|
1 /* |
|
2 ** 2004 April 13 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This file contains routines used to translate between UTF-8, |
|
13 ** UTF-16, UTF-16BE, and UTF-16LE. |
|
14 ** |
|
15 ** $Id: utf.c,v 1.40 2006/07/26 14:57:30 drh Exp $ |
|
16 ** |
|
17 ** Notes on UTF-8: |
|
18 ** |
|
19 ** Byte-0 Byte-1 Byte-2 Byte-3 Value |
|
20 ** 0xxxxxxx 00000000 00000000 0xxxxxxx |
|
21 ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx |
|
22 ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx |
|
23 ** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
|
24 ** |
|
25 ** |
|
26 ** Notes on UTF-16: (with wwww+1==uuuuu) |
|
27 ** |
|
28 ** Word-0 Word-1 Value |
|
29 ** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
|
30 ** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx |
|
31 ** |
|
32 ** |
|
33 ** BOM or Byte Order Mark: |
|
34 ** 0xff 0xfe little-endian utf-16 follows |
|
35 ** 0xfe 0xff big-endian utf-16 follows |
|
36 ** |
|
37 ** |
|
38 ** Handling of malformed strings: |
|
39 ** |
|
40 ** SQLite accepts and processes malformed strings without an error wherever |
|
41 ** possible. However this is not possible when converting between UTF-8 and |
|
42 ** UTF-16. |
|
43 ** |
|
44 ** When converting malformed UTF-8 strings to UTF-16, one instance of the |
|
45 ** replacement character U+FFFD for each byte that cannot be interpeted as |
|
46 ** part of a valid unicode character. |
|
47 ** |
|
48 ** When converting malformed UTF-16 strings to UTF-8, one instance of the |
|
49 ** replacement character U+FFFD for each pair of bytes that cannot be |
|
50 ** interpeted as part of a valid unicode character. |
|
51 ** |
|
52 ** This file contains the following public routines: |
|
53 ** |
|
54 ** sqlite3VdbeMemTranslate() - Translate the encoding used by a Mem* string. |
|
55 ** sqlite3VdbeMemHandleBom() - Handle byte-order-marks in UTF16 Mem* strings. |
|
56 ** sqlite3utf16ByteLen() - Calculate byte-length of a void* UTF16 string. |
|
57 ** sqlite3utf8CharLen() - Calculate char-length of a char* UTF8 string. |
|
58 ** sqlite3utf8LikeCompare() - Do a LIKE match given two UTF8 char* strings. |
|
59 ** |
|
60 */ |
|
61 #include "sqliteInt.h" |
|
62 #include <assert.h> |
|
63 #include "vdbeInt.h" |
|
64 |
|
65 /* |
|
66 ** This table maps from the first byte of a UTF-8 character to the number |
|
67 ** of trailing bytes expected. A value '255' indicates that the table key |
|
68 ** is not a legal first byte for a UTF-8 character. |
|
69 */ |
|
70 static const u8 xtra_utf8_bytes[256] = { |
|
71 /* 0xxxxxxx */ |
|
72 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
73 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
74 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
75 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
76 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
77 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
78 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
79 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
80 |
|
81 /* 10wwwwww */ |
|
82 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
|
83 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
|
84 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
|
85 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
|
86 |
|
87 /* 110yyyyy */ |
|
