needCollSeq ){ |
|
2689 CollSeq *pColl = 0; |
|
2690 struct ExprList_item *pItem; |
|
2691 int j; |
|
2692 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ |
|
2693 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ |
|
2694 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
|
2695 } |
|
2696 if( !pColl ){ |
|
2697 pColl = pParse->db->pDfltColl; |
|
2698 } |
|
2699 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); |
|
2700 } |
|
2701 sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF); |
|
2702 if( addrNext ){ |
|
2703 sqlite3VdbeResolveLabel(v, addrNext); |
|
2704 } |
|
2705 } |
|
2706 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ |
|
2707 sqlite3ExprCode(pParse, pC->pExpr); |
|
2708 sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1); |
|
2709 } |
|
2710 pAggInfo->directMode = 0; |
|
2711 } |
|
2712 |
|
2713 |
|
2714 /* |
|
2715 ** Generate code for the given SELECT statement. |
|
2716 ** |
|
2717 ** The results are distributed in various ways depending on the |
|
2718 ** value of eDest and iParm. |
|
2719 ** |
|
2720 ** eDest Value Result |
|
2721 ** ------------ ------------------------------------------- |
|
2722 ** SRT_Callback Invoke the callback for each row of the result. |
|
2723 ** |
|
2724 ** SRT_Mem Store first result in memory cell iParm |
|
2725 ** |
|
2726 ** SRT_Set Store results as keys of table iParm. |
|
2727 ** |
|
2728 ** SRT_Union Store results as a key in a temporary table iParm |
|
2729 ** |
|
2730 ** SRT_Except Remove results from the temporary table iParm. |
|
2731 ** |
|
2732 ** SRT_Table Store results in temporary table iParm |
|
2733 ** |
|
2734 ** The table above is incomplete. Additional eDist value have be added |
|
2735 ** since this comment was written. See the selectInnerLoop() function for |
|
2736 ** a complete listing of the allowed values of eDest and their meanings. |
|
2737 ** |
|
2738 ** This routine returns the number of errors. If any errors are |
|
2739 ** encountered, then an appropriate error message is left in |
|
2740 ** pParse->zErrMsg. |
|
2741 ** |
|
2742 ** This routine does NOT free the Select structure passed in. The |
|
2743 ** calling function needs to do that. |
|
2744 ** |
|
2745 ** The pParent, parentTab, and *pParentAgg fields are filled in if this |
|
2746 ** SELECT is a subquery. This routine may try to combine this SELECT |
|
2747 ** with its parent to form a single flat query. In so doing, it might |
|
2748 ** change the parent query from a non-aggregate to an aggregate query. |
|
2749 ** For that reason, the pParentAgg flag is passed as a pointer, so it |
|
2750 ** can be changed. |
|
2751 ** |
|
2752 ** Example 1: The meaning of the pParent parameter. |
|
2753 ** |
|
2754 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; |
|
2755 ** \ \_______ subquery _______/ / |
|
2756 ** \ / |
|
2757 ** \____________________ outer query ___________________/ |
|
2758 ** |
|
2759 ** This routine is called for the outer query first. For that call, |
|
2760 ** pParent will be NULL. During the processing of the outer query, this |
|
2761 ** routine is called recursively to handle the subquery. For the recursive |
|
2762 ** call, pParent will point to the outer query. Because the subquery is |
|
2763 ** the second element in a three-way join, the parentTab parameter will |
|
2764 ** be 1 (the 2nd value of a 0-indexed array.) |
|
2765 */ |
|
2766 int sqlite3Select( |
|
2767 Parse *pParse, /* The parser context */ |
|
2768 Select *p, /* The SELECT statement being coded. */ |
|
2769 int eDest, /* How to dispose of the results */ |
