[image: image5.wmf]Session :

CRootServerSession

Module

Instance :

CProviderModule

New thread

Binding

Manager

Active

object :

CSessionResponse

Root

Server :

CRootServer

Client library

RSLoadCpm

Create module

Load CPM

iState

==EIdle?

iState

=EStarting

Start thread

Rendezvous

Undertaker logon

Notify of new CPM

iState

=ERunning

TRequestStatus

RMessage

::

Complete

[image: image6.wmf]Bind

Manager

Root

Server

Comms

Channel

Provider

Module2

Provider

Module1

Root Server Design Document

Internal
 Issued v3.1

Root Server Design Document

	Security Classification:
	Internal

	Status:
	Issued

	Version:
	3.1

	
	

	Team/Department :
	Core Development/Networking Technology

	Author(s):
	Klaus Nielsen, Neil Maitland, Kevin Benton, Thomas Goodfellow

	Owner(s):
	Networking TA

	
	
	
	

	Approver(s):
	Networking TA
	Distribution:
	<Names>

Contents

1
Introduction
4
1.1
Purpose and Scope
4
2
Overview
4
3
Design
5
3.1
Client Library
5
3.1.1
Overview
5
3.1.2
API
5
3.1.2.1
Connect()
7
3.1.2.2
Version()
7
3.1.2.3
SetMBufPoolSize()
8
3.1.2.4
LoadCpm()
8
3.1.2.5
CancelLoadCpm()
9
3.1.2.6
UnloadCpm()
9
3.1.2.7
CancelUnloadCpm()
10
3.1.2.8
Bind()
10
3.1.2.9
CancelBind()
11
3.1.2.10
Unbind()
11
3.1.2.11
CancelUnbind()
12
3.1.2.12
GetModuleInfo()
12
3.1.2.13
EnumerateModules()
13
3.1.2.14
EnumerateSubModules()
14
3.1.2.15
EnumerateBindings()
15
3.1.2.16
SendMessage(TRequestStatus& aStatus, const TCFModuleName& aName, TInt aType, TDes8& aData)
16
3.1.2.17
SendMessage(const TCFModuleName& aName, TInt aType, TDes8& aData)
16
3.1.2.18
Shutdown()
16
3.1.3
Design Unit Behaviour
17
3.1.3.1
RRootServ
17
3.1.3.2
Connect
17
3.1.3.3
Version
17
3.1.3.4
SetMBufPoolSize
17
3.1.3.5
LoadCpm
17
3.1.3.6
CancelLoadCpm
17
3.1.3.7
UnloadCpm
17
3.1.3.8
CancelUnloadCpm
18
3.1.3.9
Bind
18
3.1.3.10
CancelBind
18
3.1.3.11
Unbind
18
3.1.3.12
CancelUnbind
18
3.1.3.13
GetModuleInfo
18
3.1.3.14
EnumerateModules
19
3.1.3.15
EnumerateSubModules
19
3.1.3.16
EnumerateBindings
19
3.1.3.17
Shutdown
19
3.1.3.18
SendMessage
19
3.1.4
Files
20
3.2
Root Server
20
3.2.1
Overview
20
3.2.2
UML Diagram
21
3.2.3
IPC Requests
23
3.2.3.1
RSLoadCPM
24
3.2.3.2
RSCancelLoadCpm
25
3.2.3.3
RSUnloadCPM
25
3.2.3.4
RSCancelUnloadCpm
27
3.2.3.5
RSBind
28
3.2.3.6
RSCancelBind
28
3.2.3.7
RSUnbind
29
3.2.3.8
RSCancelUnbind
29
3.2.3.9
RSGetModuleInfo
29
3.2.3.10
RSEnumerateModules
29
3.2.3.11
RSEnumerateSubModules
30
3.2.3.12
RSEnumerateBindings
30
3.2.3.13
RSSetMBufPoolSize
30
3.2.3.14
RSSendMessage
31
3.2.3.15
RSShutdown
31
3.2.4
Things not covered by the API
31
3.2.4.1
Spontaneous module/thread death
31
3.2.5
Starting the Root Server
32
3.2.6
Major Classes
33
3.2.6.1
CCommsProviderModule
33
3.2.6.2
CModuleUndertaker
33
3.2.6.3
CRootServer
34
3.2.6.4
CRootServerSession
35
3.2.6.5
CSessionResponse
35
3.2.7
Files
35
3.3
Bind Manager
36
3.3.1
Overview
36
3.3.1.1
Comms Server Process
36
3.3.2
Design
37
3.3.2.1
Interface
37
3.3.2.2
Basic Internal Architecture
39
3.3.2.3
CBindInfo object
40
3.3.2.4
CTask object
41
3.3.2.5
CModule object
42
3.3.2.6
BindSubmodulesL request
42
3.4
People
44
3.5
References
44
3.6
Glossary
44
3.7
Document History
44
3.8
Document Review Date
44
A.1.1
RootServer and Bind Manager separation issue
45

4Figure 1: Threads and processes

Figure 2: The Root Server and modules
19
Figure 3: UML diagram for The Root Server and sessions
20
Figure 4: UML diagram for the modules
21
Figure 5: RSLoadCPM visualisation
23
Figure 6: RSUnloadCPM successfully visualisation
25
Figure 7: RSUnloadCPM with timeout visualisation
25
Figure 8: RSBind visualisation
26
Figure 9: Sudden Death visualisation
29
Figure 10 Components and Dependencies
34
Figure 11 Comms Server process
34
Figure 12 Component Class Diagram
37
Figure 13 CBindInfo
38
Figure 14 CTask
39

Introduction

1.1 Purpose and Scope

The purpose of this document is to show the detailed design for the Root Server component of Symbian OS v8.0. Furthermore the design of the Client Library providing control access to the Root Server is defined.

The design of other components introduced with Symbian OS v8.0, used by the Root Server, such as the MBuf Manager and the privileged reference application using the Root Server API (c32start.exe), are not within the scope of this document.

2 Overview

The Root Server is the component of the new Comms layer in Symbian OS v8.0, which has the responsibility of managing all other threads in the C32 process - the process running all Comms threads. As such, the Root Server is the main thread of the C32 process and it has the responsibility of starting and stopping server modules such as ESock, ETel and C32 (the Serial Server). Servers and non-server modules (sometimes referred to as providers) are treated as one entity in the Root Server, and will be referred to as CPM’s (Comms Provider Module) from this point in the document.

[image: image7.wmf]Session :

CRootServerSession

Module

Instance :

CProviderModule

Binding

Manager

Undertaker :

CModuleUndertaker

Active

object :

CSessionResponse

Root

Server :

CRootServer

Client library

Subscribe to

RProperty

Thread Suddenly Died

iStatus

==EZoombie

Died - unbind all

TRequestStatus

SuddenDeath

Publish

RProperty

Delete self

Figure 1: Threads and processes

A CPM is a DLL with these attributes:

· The type (2nd UID) is KUidCommsProviderModule (0x101f7418)

· It exports a function which acts as the main function of a new thread, ie taking a single TCFModuleInfo* parameter and returning TInt when the CPM unloads. This function is called when the CPM is loaded and communicates with the Root Server across the Comms Channels provided in the TCFModuleInfo [1].

