	

	Design DOCUMENT
	
	1 (10)

	
	
	
	

	CommsFramework
	
	
	

	Remek Zajac
	15/10/2009
	
	

Comms Framework Transport Design

TOC
21.
introduction

21.1
Purpose and Scope

32.
Overview

53.
Design

53.1
Channel Establishment

63.2
A Message

73.3
Channel dynamics

73.3.1
CTransportChipper

73.3.2
CTransportSelfSender

83.4
API

83.4.1
MTransportSender

83.4.2
CCommsTransport

83.5
Legacy Messages and addressing

94.
Future Evolution

94.1
Synchronous Message Posting

94.2
Cross Process Communication

105.
Further Information

105.1
People

105.2
References

105.3
Open Issues

105.4
Glossary

105.5
Document History

1. introduction

1.1 Purpose and Scope

This document details the inter-thread transport mechanism provided by the Comms Framework, including notes on the proper uses for it, how to design protocols to work well with it, and the API provided.

2. Overview

The following diagram presents the basic principles the CF Transport component is built upon; i.e.:
· There is a bidirectional (RMsgQueueBase based) queue/channel between every two threads of execution that need to communicate;
· Each queue is made available via by a (tx) chipper object that can fragment large buffers into small chips (smaller buffers) each fitting into the queue’s slot. The large, message bearing buffers are not arbitrarily large, because the transport recreates the messages on the destination’s stack. In fact most of the large buffers, as the transport bets, will typically fit into individual chips, so the act of chipping will not typically happen. Without the chipping though, all messages will have to fit into the queue slot, making the slots too large than they typically need to be. The size difference between the large buffers and chips is simply a tradeoff between the overflow risk and the memory footprint.
· Any given thread of execution will have a number of chippers each leading to one of the other threads the given thread needs to communicate with. Such collection of chippers becomes a thread-local, singleton transport sender object that the entities dwelling in the given thread can (directly or otherwise) use to communicate with entities dwelling in different threads.
· A transport sender takes the responsibility of infallibly (no error conditions) delivering messages to the destination threads.

[image: image1.emf]Thread #2Thread #1

NodeMessages

+PostMessage(in const TRuntimeCtxId& aFrom, in const TRuntimeCtxId& aTo, in const Meta::SMetaData& aMsg)

«interface»

MTransportSender

e32

+Create()

+Open()

+Send(in const TAny* aPtr, in aLen)

+SendBlocking(in const TAny* aPtr, in aLen)

+Receive(in const TAny* aPtr, in aLen)

+ReceiveBlocking(in const TAny* aPtr, in aLen)

RMsgQueueBase

RHandleBase

-chippers1*

CActive

c

h

i

p

c

h

i

p

TransportSender

PostMessage(…, const SMetaData&aMsg)

ChipperSender

PostMessage(…, const TDes&aBuffer)

1*

ChipperReceiver

RunL()

TransportReceiver

1

*

1

*

c

h

i

p

c

h

i

p

buffer

c

h

i

p

c

h

i

p

buffer

messagemessage

serialise to a

buffer of an

arbitrary size

break down into

chips of the

message queue

native size

insert to the

queue

the ITC queue

RunL picks up a

chip from the

recipient end of

the queue

reassemble the

arbitrary size

buffer

reconstruct the

message object

-channel

-chippers

-channel

Figure 1 - The basic principle
The consequences of this approach are important, as they shape the resulting communication and deployment model, in particular:
· Message passing is one of many ways to go about multithreaded programming and it is arguably the most clear-cut way of dividing function into multiple execution contexts. Message passing as a multithreaded programming technique doesn’t require re-entrant code and hence it is a strong hint that there is no re-entrant code in the problem domain. It is therefore meaningful to state that entities (objects) in the problem domain dwell in specific threads of execution.
· A thread of execution is an OS abstraction of a task. A method is a C++ abstraction of a task. A class/object is a C++ primitive for expressing structure. The message passing principle enforces thread-bound objects and therefore polarizes the structure against the function, i.e.: it forces the structure (the model) to express the functional division.

· The infallibility principle puts message passing conceptually close to invoking a C++ method (or a C function), i.e.: a method execution can fail, but the method can always be reliably executed. In other words, one does not attempt to call a method and equally the transport does not attempt to deliver a message (it simply delivers it).

