|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** Utility functions used throughout sqlite. |
|
13 ** |
|
14 ** This file contains functions for allocating memory, comparing |
|
15 ** strings, and stuff like that. |
|
16 ** |
|
17 ** $Id: util.c,v 1.192 2006/07/26 01:39:30 drh Exp $ |
|
18 */ |
|
19 #include "sqliteInt.h" |
|
20 #include "os.h" |
|
21 #include <stdarg.h> |
|
22 #include <ctype.h> |
|
23 |
|
24 /* |
|
25 ** MALLOC WRAPPER ARCHITECTURE |
|
26 ** |
|
27 ** The sqlite code accesses dynamic memory allocation/deallocation by invoking |
|
28 ** the following six APIs (which may be implemented as macros). |
|
29 ** |
|
30 ** sqlite3Malloc() |
|
31 ** sqlite3MallocRaw() |
|
32 ** sqlite3Realloc() |
|
33 ** sqlite3ReallocOrFree() |
|
34 ** sqlite3Free() |
|
35 ** sqlite3AllocSize() |
|
36 ** |
|
37 ** The function sqlite3FreeX performs the same task as sqlite3Free and is |
|
38 ** guaranteed to be a real function. The same holds for sqlite3MallocX |
|
39 ** |
|
40 ** The above APIs are implemented in terms of the functions provided in the |
|
41 ** operating-system interface. The OS interface is never accessed directly |
|
42 ** by code outside of this file. |
|
43 ** |
|
44 ** sqlite3OsMalloc() |
|
45 ** sqlite3OsRealloc() |
|
46 ** sqlite3OsFree() |
|
47 ** sqlite3OsAllocationSize() |
|
48 ** |
|
49 ** Functions sqlite3MallocRaw() and sqlite3Realloc() may invoke |
|
50 ** sqlite3_release_memory() if a call to sqlite3OsMalloc() or |
|
51 ** sqlite3OsRealloc() fails (or if the soft-heap-limit for the thread is |
|
52 ** exceeded). Function sqlite3Malloc() usually invokes |
|
53 ** sqlite3MallocRaw(). |
|
54 ** |
|
55 ** MALLOC TEST WRAPPER ARCHITECTURE |
|
56 ** |
|
57 ** The test wrapper provides extra test facilities to ensure the library |
|
58 ** does not leak memory and handles the failure of the underlying OS level |
|
59 ** allocation system correctly. It is only present if the library is |
|
60 ** compiled with the SQLITE_MEMDEBUG macro set. |
|
61 ** |
|
62 ** * Guardposts to detect overwrites. |
|
63 ** * Ability to cause a specific Malloc() or Realloc() to fail. |
|
64 ** * Audit outstanding memory allocations (i.e check for leaks). |
|
65 */ |
|
66 |
|
67 #define MAX(x,y) ((x)>(y)?(x):(y)) |
|
68 |
|
69 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO) |
|
70 /* |
|
71 ** Set the soft heap-size limit for the current thread. Passing a negative |
|
72 ** value indicates no limit. |
|
73 */ |
|
74 void sqlite3_soft_heap_limit(int n){ |
|
75 ThreadData *pTd = sqlite3ThreadData(); |
|
76 if( pTd ){ |
|
77 pTd->nSoftHeapLimit = n; |
|
78 } |
|
79 sqlite3ReleaseThreadData(); |
|
80 } |
|
81 |
|
82 /* |
|
83 ** Release memory held by SQLite instances created by the current thread. |
|
84 */ |
|
85 int sqlite3_release_memory(int n){ |
|
86 return sqlite3pager_release_memory(n); |
|
87 } |
|
88 #else |
|
89 /* If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, then define a version |
|
90 ** of sqlite3_release_memory() to be used by other code in this file. |
|
91 ** This is done for no better reason than to reduce the number of |
|
92 ** pre-processor #ifndef statements. |
|
93 */ |
|
94 #define sqlite3_release_memory(x) 0 /* 0 == no memory freed */ |
|
95 #endif |
|
96 |
|
97 #ifdef SQLITE_MEMDEBUG |
|
98 /*-------------------------------------------------------------------------- |
|
99 ** Begin code for memory allocation system test layer. |
|
100 ** |
|
101 ** Memory debugging is turned on by defining the SQLITE_MEMDEBUG macro. |
|
102 ** |
|
103 ** SQLITE_MEMDEBUG==1 -> Fence-posting only (thread safe) |
|
104 ** SQLITE_MEMDEBUG==2 -> Fence-posting + linked list of allocations (not ts) |
|
105 ** SQLITE_MEMDEBUG==3 -> Above + backtraces (not thread safe, req. glibc) |
|
106 */ |
|
107 |
|
108 /* Figure out whether or not to store backtrace() information for each malloc. |
|
109 ** The backtrace() function is only used if SQLITE_MEMDEBUG is set to 2 or |
|
110 ** greater and glibc is in use. If we don't want to use backtrace(), then just |
|
111 ** define it as an empty macro and set the amount of space reserved to 0. |
|
112 */ |
|
113 #if defined(__GLIBC__) && SQLITE_MEMDEBUG>2 |
|
114 extern int backtrace(void **, int); |
|
115 #define TESTALLOC_STACKSIZE 128 |
|
116 #define TESTALLOC_STACKFRAMES ((TESTALLOC_STACKSIZE-8)/sizeof(void*)) |
|
117 #else |
|
118 #define backtrace(x, y) |
|
119 #define TESTALLOC_STACKSIZE 0 |
|
120 #define TESTALLOC_STACKFRAMES 0 |
|
121 #endif |
|
122 |
|
123 /* |
|
124 ** Number of 32-bit guard words. This should probably be a multiple of |
|
125 ** 2 since on 64-bit machines we want the value returned by sqliteMalloc() |
|
126 ** to be 8-byte aligned. |
|
127 */ |
|
128 #ifndef TESTALLOC_NGUARD |
|
129 # define TESTALLOC_NGUARD 2 |
|
130 #endif |
|
131 |
|
132 /* |
|
133 ** Size reserved for storing file-name along with each malloc()ed blob. |
|
134 */ |
|
135 #define TESTALLOC_FILESIZE 64 |
|
136 |
|
137 /* |
|
138 ** Size reserved for storing the user string. Each time a Malloc() or Realloc() |
|
139 ** call succeeds, up to TESTALLOC_USERSIZE bytes of the string pointed to by |
|
140 ** sqlite3_malloc_id are stored along with the other test system metadata. |
|
141 */ |
|
142 #define TESTALLOC_USERSIZE 64 |
|
143 const char *sqlite3_malloc_id = 0; |
|
144 |
|
145 /* |
|
146 ** Blocks used by the test layer have the following format: |
|
147 ** |
|
148 ** <sizeof(void *) pNext pointer> |
|
149 ** <sizeof(void *) pPrev pointer> |
|
150 ** <TESTALLOC_NGUARD 32-bit guard words> |
|
151 ** <The application level allocation> |
|
152 ** <TESTALLOC_NGUARD 32-bit guard words> |
|
153 ** <32-bit line number> |
|
154 ** <TESTALLOC_FILESIZE bytes containing null-terminated file name> |
|
155 ** <TESTALLOC_STACKSIZE bytes of backtrace() output> |
|
156 */ |
|
157 |
|
158 #define TESTALLOC_OFFSET_GUARD1(p) (sizeof(void *) * 2) |
|
159 #define TESTALLOC_OFFSET_DATA(p) ( \ |
|
160 TESTALLOC_OFFSET_GUARD1(p) + sizeof(u32) * TESTALLOC_NGUARD \ |
|
161 ) |
|
162 #define TESTALLOC_OFFSET_GUARD2(p) ( \ |
|
163 TESTALLOC_OFFSET_DATA(p) + sqlite3OsAllocationSize(p) - TESTALLOC_OVERHEAD \ |
|
164 ) |
|
165 #define TESTALLOC_OFFSET_LINENUMBER(p) ( \ |
|
166 TESTALLOC_OFFSET_GUARD2(p) + sizeof(u32) * TESTALLOC_NGUARD \ |
|
167 ) |
|
168 #define TESTALLOC_OFFSET_FILENAME(p) ( \ |
|
169 TESTALLOC_OFFSET_LINENUMBER(p) + sizeof(u32) \ |
|
170 ) |
|
171 #define TESTALLOC_OFFSET_USER(p) ( \ |
|
172 TESTALLOC_OFFSET_FILENAME(p) + TESTALLOC_FILESIZE \ |