It is also the responsibility of the Root Server to monitor threads for Sudden Death (premature end of the thread routine) due to some erroneous condition. This is handled by using Publish and Subscribe, meaning that any privileged client that wish to be notified about such deaths must subscribe to the RProperty kept by the Root Server. Since all threads run in the same process the Root Server can only promise a best effort cleanup if a module dies. That means it can delete resources it knows of, but any resource allocated on the process heap by the dead module is lost (leaked). The only way to remedy this would be to run each module in a separate process but this is too heavy weight.

The Root Server will do nothing on its own initiative, however. Stopping and starting CPM’s has to be requested by a privileged application sending such requests via the Root Server Client Library. So has something not mentioned until now: bindings. It is possible for CPM's to be bound to each other (via the message queues provided in Symbian OS), hence providers can be bound together and providers can be bound to servers. A further responsibility of the Root Server is to receive such binding requests, verify the validity of the arguments and forward the requests for the Binding Manager component to carry out. The Binding Manager will be loaded within the Root Server thread.

A final note is that the Root Server will not implement any policy for restarting dead CPM’s. If a CPM dies, any subscribers to death are notified, and client applications will then have to figure out which CPM’s (any privileged client can query the Root Server for loaded modules) are dead (and how many) and what to do about it.

For efficiency reasons a client can have any number of pending requests with the Root Server at any given time. This means for example, that many CPM’s (of any type) can be started simultaneously and a CPM that is a slow starter will not delay the starting of any other CPM.

3 Design

The detailed design is broken into two parts (logically chosen by the IPC boundary):

1. Client Library: Section 3.1. Describes the API offered by the client library to the Root Server and the corresponding IPC calls.

2. Root Server: Section 3.2. Describes the architecture of the Root Server and how it interacts with the Binding Manager, the CPM’s and the client library.

In addition section 3.3 provides the design for the internal binding manager module, which is included by the Root Server as a static library.

3.1 Client Library

3.1.1 Overview

The client library provides the interface for user applications that have the appropriate privileges, to control the Root Server. More specifically the client library contains functions for the following Root Server control functions:

· Set the size of the MBuf pool.

· Load a Comms Provider Module from a DLL.

· Unload a Comms Provider Module.

· Create a binding between two Comms Provider Modules (hierarchical or custom). “Hierarchical” means that a module marked as server cannot be the lower module of the binding.

· Remove bindings between two Comms Provider Modules.

· Enumerate the loaded Comms Provider Modules.

· Enumeate the sub-modules under a Comms Provider Module.

· Enumerate Bindings for any given sub-module.

· Retrieve information of specific Comms Provider Modules.

· Listen for sudden death of loaded Comms Provider Modules.

· Send a message to the specified Comms Provider Module.

The client library will reside in its own DLL file called “c32root.dll”.

The APIs will be policed using CPolicyServer which CRootServerSession will derive from. Some of the following API functions will have capabilities restricting access to them.
3.1.2 API

In addition to the standard Symbian OS error codes the following can be returned:

KErrRSCreateTrapCleanup

KErrRSSvrStartServer

KErrRSMainSchedulerError

KErrRSSuddenDeath

KErrRSRequestCancelled

KErrRSInvalidParameter

KErrRSInvalidParameterFile

KErrRSInvalidParameterName

KErrRSInvalidParameterStackSize

KErrRSInvalidParameterHeapSize

KErrRSInvalidUidType

KErrRSModuleAlreadyExist

KErrRSInvalidMBufPoolSize

KErrRSModuleNotRunning

KErrRSModuleNotLoaded

KErrRSAlreadyBound

KErrRSModulesStillRunning

KErrRSNoNewHeapsAvailable

KErrRSRequestTimedOut

KErrRSModuleUnknown

KErrRSSubModuleUnknown

KErrRSBindingUnknown

KErrRSStatusUnknown

KErrRSBindingExists

KErrRSModuleNotReady

KErrRSBindingInProgress

KErrRSUnableToOpenHeap

KErrRSUnableToFindHeap

KErrRSUnableToCreateQueues

KErrRSZombie

KErrRSInvalidParameterThreadFuncOrdinal

KErrRSInvalidBinding

KErrRSInvalidQueueLength

A module can be in different states as defined by TRSModuleState:

· EIdle - Not running, probably just instantiated.

· EStarting - Started, waiting for rendezvous.

· ERunning - Running normally.

· EStopping - In the process of shutting down but thread still alive.

· EZombie- Thread suddenly died, in the process of cleaning up.

· EDead - Thread dead, in the process of being cleaned up.

The main client API class, RRootServ, defines the following interface, which is exported from c32root.dll:

TInt Connect();

TVersion Version() const;

TInt SetMBufPoolSize(TUint aPoolSize);

void LoadCpm(TRequestStatus& aStatus, const TRSStartModuleParams& aParams, const DesC8& aIniData);

void UnloadCpm(TRequestStatus& aStatus, const TCFModuleName& aName, TRSUnLoadType aType);

void Bind(TRequestStatus& aStatus, TRSBindingInfo& aBindInfo);

void Unbind(TRequestStatus& aStatus, TRSUnBindingInfo& aUnBindInfo);

TInt GetModuleInfo(const TCFModuleName& aName, TRSModuleInfo& aModuleInfo);

TInt EnumerateModules(TRSIter &aPosition, TCFModuleName& aModuleName);

TInt EnumerateSubModules(const TCFModuleName& aModuleName, TRSIter &aPosition, TCFSubModuleName& aSubModuleName);

TInt EnumerateBindings(const TCFSubModuleAddress& aSubModuleAddr, TRSIter &aPosition, TRSBindingInfo& aBinding);

void CancelLoadCpm(const TCFModuleName& aName);

void CancelUnloadCpm(const TCFModuleName& aName);

void CancelBind(TRSModuleAddress& aName1, TRSModuleAddress& aName2);

void CancelUnbind(TRSModuleAddress& aName1, TRSModuleAddress& aName2);

void SendMessage(TRequestStatus& aStatus, const TCFModuleName& aName, TInt aType, TDes8& aData);

TInt SendMessage(const TCFModuleName& aName, TInt aType, TDes8& aData);

TInt Shutdown();

void Close();

TInt __DbgMarkHeap();

TInt __DbgCheckHeap(TInt aCount);

TInt __DbgMarkEnd(TInt aCount);

TInt __DbgFailNext(TInt aCount);

TInt __DbgFailNextMbuf(TInt aCount);

TInt __DbgSetMbufPoolLimit(TInt asize);

TInt __DbgCheckMbuf(TInt asize);

TInt __DbgMbufFreeSpace();

TInt __DbgMbufTotalSpace();

The following sections will describe each API function in more detail and how to use it.
All __Dbg functions will require a Vendor ID of 0x70000001 (Symbian Vendor ID) and ensure that the caller has a capability of “Networkcontrol”.

3.1.2.1 Connect()

TInt Connect();

Description:

Opens a session to the Root Server.

Notes:

· Synchronous.

· Close() should be called once the session is no longer required. All resources, which are opened using the session, will be automatically closed when the session terminates.

Return value:

	TInt
	KErrNone if successful, otherwise one of the global error codes or a code defined in Rserror.h.