· The MTransportSender interface enforces strictly asynchronous message exchange, which makes the “message is like a C++ method” analogy slightly more relaxed. The are three reasons for that:
· Asynchronous regime was required by the architecture (see [2]);

· It was easier to do;

· It was safer to do (doesn’t introduce deadlock worries);

Inter-thread communication is based upon messages. The expectation is that these will be used for fully asynchronous design (other than for supporting legacy needs such as the NIF interfaces). Therefore although it is convenient to use terminology such as methods and parameters, and technology such as member function pointers for dispatching the message in the recipient, we should probably be careful to avoid describing them as function calls, lest users of the transport write code such as [utter fantasy case of control-thread code talking to data and management threads:

flow.Detach(interface); // on return the interface is fully idle

layerManager.InterfaceDown(flow);

In reality it’s wholly possible that the data thread hasn’t received, let alone completed, the flow detach message when the management thread performs the interface down function. It may well be that the convention of naming all such functions SendXXX() is followed to keep this issue visible, especially for future maintenance coders.
3. Design
The following diagram depicts the high level design of the CF Transport component.

[image: image2.emf]e32

NodeMessages

+PostMessage(in const TRuntimeCtxId& aFrom, in const TRuntimeCtxId& aTo, in const Meta::SMetaData& aMsg)

«interface»

MTransportSender

+EstablishTransportToPeer(in aWorkerId, in aRxQueue, in aTxQueue)

+PostMessage(in ...)

CCommsTransportImpl

+PostMessage(in ...)

+RunL()

+New(in aRxQueues, in aTxQueues)

CTransportChipper

-iChippers[#workerId]1

*

+PostMessage(in ...)

+RunL()

CTransportSelfSender

-iSelfSender1

1

CActive

RCFChannelPair

-iChannelPair

1

1

+Send(in const T& aMsg)

+NotifyDataAvailable(in TRequestStatus&)

+Receive(in T& aMsg)

+CreateRecv(in aForeignQueue)

+CreateRecv(in aSlots)

+CreateSend(in aForeignQueue)

+CreateSend(in aSlots)

RCFChannelPairBase

T

T = TCFMessage

(message type)

RCFChannelBase

T

-iRxChannel

1

1

1

1

RMsgQueueBase

1

1

-iTxChannel

-iQueue

CCirBuf

T

-iBuf

1

1

T = TCFMessage

(message type)

Figure 2 - High Level Design

Note that both the transport instance as well as individual chippers are full duplex.

3.1 Channel Establishment

Channels (message queues among the threads of execution) can be established in a number of ways depending on the level of abstraction:

· RCFChannelPair is a generic representation of a duplex message queue endpoint – one of two enpoints that share two (A->B and A<-B) RMsgQueueBase message queues. An RCFChannelPair can attach to pre-created queues (aForeignQueue overloads) or construct new ones (aSlots overload). Clearly both ends cannot create the queues (at least one must attach) and following that there are two conceivable approaches:

a) For each unidirectional queue, the queue is created on one end and communicated to the other (by means external to the CF Transport component);

b) All unidirectional queues are construted externally and passed (by means external to the CF Transport component) to RCFChannelPair, which means RCFChannelPair never constructs the queues.
· Looking at the CTransportChipper and CCommsTransportImpl it is clear that they never allow (a) and that they always require unidirectional queues to be supplied from elsewhere (see [1]).
The high level design diagram (see [Figure 2]) provides hints that the CF Transport will also be able to post messages to the local thread (self) and thus entirely abstract away the recipient’s location (transport caller can be oblivious to the recipient’s thread affinity). Of course the local loopback transport channel (CTransportSelfSender) doesn’t need to be explicitly established.
3.2 A Message

MTransportSender prescribes a message to be of Meta::SMetaData type (see [2]), which makes it type-identifiable and serialisable. This is somewhat relaxed in relation to what CCommsTransportImpl (as an implementer of MTransportSender) considers a message, i.e.: CCommsTransportImpl requires that, with the exception of legacy ESock messages (see [3.3]), messages are of Messages::TSignalBase (see [R3]) type. Messages::TSignalBase additionally makes them:
· Constructable with their virtual constructors. Messages dispatchable on a given transport endpoint (thread) must register their virual constructors with the transport (CCommsTransportImpl:: NewL(MWorkerThreadRegister& aThreadRegister, const CMetaDataVirtualCtorInPlace* aVirtCtor)) otherwise the transport will panic with ECFInterfaceNotRegistered.
· Part of the delivery chain. The CF Transport takes the responsibility to deliver a message from one thread to another and it will delegate the rest of the delivery path to the very message by calling Messages::TSignalBase::DispatchL(…);

With such definition of the message, the transport needs to make sure that:
· Its sending end serializes the message onto a flat buffer using Meta::SMetaData::StoreL - this will store the content and the Meta::STypeId of the message.