88 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
|
89 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
|
90 |
|
91 /* 1110zzzz */ |
|
92 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
93 |
|
94 /* 11110yyy */ |
|
95 3, 3, 3, 3, 3, 3, 3, 3, 255, 255, 255, 255, 255, 255, 255, 255, |
|
96 }; |
|
97 |
|
98 /* |
|
99 ** This table maps from the number of trailing bytes in a UTF-8 character |
|
100 ** to an integer constant that is effectively calculated for each character |
|
101 ** read by a naive implementation of a UTF-8 character reader. The code |
|
102 ** in the READ_UTF8 macro explains things best. |
|
103 */ |
|
104 static const int xtra_utf8_bits[4] = { |
|
105 0, |
|
106 12416, /* (0xC0 << 6) + (0x80) */ |
|
107 925824, /* (0xE0 << 12) + (0x80 << 6) + (0x80) */ |
|
108 63447168 /* (0xF0 << 18) + (0x80 << 12) + (0x80 << 6) + 0x80 */ |
|
109 }; |
|
110 |
|
111 #define READ_UTF8(zIn, c) { \ |
|
112 int xtra; \ |
|
113 c = *(zIn)++; \ |
|
114 xtra = xtra_utf8_bytes[c]; \ |
|
115 switch( xtra ){ \ |
|
116 case 255: c = (int)0xFFFD; break; \ |
|
117 case 3: c = (c<<6) + *(zIn)++; \ |
|
118 case 2: c = (c<<6) + *(zIn)++; \ |
|
119 case 1: c = (c<<6) + *(zIn)++; \ |
|
120 c -= xtra_utf8_bits[xtra]; \ |
|
121 } \ |
|
122 } |
|
123 int sqlite3ReadUtf8(const unsigned char *z){ |
|
124 int c; |
|
125 READ_UTF8(z, c); |
|
126 return c; |
|
127 } |
|
128 |
|
129 #define SKIP_UTF8(zIn) { \ |
|
130 zIn += (xtra_utf8_bytes[*(u8 *)zIn] + 1); \ |
|
131 } |
|
132 |
|
133 #define WRITE_UTF8(zOut, c) { \ |
|
134 if( c<0x00080 ){ \ |
|
135 *zOut++ = (c&0xFF); \ |
|
136 } \ |
|
137 else if( c<0x00800 ){ \ |
|
138 *zOut++ = 0xC0 + ((c>>6)&0x1F); \ |
|
139 *zOut++ = 0x80 + (c & 0x3F); \ |
|
140 } \ |
|
141 else if( c<0x10000 ){ \ |
|
142 *zOut++ = 0xE0 + ((c>>12)&0x0F); \ |
|
143 *zOut++ = 0x80 + ((c>>6) & 0x3F); \ |
|
144 *zOut++ = 0x80 + (c & 0x3F); \ |
|
145 }else{ \ |
|
146 *zOut++ = 0xF0 + ((c>>18) & 0x07); \ |
|
147 *zOut++ = 0x80 + ((c>>12) & 0x3F); \ |
|
148 *zOut++ = 0x80 + ((c>>6) & 0x3F); \ |
|
149 *zOut++ = 0x80 + (c & 0x3F); \ |
|
150 } \ |
|
151 } |
|
152 |
|
153 #define WRITE_UTF16LE(zOut, c) { \ |
|
154 if( c<=0xFFFF ){ \ |
|
155 *zOut++ = (c&0x00FF); \ |
|
156 *zOut++ = ((c>>8)&0x00FF); \ |
|
157 }else{ \ |
|
158 *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ |
|
159 *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \ |
|
160 *zOut++ = (c&0x00FF); \ |
|
161 *zOut++ = (0x00DC + ((c>>8)&0x03)); \ |
|
162 } \ |
|
163 } |
|
164 |
|
165 #define WRITE_UTF16BE(zOut, c) { \ |
|
166 if( c<=0xFFFF ){ \ |
|
167 *zOut++ = ((c>>8)&0x00FF); \ |
|
168 *zOut++ = (c&0x00FF); \ |
|
169 }else{ \ |
|
170 *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \ |
|
171 *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ |
|
172 *zOut++ = (0x00DC + ((c>>8)&0x03)); \ |
|
173 *zOut++ = (c&0x00FF); \ |
|
174 } \ |
|
175 } |
|
176 |
|
177 #define READ_UTF16LE(zIn, c){ \ |
|
178 c = (*zIn++); \ |
|
179 c += ((*zIn++)<<8); \ |
|
180 if( c>=0xD800 && c<=0xE000 ){ \ |
|
181 int c2 = (*zIn++); \ |
|
182 c2 += ((*zIn++)<<8); \ |
|
183 c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ |
|
184 } \ |
|
185 } |
|
186 |
|
187 #define READ_UTF16BE(zIn, c){ \ |
|
188 c = ((*zIn++)<<8); \ |
|
189 c += (*zIn++); \ |
|
190 if( c>=0xD800 && c<=0xE000 ){ \ |
|
191 int c2 = ((*zIn++)<<8); \ |
|
192 c2 += (*zIn++); \ |