|
173 ) |
|
174 #define TESTALLOC_OFFSET_STACK(p) ( \ |
|
175 TESTALLOC_OFFSET_USER(p) + TESTALLOC_USERSIZE + 8 - \ |
|
176 (TESTALLOC_OFFSET_USER(p) % 8) \ |
|
177 ) |
|
178 |
|
179 #define TESTALLOC_OVERHEAD ( \ |
|
180 sizeof(void *)*2 + /* pPrev and pNext pointers */ \ |
|
181 TESTALLOC_NGUARD*sizeof(u32)*2 + /* Guard words */ \ |
|
182 sizeof(u32) + TESTALLOC_FILESIZE + /* File and line number */ \ |
|
183 TESTALLOC_USERSIZE + /* User string */ \ |
|
184 TESTALLOC_STACKSIZE /* backtrace() stack */ \ |
|
185 ) |
|
186 |
|
187 |
|
188 /* |
|
189 ** For keeping track of the number of mallocs and frees. This |
|
190 ** is used to check for memory leaks. The iMallocFail and iMallocReset |
|
191 ** values are used to simulate malloc() failures during testing in |
|
192 ** order to verify that the library correctly handles an out-of-memory |
|
193 ** condition. |
|
194 */ |
|
195 int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */ |
|
196 int sqlite3_nFree; /* Number of sqliteFree() calls */ |
|
197 int sqlite3_memUsed; /* TODO Total memory obtained from malloc */ |
|
198 int sqlite3_memMax; /* TODO Mem usage high-water mark */ |
|
199 int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */ |
|
200 int sqlite3_iMallocReset = -1; /* When iMallocFail reaches 0, set to this */ |
|
201 |
|
202 void *sqlite3_pFirst = 0; /* Pointer to linked list of allocations */ |
|
203 int sqlite3_nMaxAlloc = 0; /* High water mark of ThreadData.nAlloc */ |
|
204 int sqlite3_mallocDisallowed = 0; /* assert() in sqlite3Malloc() if set */ |
|
205 int sqlite3_isFail = 0; /* True if all malloc calls should fail */ |
|
206 const char *sqlite3_zFile = 0; /* Filename to associate debug info with */ |
|
207 int sqlite3_iLine = 0; /* Line number for debug info */ |
|
208 |
|
209 /* |
|
210 ** Check for a simulated memory allocation failure. Return true if |
|
211 ** the failure should be simulated. Return false to proceed as normal. |
|
212 */ |
|
213 int sqlite3TestMallocFail(){ |
|
214 if( sqlite3_isFail ){ |
|
215 return 1; |
|
216 } |
|
217 if( sqlite3_iMallocFail>=0 ){ |
|
218 sqlite3_iMallocFail--; |
|
219 if( sqlite3_iMallocFail==0 ){ |
|
220 sqlite3_iMallocFail = sqlite3_iMallocReset; |
|
221 sqlite3_isFail = 1; |
|
222 return 1; |
|
223 } |
|
224 } |
|
225 return 0; |
|
226 } |
|
227 |
|
228 /* |
|
229 ** The argument is a pointer returned by sqlite3OsMalloc() or xRealloc(). |
|
230 ** assert() that the first and last (TESTALLOC_NGUARD*4) bytes are set to the |
|
231 ** values set by the applyGuards() function. |
|
232 */ |
|
233 static void checkGuards(u32 *p) |
|
234 { |
|
235 int i; |
|
236 char *zAlloc = (char *)p; |
|
237 char *z; |
|
238 |
|
239 /* First set of guard words */ |
|
240 z = &zAlloc[TESTALLOC_OFFSET_GUARD1(p)]; |
|
241 for(i=0; i<TESTALLOC_NGUARD; i++){ |
|
242 assert(((u32 *)z)[i]==0xdead1122); |
|
243 } |
|
244 |
|
245 /* Second set of guard words */ |
|
246 z = &zAlloc[TESTALLOC_OFFSET_GUARD2(p)]; |
|
247 for(i=0; i<TESTALLOC_NGUARD; i++){ |
|
248 u32 guard = 0; |
|
249 memcpy(&guard, &z[i*sizeof(u32)], sizeof(u32)); |
|
250 assert(guard==0xdead3344); |
|
251 } |
|
252 } |
|
253 |
|
254 /* |
|
255 ** The argument is a pointer returned by sqlite3OsMalloc() or Realloc(). The |
|
256 ** first and last (TESTALLOC_NGUARD*4) bytes are set to known values for use as |
|
257 ** guard-posts. |
|
258 */ |
|
259 static void applyGuards(u32 *p) |
|
260 { |
|
261 int i; |
|
262 char *z; |
|
263 char *zAlloc = (char *)p; |
|
264 |
|
265 /* First set of guard words */ |
|
266 z = &zAlloc[TESTALLOC_OFFSET_GUARD1(p)]; |
|
267 for(i=0; i<TESTALLOC_NGUARD; i++){ |
|
268 ((u32 *)z)[i] = 0xdead1122; |
|
269 } |
|
270 |
|
271 /* Second set of guard words */ |
|
272 z = &zAlloc[TESTALLOC_OFFSET_GUARD2(p)]; |
|
273 for(i=0; i<TESTALLOC_NGUARD; i++){ |
|
274 static const int guard = 0xdead3344; |
|
275 memcpy(&z[i*sizeof(u32)], &guard, sizeof(u32)); |
|
276 } |
|
277 |
|
278 /* Line number */ |
|
279 z = &((char *)z)[TESTALLOC_NGUARD*sizeof(u32)]; /* Guard words */ |
|
280 z = &zAlloc[TESTALLOC_OFFSET_LINENUMBER(p)]; |
|
281 memcpy(z, &sqlite3_iLine, sizeof(u32)); |
|
282 |
|
283 /* File name */ |
|
284 z = &zAlloc[TESTALLOC_OFFSET_FILENAME(p)]; |
|
285 strncpy(z, sqlite3_zFile, TESTALLOC_FILESIZE); |
|
286 z[TESTALLOC_FILESIZE - 1] = '\0'; |
|
287 |
|
288 /* User string */ |
|
289 z = &zAlloc[TESTALLOC_OFFSET_USER(p)]; |
|
290 z[0] = 0; |
|
291 if( sqlite3_malloc_id ){ |
|
292 strncpy(z, sqlite3_malloc_id, TESTALLOC_USERSIZE); |
|
293 z[TESTALLOC_USERSIZE-1] = 0; |
|
294 } |
|
295 |
|
296 /* backtrace() stack */ |
|
297 z = &zAlloc[TESTALLOC_OFFSET_STACK(p)]; |
|
298 backtrace((void **)z, TESTALLOC_STACKFRAMES); |
|
299 |
|
300 /* Sanity check to make sure checkGuards() is working */ |
|
301 checkGuards(p); |
|
302 } |
|
303 |
|
304 /* |
|
305 ** The argument is a malloc()ed pointer as returned by the test-wrapper. |
|
306 ** Return a pointer to the Os level allocation. |
|
307 */ |
|
308 static void *getOsPointer(void *p) |
|
309 { |
|
310 char *z = (char *)p; |
|
311 return (void *)(&z[-1 * TESTALLOC_OFFSET_DATA(p)]); |
|
312 } |
|
313 |
|
314 |
|
315 #if SQLITE_MEMDEBUG>1 |
|
316 /* |
|
317 ** The argument points to an Os level allocation. Link it into the threads list |
|
318 ** of allocations. |
|
319 */ |
|
320 static void linkAlloc(void *p){ |
|
321 void **pp = (void **)p; |
|
322 pp[0] = 0; |
|
323 pp[1] = sqlite3_pFirst; |
|
324 if( sqlite3_pFirst ){ |
|
325 ((void **)sqlite3_pFirst)[0] = p; |
|
326 } |
|
327 sqlite3_pFirst = p; |
|
328 } |
|
329 |
|
330 /* |
|
331 ** The argument points to an Os level allocation. Unlinke it from the threads |
|
332 ** list of allocations. |
|
333 */ |
|
334 static void unlinkAlloc(void *p) |
|
335 { |
|
336 void **pp = (void **)p; |
|
337 if( p==sqlite3_pFirst ){ |
|
338 assert(!pp[0]); |
|
339 assert(!pp[1] || ((void **)(pp[1]))[0]==p); |
|
340 sqlite3_pFirst = pp[1]; |
|
341 if( sqlite3_pFirst ){ |
|
342 ((void **)sqlite3_pFirst)[0] = 0; |
|
343 } |
|
344 }else{ |
|
345 void **pprev = pp[0]; |
|
346 void **pnext = pp[1]; |
|
347 assert(pprev); |
|
348 assert(pprev[1]==p); |
|
349 pprev[1] = (void *)pnext; |
|
350 if( pnext ){ |
|
351 assert(pnext[0]==p); |
|
352 pnext[0] = (void *)pprev; |
|
353 } |
|
354 } |
|
355 } |
|
356 |
|
357 /* |
|
358 ** Pointer p is a pointer to an OS level allocation that has just been |
|
359 ** realloc()ed. Set the list pointers that point to this entry to it's new |
|
360 ** location. |
|
361 */ |
|
362 static void relinkAlloc(void *p) |