· Its receiving end reconstructs and deserialises the message from the flat buffer using the virtual construction registry. Reconstruction must use placement new construction (over a transport provided and stack based inplaceBuf). The virtual construction registry is used as follows:
TSignalBase* msg = static_cast<TSignalBase*>(iVirtCtor->New(aMsg, inplaceBuf));

3.3 Channel dynamics

Transport queues (channels) have limited length and it is important to understand what happens if they run out of space. It is even more important to understand why they might run out of space. Both the queue congestion conditions and the corrective action differ depending on whether the message in question is going via a cross thread (CTransportChipper) or self sender (CTransportSelfSender) chippers.
3.3.1 CTransportChipper

CTransportChipper (on CTransportChipper::PostMessage) will attempt to append one or more message chips to a queue (RMsgQueueBase) expecting the thread on the opposite end of the queue to drain it at some point. In some circumstances the destination thread will not drain its queue in time and the sender may face the situation when the queue is full. CTransportChipper still has the obligation of infallibly delivering messages to the destination threads and it makes the best effort, pragmatic attempt ensuring delivery in a stable system state. If the destination does not drain the queue in a reasonable time (configurable, determined empirically) then the system is deemed unstable and the chipper panics. In particular the destination thread may have crashed (=system unstable). The destination thread could have also executed User::After(a_very_long_time) (=system unstable because the destination thread behaves irresponsibly).
Given the stability boundaries, the best effort attempt is achieved by CTransportChipper::PostMessage simply blocking for queue space rather than returning an error. Superficially this approach opposes the goal of avoiding synchronisity; however underlying it is the expectation that queues will be sized (configured) appropriately to avoid blocking in normal circumstances. Queue congestion typically indicates that the receiving thread isn’t being scheduled enough and so blocking the sending thread will often help.

Of course resorting to blocking calls, in very unlucky conditions, may lead to the recipient thread not draining its queue since blocked in an attempt to send in the reverse direction and it is blocked because the sender doesn’t drain its queue, which would lead to a deadlock. The deadlock is prevented by the sender draining its own inbound queue when its outbound queue overflows and sleeping briefly to let the other end act. The inbound queue is drained to a ‘queue from the queue’ on the recipient side. The queue from the queue grows dynamically (memory permitting) and if it doesn’t the sender goes to sleep. After a number of loops (configurable at build-time; currently 30 iterations of 0.5s sleeps) the sender gives up and requests that the receiver thread is panicked for becoming unresponsive.
3.3.2 CTransportSelfSender

Of course the self sender will not have to make assumptions about the stability of the destination thread since it is both the source and the destination. There are typically two reasons why the self sender’s queue can fill up:

· The thread (or more likely the entities dwelling on it) bombarde the queue by issuing too many messages within a single callstack (e.g.: single invocation of CTransportSelfSender::RunL). What too many is is of course very relative.
· The thread is is bombarded from the outside. If the external queues are drained at a higher priority than the CTransportSelfSender queue (active objects are prioritied differently) then the external thread may spawn too many tasks on the destination thread, tasks that will collectively fill up the queue.

The former is considered irresponsible behaviour (similar to triggering stack overflow), which impedes system stability. The latter is minimized by ensuring that the CTransportSelfSender active object runs at a higher priority than the peer CTransportChippers.
3.4 API
The CF Transport offers platform API and it is depicted on the diagram below

[image: image3.emf]NodeMessages

+PostMessage(in const TRuntimeCtxId& aFrom, in const TRuntimeCtxId& aTo, in const Meta::SMetaData& aMsg)

«interface»

MTransportSender

+EstablishTransportToPeer(in aWorkerId, in aRxQueue, in aTxQueue)

+PostMessage(in ...)

CCommsTransportImpl

+Messages::MTransportSender& GetSender()

+TWorkerId WorkerId()

+EstablishTransportToPeer(in ...)

+DropTransportToPeer(in TWorkerId aPeerId)

+PostMessage(in const TCFMessage& aMessage)

CCommsTransport

-iImpl

11

Figure 3 - CF Transport API

3.4.1 MTransportSender

As mentioned earlier, implementations of

MTransportSender::PostMessage(
const TRuntimeCtxId& aPostFrom,
const TRuntimeCtxId& aPostTo,
const Meta::SMetaData& aMessage)
(including CCommsTransportImpl) must infallibly and asynchronously (in a different callstack) deliver aMessage to aPostTo.
The addressing demanded by MTransportSender entirely is defined by the NodeMessages component (see [3]).
3.4.2 CCommsTransport

CCommsTransport is a pure backwards-compatibility-proof handle to the CCommsTransportImpl body. How instances of CCommsTransport are offered to the callers is technically out of scope for this document, but it is worth mentioning that current callers obtain it from the Thread Local Storage.