3.1.2.2 Version()

IMPORT_C TVersion Version() const;

Description:

Gets the version of this client.

Notes:

· Synchronous.

Return value:

	TVersion
	Client side version number.

3.1.2.3 SetMBufPoolSize()

TInt SetMBufPoolSize(TUint aPoolSize);

Description:

Set the size of the MBuf pool.

Notes:

· Synchronous.

· This function can only be called before the first CPM is loaded.

Capability:
The SID will be checked to ensure that this request came from the comms configurator.

Parameters:

	TUint aPoolSize
	Defines the new size of the buffer pool in number of bytes.

Return value:

	TInt
	KErrNone if successful, otherwise one of the global error codes or a code defined in Rserror.h.

3.1.2.4 LoadCpm()

void LoadCpm(TRequestStatus& aStatus, const TRSStartModuleParams& aParams, const TDesC8& aIniData);

Description:

Launch a new Comms Provider Module. This may be a server (e.g.ESOCK) or a provider from a DLL.

Notes:

· Asynchronous.

· The name of the new CPM (aParams.iParams.iName) must be unique and must be used in any further communication concerning this CPM instance, such as binding.

· The contents of the initialisation data parameter (aIniData) are specific to the CPM. It could be empty, contain the contents of an associated INI file or contain some other data specified by the specific CPM implementation.

· If a CPM fails to complete startup – ie. By not responding to its discovery request for sub-modules, the load will fail with ERSZombie. This error code is used to convey the idea that this CPM is in a state of living dead – loaded but not responding. It is recommended that the client follow such a load failure by issuing an ungraceful UnloadCpm() in order to remove the CPM.

Capability:

The SID will be checked to ensure that this request came from the comms configurator.

Parameters:

	TRequestStatus& aStatus
	KErrNone if successful, otherwise one of the global error codes or a code defined in Rserror.h.

	TRSStartModuleParams& aParams
	Parameters used for CPM thread.

	TDesC8& aIniData
	CPM specific initialisation data.

3.1.2.5 CancelLoadCpm()

void CancelLoadCpm(const TRSModuleName& aName);

Description:

Cancel the launch of a new Comms Provider Module.

Notes:

· Synchronous.

· It is unlikely that the CPM loading is cancelled.

Capability:

The SID will be checked to ensure that this request came from the comms configurator.

Parameters:

	const TRSModuleName& aName
	Name of module of which to cancel loading.

3.1.2.6 UnloadCpm()

void UnloadCpm(TRequestStatus& aStatus, const TRSUnLoadInfo& aUnLoadInfo);

Description:

Unload a Comms Provider Module.

Notes:

· Asynchronous.

· If the CPM in question has bindings to other CPM’s they will be removed automatically before the CPM is asked to unload.

· The three defined values of aUnLoadInfo::iType are:

· EOptional – module is requested to gracefully shut down unless it has a good reason not to (such as active clients of its own)

· EGraceful – module is instructed to gracefully shut down

· ENonGraceful – module thread is immediately terminated

· For EOptional and EGraceful requests the client status is completed with whatever code the CPM thread returned or exited with, or KErrTimeout if the thread fails to exit.

· For ENonGraceful the CPM thread requests the client status is completed with KErrCancel.

Capability:

The SID will be checked to ensure that this request came from the comms configurator.

Parameters:

	TRequestStatus& aStatus
	One of the global error codes (eg KErrNone) or a code defined in Rserror.h., as above.

	TRSModuleName& aName
	The name of the module to be unloaded (specified with LoadCpm() and type of unload.

3.1.2.7 CancelUnloadCpm()

void CancelUnloadCpm(const TRSModuleName& aName);

Description:

Cancel a previously made unload request.

Notes:

· Synchronous.

· It is unlikely that the CPM unloading is cancelled, but a best effort will be made and the pending UnloadCpm() request will be completed immediately.

Capability:

The SID will be checked to ensure that this request came from the comms configurator.

Parameters:

	const TRSModuleName& aName
	Name of CPM of which to cancel unloading.

3.1.2.8 Bind()

void Bind(TRequestStatus& aStatus, TRSBindingInfo& aBindInfo);

Description:

Binds two CPM’s.

Notes:

· Asynchronous.

· Several types of bindings are available:

· EHierarchical: Standard top-bottom bindings in the protocol hierarchy. If this type is specified aName1 is considered top-level module of the binding and aName2 is considered bottom-level part. Also this type of binding allow that the top-level CPM is a server.

· ECustom: Horizontal binding between two CPM’s. Typical use is when a CPM employs another CPM to do some processing and communicates via the standard message queues.

· The other binding types specified in TRSBindType (EControl and ESap) are illegal to use with Bind() as they are purely generated by the CPM’s and Comms Servers themselves. They might however, be returned with the GetBindingInfo() command.

Capability:

The SID will be checked to ensure that this request came from the comms configurator.

Parameters:

	TRequestStatus& aStatus
	KErrNone if successful, otherwise one of the global error codes or a code defined in Rserror.h.

	TRSBindingInfo& aBindInfo
	Type of binding to perform, names of modules involved.

3.1.2.9 CancelBind()

void CancelBind(const TRSModuleName& aName1, const TRSModuleName& aName2);

Description:

Cancel the binding of two CPM.

Notes:

· Synchronous.

· It is unlikely that the binding is cancelled, but a best effort will be made and the pending Bind() request will be completed immediately.

Capability:

The SID will be checked to ensure that this request came from the comms configurator.

Parameters:

	const TRSModuleName& aName1
	First CPM of the pending binding.

	const TRSModuleName& aName2
	Second CPM of the pending binding.

3.1.2.10 Unbind()

void Unbind(TRequestStatus& aStatus, TRSModuleName& aName1, TRSModuleName& aName2);

Description:

Unbinds two CPM’s.

Notes:

· Asynchronous.

· If the CPM’s are not bound does nothing.

· If the CPM’s have more than one binding all are unbound.

Capability:

The SID will be checked to ensure that this request came from the comms configurator.

Parameters:

	TRequestStatus& aStatus
	KErrNone if successful, otherwise one of the global error codes or a code defined in Rserror.h.

	TRSModuleName& aName1
	CPM to unbind from aName2

	TRSModuleName& aName2
	CPM to unbind from aName1

3.1.2.11 CancelUnbind()

void CancelUnbind(const TRSModuleName& aName1, const TRSModuleName& aName2);

Description:

Cancel the unbinding of two CPM’s.

Notes:

· Synchronous.

· It is unlikely that the unbinding is cancelled, but a best effort will be made and the pending UnBind() request will be completed immediately.

Capability:

The SID will be checked to ensure that this request came from the comms configurator.

Parameters:

	const TRSModuleName& aName1
	First CPM of the pending unbinding.

	const TRSModuleName& aName2
	Second CPM of the pending unbinding.

3.1.2.12 GetModuleInfo()

TInt GetModuleInfo(TRSModuleName& aName, TRSModuleInfo& aModuleInfo);

Description:

Get information about one CPM – Name, Dll filename, State and number of sub-modules.

Notes:

· Synchronous.
Parameters:

	TRSModuleName& aName
	Name of CPM. Same name as specified in LoadCpm().