|
363 { |
|
364 void **pp = (void **)p; |
|
365 if( pp[0] ){ |
|
366 ((void **)(pp[0]))[1] = p; |
|
367 }else{ |
|
368 sqlite3_pFirst = p; |
|
369 } |
|
370 if( pp[1] ){ |
|
371 ((void **)(pp[1]))[0] = p; |
|
372 } |
|
373 } |
|
374 #else |
|
375 #define linkAlloc(x) |
|
376 #define relinkAlloc(x) |
|
377 #define unlinkAlloc(x) |
|
378 #endif |
|
379 |
|
380 /* |
|
381 ** This function sets the result of the Tcl interpreter passed as an argument |
|
382 ** to a list containing an entry for each currently outstanding call made to |
|
383 ** sqliteMalloc and friends by the current thread. Each list entry is itself a |
|
384 ** list, consisting of the following (in order): |
|
385 ** |
|
386 ** * The number of bytes allocated |
|
387 ** * The __FILE__ macro at the time of the sqliteMalloc() call. |
|
388 ** * The __LINE__ macro ... |
|
389 ** * The value of the sqlite3_malloc_id variable ... |
|
390 ** * The output of backtrace() (if available) ... |
|
391 ** |
|
392 ** Todo: We could have a version of this function that outputs to stdout, |
|
393 ** to debug memory leaks when Tcl is not available. |
|
394 */ |
|
395 #if defined(TCLSH) && defined(SQLITE_DEBUG) && SQLITE_MEMDEBUG>1 |
|
396 #include <tcl.h> |
|
397 int sqlite3OutstandingMallocs(Tcl_Interp *interp){ |
|
398 void *p; |
|
399 Tcl_Obj *pRes = Tcl_NewObj(); |
|
400 Tcl_IncrRefCount(pRes); |
|
401 |
|
402 |
|
403 for(p=sqlite3_pFirst; p; p=((void **)p)[1]){ |
|
404 Tcl_Obj *pEntry = Tcl_NewObj(); |
|
405 Tcl_Obj *pStack = Tcl_NewObj(); |
|
406 char *z; |
|
407 u32 iLine; |
|
408 int nBytes = sqlite3OsAllocationSize(p) - TESTALLOC_OVERHEAD; |
|
409 char *zAlloc = (char *)p; |
|
410 int i; |
|
411 |
|
412 Tcl_ListObjAppendElement(0, pEntry, Tcl_NewIntObj(nBytes)); |
|
413 |
|
414 z = &zAlloc[TESTALLOC_OFFSET_FILENAME(p)]; |
|
415 Tcl_ListObjAppendElement(0, pEntry, Tcl_NewStringObj(z, -1)); |
|
416 |
|
417 z = &zAlloc[TESTALLOC_OFFSET_LINENUMBER(p)]; |
|
418 memcpy(&iLine, z, sizeof(u32)); |
|
419 Tcl_ListObjAppendElement(0, pEntry, Tcl_NewIntObj(iLine)); |
|
420 |
|
421 z = &zAlloc[TESTALLOC_OFFSET_USER(p)]; |
|
422 Tcl_ListObjAppendElement(0, pEntry, Tcl_NewStringObj(z, -1)); |
|
423 |
|
424 z = &zAlloc[TESTALLOC_OFFSET_STACK(p)]; |
|
425 for(i=0; i<TESTALLOC_STACKFRAMES; i++){ |
|
426 char zHex[128]; |
|
427 sprintf(zHex, "%p", ((void **)z)[i]); |
|
428 Tcl_ListObjAppendElement(0, pStack, Tcl_NewStringObj(zHex, -1)); |
|
429 } |
|
430 |
|
431 Tcl_ListObjAppendElement(0, pEntry, pStack); |
|
432 Tcl_ListObjAppendElement(0, pRes, pEntry); |
|
433 } |
|
434 |
|
435 Tcl_ResetResult(interp); |
|
436 Tcl_SetObjResult(interp, pRes); |
|
437 Tcl_DecrRefCount(pRes); |
|
438 return TCL_OK; |
|
439 } |
|
440 #endif |
|
441 |
|
442 /* |
|
443 ** This is the test layer's wrapper around sqlite3OsMalloc(). |
|
444 */ |
|
445 static void * OSMALLOC(int n){ |
|
446 sqlite3OsEnterMutex(); |
|
447 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
448 sqlite3_nMaxAlloc = |
|
449 MAX(sqlite3_nMaxAlloc, sqlite3ThreadDataReadOnly()->nAlloc); |
|
450 #endif |
|
451 assert( !sqlite3_mallocDisallowed ); |
|
452 if( !sqlite3TestMallocFail() ){ |
|
453 u32 *p; |
|
454 p = (u32 *)sqlite3OsMalloc(n + TESTALLOC_OVERHEAD); |
|
455 assert(p); |
|
456 sqlite3_nMalloc++; |
|
457 applyGuards(p); |
|
458 linkAlloc(p); |
|
459 sqlite3OsLeaveMutex(); |
|
460 return (void *)(&p[TESTALLOC_NGUARD + 2*sizeof(void *)/sizeof(u32)]); |
|
461 } |
|
462 sqlite3OsLeaveMutex(); |
|
463 return 0; |
|
464 } |
|
465 |
|
466 static int OSSIZEOF(void *p){ |
|
467 if( p ){ |
|
468 u32 *pOs = (u32 *)getOsPointer(p); |
|
469 return sqlite3OsAllocationSize(pOs) - TESTALLOC_OVERHEAD; |
|
470 } |
|
471 return 0; |
|
472 } |
|
473 |
|
474 /* |
|
475 ** This is the test layer's wrapper around sqlite3OsFree(). The argument is a |
|
476 ** pointer to the space allocated for the application to use. |
|
477 */ |
|
478 static void OSFREE(void *pFree){ |
|
479 u32 *p; /* Pointer to the OS-layer allocation */ |
|
480 sqlite3OsEnterMutex(); |
|
481 p = (u32 *)getOsPointer(pFree); |
|
482 checkGuards(p); |
|
483 unlinkAlloc(p); |
|
484 memset(pFree, 0x55, OSSIZEOF(pFree)); |
|
485 sqlite3OsFree(p); |
|
486 sqlite3_nFree++; |
|
487 sqlite3OsLeaveMutex(); |
|
488 } |
|
489 |
|
490 /* |
|
491 ** This is the test layer's wrapper around sqlite3OsRealloc(). |
|
492 */ |
|
493 static void * OSREALLOC(void *pRealloc, int n){ |
|
494 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
495 sqlite3_nMaxAlloc = |
|
496 MAX(sqlite3_nMaxAlloc, sqlite3ThreadDataReadOnly()->nAlloc); |
|
497 #endif |
|
498 assert( !sqlite3_mallocDisallowed ); |
|
499 if( !sqlite3TestMallocFail() ){ |
|
500 u32 *p = (u32 *)getOsPointer(pRealloc); |
|
501 checkGuards(p); |
|
502 p = sqlite3OsRealloc(p, n + TESTALLOC_OVERHEAD); |
|
503 applyGuards(p); |
|
504 relinkAlloc(p); |
|
505 return (void *)(&p[TESTALLOC_NGUARD + 2*sizeof(void *)/sizeof(u32)]); |
|
506 } |
|
507 return 0; |
|
508 } |
|
509 |
|
510 static void OSMALLOC_FAILED(){ |
|
511 sqlite3_isFail = 0; |
|
512 } |
|
513 |
|
514 #else |
|
515 /* Define macros to call the sqlite3OsXXX interface directly if |
|
516 ** the SQLITE_MEMDEBUG macro is not defined. |
|
517 */ |
|
518 #define OSMALLOC(x) sqlite3OsMalloc(x) |
|
519 #define OSREALLOC(x,y) sqlite3OsRealloc(x,y) |
|
520 #define OSFREE(x) sqlite3OsFree(x) |
|
521 #define OSSIZEOF(x) sqlite3OsAllocationSize(x) |
|
522 #define OSMALLOC_FAILED() |
|
523 |
|
524 #endif /* SQLITE_MEMDEBUG */ |
|
525 /* |
|
526 ** End code for memory allocation system test layer. |
|
527 **--------------------------------------------------------------------------*/ |
|
528 |
|
529 /* |
|
530 ** This routine is called when we are about to allocate n additional bytes |
|
531 ** of memory. If the new allocation will put is over the soft allocation |
|
532 ** limit, then invoke sqlite3_release_memory() to try to release some |
|
533 ** memory before continuing with the allocation. |
|
534 ** |
|
535 ** This routine also makes sure that the thread-specific-data (TSD) has |
|
536 ** be allocated. If it has not and can not be allocated, then return |
|
537 ** false. The updateMemoryUsedCount() routine below will deallocate |
|
538 ** the TSD if it ought to be. |
|
539 ** |
|
540 ** If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, this routine is |
|
541 ** a no-op |
|
542 */ |
|
543 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
544 static int enforceSoftLimit(int n){ |
|
545 ThreadData *pTsd = sqlite3ThreadData(); |