3.5 Legacy Messages and addressing
The CF Transport component has a relatively rich history and that history is visible in its implementation. Notably, the component has been initially implemented to dispatch a closed set of TCFMessages among the worker threads of ESockSvr (see [4]). The CF Transport still has the obligation to do so paying a tangible code complexity tax. This complexity probably deserves removing. This can be achieved by getting rid of the TCFMessages and switch all communication to use Messages::TSignalBase tokens. This section describes the legacy responsiblities of the CF Transport component.

TODO.
4. Future Evolution

4.1 Synchronous Message Posting
Attempts to have the CF Transport offer synchronous message exchange routines have been for now abandoned. Some commented out code exists to facilitate for that, but this code should be considered unreliable. The attempts have been abandoned because, when put under scrutiny, they proofed obsolete – the multithreaded architecture couldn’t cope with supporting synchronous calls, mostly due to:

· Deadlock risk;

· API design regimes, where we preferred to limit the options and only allow for asynchronous APIs (see [2]);

4.2 Cross Process Communication

There technically isn’t anything stopping the CF Transport to start working cross process. This simply hasn’t been done yet, because it requires non-trivial (yet feasible) changes to Rootserver (see [1]) to allow threads living in separate processes to get introduced to each other.
5. Further Information

5.1 People

	Role
	Person / People

	Reviewers
	Thomas Goodfellow

	Contributors
	Remek Zajac, Thomas Goodfellow

	Distribution
	

5.2 References

	No.
	Document Reference
	Version
	Description

	[R1]
	…\commsfw\commsfwsupport\commselements\rootserver\documentation\Root Server Design Document.doc
	3.1
	Rootserver design document

	[R2]
	…\commsfw\commsfwsupport\commselements\NetMeta\Documentation\NetMeta_Design_Document.doc
	1.2
	NetMeta design document

	[R3]
	…\commsfw\commsfwsupport\commselements\nodemessages\documentation\SGL.GT0359.057.NodeMessages_Design.doc
	1.0
	NodeMessages design document

	[R4]
	…\commsfw\datacommsserver\esockserver\Documentation\ESock_Design.doc
	2.0
	ESock Design

5.3 Open Issues

5.4 Glossary

	Term
	Definition

	
	

5.5 Document History

	Date
	Version
	Status
	Author
	Description

	15-10-2009
	0.1
	Draft
	Remek Zajac
	First draft

_1316436389.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

[image: image1.emf]e32

NodeMessages

+PostMessage(in const TRuntimeCtxId& aFrom, in const TRuntimeCtxId& aTo, in const Meta::SMetaData& aMsg)

«interface»

MTransportSender

+EstablishTransportToPeer(in aWorkerId, in aRxQueue, in aTxQueue)

+PostMessage(in ...)

CCommsTransportImpl

+PostMessage(in ...)

+RunL()

+New(in aRxQueues, in aTxQueues)

CTransportChipper

-iChippers[#workerId]1

*

+PostMessage(in ...)

+RunL()

CTransportSelfSender

-iSelfSender1

1

CActive

RCFChannelPair

-iChannelPair

1

1

+Send(in const T& aMsg)

+NotifyDataAvailable(in TRequestStatus&)

+Receive(in T& aMsg)

+CreateRecv(in aForeignQueue)

+CreateRecv(in aSlots)

+CreateSend(in aForeignQueue)

+CreateSend(in aSlots)

RCFChannelPairBase

T

T = TCFMessage

(message type)

RCFChannelBase

T

-iRxChannel

1

1

1

1

RMsgQueueBase

1

1

-iTxChannel

-iQueue

CCirBuf

T

-iBuf

1

1

T = TCFMessage

(message type)

_935227290.doc

_1316436382.vsd

NodeMessages

+PostMessage(in const TRuntimeCtxId& aFrom, in const TRuntimeCtxId& aTo, in const Meta::SMetaData& aMsg)

«interface»
MTransportSender

+EstablishTransportToPeer(in aWorkerId, in aRxQueue, in aTxQueue)
+PostMessage(in ...)