|
2770 int iParm, /* A parameter used by the eDest disposal method */ |
|
2771 Select *pParent, /* Another SELECT for which this is a sub-query */ |
|
2772 int parentTab, /* Index in pParent->pSrc of this query */ |
|
2773 int *pParentAgg, /* True if pParent uses aggregate functions */ |
|
2774 char *aff /* If eDest is SRT_Union, the affinity string */ |
|
2775 ){ |
|
2776 int i, j; /* Loop counters */ |
|
2777 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ |
|
2778 Vdbe *v; /* The virtual machine under construction */ |
|
2779 int isAgg; /* True for select lists like "count(*)" */ |
|
2780 ExprList *pEList; /* List of columns to extract. */ |
|
2781 SrcList *pTabList; /* List of tables to select from */ |
|
2782 Expr *pWhere; /* The WHERE clause. May be NULL */ |
|
2783 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ |
|
2784 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ |
|
2785 Expr *pHaving; /* The HAVING clause. May be NULL */ |
|
2786 int isDistinct; /* True if the DISTINCT keyword is present */ |
|
2787 int distinct; /* Table to use for the distinct set */ |
|
2788 int rc = 1; /* Value to return from this function */ |
|
2789 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ |
|
2790 AggInfo sAggInfo; /* Information used by aggregate queries */ |
|
2791 int iEnd; /* Address of the end of the query */ |
|
2792 |
|
2793 if( p==0 || sqlite3MallocFailed() || pParse->nErr ){ |
|
2794 return 1; |
|
2795 } |
|
2796 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; |
|
2797 memset(&sAggInfo, 0, sizeof(sAggInfo)); |
|
2798 |
|
2799 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
2800 /* If there is are a sequence of queries, do the earlier ones first. |
|
2801 */ |
|
2802 if( p->pPrior ){ |
|
2803 if( p->pRightmost==0 ){ |
|
2804 Select *pLoop; |
|
2805 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ |
|
2806 pLoop->pRightmost = p; |
|
2807 } |
|
2808 } |
|
2809 return multiSelect(pParse, p, eDest, iParm, aff); |
|
2810 } |
|
2811 #endif |
|
2812 |
|
2813 pOrderBy = p->pOrderBy; |
|
2814 if( IgnorableOrderby(eDest) ){ |
|
2815 p->pOrderBy = 0; |
|
2816 } |
|
2817 if( sqlite3SelectResolve(pParse, p, 0) ){ |
|
2818 goto select_end; |
|
2819 } |
|
2820 p->pOrderBy = pOrderBy; |
|
2821 |
|
2822 /* Make local copies of the parameters for this query. |
|
2823 */ |
|
2824 pTabList = p->pSrc; |
|
2825 pWhere = p->pWhere; |
|
2826 pGroupBy = p->pGroupBy; |
|
2827 pHaving = p->pHaving; |
|
2828 isAgg = p->isAgg; |
|
2829 isDistinct = p->isDistinct; |
|
2830 pEList = p->pEList; |
|
2831 if( pEList==0 ) goto select_end; |
|
2832 |
|
2833 /* |
|
2834 ** Do not even attempt to generate any code if we have already seen |
|
2835 ** errors before this routine starts. |
|
2836 */ |
|
2837 if( pParse->nErr>0 ) goto select_end; |
|
2838 |
|
2839 /* If writing to memory or generating a set |
|
2840 ** only a single column may be output. |
|
2841 */ |
|
2842 #ifndef SQLITE_OMIT_SUBQUERY |
|
2843 if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){ |
|
2844 sqlite3ErrorMsg(pParse, "only a single result allowed for " |
|
2845 "a SELECT that is part of an expression"); |
|
2846 goto select_end; |
|
2847 } |
|
2848 #endif |
|
2849 |
|
2850 /* ORDER BY is ignored for some destinations. |
|
2851 */ |
|
2852 if( IgnorableOrderby(eDest) ){ |
|
2853 pOrderBy = 0; |
|
2854 } |
|
2855 |
|
2856 /* Begin generating code. |
|
2857 */ |
|
2858 v = sqlite3GetVdbe(pParse); |
|
2859 if( v==0 ) goto select_end; |
|
2860 |
|
2861 /* Generate code for all sub-queries in the FROM clause |
|
2862 */ |
|