|
546 if( pTsd==0 ){ |
|
547 return 0; |
|
548 } |
|
549 assert( pTsd->nAlloc>=0 ); |
|
550 if( n>0 && pTsd->nSoftHeapLimit>0 ){ |
|
551 while( pTsd->nAlloc+n>pTsd->nSoftHeapLimit && sqlite3_release_memory(n) ){} |
|
552 } |
|
553 return 1; |
|
554 } |
|
555 #else |
|
556 # define enforceSoftLimit(X) 1 |
|
557 #endif |
|
558 |
|
559 /* |
|
560 ** Update the count of total outstanding memory that is held in |
|
561 ** thread-specific-data (TSD). If after this update the TSD is |
|
562 ** no longer being used, then deallocate it. |
|
563 ** |
|
564 ** If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, this routine is |
|
565 ** a no-op |
|
566 */ |
|
567 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
568 static void updateMemoryUsedCount(int n){ |
|
569 ThreadData *pTsd = sqlite3ThreadData(); |
|
570 if( pTsd ){ |
|
571 pTsd->nAlloc += n; |
|
572 assert( pTsd->nAlloc>=0 ); |
|
573 if( pTsd->nAlloc==0 && pTsd->nSoftHeapLimit==0 ){ |
|
574 sqlite3ReleaseThreadData(); |
|
575 } |
|
576 } |
|
577 } |
|
578 #else |
|
579 #define updateMemoryUsedCount(x) /* no-op */ |
|
580 #endif |
|
581 |
|
582 /* |
|
583 ** Allocate and return N bytes of uninitialised memory by calling |
|
584 ** sqlite3OsMalloc(). If the Malloc() call fails, attempt to free memory |
|
585 ** by calling sqlite3_release_memory(). |
|
586 */ |
|
587 void *sqlite3MallocRaw(int n, int doMemManage){ |
|
588 void *p = 0; |
|
589 if( n>0 && !sqlite3MallocFailed() && (!doMemManage || enforceSoftLimit(n)) ){ |
|
590 while( (p = OSMALLOC(n))==0 && sqlite3_release_memory(n) ){} |
|
591 if( !p ){ |
|
592 sqlite3FailedMalloc(); |
|
593 OSMALLOC_FAILED(); |
|
594 }else if( doMemManage ){ |
|
595 updateMemoryUsedCount(OSSIZEOF(p)); |
|
596 } |
|
597 } |
|
598 return p; |
|
599 } |
|
600 |
|
601 /* |
|
602 ** Resize the allocation at p to n bytes by calling sqlite3OsRealloc(). The |
|
603 ** pointer to the new allocation is returned. If the Realloc() call fails, |
|
604 ** attempt to free memory by calling sqlite3_release_memory(). |
|
605 */ |
|
606 void *sqlite3Realloc(void *p, int n){ |
|
607 if( sqlite3MallocFailed() ){ |
|
608 return 0; |
|
609 } |
|
610 |
|
611 if( !p ){ |
|
612 return sqlite3Malloc(n, 1); |
|
613 }else{ |
|
614 void *np = 0; |
|
615 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
616 int origSize = OSSIZEOF(p); |
|
617 #endif |
|
618 if( enforceSoftLimit(n - origSize) ){ |
|
619 while( (np = OSREALLOC(p, n))==0 && sqlite3_release_memory(n) ){} |
|
620 if( !np ){ |
|
621 sqlite3FailedMalloc(); |
|
622 OSMALLOC_FAILED(); |
|
623 }else{ |
|
624 updateMemoryUsedCount(OSSIZEOF(np) - origSize); |
|
625 } |
|
626 } |
|
627 return np; |
|
628 } |
|
629 } |
|
630 |
|
631 /* |
|
632 ** Free the memory pointed to by p. p must be either a NULL pointer or a |
|
633 ** value returned by a previous call to sqlite3Malloc() or sqlite3Realloc(). |
|
634 */ |
|
635 void sqlite3FreeX(void *p){ |
|
636 if( p ){ |
|
637 updateMemoryUsedCount(0 - OSSIZEOF(p)); |
|
638 OSFREE(p); |
|
639 } |
|
640 } |
|
641 |
|
642 /* |
|
643 ** A version of sqliteMalloc() that is always a function, not a macro. |
|
644 ** Currently, this is used only to alloc to allocate the parser engine. |
|
645 */ |
|
646 void *sqlite3MallocX(int n){ |
|
647 return sqliteMalloc(n); |
|
648 } |
|
649 |
|
650 /* |
|
651 ** sqlite3Malloc |
|
652 ** sqlite3ReallocOrFree |
|
653 ** |
|
654 ** These two are implemented as wrappers around sqlite3MallocRaw(), |
|
655 ** sqlite3Realloc() and sqlite3Free(). |
|
656 */ |
|
657 void *sqlite3Malloc(int n, int doMemManage){ |
|
658 void *p = sqlite3MallocRaw(n, doMemManage); |
|
659 if( p ){ |
|
660 memset(p, 0, n); |
|
661 } |
|
662 return p; |
|
663 } |
|
664 void sqlite3ReallocOrFree(void **pp, int n){ |
|
665 void *p = sqlite3Realloc(*pp, n); |
|
666 if( !p ){ |
|
667 sqlite3FreeX(*pp); |
|
668 } |
|
669 *pp = p; |
|
670 } |
|
671 |
|
672 /* |
|
673 ** sqlite3ThreadSafeMalloc() and sqlite3ThreadSafeFree() are used in those |
|
674 ** rare scenarios where sqlite may allocate memory in one thread and free |
|
675 ** it in another. They are exactly the same as sqlite3Malloc() and |
|
676 ** sqlite3Free() except that: |
|
677 ** |
|
678 ** * The allocated memory is not included in any calculations with |
|
679 ** respect to the soft-heap-limit, and |
|
680 ** |
|
681 ** * sqlite3ThreadSafeMalloc() must be matched with ThreadSafeFree(), |
|
682 ** not sqlite3Free(). Calling sqlite3Free() on memory obtained from |
|
683 ** ThreadSafeMalloc() will cause an error somewhere down the line. |
|
684 */ |
|
685 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
686 void *sqlite3ThreadSafeMalloc(int n){ |
|
687 (void)ENTER_MALLOC; |
|
688 return sqlite3Malloc(n, 0); |
|
689 } |
|
690 void sqlite3ThreadSafeFree(void *p){ |
|
691 (void)ENTER_MALLOC; |
|
692 if( p ){ |
|
693 OSFREE(p); |
|
694 } |
|
695 } |
|
696 #endif |
|
697 |
|
698 |
|
699 /* |
|
700 ** Return the number of bytes allocated at location p. p must be either |
|
701 ** a NULL pointer (in which case 0 is returned) or a pointer returned by |
|
702 ** sqlite3Malloc(), sqlite3Realloc() or sqlite3ReallocOrFree(). |
|
703 ** |
|
704 ** The number of bytes allocated does not include any overhead inserted by |
|
705 ** any malloc() wrapper functions that may be called. So the value returned |
|
706 ** is the number of bytes that were available to SQLite using pointer p, |
|
707 ** regardless of how much memory was actually allocated. |
|
708 */ |
|
709 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
|
710 int sqlite3AllocSize(void *p){ |
|
711 return OSSIZEOF(p); |
|
712 } |
|
713 #endif |
|
714 |
|
715 /* |
|
716 ** Make a copy of a string in memory obtained from sqliteMalloc(). These |
|
717 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This |
|
718 ** is because when memory debugging is turned on, these two functions are |
|
719 ** called via macros that record the current file and line number in the |
|
720 ** ThreadData structure. |
|
721 */ |
|
722 char *sqlite3StrDup(const char *z){ |
|
723 char *zNew; |
|
724 if( z==0 ) return 0; |
|
725 zNew = sqlite3MallocRaw(strlen(z)+1, 1); |
|
726 if( zNew ) strcpy(zNew, z); |
|
727 return zNew; |
|
728 } |
|
729 char *sqlite3StrNDup(const char *z, int n){ |
|
730 char *zNew; |
|
731 if( z==0 ) return 0; |
|
732 zNew = sqlite3MallocRaw(n+1, 1); |
|
733 if( zNew ){ |
|
734 memcpy(zNew, z, n); |
|
735 zNew[n] = 0; |
|
736 } |
|
737 return zNew; |
|
738 } |
|
739 |
|
740 /* |
|