|
193 c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ |
|
194 } \ |
|
195 } |
|
196 |
|
197 #define SKIP_UTF16BE(zIn){ \ |
|
198 if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){ \ |
|
199 zIn += 4; \ |
|
200 }else{ \ |
|
201 zIn += 2; \ |
|
202 } \ |
|
203 } |
|
204 #define SKIP_UTF16LE(zIn){ \ |
|
205 zIn++; \ |
|
206 if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){ \ |
|
207 zIn += 3; \ |
|
208 }else{ \ |
|
209 zIn += 1; \ |
|
210 } \ |
|
211 } |
|
212 |
|
213 #define RSKIP_UTF16LE(zIn){ \ |
|
214 if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){ \ |
|
215 zIn -= 4; \ |
|
216 }else{ \ |
|
217 zIn -= 2; \ |
|
218 } \ |
|
219 } |
|
220 #define RSKIP_UTF16BE(zIn){ \ |
|
221 zIn--; \ |
|
222 if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){ \ |
|
223 zIn -= 3; \ |
|
224 }else{ \ |
|
225 zIn -= 1; \ |
|
226 } \ |
|
227 } |
|
228 |
|
229 /* |
|
230 ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is |
|
231 ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate(). |
|
232 */ |
|
233 /* #define TRANSLATE_TRACE 1 */ |
|
234 |
|
235 #ifndef SQLITE_OMIT_UTF16 |
|
236 /* |
|
237 ** This routine transforms the internal text encoding used by pMem to |
|
238 ** desiredEnc. It is an error if the string is already of the desired |
|
239 ** encoding, or if *pMem does not contain a string value. |
|
240 */ |
|
241 int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ |
|
242 unsigned char zShort[NBFS]; /* Temporary short output buffer */ |
|
243 int len; /* Maximum length of output string in bytes */ |
|
244 unsigned char *zOut; /* Output buffer */ |
|
245 unsigned char *zIn; /* Input iterator */ |
|
246 unsigned char *zTerm; /* End of input */ |
|
247 unsigned char *z; /* Output iterator */ |
|
248 int c; |
|
249 |
|
250 assert( pMem->flags&MEM_Str ); |
|
251 assert( pMem->enc!=desiredEnc ); |
|
252 assert( pMem->enc!=0 ); |
|
253 assert( pMem->n>=0 ); |
|
254 |
|
255 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) |
|
256 { |
|
257 char zBuf[100]; |
|
258 sqlite3VdbeMemPrettyPrint(pMem, zBuf); |
|
259 fprintf(stderr, "INPUT: %s\n", zBuf); |
|
260 } |
|
261 #endif |
|
262 |
|
263 /* If the translation is between UTF-16 little and big endian, then |
|
264 ** all that is required is to swap the byte order. This case is handled |
|
265 ** differently from the others. |
|
266 */ |
|
267 if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ |
|
268 u8 temp; |
|
269 int rc; |
|
270 rc = sqlite3VdbeMemMakeWriteable(pMem); |
|
271 if( rc!=SQLITE_OK ){ |
|
272 assert( rc==SQLITE_NOMEM ); |
|
273 return SQLITE_NOMEM; |
|
274 } |
|
275 zIn = (u8*)pMem->z; |
|
276 zTerm = &zIn[pMem->n]; |
|
277 while( zIn<zTerm ){ |
|
278 temp = *zIn; |
|
279 *zIn = *(zIn+1); |
|
280 zIn++; |
|
281 *zIn++ = temp; |
|
282 } |
|
283 pMem->enc = desiredEnc; |
|
284 goto translate_out; |
|
285 } |
|
286 |
|
287 /* Set len to the maximum number of bytes required in the output buffer. */ |
|
288 if( desiredEnc==SQLITE_UTF8 ){ |
|
289 /* When converting from UTF-16, the maximum growth results from |
|
290 ** translating a 2-byte character to a 4-byte UTF-8 character. |
|
291 ** A single byte is required for the output string |
|
292 ** nul-terminator. |
|
293 */ |
|
294 len = pMem->n * 2 + 1; |
|
295 }else{ |
|
296 /* When converting from UTF-8 to UTF-16 the maximum growth is caused |