2863 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
|
2864 for(i=0; i<pTabList->nSrc; i++){ |
|
2865 const char *zSavedAuthContext = 0; |
|
2866 int needRestoreContext; |
|
2867 struct SrcList_item *pItem = &pTabList->a[i]; |
|
2868 |
|
2869 if( pItem->pSelect==0 || pItem->isPopulated ) continue; |
|
2870 if( pItem->zName!=0 ){ |
|
2871 zSavedAuthContext = pParse->zAuthContext; |
|
2872 pParse->zAuthContext = pItem->zName; |
|
2873 needRestoreContext = 1; |
|
2874 }else{ |
|
2875 needRestoreContext = 0; |
|
2876 } |
|
2877 sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, |
|
2878 pItem->iCursor, p, i, &isAgg, 0); |
|
2879 if( needRestoreContext ){ |
|
2880 pParse->zAuthContext = zSavedAuthContext; |
|
2881 } |
|
2882 pTabList = p->pSrc; |
|
2883 pWhere = p->pWhere; |
|
2884 if( !IgnorableOrderby(eDest) ){ |
|
2885 pOrderBy = p->pOrderBy; |
|
2886 } |
|
2887 pGroupBy = p->pGroupBy; |
|
2888 pHaving = p->pHaving; |
|
2889 isDistinct = p->isDistinct; |
|
2890 } |
|
2891 #endif |
|
2892 |
|
2893 /* Check for the special case of a min() or max() function by itself |
|
2894 ** in the result set. |
|
2895 */ |
|
2896 if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){ |
|
2897 rc = 0; |
|
2898 goto select_end; |
|
2899 } |
|
2900 |
|
2901 /* Check to see if this is a subquery that can be "flattened" into its parent. |
|
2902 ** If flattening is a possiblity, do so and return immediately. |
|
2903 */ |
|
2904 #ifndef SQLITE_OMIT_VIEW |
|
2905 if( pParent && pParentAgg && |
|
2906 flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){ |
|
2907 if( isAgg ) *pParentAgg = 1; |
|
2908 goto select_end; |
|
2909 } |
|
2910 #endif |
|
2911 |
|
2912 /* If there is an ORDER BY clause, resolve any collation sequences |
|
2913 ** names that have been explicitly specified and create a sorting index. |
|
2914 ** |
|
2915 ** This sorting index might end up being unused if the data can be |
|
2916 ** extracted in pre-sorted order. If that is the case, then the |
|
2917 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once |
|
2918 ** we figure out that the sorting index is not needed. The addrSortIndex |
|
2919 ** variable is used to facilitate that change. |
|
2920 */ |
|
2921 if( pOrderBy ){ |
|
2922 struct ExprList_item *pTerm; |
|
2923 KeyInfo *pKeyInfo; |
|
2924 for(i=0, pTerm=pOrderBy->a; i<pOrderBy->nExpr; i++, pTerm++){ |
|
2925 if( pTerm->zName ){ |
|
2926 pTerm->pExpr->pColl = sqlite3LocateCollSeq(pParse, pTerm->zName, -1); |
|
2927 } |
|
2928 } |
|
2929 if( pParse->nErr ){ |
|
2930 goto select_end; |
|
2931 } |
|
2932 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); |
|
2933 pOrderBy->iECursor = pParse->nTab++; |
|
2934 p->addrOpenEphm[2] = addrSortIndex = |
|
2935 sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
|
2936 }else{ |
|
2937 addrSortIndex = -1; |
|
2938 } |
|
2939 |
|
2940 /* If the output is destined for a temporary table, open that table. |
|
2941 */ |
|
2942 if( eDest==SRT_EphemTab ){ |
|
2943 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr); |
|
2944 } |
|
2945 |
|
2946 /* Set the limiter. |
|
2947 */ |
|
2948 iEnd = sqlite3VdbeMakeLabel(v); |
|
2949 computeLimitRegisters(pParse, p, iEnd); |
|
2950 |
|
2951 /* Open a virtual index to use for the distinct set. |
|
2952 */ |
|
2953 if( isDistinct ){ |
|
2954 KeyInfo *pKeyInfo; |
|
2955 distinct = pParse->nTab++; |
|
2956 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); |
|
2957 sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, |
|
2958 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
|
2959 }else{ |