	TRSModuleInfo& aModuleInfo
	CPM information

Return value:

	TInt
	KErrNone if successful, otherwise one of the global error codes or a code defined in Rserror.h.

3.1.2.13 EnumerateModules()

TInt EnumerateModules(TRSIter& aPosition , TCFModuleName& aModuleName);

Description:

Return a list of running CPM’s one at a time. The client must poll the Root Server over and over until the names of all modules have been returned.

Parameters:

	TRSIter& aPosition
	Position in enumeration. In/out parameter

	TCFModuleName& aModuleName
	Memory area within which to put the returned TCFModuleName. Out parameter, allocated by the caller.

Return value:

	TInt
	KErrNone if successful, KErrEof after reaching the end of the enumeration (in which case aModuleName is not updated), otherwise one of the global error codes or a code defined in Rserror.h.

Example usage:

TRSIter position;

TCFModuleName moduleName;

// Query a previously connected Root Server instance and do something
 while(KErrNone == iRootServer->EnumerateModules(position , moduleName))

{

// Do something with moduleName

}

Notes:

· Synchronous.

· The names are returned in no particular order.

· aPosition is an in/out parameter. It is intentionally opaque. Should an invalid iterator be passed (eg one for a different enumeration) then an error is returned, rather than a panic resulting.

· No state is preserved by the Root Server for the enumeration; the client can abandon it before the end or restart it without consequence.

· The enumeration returned is not a snapshot from the start and is not stable against change: if modules are loaded or unloaded during the enumeration then an error might be returned or a module could be skipped or returned twice.

3.1.2.14 EnumerateSubModules()

TInt EnumerateSubModules(const TCFModuleName& aModuleName, TRSIter& aPosition
TCFSubModuleName& aSubModuleName);

Description:

Return a list of sub-modules belonging to a module, one at a time. The client must poll the Root Server over and over until the names of all sub-modules have been returned.

Parameters:

	const TCFModuleName& aModuleName
	Module whose sub-modules are being enumerated. In parameter.

	TRSIter& aPosition
	Position in enumeration. In/out parameter

	TCFSubModuleName& aSubModuleName
	Memory area within which to put the returned TCFModuleName. Out parameter, allocated by the caller.

Return value:

	TInt
	KErrNone if successful, KErrEof after reaching the end of the enumeration (in which case aSubModuleName is not updated), otherwise one of the global error codes or a code defined in Rserror.h.

Example usage:

TRSIter position;

TCFSubModuleName subModuleName;

// Query a previously connected Root Server instance and do something
 while(KErrNone == iRootServer->EnumerateSubModules(iModule, position, subModuleName))

{

// Do something with subModuleName

}

Notes:

· Synchronous.

· The names are returned in no particular order.

· aPosition is an in/out parameter. It is intentionally opaque. Should an invalid iterator be passed (eg one for a different enumeration) then an error is returned, rather than a panic resulting.

· No state is preserved by the Root Server for the enumeration; the client can abandon it before the end or restart it without consequence. The client should not change the TCFModuleName during the enumeration; doing so will probably return an error and at best will produce a jumble of sub-modules.

· The enumeration returned is not a snapshot from the start and is not stable against change: if the parent module was unloaded during the enumeration then the next call to EnumerateSubModules() will return an error rather than the next member.

3.1.2.15 EnumerateBindings()

TInt EnumerateBindings(const TCFSubModuleAddress& aSubModuleAddr, TRSIter& aPosition
TRSBindInfo& aBindInfo);

Description:

Return a list of bindings of sub-modules of the nominated module. The client must poll the Root Server over and over until the names of all sub-modules have been returned.

Parameters:

	TCFSubModuleAddress& aSubModuleAddr
	Sub-modules to enumerate the bindings of.

	TRSIter& aPosition
	Position in enumeration. In/out parameter

	TRSBindInfo& aBindInfo
	Memory area within which to put the returned TRSBindInfo. Out parameter, allocated by the caller.

Return value:

	TInt
	KErrNone if successful, KErrEof after reaching the end of the enumeration (in which case aBindInfo is not updated), otherwise one of the global error codes or a code defined in Rserror.h.

Example usage:

TRSIter position;

TRSBindInfo bindInfo;

// Query a previously connected Root Server instance and do something
 while(KErrNone == iRootServer->EnumerateSubModules(iSubModule, position, bindInfo))

{

// Do something with bindInfo

}

Notes:

· Synchronous.

· The bindings are returned in no particular order.

· aPosition is an in/out parameter. It is intentionally opaque. Should an invalid iterator be passed (eg one for a different enumeration) then an error is returned, rather than a panic resulting.

· No state is preserved by the Root Server for the enumeration; the client can abandon it before the end or restart it without consequence. The client should not change the TCFSubModuleAddress during the enumeration; doing so will probably return an error and at best will produce a jumble of bindings.

· The enumeration returned is not a snapshot from the start and is not stable against change: ie if new bindings are made or existing ones removed during the enumeration then an error might be returned or a binding could be skipped or returned twice.

3.1.2.16 SendMessage(TRequestStatus& aStatus, const TCFModuleName& aName, TInt aType, TDes8& aData)

void RRootServ::SendMessage(TRequestStatus& aStatus, const TCFModuleName& aName, TInt aType, TDes8& aData);
Description:

Sends a message to the specified CPM. The message is supposed to be based on CNetMessage class.
Parameters:

	TRequestStatus& aStatus
	A request status for the asynchronous operation. KErrNone on successful completion.

	TCFModuleName& aName
	The name of the CPM that receives the message.

	TInt aType
	Specifies the type of data in aData parameter. Possible types are defined in TCFMessageType enum.

	TDes8& aData
	A data specific to the message and it's type given by aType parameter. The data is expected to be CNetMessage based serialised instance.

Notes:

· Asynchronous.
· Result code: if the module name is wrong, KErrRSModuleUnknown is returned; If the message format is wrong, KErrArgument is returned. Otherwise this is the result of the message processing.
3.1.2.17 SendMessage(const TCFModuleName& aName, TInt aType, TDes8& aData)

TInt RRootServ::SendMessage(const TCFModuleName& aName, TInt aType, TDes8& aData);

The same as above, but synchronous version.

Return value:

	TInt
	The result of synchronous message sending. KErrNone on success.

Notes:

· Synchronous.

Example usage:

// Create TPtr8 from the buffer with message’s data

TPtr8 ptr(some buffer with message’s data);

// Construct a message

NetMessages::CMessage message;

User::LeaveIfError(message.Store(ptr));

// Send a message to the module, which name is represented by iModule.

User::LeaveIfError(iC32Root.SendMessage(iModule, CommsFW::EFactoryMsg, ptr));

3.1.2.18 Shutdown()

TInt Shutdown();

Description:

If no modules are loaded it shuts down the RootServer and exit the Comms Process (c32exe.exe).

Notes:

· Synchronous.

· If modules are still loaded it returns KErrRSModulesStillRunning and the RootServer keeps running. It is the responsibility of the client to unload all modules.

Capability:

The SID will be checked to ensure that this request came from the comms configurator.

3.1.3 Design Unit Behaviour

The Root Server client library is no more than an IPC abstraction and no overall design is needed. The following chapters will contain implementation notes on the individual functions in the RRootServ API class.