741 ** Create a string from the 2nd and subsequent arguments (up to the |
|
742 ** first NULL argument), store the string in memory obtained from |
|
743 ** sqliteMalloc() and make the pointer indicated by the 1st argument |
|
744 ** point to that string. The 1st argument must either be NULL or |
|
745 ** point to memory obtained from sqliteMalloc(). |
|
746 */ |
|
747 void sqlite3SetString(char **pz, ...){ |
|
748 va_list ap; |
|
749 int nByte; |
|
750 const char *z; |
|
751 char *zResult; |
|
752 |
|
753 if( pz==0 ) return; |
|
754 nByte = 1; |
|
755 va_start(ap, pz); |
|
756 while( (z = va_arg(ap, const char*))!=0 ){ |
|
757 nByte += strlen(z); |
|
758 } |
|
759 va_end(ap); |
|
760 sqliteFree(*pz); |
|
761 *pz = zResult = sqliteMallocRaw( nByte ); |
|
762 if( zResult==0 ){ |
|
763 return; |
|
764 } |
|
765 *zResult = 0; |
|
766 va_start(ap, pz); |
|
767 while( (z = va_arg(ap, const char*))!=0 ){ |
|
768 strcpy(zResult, z); |
|
769 zResult += strlen(zResult); |
|
770 } |
|
771 va_end(ap); |
|
772 } |
|
773 |
|
774 /* |
|
775 ** Set the most recent error code and error string for the sqlite |
|
776 ** handle "db". The error code is set to "err_code". |
|
777 ** |
|
778 ** If it is not NULL, string zFormat specifies the format of the |
|
779 ** error string in the style of the printf functions: The following |
|
780 ** format characters are allowed: |
|
781 ** |
|
782 ** %s Insert a string |
|
783 ** %z A string that should be freed after use |
|
784 ** %d Insert an integer |
|
785 ** %T Insert a token |
|
786 ** %S Insert the first element of a SrcList |
|
787 ** |
|
788 ** zFormat and any string tokens that follow it are assumed to be |
|
789 ** encoded in UTF-8. |
|
790 ** |
|
791 ** To clear the most recent error for sqlite handle "db", sqlite3Error |
|
792 ** should be called with err_code set to SQLITE_OK and zFormat set |
|
793 ** to NULL. |
|
794 */ |
|
795 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ |
|
796 if( db && (db->pErr || (db->pErr = sqlite3ValueNew())!=0) ){ |
|
797 db->errCode = err_code; |
|
798 if( zFormat ){ |
|
799 char *z; |
|
800 va_list ap; |
|
801 va_start(ap, zFormat); |
|
802 z = sqlite3VMPrintf(zFormat, ap); |
|
803 va_end(ap); |
|
804 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3FreeX); |
|
805 }else{ |
|
806 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); |
|
807 } |
|
808 } |
|
809 } |
|
810 |
|
811 /* |
|
812 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. |
|
813 ** The following formatting characters are allowed: |
|
814 ** |
|
815 ** %s Insert a string |
|
816 ** %z A string that should be freed after use |
|
817 ** %d Insert an integer |
|
818 ** %T Insert a token |
|
819 ** %S Insert the first element of a SrcList |
|
820 ** |
|
821 ** This function should be used to report any error that occurs whilst |
|
822 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The |
|
823 ** last thing the sqlite3_prepare() function does is copy the error |
|
824 ** stored by this function into the database handle using sqlite3Error(). |
|
825 ** Function sqlite3Error() should be used during statement execution |
|
826 ** (sqlite3_step() etc.). |
|
827 */ |
|
828 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ |
|
829 va_list ap; |
|
830 pParse->nErr++; |
|
831 sqliteFree(pParse->zErrMsg); |
|
832 va_start(ap, zFormat); |
|
833 pParse->zErrMsg = sqlite3VMPrintf(zFormat, ap); |
|
834 va_end(ap); |
|
835 } |
|
836 |
|
837 /* |
|
838 ** Clear the error message in pParse, if any |
|
839 */ |
|
840 void sqlite3ErrorClear(Parse *pParse){ |
|
841 sqliteFree(pParse->zErrMsg); |
|
842 pParse->zErrMsg = 0; |
|
843 pParse->nErr = 0; |
|
844 } |
|
845 |
|
846 /* |
|
847 ** Convert an SQL-style quoted string into a normal string by removing |
|
848 ** the quote characters. The conversion is done in-place. If the |
|
849 ** input does not begin with a quote character, then this routine |
|
850 ** is a no-op. |
|
851 ** |
|
852 ** 2002-Feb-14: This routine is extended to remove MS-Access style |
|
853 ** brackets from around identifers. For example: "[a-b-c]" becomes |
|
854 ** "a-b-c". |
|
855 */ |
|
856 void sqlite3Dequote(char *z){ |
|
857 int quote; |
|
858 int i, j; |
|
859 if( z==0 ) return; |
|
860 quote = z[0]; |
|
861 switch( quote ){ |
|
862 case '\'': break; |
|
863 case '"': break; |
|
864 case '`': break; /* For MySQL compatibility */ |
|
865 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
|
866 default: return; |
|
867 } |
|
868 for(i=1, j=0; z[i]; i++){ |
|
869 if( z[i]==quote ){ |
|
870 if( z[i+1]==quote ){ |
|
871 z[j++] = quote; |
|
872 i++; |
|
873 }else{ |
|
874 z[j++] = 0; |
|
875 break; |
|
876 } |
|
877 }else{ |
|
878 z[j++] = z[i]; |
|
879 } |
|
880 } |
|
881 } |
|
882 |
|
883 /* An array to map all upper-case characters into their corresponding |
|
884 ** lower-case character. |
|
885 */ |
|
886 const unsigned char sqlite3UpperToLower[] = { |
|
887 #ifdef SQLITE_ASCII |
|
888 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, |
|
889 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, |
|
890 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, |
|
891 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103, |
|
892 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121, |
|
893 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107, |
|
894 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125, |
|
895 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, |
|
896 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161, |
|
897 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179, |
|
898 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197, |
|
899 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215, |
|
900 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233, |
|
901 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251, |
|
902 252,253,254,255 |
|
903 #endif |
|
904 #ifdef SQLITE_EBCDIC |
|
905 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */ |
|
906 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */ |
|
907 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */ |
|
908 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */ |
|
909 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */ |
|
910 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */ |
|
911 96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */ |
|
912 112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */ |
|
913 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */ |
|