|
2960 distinct = -1; |
|
2961 } |
|
2962 |
|
2963 /* Aggregate and non-aggregate queries are handled differently */ |
|
2964 if( !isAgg && pGroupBy==0 ){ |
|
2965 /* This case is for non-aggregate queries |
|
2966 ** Begin the database scan |
|
2967 */ |
|
2968 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy); |
|
2969 if( pWInfo==0 ) goto select_end; |
|
2970 |
|
2971 /* If sorting index that was created by a prior OP_OpenEphemeral |
|
2972 ** instruction ended up not being needed, then change the OP_OpenEphemeral |
|
2973 ** into an OP_Noop. |
|
2974 */ |
|
2975 if( addrSortIndex>=0 && pOrderBy==0 ){ |
|
2976 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); |
|
2977 p->addrOpenEphm[2] = -1; |
|
2978 } |
|
2979 |
|
2980 /* Use the standard inner loop |
|
2981 */ |
|
2982 if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest, |
|
2983 iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){ |
|
2984 goto select_end; |
|
2985 } |
|
2986 |
|
2987 /* End the database scan loop. |
|
2988 */ |
|
2989 sqlite3WhereEnd(pWInfo); |
|
2990 }else{ |
|
2991 /* This is the processing for aggregate queries */ |
|
2992 NameContext sNC; /* Name context for processing aggregate information */ |
|
2993 int iAMem; /* First Mem address for storing current GROUP BY */ |
|
2994 int iBMem; /* First Mem address for previous GROUP BY */ |
|
2995 int iUseFlag; /* Mem address holding flag indicating that at least |
|
2996 ** one row of the input to the aggregator has been |
|
2997 ** processed */ |
|
2998 int iAbortFlag; /* Mem address which causes query abort if positive */ |
|
2999 int groupBySort; /* Rows come from source in GROUP BY order */ |
|
3000 |
|
3001 |
|
3002 /* The following variables hold addresses or labels for parts of the |
|
3003 ** virtual machine program we are putting together */ |
|
3004 int addrOutputRow; /* Start of subroutine that outputs a result row */ |
|
3005 int addrSetAbort; /* Set the abort flag and return */ |
|
3006 int addrInitializeLoop; /* Start of code that initializes the input loop */ |
|
3007 int addrTopOfLoop; /* Top of the input loop */ |
|
3008 int addrGroupByChange; /* Code that runs when any GROUP BY term changes */ |
|
3009 int addrProcessRow; /* Code to process a single input row */ |
|
3010 int addrEnd; /* End of all processing */ |
|
3011 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ |
|
3012 int addrReset; /* Subroutine for resetting the accumulator */ |
|
3013 |
|
3014 addrEnd = sqlite3VdbeMakeLabel(v); |
|
3015 |
|
3016 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in |
|
3017 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the |
|
3018 ** SELECT statement. |
|
3019 */ |
|
3020 memset(&sNC, 0, sizeof(sNC)); |
|
3021 sNC.pParse = pParse; |
|
3022 sNC.pSrcList = pTabList; |
|
3023 sNC.pAggInfo = &sAggInfo; |
|
3024 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; |
|
3025 sAggInfo.pGroupBy = pGroupBy; |
|
3026 if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){ |
|
3027 goto select_end; |
|
3028 } |
|
3029 if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){ |
|
3030 goto select_end; |
|
3031 } |
|
3032 if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){ |
|
3033 goto select_end; |
|
3034 } |
|
3035 sAggInfo.nAccumulator = sAggInfo.nColumn; |
|
3036 for(i=0; i<sAggInfo.nFunc; i++){ |
|
3037 if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){ |
|
3038 goto select_end; |
|
3039 } |
|
3040 } |
|
3041 if( sqlite3MallocFailed() ) goto select_end; |
|
3042 |
|
3043 /* Processing for aggregates with GROUP BY is very different and |