|
297 ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 |
|
298 ** character. Two bytes are required in the output buffer for the |
|
299 ** nul-terminator. |
|
300 */ |
|
301 len = pMem->n * 2 + 2; |
|
302 } |
|
303 |
|
304 /* Set zIn to point at the start of the input buffer and zTerm to point 1 |
|
305 ** byte past the end. |
|
306 ** |
|
307 ** Variable zOut is set to point at the output buffer. This may be space |
|
308 ** obtained from malloc(), or Mem.zShort, if it large enough and not in |
|
309 ** use, or the zShort array on the stack (see above). |
|
310 */ |
|
311 zIn = (u8*)pMem->z; |
|
312 zTerm = &zIn[pMem->n]; |
|
313 if( len>NBFS ){ |
|
314 zOut = sqliteMallocRaw(len); |
|
315 if( !zOut ) return SQLITE_NOMEM; |
|
316 }else{ |
|
317 zOut = zShort; |
|
318 } |
|
319 z = zOut; |
|
320 |
|
321 if( pMem->enc==SQLITE_UTF8 ){ |
|
322 if( desiredEnc==SQLITE_UTF16LE ){ |
|
323 /* UTF-8 -> UTF-16 Little-endian */ |
|
324 while( zIn<zTerm ){ |
|
325 READ_UTF8(zIn, c); |
|
326 WRITE_UTF16LE(z, c); |
|
327 } |
|
328 }else{ |
|
329 assert( desiredEnc==SQLITE_UTF16BE ); |
|
330 /* UTF-8 -> UTF-16 Big-endian */ |
|
331 while( zIn<zTerm ){ |
|
332 READ_UTF8(zIn, c); |
|
333 WRITE_UTF16BE(z, c); |
|
334 } |
|
335 } |
|
336 pMem->n = z - zOut; |
|
337 *z++ = 0; |
|
338 }else{ |
|
339 assert( desiredEnc==SQLITE_UTF8 ); |
|
340 if( pMem->enc==SQLITE_UTF16LE ){ |
|
341 /* UTF-16 Little-endian -> UTF-8 */ |
|
342 while( zIn<zTerm ){ |
|
343 READ_UTF16LE(zIn, c); |
|
344 WRITE_UTF8(z, c); |
|
345 } |
|
346 }else{ |
|
347 /* UTF-16 Little-endian -> UTF-8 */ |
|
348 while( zIn<zTerm ){ |
|
349 READ_UTF16BE(zIn, c); |
|
350 WRITE_UTF8(z, c); |
|
351 } |
|
352 } |
|
353 pMem->n = z - zOut; |
|
354 } |
|
355 *z = 0; |
|
356 assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); |
|
357 |
|
358 sqlite3VdbeMemRelease(pMem); |
|
359 pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); |
|
360 pMem->enc = desiredEnc; |
|
361 if( zOut==zShort ){ |
|
362 memcpy(pMem->zShort, zOut, len); |
|
363 zOut = (u8*)pMem->zShort; |
|
364 pMem->flags |= (MEM_Term|MEM_Short); |
|
365 }else{ |
|
366 pMem->flags |= (MEM_Term|MEM_Dyn); |
|
367 } |
|
368 pMem->z = (char*)zOut; |
|
369 |
|
370 translate_out: |
|
371 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) |
|
372 { |
|
373 char zBuf[100]; |
|
374 sqlite3VdbeMemPrettyPrint(pMem, zBuf); |
|
375 fprintf(stderr, "OUTPUT: %s\n", zBuf); |
|
376 } |
|
377 #endif |
|
378 return SQLITE_OK; |
|
379 } |
|
380 |
|
381 /* |
|
382 ** This routine checks for a byte-order mark at the beginning of the |
|
383 ** UTF-16 string stored in *pMem. If one is present, it is removed and |
|
384 ** the encoding of the Mem adjusted. This routine does not do any |
|
385 ** byte-swapping, it just sets Mem.enc appropriately. |
|
386 ** |
|
387 ** The allocation (static, dynamic etc.) and encoding of the Mem may be |
|
388 ** changed by this function. |
|
389 */ |
|
390 int sqlite3VdbeMemHandleBom(Mem *pMem){ |
|
391 int rc = SQLITE_OK; |
|
392 u8 bom = 0; |
|
393 |
|
394 if( pMem->n<0 || pMem->n>1 ){ |
|
395 u8 b1 = *(u8 *)pMem->z; |
|
396 u8 b2 = *(((u8 *)pMem->z) + 1); |
|
397 if( b1==0xFE && b2==0xFF ){ |
|
398 bom = SQLITE_UTF16BE; |
|
399 } |
|
400 if( b1==0xFF && b2==0xFE ){ |
|
401 bom = SQLITE_UTF16LE; |
|
402 } |
|
403 } |
|
404 |
|
405 if( bom ){ |
|
