[image: image4.png]symbian




[image: image5.png]symbian




Comms Framework API
N/A
Confidential
Released Rev 1.3

Comms Framework API

	Security Classification:
	Confidential

	Document Reference:
	N/A

	
	

	Status:
	Issued

	Version:
	1.5 

	
	

	Team/Department :
	Core/Networking

	Author(s):
	Patrik Bannura

	Owner(s):
	Networking TA


	
	
	
	

	Approver(s):
	Klaus Nielsen, Thomas Goodfellow, Philippe Gabriel
	Distribution:
	Klaus Nielsen, Thomas Goodfellow, Philippe Gabriel


Contents

31
Introduction

1.1
Purpose and Scope
3
2
Design Overview
3
3
Detailed Design
3
3.1
Modules
3
3.1.1
Startup
3
3.1.2
Submodules
4
3.2
Asynchronous Messages
4
3.2.1
Class Diagram
4
3.2.2
Code
5
3.2.3
TCFMessage API
5
3.3
Comms Channel
5
3.3.1
RCFChannelBase API
6
3.3.2
RCFChannel API
7
3.4
General Messages
7
3.4.1
Bind
7
3.4.2
BindComplete
8
3.4.3
Unbind
8
3.4.4
UnbindComplete
9
3.4.5
Discover
9
3.4.6
DiscoverResp
9
3.4.7
Forward
10
3.4.8
Shutdown
10
3.4.9
PIG
10
3.5
CCFModuleChannelHandler
10
3.6
RCFThread
10
4
Other considerations when designing around channels
12
4.1
Object lifetime and ownership
12
4.1.1
Explicit transfer of ownership
12
4.1.2
The lesser kind of “bad”
12
4.2
Closing channels in a safe manner (avoiding orphaned data)
12
4.2.1
Standard paired-channel implementation
13
5
Further Information
14
5.1
People
14
5.2
References
14
5.3
Open Issues
14
5.4
Glossary
14
5.5
Document History
14
5.6
Document Review Date
15


Introduction

1.1 Purpose and Scope

The purpose of this document is to describe the design of the general comms framework, the asynchronous message queues aka “Comms Channels” and the general messages used in the comms process.

2 Design Overview


[image: image1.wmf]Comms Server

Module

Comms Provider

Module

Submodule

Submodule

Root Server

Binding

Manager


The components in the Comms process communicate via asynchronous messages. 

3 Detailed Design

3.1 Modules

3.1.1 Startup

A CPM thread is started by having its main thread function called. The argument is a void* that should be cast to

struct

  {

  RCFChannel aInputCommsChannel; // A general comms channel for incoming messages

  RCFChannel aOutputCommsChannel; // A general comms channel for outgoing messages

  HBufC* aIniData; // Initialisation data specific to the module. Free’d by the module

  };

The general CommsChannels passed in are created and owned by the Binding Manager.

The contents of the initialisation data parameter (aIniData) is specific to the module. It could be empty, contain the contents of an associated INI file or contain some other data specified by the specific module implementation.

3.1.2 Submodules

Both Server Modules and Provider Modules may contain submodules. They have no channels to the Binding Manager but they can be requested to bind to other modules or submodules by the Binding Manager.

3.2 Asynchronous Messages

Each channel has a specified (maximum) message size, where the maximum size of a message supported by the kernel is 256 bytes, and messages of eight bytes or less are expected to be particularly more efficient to send (depending on the kernel implementation on the particular platform). Because the memory consumed for each queue in a channel is the product of the specified message size and the number of message slots there is a further good reason to try to minimise the size - for more data or data of unspecified size an RMBufChain (and its ownership) should be passed.
Every general message consists of a message header and a number of parameters. The header contains an operation code. The header uses 4 bytes and each parameter is of fixed size but specific to each message. Variable size parameters are not allowed. This is to be able to determine the maximum size of every message type.

For private messages this format may be overriden but every message type must be derived from TCFMessageBase.

Note that the messages don’t contain addressing information.