|
3044 ** much more complex tha aggregates without a GROUP BY. |
|
3045 */ |
|
3046 if( pGroupBy ){ |
|
3047 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ |
|
3048 |
|
3049 /* Create labels that we will be needing |
|
3050 */ |
|
3051 |
|
3052 addrInitializeLoop = sqlite3VdbeMakeLabel(v); |
|
3053 addrGroupByChange = sqlite3VdbeMakeLabel(v); |
|
3054 addrProcessRow = sqlite3VdbeMakeLabel(v); |
|
3055 |
|
3056 /* If there is a GROUP BY clause we might need a sorting index to |
|
3057 ** implement it. Allocate that sorting index now. If it turns out |
|
3058 ** that we do not need it after all, the OpenEphemeral instruction |
|
3059 ** will be converted into a Noop. |
|
3060 */ |
|
3061 sAggInfo.sortingIdx = pParse->nTab++; |
|
3062 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); |
|
3063 addrSortingIdx = |
|
3064 sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx, |
|
3065 sAggInfo.nSortingColumn, |
|
3066 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); |
|
3067 |
|
3068 /* Initialize memory locations used by GROUP BY aggregate processing |
|
3069 */ |
|
3070 iUseFlag = pParse->nMem++; |
|
3071 iAbortFlag = pParse->nMem++; |
|
3072 iAMem = pParse->nMem; |
|
3073 pParse->nMem += pGroupBy->nExpr; |
|
3074 iBMem = pParse->nMem; |
|
3075 pParse->nMem += pGroupBy->nExpr; |
|
3076 sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag); |
|
3077 VdbeComment((v, "# clear abort flag")); |
|
3078 sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag); |
|
3079 VdbeComment((v, "# indicate accumulator empty")); |
|
3080 sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop); |
|
3081 |
|
3082 /* Generate a subroutine that outputs a single row of the result |
|
3083 ** set. This subroutine first looks at the iUseFlag. If iUseFlag |
|
3084 ** is less than or equal to zero, the subroutine is a no-op. If |
|
3085 ** the processing calls for the query to abort, this subroutine |
|
3086 ** increments the iAbortFlag memory location before returning in |
|
3087 ** order to signal the caller to abort. |
|
3088 */ |
|
3089 addrSetAbort = sqlite3VdbeCurrentAddr(v); |
|
3090 sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag); |
|
3091 VdbeComment((v, "# set abort flag")); |
|
3092 sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
|
3093 addrOutputRow = sqlite3VdbeCurrentAddr(v); |
|
3094 sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2); |
|
3095 VdbeComment((v, "# Groupby result generator entry point")); |
|
3096 sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
|
3097 finalizeAggFunctions(pParse, &sAggInfo); |
|
3098 if( pHaving ){ |
|
3099 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1); |
|
3100 } |
|
3101 rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, |
|
3102 distinct, eDest, iParm, |
|
3103 addrOutputRow+1, addrSetAbort, aff); |
|
3104 if( rc ){ |
|
3105 goto select_end; |
|
3106 } |
|
3107 sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
|
3108 VdbeComment((v, "# end groupby result generator")); |
|
3109 |
|
3110 /* Generate a subroutine that will reset the group-by accumulator |
|
3111 */ |
|
3112 addrReset = sqlite3VdbeCurrentAddr(v); |
|
3113 resetAccumulator(pParse, &sAggInfo); |
|
3114 sqlite3VdbeAddOp(v, OP_Return, 0, 0); |
|
3115 |
|
3116 /* Begin a loop that will extract all source rows in GROUP BY order. |
|
3117 ** This might involve two separate loops with an OP_Sort in between, or |
|
3118 ** it might be a single loop that uses an index to extract information |
|
3119 ** in the right order to begin with. |
|
3120 */ |
|