406 /* This function is called as soon as a string is stored in a Mem*, |
|
407 ** from within sqlite3VdbeMemSetStr(). At that point it is not possible |
|
408 ** for the string to be stored in Mem.zShort, or for it to be stored |
|
409 ** in dynamic memory with no destructor. |
|
410 */ |
|
411 assert( !(pMem->flags&MEM_Short) ); |
|
412 assert( !(pMem->flags&MEM_Dyn) || pMem->xDel ); |
|
413 if( pMem->flags & MEM_Dyn ){ |
|
414 void (*xDel)(void*) = pMem->xDel; |
|
415 char *z = pMem->z; |
|
416 pMem->z = 0; |
|
417 pMem->xDel = 0; |
|
418 rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, SQLITE_TRANSIENT); |
|
419 xDel(z); |
|
420 }else{ |
|
421 rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom, |
|
422 SQLITE_TRANSIENT); |
|
423 } |
|
424 } |
|
425 return rc; |
|
426 } |
|
427 #endif /* SQLITE_OMIT_UTF16 */ |
|
428 |
|
429 /* |
|
430 ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, |
|
431 ** return the number of unicode characters in pZ up to (but not including) |
|
432 ** the first 0x00 byte. If nByte is not less than zero, return the |
|
433 ** number of unicode characters in the first nByte of pZ (or up to |
|
434 ** the first 0x00, whichever comes first). |
|
435 */ |
|
436 int sqlite3utf8CharLen(const char *z, int nByte){ |
|
437 int r = 0; |
|
438 const char *zTerm; |
|
439 if( nByte>=0 ){ |
|
440 zTerm = &z[nByte]; |
|
441 }else{ |
|
442 zTerm = (const char *)(-1); |
|
443 } |
|
444 assert( z<=zTerm ); |
|
445 while( *z!=0 && z<zTerm ){ |
|
446 SKIP_UTF8(z); |
|
447 r++; |
|
448 } |
|
449 return r; |
|
450 } |
|
451 |
|
452 #ifndef SQLITE_OMIT_UTF16 |
|
453 /* |
|
454 ** Convert a UTF-16 string in the native encoding into a UTF-8 string. |
|
455 ** Memory to hold the UTF-8 string is obtained from malloc and must be |
|
456 ** freed by the calling function. |
|
457 ** |
|
458 ** NULL is returned if there is an allocation error. |
|
459 */ |
|
460 char *sqlite3utf16to8(const void *z, int nByte){ |
|
461 Mem m; |
|
462 memset(&m, 0, sizeof(m)); |
|
463 sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC); |
|
464 sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); |
|
465 assert( (m.flags & MEM_Term)!=0 || sqlite3MallocFailed() ); |
|
466 assert( (m.flags & MEM_Str)!=0 || sqlite3MallocFailed() ); |
|
467 return (m.flags & MEM_Dyn)!=0 ? m.z : sqliteStrDup(m.z); |
|
468 } |
|
469 |
|
470 /* |
|
471 ** pZ is a UTF-16 encoded unicode string. If nChar is less than zero, |
|
472 ** return the number of bytes up to (but not including), the first pair |
|
473 ** of consecutive 0x00 bytes in pZ. If nChar is not less than zero, |
|
474 ** then return the number of bytes in the first nChar unicode characters |
|
475 ** in pZ (or up until the first pair of 0x00 bytes, whichever comes first). |
|
476 */ |
|
477 int sqlite3utf16ByteLen(const void *zIn, int nChar){ |
|
478 int c = 1; |
|
479 char const *z = zIn; |
|
480 int n = 0; |
|
481 if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){ |
|
482 /* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here |
|
483 ** and in other parts of this file means that at one branch will |
|
484 ** not be covered by coverage testing on any single host. But coverage |
|
485 ** will be complete if the tests are run on both a little-endian and |
|
486 ** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE |
|