3.1.3.1 RRootServ

Default constructor. Does nothing

3.1.3.2 Connect

Create new session to the Root Server by using parent RSessionBase::Connect() and return result.

3.1.3.3 Version

Create new TVersion object with the client library version number (a function) and return it.

3.1.3.4 SetMBufPoolSize

Send a synchronous request to Root Server and return result.

	IPC request:
	RSSetMBufPoolSize

	Parameter
	Type
	Data source

	Parameter 0
	TUint
	aPoolSize

3.1.3.5 LoadCpm

Send asynchronous request to Root Server, using aStatus and return.

	IPC request:
	RSLoadCpm

	Parameter
	Type
	Data source

	Parameter 0
	TRSStartModuleParams&
	aParams

	Parameter 1
	TDesC8
	aIniData

3.1.3.6 CancelLoadCpm

Send asynchronous request to Root Server, using aStatus and return.

	IPC request:
	RSCancelLoadCpm

	Parameter
	Type
	Data source

	Parameter 0
	TRSModuleName&
	aName

3.1.3.7 UnloadCpm

Send asynchronous request to Root Server, using aStatus and return.

	IPC request:
	RSUnloadCpm

	Parameter
	Type
	Data source

	Parameter 0
	TRSModuleName&
	aName

	Parameter 1
	TRSUnLoadType
	aType

3.1.3.8 CancelUnloadCpm

Send synchronous request to Root Server, using aStatus and return.

	IPC request:
	RSCancelUnloadCpm

	Parameter
	Type
	Data source

	Parameter 0
	TRSModuleName&
	aName

3.1.3.9 Bind

Send asynchronous request to Root Server, using aStatus and return.

	IPC request:
	RSBind

	Parameter
	Type
	Data source

	Parameter 0
	TRSBindType
	Type

	Parameter 1
	TRSModuleName&
	aName1

	Parameter 2
	TRSModuleName&
	aName2

3.1.3.10 CancelBind

Send synchronous request to Root Server, using aStatus and return.

	IPC request:
	RSCancelBind

	Parameter
	Type
	Data source

	Parameter 0
	TRSModuleName&
	aName1

	Parameter 1
	TRSModuleName&
	aName2

3.1.3.11 Unbind

Send asynchronous request to Root Server, using aStatus and return.

	IPC request:
	RSUnBind

	Parameter
	Type
	Data source

	Parameter 0
	TRSModuleName&
	aName1

	Parameter 1
	TRSModuleName&
	aName2

3.1.3.12 CancelUnbind

Send synchronous request to Root Server, using aStatus and return.

	IPC request:
	RSCancelUnbind

	Parameter
	Type
	Data source

	Parameter 0
	TRSModuleName&
	aName1

	Parameter 1
	TRSModuleName&
	aName2

3.1.3.13 GetModuleInfo

Send synchronous request to Root Server and return result.

	IPC request:
	RSGetModuleInfo

	Parameter
	Type
	Data source

	Parameter 0
	TRSModuleName&
	aName

	Parameter 1
	TRSModuleInfo&
	aModuleInfo

3.1.3.14 EnumerateModules

Send synchronous request to Root Server, using aStatus and return.

	IPC request:
	RSEnumerateModules

	Parameter
	Type
	Data source

	Parameter 0
	TRSIter&
	aPosition

	Parameter 1
	TCFModuleName&
	aModuleName

3.1.3.15 EnumerateSubModules

Send synchronous request to Root Server, using aStatus and return.

	IPC request:
	RSEnumerateSubModules

	Parameter
	Type
	Data source

	Parameter 0
	const TCFModuleName&
	aModuleName

	Parameter 1
	TRSIter&
	aPosition

	Parameter 2
	TCFModuleName&
	aModuleName

3.1.3.16 EnumerateBindings

Send synchronous request to Root Server and return result.

	IPC request:
	RSEnumerateBindings

	Parameter
	Type
	Data source

	Parameter 0
	const TCFSubModuleAddress&
	aSubModuleAddr

	Parameter 1
	TRSIter&
	aPosition

	Parameter 2
	TRSBindInfo&
	aBindInfo

3.1.3.17 Shutdown

Send synchronous request to Root Server and return result.

	IPC request:
	RSShutdown

3.1.3.18 SendMessage
Sends a message to the specified CPM synchronously or asynchronously.

	IPC request:
	RSSendMessage

	Parameter
	Type
	Data source

	Parameter 0
	const TCFModuleName&
	aName

	Parameter 1
	TInt
	aType

	Parameter 2
	TDes8&
	aData

3.1.4 Files

	File
	Description

	rsshared.h
	The API classes from section 3.1.2, apart from RRootServ.

	c32root.h
	Includes rsshared.h. Definition of RRootServ.

	c32root.cpp
	The API implementation described in section 3.1.3.

	rserror.h
	Root Server error codes.

	c32root.dll
	The client library binary.

3.2 Root Server

3.2.1 Overview

The Root Server is the main thread of the new C32 Process and until the privileged client application requests loading of the first CPM it is also the only thread. The main purpose of the Root Server is to carry out creation and shutdown of CPMs, on request, and to use the Binding Manager to bind them together.

The Root Server implements the server side of the API/tools for configuring the CPMs running within the C32 process. More specifically the server implements the server part of the services described in section 3.1.2.

In order to do this the Root Server has to maintain a list of all CPMs that are active. This means registering/de-registering them from internal data structures at load/unload time as well as keeping an eye on them in case of spontaneous thread death (
Figure 2
). It only keeps an eye on the thread the CPM in question was created with. If the CPM has created its own threads it is of no concern to the Root Server.

The Root Server is also the main (and the only) user of the Binding Manager, which runs in the same thread as the Root Server. The Root Server creates a BindMgr instance from “bindmgr.dll” (to which it is statically linked) when first needed (when first CPM is started). It is also the job of the Root Server to notify the Binding Manager of CPM’s loaded/unloaded and to forward user requests for bindings to the Binding Manager.

The Binding Manager will have ownership of all control message queues, so when the Root Server has successfully started a CPM it must pass the associated queues to the Binding Manager along with a unique handle identifying the thread. The handle is associated with an object saved in the Root Server, representing the CPM. Whenever the Root Server client library makes a request (e.g. ERSBind) it refers to the CPM in question with a string name which is then used to find the object representing the CPM, and its unique handle which is used internally and in communication with the Binding Manager.

[image: image8.wmf]

CSessionResponse

CRootServerSession

1..*

1..*

CBindMgr

CMbufMgr

CCPM

CRootServer

1..1

1..1

1..1

1..1

1..1

0..*

CSharableSession

CServer

0..*

0..*

CPolicyServer

Figure 2: The Root Server and modules

Using friendly symbolic names instead of handles in the Client API is all right in this context because none of the functions provided are time critical. It doesn’t matter from a performance perspective that each API call has to match the string name with a handle or even whether it uses a sub-optimal data structure for matching names/handles.

The design of the MBuf Manager is not within the scope of this document.

As mentioned earlier, Sudden Death notification is now handled by Publish and Subscribe. The Root Server keeps an RProperty member which is the sudden death property and a TInt counter which records the number of deaths as they happen. Each time the Root Server is informed of a death, the property is published and all clients which have subscribed to this property are notified.