3121 sqlite3VdbeResolveLabel(v, addrInitializeLoop); |
|
3122 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); |
|
3123 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy); |
|
3124 if( pWInfo==0 ) goto select_end; |
|
3125 if( pGroupBy==0 ){ |
|
3126 /* The optimizer is able to deliver rows in group by order so |
|
3127 ** we do not have to sort. The OP_OpenEphemeral table will be |
|
3128 ** cancelled later because we still need to use the pKeyInfo |
|
3129 */ |
|
3130 pGroupBy = p->pGroupBy; |
|
3131 groupBySort = 0; |
|
3132 }else{ |
|
3133 /* Rows are coming out in undetermined order. We have to push |
|
3134 ** each row into a sorting index, terminate the first loop, |
|
3135 ** then loop over the sorting index in order to get the output |
|
3136 ** in sorted order |
|
3137 */ |
|
3138 groupBySort = 1; |
|
3139 sqlite3ExprCodeExprList(pParse, pGroupBy); |
|
3140 sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0); |
|
3141 j = pGroupBy->nExpr+1; |
|
3142 for(i=0; i<sAggInfo.nColumn; i++){ |
|
3143 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; |
|
3144 if( pCol->iSorterColumn<j ) continue; |
|
3145 if( pCol->iColumn<0 ){ |
|
3146 sqlite3VdbeAddOp(v, OP_Rowid, pCol->iTable, 0); |
|
3147 }else{ |
|
3148 sqlite3VdbeAddOp(v, OP_Column, pCol->iTable, pCol->iColumn); |
|
3149 } |
|
3150 j++; |
|
3151 } |
|
3152 sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0); |
|
3153 sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0); |
|
3154 sqlite3WhereEnd(pWInfo); |
|
3155 sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); |
|
3156 VdbeComment((v, "# GROUP BY sort")); |
|
3157 sAggInfo.useSortingIdx = 1; |
|
3158 } |
|
3159 |
|
3160 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... |
|
3161 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) |
|
3162 ** Then compare the current GROUP BY terms against the GROUP BY terms |
|
3163 ** from the previous row currently stored in a0, a1, a2... |
|
3164 */ |
|
3165 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); |
|
3166 for(j=0; j<pGroupBy->nExpr; j++){ |
|
3167 if( groupBySort ){ |
|
3168 sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j); |
|
3169 }else{ |
|
3170 sAggInfo.directMode = 1; |
|
3171 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr); |
|
3172 } |
|
3173 sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1); |
|
3174 } |
|
3175 for(j=pGroupBy->nExpr-1; j>=0; j--){ |
|
3176 if( j<pGroupBy->nExpr-1 ){ |
|
3177 sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0); |
|
3178 } |
|
3179 sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0); |
|
3180 if( j==0 ){ |
|
3181 sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow); |
|
3182 }else{ |
|
3183 sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange); |
|
3184 } |
|
3185 sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ); |
|
3186 } |
|
3187 |
|
3188 /* Generate code that runs whenever the GROUP BY changes. |
|
3189 ** Change in the GROUP BY are detected by the previous code |
|
3190 ** block. If there were no changes, this block is skipped. |
|
3191 ** |
|
3192 ** This code copies current group by terms in b0,b1,b2,... |
|
3193 ** over to a0,a1,a2. It then calls the output subroutine |
|
3194 ** and resets the aggregate accumulator registers in preparation |
|
3195 ** for the next GROUP BY batch. |
|
3196 */ |
|
3197 sqlite3VdbeResolveLabel(v, addrGroupByChange); |
|
3198 for(j=0; j<pGroupBy->nExpr; j++){ |
|
3199 sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j); |
|
3200 } |
|
3201 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); |