914 144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */ |
|
915 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */ |
|
916 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */ |
|
917 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */ |
|
918 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */ |
|
919 224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */ |
|
920 239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */ |
|
921 #endif |
|
922 }; |
|
923 #define UpperToLower sqlite3UpperToLower |
|
924 |
|
925 /* |
|
926 ** Some systems have stricmp(). Others have strcasecmp(). Because |
|
927 ** there is no consistency, we will define our own. |
|
928 */ |
|
929 int sqlite3StrICmp(const char *zLeft, const char *zRight){ |
|
930 register unsigned char *a, *b; |
|
931 a = (unsigned char *)zLeft; |
|
932 b = (unsigned char *)zRight; |
|
933 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
|
934 return UpperToLower[*a] - UpperToLower[*b]; |
|
935 } |
|
936 int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ |
|
937 register unsigned char *a, *b; |
|
938 a = (unsigned char *)zLeft; |
|
939 b = (unsigned char *)zRight; |
|
940 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
|
941 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; |
|
942 } |
|
943 |
|
944 /* |
|
945 ** Return TRUE if z is a pure numeric string. Return FALSE if the |
|
946 ** string contains any character which is not part of a number. If |
|
947 ** the string is numeric and contains the '.' character, set *realnum |
|
948 ** to TRUE (otherwise FALSE). |
|
949 ** |
|
950 ** An empty string is considered non-numeric. |
|
951 */ |
|
952 int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ |
|
953 int incr = (enc==SQLITE_UTF8?1:2); |
|
954 if( enc==SQLITE_UTF16BE ) z++; |
|
955 if( *z=='-' || *z=='+' ) z += incr; |
|
956 if( !isdigit(*(u8*)z) ){ |
|
957 return 0; |
|
958 } |
|
959 z += incr; |
|
960 if( realnum ) *realnum = 0; |
|
961 while( isdigit(*(u8*)z) ){ z += incr; } |
|
962 if( *z=='.' ){ |
|
963 z += incr; |
|
964 if( !isdigit(*(u8*)z) ) return 0; |
|
965 while( isdigit(*(u8*)z) ){ z += incr; } |
|
966 if( realnum ) *realnum = 1; |
|
967 } |
|
968 if( *z=='e' || *z=='E' ){ |
|
969 z += incr; |
|
970 if( *z=='+' || *z=='-' ) z += incr; |
|
971 if( !isdigit(*(u8*)z) ) return 0; |
|
972 while( isdigit(*(u8*)z) ){ z += incr; } |
|
973 if( realnum ) *realnum = 1; |
|
974 } |
|
975 return *z==0; |
|
976 } |
|
977 |
|
978 /* |
|
979 ** The string z[] is an ascii representation of a real number. |
|
980 ** Convert this string to a double. |
|
981 ** |
|
982 ** This routine assumes that z[] really is a valid number. If it |
|
983 ** is not, the result is undefined. |
|
984 ** |
|
985 ** This routine is used instead of the library atof() function because |
|
986 ** the library atof() might want to use "," as the decimal point instead |
|
987 ** of "." depending on how locale is set. But that would cause problems |
|
988 ** for SQL. So this routine always uses "." regardless of locale. |
|
989 */ |
|
990 int sqlite3AtoF(const char *z, double *pResult){ |
|
991 #ifndef SQLITE_OMIT_FLOATING_POINT |
|
992 int sign = 1; |
|
993 const char *zBegin = z; |
|
994 LONGDOUBLE_TYPE v1 = 0.0; |
|
995 while( isspace(*z) ) z++; |
|
996 if( *z=='-' ){ |
|
997 sign = -1; |
|
998 z++; |
|
999 }else if( *z=='+' ){ |
|
1000 z++; |
|
1001 } |
|
1002 while( isdigit(*(u8*)z) ){ |
|
1003 v1 = v1*10.0 + (*z - '0'); |
|
1004 z++; |
|
1005 } |
|
1006 if( *z=='.' ){ |
|
1007 LONGDOUBLE_TYPE divisor = 1.0; |
|
1008 z++; |
|
1009 while( isdigit(*(u8*)z) ){ |
|
1010 v1 = v1*10.0 + (*z - '0'); |
|
1011 divisor *= 10.0; |
|
1012 z++; |
|
1013 } |
|
1014 v1 /= divisor; |
|
1015 } |
|
1016 if( *z=='e' || *z=='E' ){ |
|
1017 int esign = 1; |
|
1018 int eval = 0; |
|
1019 LONGDOUBLE_TYPE scale = 1.0; |
|
1020 z++; |
|
1021 if( *z=='-' ){ |
|
1022 esign = -1; |
|
1023 z++; |
|
1024 }else if( *z=='+' ){ |
|
1025 z++; |
|
1026 } |
|
1027 while( isdigit(*(u8*)z) ){ |
|
1028 eval = eval*10 + *z - '0'; |
|
1029 z++; |
|
1030 } |
|
1031 while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } |
|
1032 while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } |
|
1033 while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } |
|
1034 while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } |
|
1035 if( esign<0 ){ |
|
1036 v1 /= scale; |
|
1037 }else{ |
|
1038 v1 *= scale; |
|
1039 } |
|
1040 } |
|
1041 *pResult = sign<0 ? -v1 : v1; |
|
1042 return z - zBegin; |
|
1043 #else |
|
1044 return sqlite3atoi64(z, pResult); |
|
1045 #endif /* SQLITE_OMIT_FLOATING_POINT */ |
|
1046 } |
|
1047 |
|
1048 /* |
|
1049 ** Return TRUE if zNum is a 64-bit signed integer and write |
|
1050 ** the value of the integer into *pNum. If zNum is not an integer |
|
1051 ** or is an integer that is too large to be expressed with 64 bits, |
|
1052 ** then return false. If n>0 and the integer is string is not |
|
1053 ** exactly n bytes long, return false. |
|
1054 ** |
|
1055 ** When this routine was originally written it dealt with only |
|
1056 ** 32-bit numbers. At that time, it was much faster than the |
|
1057 ** atoi() library routine in RedHat 7.2. |
|
1058 */ |
|
1059 int sqlite3atoi64(const char *zNum, i64 *pNum){ |
|
1060 i64 v = 0; |
|
1061 int neg; |
|
1062 int i, c; |
|
1063 while( isspace(*zNum) ) zNum++; |
|
1064 if( *zNum=='-' ){ |
|
1065 neg = 1; |
|
1066 zNum++; |
|
1067 }else if( *zNum=='+' ){ |
|
1068 neg = 0; |
|
1069 zNum++; |
|
1070 }else{ |
|
1071 neg = 0; |
|
1072 } |
|
1073 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ |
|
1074 v = v*10 + c - '0'; |
|
1075 } |
|
1076 *pNum = neg ? -v : v; |
|
1077 return c==0 && i>0 && |
|
1078 (i<19 || (i==19 && memcmp(zNum,"9223372036854775807",19)<=0)); |
|
1079 } |
|
1080 |
|
1081 /* |
|
1082 ** The string zNum represents an integer. There might be some other |
|
1083 ** information following the integer too, but that part is ignored. |
|
1084 ** If the integer that the prefix of zNum represents will fit in a |
|
1085 ** 32-bit signed integer, return TRUE. Otherwise return FALSE. |
|
1086 ** |
|
1087 ** This routine returns FALSE for the string -2147483648 even that |
|
1088 ** that number will in fact fit in a 32-bit integer. But positive |
|
1089 ** 2147483648 will not fit in 32 bits. So it seems safer to return |
|
1090 ** false. |
|
1091 */ |
|
1092 static int sqlite3FitsIn32Bits(const char *zNum){ |
|
1093 int i, c; |
|
1094 if( *zNum=='-' || *zNum=='+' ) zNum++; |
|