TCFMessage:

[image: image6.png]symbian




Header:


3.2.1 Class Diagram

[image: image2.wmf]TCFMessageBase

TCFMessageBase()

Code()

ParamSize()

Parameters()

TCFMessage

TCFMessage()

TEsockMessage

TEsockMessage()


3.2.2 Code

The message code identifies an operation uniquely. 

enum TCode

  {

  ECodeBind,

  ECodeBindComplete,

  ECodeUnbind,

  ECodeUnbindComplete,

  ECodeDiscover,

  ECodeDiscoverResp,

  ECodeShutdown

  ECodeForward

};

3.2.3 TCFMessage API

3.2.3.1 TCFMessage

TCFMessage::TCFMessage(TCode aCode, TInt aParamSize, TAny* aParamBlock)

Creates a TCFMessage with command code aCode. The size of aParamBlock is aParamSize bytes. The parameter pointed to by aParamBlock will be copied into the message. aParamSize must be small enough for the parameter block to fit in the message.

TCFMessage::TCFMessage()

Creates an empty message with undefined contents.

3.2.3.2 Code()

TCode TCFMessage::Code() const

Returns: the command code.

3.2.3.3 ParamBlockSize()

TInt TCFMessage::ParamBlockSize() const

Returns: the size of the parameter block in bytes

3.2.3.4 ParamBlock()

TAny* TCFMessage::ParamBlock() const

Returns: a pointer to the parameter block

3.3 Comms Channel

A Comms Channel is a unidirectional message passing pipe for asynchronous communication between Comms modules. Internally it contains a number of message queues (one for each priority); one for the general RCFChannel but this may be overridden by the derived private Comms Channels. More than one queue will be necessary for modules that need to prioritise between messages.

Comms Channels are “peer-to-peer”, i.e every channel has only one producer and one consumer. Also, every two endpoints that need to communicate over a module or submodule boundary need to have a dedicated comms channel in each direction.

All comms channels have to be derived from RCFChannelBase.

[image: image3.wmf]RCFChannelBase

Message Queue n

Message Queue 0

Receive

Send



It has two ends; one for reading and one for writing. The API will guarantee that messages of higher priority will be read first.

3.3.1 RCFChannelBase API

This is a templated class:

template<class aMsg, TInt aNumberOfQueues> class RCFChannelBase

RCFChannelBase is not meant to be instantiated.

3.3.1.1 RCFChannelBase ()

RCFChannelBase::RCFChannelBase(TInt aMessageSlots)

Constructor. The queues will each hold a maximum of aMessageSlots messages. Higher numbered queues have higher priority.

3.3.1.2 Send()

TInt RCFChannelBase::Send(const TCFMessageBase& aMsg, TInt aQueue)

Syncronously send a message over queue aQueue. 

Returns: KErrNone if the message was sent, KErrOverflow if the queue is full, KErrArgument if the message code is invalid.

3.3.1.3 NotifySpaceAvailable()

void RCFChannelBase::NotifySpaceAvaliable(TRequestStatus& aStatus, TInt aQueue)

aStatus is signalled when a message can be sent.

3.3.1.4 CancelSpaceAvailable ()

void RCFChannelBase::CancelSpaceAvailable(TInt aQueue)

Cancel a NotifySpaceAvailable(). This is only meaningful if a NotifySpaceAvailable is pending.

3.3.1.5 Receive()

TInt RCFChannelBase::Receive(TCFMessageBase& aMsg)

Syncronously receive a message from the RCFChannel. This receives a message from the highest priority queue.

Returns: KErrNone if a message was received or KErrUnderflow if all queues are empty.

3.3.1.6 NotifyDataAvailable()

void RCFChannelBase::NotifyDataAvailable(TRequestStatus& aStatus)

aStatus is signalled when a message is available in any queue. Data in the highest priority queue is notified first.

3.3.1.7 CancelDataAvailable()

void RCFChannelBase::CancelDataAvailable()

Cancels a NotifyDataAvailable().This is meaningful only when a NotifyDataAvailable is pending.