|
3202 VdbeComment((v, "# output one row")); |
|
3203 sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd); |
|
3204 VdbeComment((v, "# check abort flag")); |
|
3205 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); |
|
3206 VdbeComment((v, "# reset accumulator")); |
|
3207 |
|
3208 /* Update the aggregate accumulators based on the content of |
|
3209 ** the current row |
|
3210 */ |
|
3211 sqlite3VdbeResolveLabel(v, addrProcessRow); |
|
3212 updateAccumulator(pParse, &sAggInfo); |
|
3213 sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag); |
|
3214 VdbeComment((v, "# indicate data in accumulator")); |
|
3215 |
|
3216 /* End of the loop |
|
3217 */ |
|
3218 if( groupBySort ){ |
|
3219 sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); |
|
3220 }else{ |
|
3221 sqlite3WhereEnd(pWInfo); |
|
3222 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); |
|
3223 } |
|
3224 |
|
3225 /* Output the final row of result |
|
3226 */ |
|
3227 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); |
|
3228 VdbeComment((v, "# output final row")); |
|
3229 |
|
3230 } /* endif pGroupBy */ |
|
3231 else { |
|
3232 /* This case runs if the aggregate has no GROUP BY clause. The |
|
3233 ** processing is much simpler since there is only a single row |
|
3234 ** of output. |
|
3235 */ |
|
3236 resetAccumulator(pParse, &sAggInfo); |
|
3237 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0); |
|
3238 if( pWInfo==0 ) goto select_end; |
|
3239 updateAccumulator(pParse, &sAggInfo); |
|
3240 sqlite3WhereEnd(pWInfo); |
|
3241 finalizeAggFunctions(pParse, &sAggInfo); |
|
3242 pOrderBy = 0; |
|
3243 if( pHaving ){ |
|
3244 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1); |
|
3245 } |
|
3246 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, |
|
3247 eDest, iParm, addrEnd, addrEnd, aff); |
|
3248 } |
|
3249 sqlite3VdbeResolveLabel(v, addrEnd); |
|
3250 |
|
3251 } /* endif aggregate query */ |
|
3252 |
|
3253 /* If there is an ORDER BY clause, then we need to sort the results |
|
3254 ** and send them to the callback one by one. |
|
3255 */ |
|
3256 if( pOrderBy ){ |
|
3257 generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm); |
|
3258 } |
|
3259 |
|
3260 #ifndef SQLITE_OMIT_SUBQUERY |
|
3261 /* If this was a subquery, we have now converted the subquery into a |
|
3262 ** temporary table. So set the SrcList_item.isPopulated flag to prevent |
|
3263 ** this subquery from being evaluated again and to force the use of |
|
3264 ** the temporary table. |
|
3265 */ |
|
3266 if( pParent ){ |
|
3267 assert( pParent->pSrc->nSrc>parentTab ); |
|
3268 assert( pParent->pSrc->a[parentTab].pSelect==p ); |
|
3269 pParent->pSrc->a[parentTab].isPopulated = 1; |
|
3270 } |
|
3271 #endif |
|
3272 |
|
3273 /* Jump here to skip this query |
|
3274 */ |
|
3275 sqlite3VdbeResolveLabel(v, iEnd); |
|
3276 |
|
3277 /* The SELECT was successfully coded. Set the return code to 0 |
|
3278 ** to indicate no errors. |
|
3279 */ |
|
3280 rc = 0; |
|
3281 |
|
3282 /* Control jumps to here if an error is encountered above, or upon |
|
3283 ** successful coding of the SELECT. |
|
3284 */ |
|
3285 select_end: |
|
3286 |
|
3287 /* Identify column names if we will be using them in a callback. This |
|
3288 ** step is skipped if the output is going to some other destination. |
|
3289 */ |
|
3290 if( rc==SQLITE_OK && eDest==SRT_Callback ){ |
|
3291 generateColumnNames(pParse, pTabList, pEList); |
|
3292 } |
|
3293 |
|
3294 sqliteFree(sAggInfo.aCol); |
|
3295 sqliteFree(sAggInfo.aFunc); |
|
3296 return rc; |
|
3297 } |