1095 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} |
|
1096 return i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0); |
|
1097 } |
|
1098 |
|
1099 /* |
|
1100 ** If zNum represents an integer that will fit in 32-bits, then set |
|
1101 ** *pValue to that integer and return true. Otherwise return false. |
|
1102 */ |
|
1103 int sqlite3GetInt32(const char *zNum, int *pValue){ |
|
1104 if( sqlite3FitsIn32Bits(zNum) ){ |
|
1105 *pValue = atoi(zNum); |
|
1106 return 1; |
|
1107 } |
|
1108 return 0; |
|
1109 } |
|
1110 |
|
1111 /* |
|
1112 ** The string zNum represents an integer. There might be some other |
|
1113 ** information following the integer too, but that part is ignored. |
|
1114 ** If the integer that the prefix of zNum represents will fit in a |
|
1115 ** 64-bit signed integer, return TRUE. Otherwise return FALSE. |
|
1116 ** |
|
1117 ** This routine returns FALSE for the string -9223372036854775808 even that |
|
1118 ** that number will, in theory fit in a 64-bit integer. Positive |
|
1119 ** 9223373036854775808 will not fit in 64 bits. So it seems safer to return |
|
1120 ** false. |
|
1121 */ |
|
1122 int sqlite3FitsIn64Bits(const char *zNum){ |
|
1123 int i, c; |
|
1124 if( *zNum=='-' || *zNum=='+' ) zNum++; |
|
1125 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} |
|
1126 return i<19 || (i==19 && memcmp(zNum,"9223372036854775807",19)<=0); |
|
1127 } |
|
1128 |
|
1129 |
|
1130 /* |
|
1131 ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. |
|
1132 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN |
|
1133 ** when this routine is called. |
|
1134 ** |
|
1135 ** This routine is a attempt to detect if two threads use the |
|
1136 ** same sqlite* pointer at the same time. There is a race |
|
1137 ** condition so it is possible that the error is not detected. |
|
1138 ** But usually the problem will be seen. The result will be an |
|
1139 ** error which can be used to debug the application that is |
|
1140 ** using SQLite incorrectly. |
|
1141 ** |
|
1142 ** Ticket #202: If db->magic is not a valid open value, take care not |
|
1143 ** to modify the db structure at all. It could be that db is a stale |
|
1144 ** pointer. In other words, it could be that there has been a prior |
|
1145 ** call to sqlite3_close(db) and db has been deallocated. And we do |
|
1146 ** not want to write into deallocated memory. |
|
1147 */ |
|
1148 int sqlite3SafetyOn(sqlite3 *db){ |
|
1149 if( db->magic==SQLITE_MAGIC_OPEN ){ |
|
1150 db->magic = SQLITE_MAGIC_BUSY; |
|
1151 return 0; |
|
1152 }else if( db->magic==SQLITE_MAGIC_BUSY ){ |
|
1153 db->magic = SQLITE_MAGIC_ERROR; |
|
1154 db->u1.isInterrupted = 1; |
|
1155 } |
|
1156 return 1; |
|
1157 } |
|
1158 |
|
1159 /* |
|
1160 ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. |
|
1161 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY |
|
1162 ** when this routine is called. |
|
1163 */ |
|
1164 int sqlite3SafetyOff(sqlite3 *db){ |
|
1165 if( db->magic==SQLITE_MAGIC_BUSY ){ |
|
1166 db->magic = SQLITE_MAGIC_OPEN; |
|
1167 return 0; |
|
1168 }else if( db->magic==SQLITE_MAGIC_OPEN ){ |
|
1169 db->magic = SQLITE_MAGIC_ERROR; |
|
1170 db->u1.isInterrupted = 1; |
|
1171 } |
|
1172 return 1; |
|
1173 } |
|
1174 |
|
1175 /* |
|
1176 ** Check to make sure we have a valid db pointer. This test is not |
|
1177 ** foolproof but it does provide some measure of protection against |
|
1178 ** misuse of the interface such as passing in db pointers that are |
|
1179 ** NULL or which have been previously closed. If this routine returns |
|
1180 ** TRUE it means that the db pointer is invalid and should not be |
|
1181 ** dereferenced for any reason. The calling function should invoke |
|
1182 ** SQLITE_MISUSE immediately. |
|
1183 */ |
|
1184 int sqlite3SafetyCheck(sqlite3 *db){ |
|
1185 int magic; |
|
1186 if( db==0 ) return 1; |
|
1187 magic = db->magic; |
|
1188 if( magic!=SQLITE_MAGIC_CLOSED && |
|
1189 magic!=SQLITE_MAGIC_OPEN && |
|
1190 magic!=SQLITE_MAGIC_BUSY ) return 1; |
|
1191 return 0; |
|
1192 } |
|
1193 |
|
1194 /* |
|
1195 ** The variable-length integer encoding is as follows: |
|
1196 ** |
|
1197 ** KEY: |
|
1198 ** A = 0xxxxxxx 7 bits of data and one flag bit |
|
1199 ** B = 1xxxxxxx 7 bits of data and one flag bit |
|
1200 ** C = xxxxxxxx 8 bits of data |
|
1201 ** |
|
1202 ** 7 bits - A |
|
1203 ** 14 bits - BA |
|
1204 ** 21 bits - BBA |
|
1205 ** 28 bits - BBBA |
|
1206 ** 35 bits - BBBBA |
|
1207 ** 42 bits - BBBBBA |
|
1208 ** 49 bits - BBBBBBA |
|
1209 ** 56 bits - BBBBBBBA |
|
1210 ** 64 bits - BBBBBBBBC |
|
1211 */ |
|
1212 |
|
1213 /* |
|
1214 ** Write a 64-bit variable-length integer to memory starting at p[0]. |
|
1215 ** The length of data write will be between 1 and 9 bytes. The number |
|
1216 ** of bytes written is returned. |
|
1217 ** |
|
1218 ** A variable-length integer consists of the lower 7 bits of each byte |
|
1219 ** for all bytes that have the 8th bit set and one byte with the 8th |
|
1220 ** bit clear. Except, if we get to the 9th byte, it stores the full |
|
1221 ** 8 bits and is the last byte. |
|
1222 */ |
|
1223 int sqlite3PutVarint(unsigned char *p, u64 v){ |
|
1224 int i, j, n; |
|
1225 u8 buf[10]; |
|
1226 if( v & (((u64)0xff000000)<<32) ){ |
|
1227 p[8] = v; |
|
1228 v >>= 8; |
|
1229 for(i=7; i>=0; i--){ |
|
1230 p[i] = (v & 0x7f) | 0x80; |
|
1231 v >>= 7; |
|
1232 } |
|
1233 return 9; |
|
1234 } |
|
1235 n = 0; |
|
1236 do{ |
|
1237 buf[n++] = (v & 0x7f) | 0x80; |
|
1238 v >>= 7; |
|
1239 }while( v!=0 ); |
|
1240 buf[0] &= 0x7f; |
|
1241 assert( n<=9 ); |
|
1242 for(i=0, j=n-1; j>=0; j--, i++){ |
|
1243 p[i] = buf[j]; |
|
1244 } |
|
1245 return n; |
|
1246 } |
|
1247 |
|
1248 /* |
|
1249 ** Read a 64-bit variable-length integer from memory starting at p[0]. |
|
1250 ** Return the number of bytes read. The value is stored in *v. |
|
1251 */ |
|
1252 int sqlite3GetVarint(const unsigned char *p, u64 *v){ |
|
1253 u32 x; |
|
1254 u64 x64; |
|
1255 int n; |
|
1256 unsigned char c; |
|
1257 if( ((c = p[0]) & 0x80)==0 ){ |
|
1258 *v = c; |
|
1259 return 1; |
|
1260 } |
|
1261 x = c & 0x7f; |
|
1262 if( ((c = p[1]) & 0x80)==0 ){ |
|
1263 *v = (x<<7) | c; |
|
1264 return 2; |
|
1265 } |
|
1266 x = (x<<7) | (c&0x7f); |
|
1267 if( ((c = p[2]) & 0x80)==0 ){ |
|
1268 *v = (x<<7) | c; |
|
1269 return 3; |
|
1270 } |
|
1271 x = (x<<7) | (c&0x7f); |
|
1272 if( ((c = p[3]) & 0x80)==0 ){ |
|
1273 *v = (x<<7) | c; |
|
1274 return 4; |
|
1275 } |
|
1276 x64 = (x<<7) | (c&0x7f); |
|
1277 n = 4; |
|
1278 do{ |
|