3.3.2 RCFChannel API

RCFChannel is a channel with only one queue. It passes messages of type TCFMessage. See RCFChannelBase for member function documentation.

This is a templated class:

class RCFChannel : public RCFChannelBase<TCFMessage, 1>

3.3.2.1 RCFChannel ()

RCFChannel::RCFChannel(TInt aMessageSlots = 1);

3.3.2.2 Send()

TInt RCFChannel::Send(const TCFMessage& aMsg)

3.3.2.3 NotifySpaceAvailable()

void RCFChannel::NotifySpaceAvaliable(TRequestStatus& aStatus)

3.3.2.4 CancelSpaceAvailable ()

void RCFChannel::CancelSpaceAvailable()

3.3.2.5 Receive()

TInt RCFChannel::Receive(TCFMessage& aMsg)

3.3.2.6 NotifyDataAvailable()

void RCFChannel::NotifyDataAvailable(TRequestStatus& aStatus)

3.3.2.7 CancelDataAvailable()

void RCFChannel::CancelDataAvailable()

3.4 General Messages

3.4.1 Bind

Bind the recipient of this message to a module.

	Message Code:
	ECodeBind

	Parameter
	Type
	Name
	Description

	Parameter 0
	TId
	aIdentifier
	Unique identifier so that BindComplete can refer back to this message.

	Parameter 1
	TMsgQueues
	aInputChannel
	The message queues to receive messages from. 

	Parameter 2
	TMsgQueues
	aOutputChannel
	The message queues to write messages to. 

	Parameter 3
	TCFSubModuleAddress*
	aModuleName
	The name of the module and submodule to bind in the format “name:name”. 

	Parameter 4
	TCFSubModuleAddress*
	aModuleName
	The name of the module and submodule to bind in the format “name:name”.

	Parameter 5
	TRSBindType
	aType
	The type of binding. May be EHierarchicalUpper, EHierarchicalLower or EHorizontal.


Bind example:


C1 and C2 are comms channels. The Binding Manager sends a Bind request to each of the modules that will be bound.

3.4.2 BindComplete

Signal the initiator that the Bind operation is complete.

	Message Code:
	ECodeBindComplete

	Parameter
	Type
	Name
	Description

	Parameter 0
	TId
	aIdentifier
	The identifier referring to the Bind message.

	Parameter 1
	TInt
	aReturnCode
	KErrNone or system wide error.


3.4.3 Unbind

Unbind the recipient from a module. 

	Message Code:
	ECodeUnbind

	Parameter
	Type
	Name
	Description

	Parameter 0
	TId
	aIdentifier
	A unique identifier so that UnbindComplete can refer back to this message

	Parameter 1
	TCFSubModuleAddress*
	aSubModuleName
	The name of the module and submodule to unbind in the format “name:name”. 

	Parameter 2
	TCFSubModuleAddress*
	aSubModuleName
	The name of the module and submodule to unbind in the format “name:name”.

	Parameter 3
	TBool
	aPeerIsDead
	True if the module to unbind from is known to be dead.


3.4.4 UnbindComplete

Signal the initiator that the Unbind operation is complete.

	Message Code:
	ECodeUnbindComplete

	Parameter
	Type
	Name
	Description

	Parameter 0
	TId
	aIdentifier
	The identifier referring to the Unbind message.

	Parameter 1
	TInt
	aReturnCode
	KErrNone or system wide error.


3.4.5 Discover

Query for generic module information.

	Message Code:
	ECodeDiscover

	Parameter
	Type
	Name
	Description

	Parameter 0
	TId
	aIdentifier
	The identifier referring to the Unbind message.

	Parameter 1
	TBool
	aReset
	!= EFalse to start discovery, EFalse to continue after a previous DiscoverResp indicated more to come

	Parameter 2
	TUint
	aSize
	Size of the array aSubModulesName

	Parameter 3
	TCFSubModuleName*
	aSubModuleNames
	Points to an array of sub-module names allocated by and owned by the message sender.