CCommsTransportImpl

+PostMessage(in ...)
+RunL()
+New(in aRxQueues, in aTxQueues)

CTransportChipper

-iChippers[#workerId]

1

*

+PostMessage(in ...)
+RunL()

CTransportSelfSender

-iSelfSender

1

1

CActive

RCFChannelPair

-iChannelPair

1

1

+Send(in const T& aMsg)
+NotifyDataAvailable(in TRequestStatus&)
+Receive(in T& aMsg)
+CreateRecv(in aForeignQueue)
+CreateRecv(in aSlots)
+CreateSend(in aForeignQueue)
+CreateSend(in aSlots)

RCFChannelPairBase

T

T = TCFMessage
(message type)

RCFChannelBase

T

-iRxChannel

1

1

1

1

e32

RMsgQueueBase

1

1

-iTxChannel

-iQueue

CCirBuf

T

-iBuf

1

1

T = TCFMessage
(message type)

_1316512781.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

[image: image1.emf]NodeMessages

+PostMessage(in const TRuntimeCtxId& aFrom, in const TRuntimeCtxId& aTo, in const Meta::SMetaData& aMsg)

«interface»

MTransportSender

+EstablishTransportToPeer(in aWorkerId, in aRxQueue, in aTxQueue)

+PostMessage(in ...)

CCommsTransportImpl

+Messages::MTransportSender& GetSender()

+TWorkerId WorkerId()

+EstablishTransportToPeer(in ...)

+DropTransportToPeer(in TWorkerId aPeerId)

+PostMessage(in const TCFMessage& aMessage)

CCommsTransport

-iImpl

11

_935227290.doc

_1316512786.vsd

NodeMessages

+PostMessage(in const TRuntimeCtxId& aFrom, in const TRuntimeCtxId& aTo, in const Meta::SMetaData& aMsg)

«interface»
MTransportSender

+EstablishTransportToPeer(in aWorkerId, in aRxQueue, in aTxQueue)
+PostMessage(in ...)

CCommsTransportImpl

+Messages::MTransportSender& GetSender()
+TWorkerId WorkerId()
+EstablishTransportToPeer(in ...)
+DropTransportToPeer(in TWorkerId aPeerId)
+PostMessage(in const TCFMessage& aMessage)

CCommsTransport

-iImpl

1

1

_1316345679.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

[image: image1.emf]Thread #2Thread #1

NodeMessages

+PostMessage(in const TRuntimeCtxId& aFrom, in const TRuntimeCtxId& aTo, in const Meta::SMetaData& aMsg)

«interface»

MTransportSender

e32

+Create()

+Open()

+Send(in const TAny* aPtr, in aLen)

+SendBlocking(in const TAny* aPtr, in aLen)

+Receive(in const TAny* aPtr, in aLen)

+ReceiveBlocking(in const TAny* aPtr, in aLen)

RMsgQueueBase

RHandleBase

-chippers1*

CActive

c

h

i

p

c

h

i

p

TransportSender

PostMessage(…, const SMetaData&aMsg)

ChipperSender

PostMessage(…, const TDes&aBuffer)

1*

ChipperReceiver

RunL()

TransportReceiver

1

*

1

*

c

h

i

p

c

h

i

p

buffer

c

h

i

p

c

h

i

p

buffer

messagemessage

serialise to a

buffer of an

arbitrary size

break down into

chips of the

message queue

native size

insert to the

queue

the ITC queue

RunL picks up a

chip from the

recipient end of

the queue

reassemble the

arbitrary size

buffer

reconstruct the

message object

-channel

-chippers

-channel

_935227290.doc

_1316345671.vsd

Text

+PostMessage(in const TRuntimeCtxId& aFrom, in const TRuntimeCtxId& aTo, in const Meta::SMetaData& aMsg)

«interface»
MTransportSender

NodeMessages

TransportSender

ChipperSender

-chippers

1

*

1

*

CActive

PostMessage(…, const SMetaData& aMsg)

PostMessage(…, const TDes& aBuffer)

chip

1

*

+Create()
+Open()
+Send(in const TAny* aPtr, in aLen)
+SendBlocking(in const TAny* aPtr, in aLen)
+Receive(in const TAny* aPtr, in aLen)
+ReceiveBlocking(in const TAny* aPtr, in aLen)

RMsgQueueBase

e32

RHandleBase

chip

chip

ChipperReceiver

RunL()

TransportReceiver

1

*

chip

buffer

chip

chip

buffer

message

message

Thread #1

Thread #2

serialise to a buffer of an arbitrary size

break down into chips of the message queue native size

insert to the queue

the ITC queue

RunL picks up a chip from the recipient end of the queue

reassemble the arbitrary size buffer

reconstruct the message object

-channel

-chippers

-channel

_935227290.doc

