[image: image1.png]
[image: image2.png]
The Asynchronous Start Server Design Document

Internal
Rev 1.0

The Asynchronous Start Server Design Document

	Security Classification:
	Internal

	Document Reference:
	N/A

	
	

	Status:
	Issued

	Version:
	1.0

	
	

	Team/Department :
	Core Development/Networking

	Author(s):
	Petr Smrz

	Owner(s):
	Comms-Infras TA

	
	
	
	

	Approver(s):
	Networking TA
	Distribution:
	Symbian and Licensees

Contents

31
Introduction

1.1
Purpose and Scope
3
2
Design Overview
3
3
Detailed Design
3
3.1
Synchronous Process Start-up
3
3.1.1
Overview
3
3.1.2
UML Diagram
3
3.1.3
Design Unit Behaviour
4
3.2
Asynchronous Server Start-up
4
3.2.1
Overview
4
3.2.2
UML Diagram
4
3.2.3
Design Unit Behaviour
5
4
Design Considerations
6
5
Further Information
6
5.1
People
6
5.2
References
6
5.3
Open Issues
6
5.4
Glossary
6
5.5
Document History
6
5.6
Document Review Date
6

Introduction

1.1 Purpose and Scope

This document provides a description of Asynchronous/Synchronous server/process start-up element. The document is a part of networking base used to create networking components. The target audience is members of the Networking Team developing new components or maintaining the old ones.

2 Design Overview

The design itself is fairly simple and focuses on two areas:

· Processes synchronisation while avoiding deadlocks

· Asynchronous server start-up as not to block the launching thread

The described functionality is provided by NETSTSRV.DLL element.

3 Detailed Design

3.1 Synchronous Process Start-up

3.1.1 Overview

The synchronous process start-up is fairly simple being done by a single function call. The function blocks the caller thread until the process has been loaded, started and synchronised with. A single class RStartProcess accomplishes Synchronous/Asynchronous process load and start. Please see section 3.2 for how to use the class to asynchronously start a process.

3.1.2 UML Diagram

Table 3-1 gives an overview of the RStartProcess class.

[image: image3.png]
Figure 3‑1 RStartProcess class layout.

	Object name
	Description
	Associated (owned/dependant) objects

	RStartProcess
	Starts process either synchronously or asynchronously. It uses RThread class for the asynchronous start-up.
	Owns RProcess to create a process and synchronise with it.

Table 3‑1
3.1.3 Design Unit Behaviour

[image: image4.wmf]

 : Client

NETST

SRV :

RAsynchC

onnectBase

 : R

Process

NETSTSR

V :

RStartProc

ess

NETSTSRV :

CStartServer

returns with

an error

new

Connect()

Start()

Start a thread & logon t

o it

Starts the

 thread

to sta

rt a process

within

Create

______V happenin

g from the just created thread V______

R

e

ndezvous

Resume

R

e

ndezvous

Exit the thread (logon complete)

_____^ happening from the just created thread ^_____

RunL()

The logon has

completed the

request passed

 to

RStartServ

er::Start

Logon

synchronisatio

n

CreateSession

()

RunL

The session has

been successfully

created. If no

t

CStartServer

::RunL

calls

RStartServer::S

tart

and the startup

repeats

delet

e

CreateSession

()

to check for

t

he process

dea

th before

reac

hing

r

e

ndezvou

s

The process start-up can be blocking or non-blocking. This section focuses on the simpler blocking case. The following sequence diagram depicts the actions. Please see 3.2 for non-blocking case.

Figure 3‑2 Blocking process start-up

3.2 Asynchronous Server Start-up

3.2.1 Overview

The asynchronous server start-up creates a thread to load, start and synchronise with a process so that the caller thread is not blocked. The above mentioned RStartProcess can be used for non-blocking process start-up as obvious from the Figure 3‑1. However now we need someone to wait for us to finish. The following picture shows the RStartProcess class relationship to the active object waiting for a result.

3.2.2 [image: image5.emf]RThread

(from Logical View)

uses a thread

to start a

process

the EKA1 emulator exeption

when a process is started as a

thread is not mentioned here

RStartProcess

RProcess

Start()

Cancel()

UML Diagram

Figure 3‑3 Non-blocking start server class layout

	Object name
	Description
	Associated (owned/dependant) objects

	CStartServer
	Waits for the server start and attempts to create a session. It keeps trying until it succeeds or runs out of predefined attempts. Then it completes a user request.
	Owns RAsynchConnectBase to access RSessionBase::CreateSession protected member.

	RStartProcess
	Creates RProcess either in separate or the caller’s thread and synchronises with the new process via rendezvous.
	RProcess to start and synchronise with a process. Uses RThread to start the process within if asked to do so.

Table 3‑2 Server start-up Class description

3.2.3 Design Unit Behaviour

[image: image6.emf]CActive

(from Logical View)

RThread

(from Logical View)

uses a thread

to start a

process

the emulator exeption when a

process is started as a thread

is not mentioned here

RStartProcess

RProcess

Start()

Cancel()

(from Process Startup)

RAsynchConnectBase

CreateSession()

CStartServer

Connect()

<<virtual>> RunL()

<<virtual>> DoCancel()

11111111

to be able to try several

times to create a session

RSessionBase

(from Logical View)

waits for a

process to

As the figure 3-4 shows, a class CStartServer is used to asynchronously create a server process while connecting to it for the first time. The class CStartServer waits for the server to start and attempts to create a session. It keeps trying until its succeeds or runs out of predefined attempts. In any case it completes the user request. The CStartServer uses RStartProcess to do the actual RProcess creation and synchronisation work. RStartProcess can do its job in a separate or the caller’s thread.

Figure 3‑4 Non-blocking server start-up

4 Design Considerations

5 Further Information

5.1 People

	Role
	Person / People

	Contributor(s)
	Kevin Benton

	Reviewer(s)
	

5.2 References

	No.
	Document Reference
	Version
	Description

	[R1]
	Start Server Design
	0.1
	UML of diagram

	[2]
	CSDAEMON code
	
	Element usage example

5.3 Open Issues

The following issues need to be resolved before this document is completed;

1. What to do on cancel non-blocking server start-up

5.4 Glossary

The following technical terms and abbreviations are used within this document.

	Term
	Definition

	
	

	
	

5.5 Document History

	Date
	Version
	Status
	Description

	06-02-2004
	1.0
	Issued
	Updated with minor additions

	11-12-2003
	0.1
	Draft
	Created

5.6 Document Review Date

NETSTSRV :

RStartProcess

death before

the process

to check for

reaching

rendezvous

synchronisation

 : RProcess

 : Client

Start

Create

Logon

Rendezvous

Resume

Rendezvous

return KErrNone

© Copyright Symbian Ltd. 2004. This document may not be reproduced in any form, in whole or in part, by any means whatsoever, without the written permission of the copyright holder.

© Copyright Symbian Ltd. 2004
Internal
Page 6 of 6

_1068468344