3.2.2 UML Diagram

Figure 3 depicts the basic structure of the Root Server implementing the required SymbianOS client/server classes. Please notice that the Root Server holds the Binding Manager instance, the MBuf Manager instance, a list of Sudden Death listeners (objects to be notified if a thread dies) and most notably: The list of Comms Provider Modules.

[image: image9.wmf]CActive

CTimer

MNotifyTimerShot

MNotifySuddenDeath

CModuleTimer

1

..1

1

..1

CCPM

1

..1

CModuleUndertaker

1

..1

1

..1

1

..1

1

..1

1

..1

igure 3: UML diagram for The Root Server and sessions

The following table provides a quick overview.

	Object name
	Description

	CCPM
	Object representing a loaded/running Comms Provider Module.

	CRootServer
	The required server implementation in the SymbianOS client/server model.

	CRootServerSession
	The required session implementation in the SymbianOS client/server model.

	CBindMgr
	Bind Manager instance.

	CMbufMgr
	MBuf Manager instance.

Figure 4 depicts the structure of the class representing a running thread: CCommsProviderModule. It provides the required tools to control a CPM thread. There is a timer active object for actions requiring a timer (e.g.

[image: image10.png]symbian

Figure 4: UML diagram for the modules

shutting down a thread), an undertaker to monitor the thread for Sudden Death (prematurely ending thread-function) and an active object for asynchronous feedback from other modules, e.g. the Binding Manager. Thus the CPM instance becomes a fairly autonomous entity. To control all this the CPM entity will contain a state member variable, in effect being an informal state-event machine (i.e. no central state-event function, but still dependent on a state concept).

The following table provides a quick overview.

	Object name
	Description

	CCommsProviderModule
	Class for CPM’s. Owns information such as name, dll filename, identifying unique handle, thread object and the current state of the CPM.

	CModuleTimer
	Providing CTimer functionality to the modules.

	MNotifyTimerShot
	Timer notification interface implemented by CModuleBase.

	CModuleUndertaker
	Class listening for sudden module thread death by means of a RUndertaker object.

	MNotifySuddenDeath
	Framework for notifying of thread death, this interface is implemented by CModuleBase.

3.2.3 IPC Requests

In the following each supported IPC request will be described, including the algorithms implementing it. Even though out-of-memory handling is not mentioned in the algorithms it is extremely important to remember handling all possible out-of-memory as well as error conditions and propagate the error-codes to the client application where applicable.

For robustness the CServer2 framework (using TIpcArgs for parameter transfer) is used.

3.2.3.1 RSLoadCPM

IPC parameters defined in section 3.1.3.5.

Required SID of the client: SID of c32start.exe.

Algorithm:

1. Check that new module name is not already known and that the second UID of the DLL to load is 0x101f7417.

2. If no Bind Manager, create a new instance from factory in bindmgr.dll.

3. Retrieve a new Queue-pair for control queues (they need to be available when the thread is spawned).

4. Create a new CCommsProviderModule instance for the new CPM.

5. Tell the CCommsProviderModule instance to start the module, waiting for it to complete by means of the CSessionResponse active object.

6. The CCommsProviderModule will:

1. Check that the state is EIdle, else complete immediately with an error.

2. Set the state to EStarting.

3. Start thread.

4. Wait for rendezvous or thread failure/death.

5. If success do a thread logon using the iUndertaker member of the new CCommsProviderModule instance.

6. Notify Bind Manager of the new server and pass ownership of the associated control queue-pair and the handle representing the server instance.

7. Set the state to ERunning.

8. Complete the active object (CSessionResponse) with a completion code.

6. Upon activation of the CSessionResponse instance, complete RMessage with result.

Figure 5 depicts the informal sequence diagram for the algorithm.

[image: image11.png]symbian

Figure 5: RSLoadCPM visualisation
3.2.3.2 RSCancelLoadCpm

IPC parameters defined in section 3.1.2.5.

Required SID of the client: SID of c32start.exe.

Algorithm:

1. Go through list of session handlers to identify the pending matching one.

2. I handler is found.

3. Complete RMessage with result.

3.2.3.3 RSUnloadCPM

IPC parameters defined in section 3.1.3.6.

Required SID of the client: SID of c32start.exe.

Algorithm:

1. If CPM exists, get instance and:

1. Check if the sticky bit is set and if so complete immediately with KErrLocked
2. Else tell CCommsProviderModule to unbind all, waiting for it to complete by means of the CSessionResponse active object.

2. The CPM will:

3. Check that the state is ERunning, else complete immediately with an error.

4. Set the state to EStopping.

5. Ask Bind Manager to asynchronously unbind all bindings to self.

6. When complete received ask Binding Manager to send CPMShutdown message to CPM. Unless there was an error in which case it should be propagated to the waiting session object.

7. Wait (timed) for CPM thread to end. If timeout notify client.

8. If CPM thread ended notify Binding manager of module death

9. Complete the active object (CSessionResponse) with the completion code.

10. Delete self.

3. Complete RMessage with result.

[image: image12.png]symbian

Figure 6 depicts a sequence where the threads terminates peacefully before the timeout and Figure 7 depicts the situation where the thread does not end as requested and the timer is shot. Notice that in both cases the undertaker is triggered when the thread is finally dead.

Figure 6: RSUnloadCPM successfully visualisation
[image: image13.wmf]CActive

CTimer

MNotifyTimerShot

MNotifySuddenDeath

CModuleTimer

1

..1

1

..1

CCPM

1

..1

CModuleUndertaker

1

..1

1

..1

1

..1

1

..1

1

..1

Figure 7: RSUnloadCPM with timeout visualisation
3.2.3.4 RSCancelUnloadCpm

IPC parameters defined in section 3.1.2.7.

Required SID of the client: SID of c32start.exe.

Algorithm:

1. Go through list of session handlers to identify the pending matching one.

2. I handler is found.

3. Complete RMessage with result.

3.2.3.5 RSBind

IPC parameters defined in section 3.1.3.8.

Required SID of the client: SID of c32start.exe.

Algorithm:

1. Check that both CPM names exist.

2. Pass request to Bind Manager, waiting for it to complete by means of the CSessionResponse active object.

3. When completed, complete RMessage with result.

Figure 8
 depicts the informal sequence diagram for the algorithm.

[image: image14.wmf]Session :

CRootServerSession

Module

Instance :

CProviderModule

Binding

Manager

Undertaker :

CModuleUndertaker

Active

object :

CSessionResponse

Root

Server :

CRootServer

Client library

Subscribe to

RProperty

Thread Suddenly Died

iStatus

==EZoombie

Died - unbind all

TRequestStatus

SuddenDeath

Publish

RProperty

Delete self

Figure 8: RSBind visualisation
3.2.3.6 RSCancelBind

IPC parameters defined in section 3.1.2.9.

Required SID of the client: SID of c32start.exe.

Algorithm:

4. Go through list of session handlers to identify the pending matching one.

5. I handler is found.

6. Complete RMessage with result.

3.2.3.7 RSUnbind

IPC parameters defined in section 3.1.3.10.

Required SID of the client: SID of c32start.exe.