1279 c = p[n++]; |
|
1280 if( n==9 ){ |
|
1281 x64 = (x64<<8) | c; |
|
1282 break; |
|
1283 } |
|
1284 x64 = (x64<<7) | (c&0x7f); |
|
1285 }while( (c & 0x80)!=0 ); |
|
1286 *v = x64; |
|
1287 return n; |
|
1288 } |
|
1289 |
|
1290 /* |
|
1291 ** Read a 32-bit variable-length integer from memory starting at p[0]. |
|
1292 ** Return the number of bytes read. The value is stored in *v. |
|
1293 */ |
|
1294 int sqlite3GetVarint32(const unsigned char *p, u32 *v){ |
|
1295 u32 x; |
|
1296 int n; |
|
1297 unsigned char c; |
|
1298 if( ((signed char*)p)[0]>=0 ){ |
|
1299 *v = p[0]; |
|
1300 return 1; |
|
1301 } |
|
1302 x = p[0] & 0x7f; |
|
1303 if( ((signed char*)p)[1]>=0 ){ |
|
1304 *v = (x<<7) | p[1]; |
|
1305 return 2; |
|
1306 } |
|
1307 x = (x<<7) | (p[1] & 0x7f); |
|
1308 n = 2; |
|
1309 do{ |
|
1310 x = (x<<7) | ((c = p[n++])&0x7f); |
|
1311 }while( (c & 0x80)!=0 && n<9 ); |
|
1312 *v = x; |
|
1313 return n; |
|
1314 } |
|
1315 |
|
1316 /* |
|
1317 ** Return the number of bytes that will be needed to store the given |
|
1318 ** 64-bit integer. |
|
1319 */ |
|
1320 int sqlite3VarintLen(u64 v){ |
|
1321 int i = 0; |
|
1322 do{ |
|
1323 i++; |
|
1324 v >>= 7; |
|
1325 }while( v!=0 && i<9 ); |
|
1326 return i; |
|
1327 } |
|
1328 |
|
1329 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) \ |
|
1330 || defined(SQLITE_TEST) |
|
1331 /* |
|
1332 ** Translate a single byte of Hex into an integer. |
|
1333 */ |
|
1334 static int hexToInt(int h){ |
|
1335 if( h>='0' && h<='9' ){ |
|
1336 return h - '0'; |
|
1337 }else if( h>='a' && h<='f' ){ |
|
1338 return h - 'a' + 10; |
|
1339 }else{ |
|
1340 assert( h>='A' && h<='F' ); |
|
1341 return h - 'A' + 10; |
|
1342 } |
|
1343 } |
|
1344 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC || SQLITE_TEST */ |
|
1345 |
|
1346 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
|
1347 /* |
|
1348 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary |
|
1349 ** value. Return a pointer to its binary value. Space to hold the |
|
1350 ** binary value has been obtained from malloc and must be freed by |
|
1351 ** the calling routine. |
|
1352 */ |
|
1353 void *sqlite3HexToBlob(const char *z){ |
|
1354 char *zBlob; |
|
1355 int i; |
|
1356 int n = strlen(z); |
|
1357 if( n%2 ) return 0; |
|
1358 |
|
1359 zBlob = (char *)sqliteMalloc(n/2); |
|
1360 if( zBlob ){ |
|
1361 for(i=0; i<n; i+=2){ |
|
1362 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); |
|
1363 } |
|
1364 } |
|
1365 return zBlob; |
|
1366 } |
|
1367 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
|
1368 |
|
1369 #if defined(SQLITE_TEST) |
|
1370 /* |
|
1371 ** Convert text generated by the "%p" conversion format back into |
|
1372 ** a pointer. |
|
1373 */ |
|
1374 void *sqlite3TextToPtr(const char *z){ |
|
1375 void *p; |
|
1376 u64 v; |
|
1377 u32 v2; |
|
1378 if( z[0]=='0' && z[1]=='x' ){ |
|
1379 z += 2; |
|
1380 } |
|
1381 v = 0; |
|
1382 while( *z ){ |
|
1383 v = (v<<4) + hexToInt(*z); |
|
1384 z++; |
|
1385 } |
|
1386 if( sizeof(p)==sizeof(v) ){ |
|
1387 p = *(void**)&v; |
|
1388 }else{ |
|
1389 assert( sizeof(p)==sizeof(v2) ); |
|
1390 v2 = (u32)v; |
|
1391 p = *(void**)&v2; |
|
1392 } |
|
1393 return p; |
|
1394 } |
|
1395 #endif |
|
1396 |
|
1397 /* |
|
1398 ** Return a pointer to the ThreadData associated with the calling thread. |
|
1399 */ |
|
1400 ThreadData *sqlite3ThreadData(){ |
|
1401 ThreadData *p = (ThreadData*)sqlite3OsThreadSpecificData(1); |
|
1402 if( !p ){ |
|
1403 sqlite3FailedMalloc(); |
|
1404 } |
|
1405 return p; |
|
1406 } |
|
1407 |
|
1408 /* |
|
1409 ** Return a pointer to the ThreadData associated with the calling thread. |
|
1410 ** If no ThreadData has been allocated to this thread yet, return a pointer |
|
1411 ** to a substitute ThreadData structure that is all zeros. |
|
1412 */ |
|
1413 const ThreadData *sqlite3ThreadDataReadOnly(){ |
|
1414 static const ThreadData zeroData = {0}; /* Initializer to silence warnings |
|
1415 ** from broken compilers */ |
|
1416 const ThreadData *pTd = sqlite3OsThreadSpecificData(0); |
|
1417 return pTd ? pTd : &zeroData; |
|
1418 } |
|
1419 |
|
1420 /* |
|
1421 ** Check to see if the ThreadData for this thread is all zero. If it |
|
1422 ** is, then deallocate it. |
|
1423 */ |
|
1424 void sqlite3ReleaseThreadData(){ |
|
1425 sqlite3OsThreadSpecificData(-1); |
|
1426 } |
|
1427 |
|
1428 /* |
|
1429 ** This function must be called before exiting any API function (i.e. |
|
1430 ** returning control to the user) that has called sqlite3Malloc or |
|
1431 ** sqlite3Realloc. |
|
1432 ** |
|
1433 ** The returned value is normally a copy of the second argument to this |
|
1434 ** function. However, if a malloc() failure has occured since the previous |
|
1435 ** invocation SQLITE_NOMEM is returned instead. |
|
1436 ** |
|
1437 ** If the first argument, db, is not NULL and a malloc() error has occured, |
|
1438 ** then the connection error-code (the value returned by sqlite3_errcode()) |
|
1439 ** is set to SQLITE_NOMEM. |
|
1440 */ |
|
1441 static int mallocHasFailed = 0; |
|
1442 int sqlite3ApiExit(sqlite3* db, int rc){ |
|
1443 if( sqlite3MallocFailed() ){ |
|
1444 mallocHasFailed = 0; |
|
1445 sqlite3OsLeaveMutex(); |
|
1446 sqlite3Error(db, SQLITE_NOMEM, 0); |
|
1447 rc = SQLITE_NOMEM; |
|
1448 } |
|
1449 return rc; |
|
1450 } |
|
1451 |
|
1452 /* |
|
1453 ** Return true is a malloc has failed in this thread since the last call |
|
1454 ** to sqlite3ApiExit(), or false otherwise. |
|
1455 */ |
|
1456 int sqlite3MallocFailed(){ |
|
1457 return (mallocHasFailed && sqlite3OsInMutex(1)); |
|
1458 } |
|
1459 |
|
1460 /* |
|
1461 ** Set the "malloc has failed" condition to true for this thread. |
|
1462 */ |
|
1463 void sqlite3FailedMalloc(){ |
|
1464 sqlite3OsEnterMutex(); |
|
1465 assert( mallocHasFailed==0 ); |
|
1466 mallocHasFailed = 1; |
|
1467 } |
|
1468 |
|
1469 #ifdef SQLITE_MEMDEBUG |
|
1470 /* |
|
1471 ** This function sets a flag in the thread-specific-data structure that will |
|
1472 ** cause an assert to fail if sqliteMalloc() or sqliteRealloc() is called. |
|
1473 */ |
|
1474 void sqlite3MallocDisallow(){ |
|
1475 assert( sqlite3_mallocDisallowed>=0 ); |
|
1476 sqlite3_mallocDisallowed++; |
|
1477 } |
|
1478 |
|
1479 /* |
|
1480 ** This function clears the flag set in the thread-specific-data structure set |
|
1481 ** by sqlite3MallocDisallow(). |
|
1482 */ |
|
1483 void sqlite3MallocAllow(){ |
|
1484 assert( sqlite3_mallocDisallowed>0 ); |
|
1485 sqlite3_mallocDisallowed--; |
|
1486 } |
|
1487 #endif |