487 ** macros are constant at compile time the compiler can determine |
|
488 ** which branch will be followed. It is therefore assumed that no runtime |
|
489 ** penalty is paid for this "if" statement. |
|
490 */ |
|
491 while( c && ((nChar<0) || n<nChar) ){ |
|
492 READ_UTF16BE(z, c); |
|
493 n++; |
|
494 } |
|
495 }else{ |
|
496 while( c && ((nChar<0) || n<nChar) ){ |
|
497 READ_UTF16LE(z, c); |
|
498 n++; |
|
499 } |
|
500 } |
|
501 return (z-(char const *)zIn)-((c==0)?2:0); |
|
502 } |
|
503 |
|
504 /* |
|
505 ** UTF-16 implementation of the substr() |
|
506 */ |
|
507 void sqlite3utf16Substr( |
|
508 sqlite3_context *context, |
|
509 int argc, |
|
510 sqlite3_value **argv |
|
511 ){ |
|
512 int y, z; |
|
513 unsigned char const *zStr; |
|
514 unsigned char const *zStrEnd; |
|
515 unsigned char const *zStart; |
|
516 unsigned char const *zEnd; |
|
517 int i; |
|
518 |
|
519 zStr = (unsigned char const *)sqlite3_value_text16(argv[0]); |
|
520 zStrEnd = &zStr[sqlite3_value_bytes16(argv[0])]; |
|
521 y = sqlite3_value_int(argv[1]); |
|
522 z = sqlite3_value_int(argv[2]); |
|
523 |
|
524 if( y>0 ){ |
|
525 y = y-1; |
|
526 zStart = zStr; |
|
527 if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){ |
|
528 for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16BE(zStart); |
|
529 }else{ |
|
530 for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16LE(zStart); |
|
531 } |
|
532 }else{ |
|
533 zStart = zStrEnd; |
|
534 if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){ |
|
535 for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16BE(zStart); |
|
536 }else{ |
|
537 for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16LE(zStart); |
|
538 } |
|
539 for(; i<0; i++) z -= 1; |
|
540 } |
|
541 |
|
542 zEnd = zStart; |
|
543 if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){ |
|
544 for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16BE(zEnd); |
|
545 }else{ |
|
546 for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16LE(zEnd); |
|
547 } |
|
548 |
|
549 sqlite3_result_text16(context, zStart, zEnd-zStart, SQLITE_TRANSIENT); |
|
550 } |
|
551 |
|
552 #if defined(SQLITE_TEST) |
|
553 /* |
|
554 ** This routine is called from the TCL test function "translate_selftest". |
|
555 ** It checks that the primitives for serializing and deserializing |
|
556 ** characters in each encoding are inverses of each other. |
|
557 */ |
|
558 void sqlite3utfSelfTest(){ |
|
559 int i; |
|
560 unsigned char zBuf[20]; |
|
561 unsigned char *z; |
|
562 int n; |
|
563 int c; |
|
564 |
|
565 for(i=0; i<0x00110000; i++){ |
|
566 z = zBuf; |
|
567 WRITE_UTF8(z, i); |
|
568 n = z-zBuf; |
|
569 z = zBuf; |
|
570 READ_UTF8(z, c); |
|
571 assert( c==i ); |
|
572 assert( (z-zBuf)==n ); |
|
573 } |
|
574 for(i=0; i<0x00110000; i++){ |
|
575 if( i>=0xD800 && i<=0xE000 ) continue; |
|
576 z = zBuf; |
|
577 WRITE_UTF16LE(z, i); |
|
578 n = z-zBuf; |
|
579 z = zBuf; |
|
580 READ_UTF16LE(z, c); |
|
581 assert( c==i ); |
|
582 assert( (z-zBuf)==n ); |
|
583 } |
|
584 for(i=0; i<0x00110000; i++){ |
|
585 if( i>=0xD800 && i<=0xE000 ) continue; |
|
586 z = zBuf; |
|
587 WRITE_UTF16BE(z, i); |
|
588 n = z-zBuf; |
|
589 z = zBuf; |
|
590 READ_UTF16BE(z, c); |
|
591 assert( c==i ); |
|
592 assert( (z-zBuf)==n ); |
|
593 } |
|
594 } |
|
595 #endif /* SQLITE_TEST */ |
|
596 #endif /* SQLITE_OMIT_UTF16 */ |