Algorithm:

1. Check that both CPM names exist.

2. Pass request to Bind Manager, waiting for it to complete by means of the CSessionResponse active object.

3. When completed, complete RMessage with result.

3.2.3.8 RSCancelUnbind

IPC parameters defined in section 3.1.2.11.

Required SID of the client: SID of c32start.exe.

Algorithm:

1. Go through list of session handlers to identify the pending matching one.

2. I handler is found.

3. Complete RMessage with result.

3.2.3.9 RSGetModuleInfo

IPC Parameters defined in section 3.1.3.13.

Required UID of the client: No UID requirement.

Algorithm:

1. Check that the CPM name is valid (by retrieving a reference from the CRootServer instance).

2. Query the Binding Manager (synchronously) for the binding info for the CPM.

3. Fill a TRSModuleInfo structure with the appropriate values and copy it into Parameter 1

Complete RMessage with result.
3.2.3.10 RSEnumerateModules

IPC Parameters defined in section 3.1.3.12.

Required UID of the client: No UID requirement.

Algorithm:

1. Retrieve the current enumeration position from Parameter 1

2. Retrieve enumeration for Comms Provider Modules from the CRootServer instance.

3. If successful, copy the TCFModuleName to Parameter 2 and write the incremented position to Parameter 1.

4. Complete RMessage with result.

3.2.3.11 RSEnumerateSubModules

IPC Parameters defined in section 3.1.3.12.

Required UID of the client: No UID requirement.

Algorithm:

1. Retrieve the module name from Parameter 1 and the current enumeration position from Parameter 2.

2. Retrieve enumeration for sub-modules from the CRootServer instance.

3. If successful, copy the TCFSubModuleName to Parameter 3 and write the incremented position to Parameter 2..

4. Complete RMessage with result.

3.2.3.12 RSEnumerateBindings

IPC Parameters defined in section 3.1.3.15.

Required UID of the client: No UID requirement.

Algorithm:

1. Retrieve the sub-module address from Parameter 1 and the current enumeration position from Parameter 2.

2. Using a CBindManager instance, iterate the bindings for the sub-module address to find the given position.

3. If successful, copy the TRSBindInfo to Parameter 3 and write the incremented position to Parameter 2.

4. Complete RMessage with result.

3.2.3.13 RSSetMBufPoolSize

IPC Parameters defined in section 3.1.3.4.

Required SID of the client: SID of c32start.exe.

Algorithm:

1. Check if RMBufPool already instantiated; if so, result is KErrInUse. Check desired size against constant min & max boundaries; if exceeded then result is ERSInvalidMBufPoolSize. If no errors then record desired size for the subsequent lazy instantiation.

Complete RMessage with result.

3.2.3.14 RSSendMessage

IPC Parameters defined in section 3.1.3.16 and 3.1.3.17

Algorithm:

1. Retrieve the module name from Parameter 1

2. Call CRootServer::Forward() method, passing there the CPM name and the reference to the message

3. Root Server in turn calls CBindManager::SendL
4. The Bind manager finds an appropriate module by its name and calls its method SendL, passing a message as a parameter.

5. The CPM completes the message.

If the module name is wrong, the message will be completed with KErrRSModuleUnknown code, if the message format is wrong, the completion code will be KErrArgument, otherwise the result will be formed by the module that processed the message.

3.2.3.15 RSShutdown

IPC Parameters defined in section 3.1.3.18.

Required SID of the client: SID of c32start.exe.

Algorithm:

6. If CPMs are still loaded result = KErrRSModulesStillRunning
7. Otherwise shutdown Root Server

8. Complete RMessage with result.

3.2.4 Things not covered by the API

3.2.4.1 Spontaneous module/thread death

In case of sudden thread death the CModuleUndertaker object associated to the CPM will be activated. The RunL member will call the notification member (which is a CCommsProviderModule::SuddenDeath()), which will implement the following algorithm:

1. Set status to EZombie.

2. Notify Binding Manager of death and request to asynchronously unbind bindings between all CPM’s and the dead one using BindMgr::UnbindDead().

3. Wait for binding manager to complete unbinding.

4. Call the CRootServer Sudden Death member, which publishes its Sudden Death RProperty – the number of CPM’s to have died.

5. Remove self from the list and delete self.

[image: image15.wmf]

CSessionResponse

CRootServerSession

1..*

1..*

CBindMgr

CMbufMgr

CCPM

CRootServer

1..1

1..1

1..1

1..1

1..1

0..*

CSharableSession

CServer

0..*

0..*

CPolicyServer

Figure 9 depicts the informal sequence of Sudden Death handling using Publish and Subscribe.

Figure 9: Sudden Death visualisation
The client is not notified which client has died, but can retrieve the number of deaths by calling the get() function of the RProperty published by the Root Server.
3.2.5 Starting the Root Server

Executing the application c32exe.exe starts the Root Server. The c32exe.exe as implemented by c32exe.cpp, will contain the following main function:

GLDEF_C TInt E32Main()

{

return RunRootServer(); // Load Root Server. Blocks by starting the active scheduler

}

TInt RunRootServer() function is the main thread routine for the Root Server, living in the c32rootsrv.dll It will initialise the actual Root Server object and then start the Active Scheduler. This is the algorithm:

1. Set thread parameters: proper priority and protected thread.

2. Create and initialise a CRootServer instance.

3. If everything was all right start the Active Scheduler. Otherwise return error-code.

Note: The MBufMgr instance will not be created until the first time it is needed.

In Symbian OS v8.0 the name of the privileged reference application configuring the Comms process via the Root Server API will be c32start.exe. Since we have to start the Root Server sometime, it seems reasonable to let c32start.exe be responsible for executing c32exe.exe, thus starting the C32 process/Root Server before it starts configuring the server and provider modules.

The RunRootServer routine is protected against being called repeatedly, so there is no damage done here.

The function StartC32() that previously lived in c32.dll now is moved to c32root.dll. This function is critical to clients who wish to connect to the Root Server. In order to use the Root Server, it must be fully configured and ready, and StartC32 will endeavour to ensure this is so. A synchronous Publish and Subscribe method is used, with StartC32 first starting c32start.exe if the configuring state property does not exist, then waiting for c32start.exe to publish that property to indicate that the Root Server is configured. At this point all servers are deemed up and running.

It is important to note, that if a second caller of StartC32 enters while the first is still being processed, it must be blocked and only return when the Comms process is fully configured and ready to run. This will happen by that call waiting for the configured property to be published. Any called of StartC32 must expect to have a fully configured system when the call returns.

3.2.6 Major Classes

In the following sections the major class will be listed. However, only the most important/interesting member functions and variables will be shown here. For a full reference, please look at the headerfiles.

3.2.6.1 CCommsProviderModule

This is the main cpm class orchestrating thread creation, loading and unloading, The class is asynchronously activated from three active objects: its own derivative, a timer it owns (iModuleTimer) and the undertaker associated with the thread (iUndertaker member). The type of action taken on a particular input is decided by its internal state, defined by an iState member.