3.4.6 DiscoverResp

Return discovery information.

	Message Code:
	ECodeDiscoverResp

	Parameter
	Type
	Name
	Description

	Parameter 0
	TId
	aIdentifier
	The identifier matching the request.

	Parameter 1
	TInt
	aReturnCode
	Number of entries written to the array specified by the Discover message (ie aSubModulesName[0.. aNumberWritten – 1]

	Parameter 1
	TBool
	aMoreToWrite
	!= EFalse if discovery should continue (ie not all submodules have yet been identified and so another Discover message with aReset == EFalse should be sent


3.4.7 Forward

Forwards a specified message from the Rootserver to a CPM

	Message Code:
	ECodeForward

	Parameter
	Type
	Name
	Description

	Parameter 0
	TCFModuleName*
	aName
	Specifies the module name the message  is being send to.

	Parameter 1
	TInt
	aType
	Determines the type of data  passed via aData parameter.

	Parameter 2
	TDes8*
	aData
	Descriptor with the data specific to the message of the type aType 


3.4.8 Shutdown

Ask the module to shut down. No confirmation required.

Note: Unbind implicit

	Message Code:
	ECodeShutdown


3.4.9 PIG

Flush the channel. This must be the last message.

	Message Code:
	ECodePIG


3.5 CCFModuleChannelHandler

Utility class to help holding a channelpair, listening for incoming messages and sending responses for CPMs needing a quick way to implement support for the basic messages Discover, Bind, Unbind and Shutdown. All the virtuals have default bodies so only those that require special treatment needs implementation. Using this class for talking to the RootServer helps code re-usage and ROM savings.

3.6 RCFThread

This is an extension of the core RThread class:

class RCFThread : public RThread

It provides for the creation of threads with some key attributes pre-established. In this design these attributes are:

· The MBuf Manager registered in TLS. This provides transparent access for CPMs that use MBufs.

· The Comms Framework logger registered in TLS. This provides logging for Comms Channels in debug-supporting builds.

However in future further attributes may be added, so module implementors should make use of this class when creating additional threads even if their function does not require the current attributes.

The Create() methods has two overloads, providing a similar interface to the RThread class: 

TInt RCFThread::Create(const TDesC& aName, TThreadFunction aThreadFunction, TInt aStackSize, RHeap* aHeap, TAny* aArgs);

TInt RCFThread::Create(const TDesC& aName, TThreadFunction aThreadFunction, aStackSize, TInt aMinHeapSize, TInt aMaxHeapSize, TAny* aArgs);

Parameters (see RHeap for full specification and semantics):

	aName
	Name to be assigned to the new thread

	aThreadFunction
	Execution of the new thread passes to this function after the Comms Framework attributes have been established

	aStackSize
	Size of the new thread’s stack

	AArgs
	Passed as argument to aThreadFunction 

	AHeap
	Existing RHeap to be used by new thread 

	AMinHeapSize
	Minimum size for newly-created heap for new thread

	AMaxHeapSize
	Maximum size for newly-created heap for new thread


Other considerations when designing around channels

The a-synchronicity of channels poses some specific challenges not so commonly faced with synchronous, direct-call interfaces

3.7 Object lifetime and ownership

For reasons of efficiency it will often be desirable to pass pointers across a channel, eg the names of sub-modules in a BIND request. The case of unexpectedly late dequeuing should be considered, ie what if the recipient only unpacks the message after the sender has freed those dynamic allocations, perhaps because of a sudden unloading of that module. Some possible solutions to this problem:

3.7.1 Explicit transfer of ownership 

If the sender either no longer needs the object – such as when ESock writes data to a SAP – or can cheaply manufacture a copy of it, then the pointer can be enqueued with the explicit design that the recipient will free it.

This has to be handled with care. In the general case (sub)modules don’t necessarily share the same heap.

3.7.2 The lesser kind of “bad”

When evaluating design alternatives for transferring data through asynchronous queues these thoughts may be useful:

1. Robustness is relative – we cannot cope with all possible failure cases. What we must do is to avoid the common ones and minimise the damage.

2. Although memory leaking is bad, dangling pointers are worse. Consider a case where module A asks module B to send it data, and then tries to cancel the request before unloading (ie module B does not acknowledge the cancellation before module A unloads). If the transfer design is that module B allocates the buffer and passes it to A then a leak results (module B queues the pointer to a queue that has no listener). If the transfer design is that A allocates the buffer and passes it to B then module A must ensure that it does not free that buffer or it may be overwritten later by B. Since such a buffer may well be encapsulated in some other object this requires quite precise handling (and still results in a leak). This suggests that the former transfer design is better; successive leaks may kill the process but a single overwrite probably will kill it.

3.8 Closing channels in a safe manner (avoiding orphaned data)

Care must be taken when closing down a channel that the process is co-ordinated to avoid data loss due to thread races. Consider the reader of a channel attempting to close it. Obviously it cannot close it while messages remain in the queue, since these messages might have pointers to RMBufChains, pointers that need closing or deleting, etc. So it could enter a “drain” mode to remove all of the current messages and then close it, but this leaves the writer side free to add more since it cannot in general know that the reader has closed its end (and even if it could there would still be a race condition between the reader’s removing the last message and completing the channel close)

The proposed general solution is instead that the writer sends an explicit final message to indicate that no further messages will be sent. This message we call the “PIG”
. The general algorithm for closing a channel would then become:

1. Writer queues PIG message on the lowest priority queue

2. Writer closes its end of the channel

3. Reader dequeues PIG message

4. Reader closes its end of the channel 

The reader is in fact running a conceptual loop:

while(channel.Receive(msg) && msg.type != PIG)


ProcessMsg(msg);

channel.Close();

Very commonly channels are used in opposed pairs so as to get bi-directional communication. The above algorithm can cover this with simply mirroring behaviour: after receiving a PIG on its inbound channel a channel user queues a PIG on the outbound channel (if it’s still open – if we originated the shutdown then this is a mirrored PIG coming back to us)

The PIG message is necessarily specific to the channel type, ie the RCFChannel and RESockChannels need to define their own PIGs. We could specify a message number for it but since it’s simply a suggested solution to the problem it seems improper to mandate this for other (prioprietary) channel types.

Note that this approach requires the does not provide perfect recovery from exceptional situations in which a module is shutting down non-gracefully, which in practice probably means it’s crashing. We could attempt to cover this by allowing “something else” to drain the channel, but this is fraught (need a different drainer for each channel type, including proprietary ones) and we have to recognise that perfect cleanup is impossible anyway, eg heap cells and MBufs owned by a crashing thread will also be leaked. What we’re trying to guard against is race conditions, not bad pointers.

Another difficult case is where the PIG cannot be enqueued (no space available). This appears to require that the sender wait some “brief time” for the receiver to dequeue a message. Should space not become available then it seems reasonable to simply close the outbound channel with sending the PIG. This also means of course that we should not wait indefinitely for a returning PIG (however we should of course never do so anyway).

In such a “non-graceful close” case leaks may occur, however there seems little alternative when the remote module is failing to drain - see 4.1.2.

3.8.1 Standard paired-channel implementation

Following the arguments that graceful closing is going to be a commonly useful approach, albeit with some complexities to allow for the need for non-graceful closure, it is proposed that the standard channel pair provides support for this.

template <class T, TInt TPriorities>

class RCFChannelPairBase : public CActive

{

public:

static RCFChannelPair* NewL(RCFChannelBase<T, TPriorities>::TMsgQueues aRxQueues, 






 RCFChannelBase<T, TPriorities>::TMsgQueues aTxQueues);

RCFChannelPairBase(TInt aPriority);

~RCFChannelPairBase();

TInt CreateRecv(TMsgQueues aRxQueues, TOwnerType aOwner = EOwnerThread);

TInt CreateSend(TMsgQueues aTxQueues, TOwnerType aOwner = EOwnerThread);

TInt CreateRecv(int aSlots);

TInt CreateSend(int aSlots);

TInt Send(const T& aMsg, TInt aQueue);

void NotifySpaceAvailable(CActive& aRequester, TInt aQueue);

void CancelSpaceAvailable(TInt aQueue);

TInt Receive(T& aMsg);

void NotifyDataAvailable(CActive& aRequester);

void CancelDataAvailable();

TInt CloseGracefully(TInt aGracefulCloseTimeout);

void CloseNonGracefully();

void GetRecvMsgQueues(TMsgQueues& aMsgQueues) const;

void GetSendMsgQueues(TMsgQueues& aMsgQueues) const;

};

4 Further Information

4.1 People

	Role
	Person / People

	Contributor(s)
	Patrik Bannura, Klaus Nielsen, Thomas Goodfellow

	Reviewer(s)
	Klaus Nielsen, Thomas Goodfellow, Philippe Gabriel, Djordje Kovacevic


4.2 References

	No.
	Document Reference
	Version
	Description

	[R1]
	“Esock V2 API”
	
	


4.3 Open Issues

None.

4.4 Glossary 

The following technical terms and abbreviations are used within this document.

	Term
	Definition 

	CPM
	Comms Provider Module

	CF
	Comms Framework

	TLS
	Thread Local Storage


4.5 Document History

	Date
	Version
	Status
	Description

	06/09/02
	0.1
	Draft
	First draft based on SGL.PPS001.457 Component Design Document Template Rev 2.0

	27/09/2002
	0.5
	Draft
	Updated after informal review comments

	10/10/2002
	0.6
	Draft
	Updated after more informal review comments

	18/10/02
	0.7
	Draft
	[Neil Maitland] Moved transaction identifiers to parameters 0 in response messages.

	30/10/02
	0.71
	Draft
	Corrected the overview picture

	5/11/02
	0.72
	Draft
	Added section 0

	6/11/02
	0.73
	Draft
	Changed the class prefix from Comms to CF.

	11/11/02
	0.74
	Draft
	Added ping message

	11/11/02
	0.75
	Draft
	Removed RCFChannel-s from Unbind message

	12/11/02
	0.76
	Draft
	Added shared objects

	18/11/02
	0.77
	Draft
	Removed ping message again; case for it evaporated

	22/11/02
	0.78
	Draft
	Added leak vs dangling ptr discussion, expanded PIG notes relevant to this

	05/12/02
	0.79
	Draft
	Changed document name.

	09/12/02
	0.80
	Draft
	Updated according to review comments

	10/12/02
	0.81
	Draft
	More review comments

	12/12/02
	0.82
	Draft
	Changed document name

	13/12/02
	1.0
	Issued
	Moved to 1.0

	11/06/03
	1.1
	Draft
	Added RCFThread

	27/06/03
	1.2
	Draft
	Updated EDiscover & EDiscoverResp

	08/11/2003
	1.4
	Issued
	

	09/02/2005
	1.5
	Issued
	Updated according to the RootServer API changes (added SendMessage API)


4.6 Document Review Date


































Binding Manager





M1





Code








Parameter n








M2





Parameter 1








Header














C1





C2





Bind(C1,C2)





Bind(C2,C1)


























� By analogy to the “pig” devices used for cleaning oil pipelines, which get inserted at an access point and carried along in the flow. When they arrive at a downstream point this indicates that the upstream section has been swept clean. Aside from whimsicality “PIG” has advantage of not being a heavily overloaded term in the sockets area, in contrast to “FIN”, “CLOSE”, “SHUTDOWN”, “FLUSH”, etc





© Copyright Symbian Ltd. 2002. This document may not be reproduced in any form, in whole or in part, by any means whatsoever, without the written permission of the copyright holder. 

© Copyright Symbian Ltd. 2002
Confidential
Page 2 of 15




_1101044608.vsd
Root Server�

Binding Manager�

Comms Server Module�

Comms Provider Module�

�

�

Submodule�

�

�

Submodule�


_1068468344