The public interface of the class contains the following members:

static CCommsProviderModule* NewL(CRootServer* aRootServer, TCFModuleName& aName, TFileName& aDll, TThreadPriority& aPriority, TInt aStackSize, TUint& aMinHeapSize, TUint& aMaxHeapSize, HBufC8* aIniData, TBool& aPrivateHeap);

~CCommsProviderModule();

TInt Load();

// Start module in new thread

TInt Unload(TRequestStatus& aStatus);
// Unload module

TInt GetHandle();

// Get thread handle

TModuleName& GetName();
TFileName& GetDll();

TModuleState GetState();

virtual void SuddenDeath(TInt aReason);
// Called by iUndertaker upon thread death
virtual void ModuleTimerShot();

// Called by iModuleTimer
Key member data (private):

TModuleState iState;

// Current state of module (running, starting, etc)
TQueuePair iQueuePair;
// Queues given to the module at initialisation
TCFModuleName iName;

// Name of module, defined by privileged app
RLibrary iLibrary;

// Keeping the DLL so it can be closed at unload
RCFThread iThread;

// Thread handle of running module context
CModuleUndertaker* iUndertaker; // Active object listening for sudden death
CRootServer* iRootServer;

// Access to the root server
TDblQue<CNotifySuddenDeathContainer> iNotifiers; // Registered sudden death notifiers
TRSTransientModuleInfo* iThreadStartupInfo; // Holds inidata, etc.
RHeap* iHeapPtr;

// Pointer for the heap associated with the thread

};

3.2.6.2 CModuleUndertaker

The CModuleUnderTaker class monitors a thread for sudden death. If it happens it will call SuddenDeath() on it's iNotifier member. It uses the standard RThread.Logon() for this purpose.

The public interface of the class contains the following members:

~CModuleUndertaker();

static CModuleUndertaker* NewL(MNotifySuddenDeath* iNotifier, RThread* aThread);

void Logon();

// Logon to the thread to watch
void LogonCancel();

// Cancel thread logon
Key member data (private):

MNotifySuddenDeath* iNotifier;
// Interface which has a SuddenDeath() member.
3.2.6.3 CRootServer

This is the main Root Server class and must only exist in one instance in the process. It initialises and holds the instance of the MBuf Manager as well as lists of the loaded modules/threads in the C32 process. It is derived from CPolicyServer.

The public interface of the class contains the following members:

static CRootServer* NewL(TInt aPriority, TUint aMbufPoolSize);

// Create new CRootServerSession instance

virtual CSharableSession* NewSessionL(const TVersion &aVersion) const;

// Create Comms Provider module and put it in list

CCommsProviderModule* CreateCpmL(TRSStartModuleParams& aParams, HBufC8* aIniData);

// Retrieve Server or Provider reference by name or handle

CCommsProviderModule* FindCpm(const TRSModuleName& aName);

CCommsProviderModule* FindCpm(TInt aHandle);

// Remove modules from queues and delete them

TInt DeleteCpm(TInt aHandle);

// Sudden Death notification. Called by Undertaker's. Will cause publication of

// Sudden Death property.

void SuddenDeath(TInt aReason);

// Information, module count

TInt CpmCount();

// Information, Enumeration

TInt Enumerate(TDes8& aList);

TInt GetModuleInfo(const TRSModuleName& aName, TRSModuleInfo& aInfo);

// forward a message “aMessage” to the CPM with name “aModule” via Bind Manager

TInt Forward(const TCFModuleName& aModule, const RMessage2& aMessage);
Key member data (private):

TUint iMbufPoolSize;

// Size of MBuf Pool to be used when loading the MBufMgr
TDblQue<CCommsProviderModule> iModules;
// List of active (or known) modules
CMBufManager* iMBufManager;

// MBuf Manager when created, otherwise NULL
3.2.6.4 CRootServerSession

Required session object as required by the client/server framework, derived from CSession2. Implements the IPC API. Keeps a list of asynchronous event handlers (see 3.2.6.5).

The public interface of the class contains the following members:

CRootServerSession(const CRootServer* aRootServer);

virtual void ServiceL(const RMessage& aMessage);

void RegisterHandler(CSessionHandler& aHandler); // Save a handler managing a client request
void CloseSession();

CRootServer* RootServer();

// Get the Rootserver
RMessage& GetMessage();

~CRootServerSession();

void PanicClient(const RMessage& aMessage, TInt aError);

The private section of the class contains the following members for internal use:

// Member functions implementing IPC functionality

TInt SetMBufPoolSize(const RMessage& aMessage);

TInt LoadCPML(const RMessage& aMessage);

TInt UnloadCPML(const RMessage& aMessage);

TInt BindL(const RMessage& aMessage);

TInt UnbindL(const RMessage& aMessage);

TInt GetModuleInfo(const RMessage& aMessage);

TInt EnumerateModules(const RMessage& aMessage);

TInt EnumerateSubModules(const RMessage& aMessage);

TInt EnumerateBindings(const RMessage& aMessage);

TInt CancelLoadCPM(const RMessage& aMessage);

TInt CancelUnloadCPM(const RMessage& aMessage);

TInt CancelBind(const RMessage& aMessage);

TInt CancelUnbind(const RMessage& aMessage);

TInt Shutdown(const RMessage& aMessage);

TInt Forward(const RMessage2& aMessage);

Key member data (private):

TDblQue<CSessionHandler> iActiveHandlers; // List of handlers currently servicing

// client requests

3.2.6.5 CSessionResponse

Active session handler object. Used when the session makes an asynchronous request to e.g. Binding Manager. Has access to public members of it's CRootServerSession parent. CRootServerSession will keep a list of these, one for each pending asynchronous request. Derives from CActive.

The public interface of the class contains the following members:

CSessionHandler(CRootServerSession* aSession, RMessage& aMessage);

TDblQueLink iLink;

// DblQue link element, for storing in the session
Key member data (private):

CRootServerSession* iSession;
// Parent session instance
3.2.7 Files

A table of source files (.cpp / .h)

	File
	Description

	rserror.h
	Root Server error codes.

	rsshared.h
	The definitions shared with the client library. The content of this file is defined in section 3.1.4.

	rsstd.h
	Classes and definitions.

	policy.h
	API Policing policy defiitions

	rootsrv.cpp
	Implementation of the CRootServer class.

	rootsess.cpp
	Implementation of the root server session class.

	rootutil.cpp
	Implementation of all utility classes besides server and session classes such as CCommsProviderModule, and whatnot.

	c32rootsrv.dll
	The Root Server binary, which is loaded by c32exe.exe.

	c32exe.exe
	The application launching the Root Server, becoming the process having the Root Server as main thread.

	c32exe.cpp
	Source for c32exe.exe.

3.3 Bind Manager

3.3.1 Overview

The Bind Manager is the component owned by Root Server thread, with the responsibility of managing all relevant information concerning binding among Comms Provider Modules. It communicates with these modules (throughout RCFChannel objects of Comms Channels component) in order to perform bind/unbind operations.

As Bind Manager owns the communication channels between Root Server and CPM’s, any Root Server message (other then bind instructions – see [1]) will also go through this component. Figure 10 shows Bind Manager and its neighbouring components.

[image: image16.wmf]Session :

CRootServerSession

Module

Instance :

CProviderModule

New thread

Binding

Manager

Active

object :

CSessionResponse

Root

Server :

CRootServer

Client library

RSLoadCpm

Create module

Load CPM

iState

==EIdle?

iState

=EStarting

Start thread

Rendezvous

Undertaker logon

Notify of new CPM

iState

=ERunning

TRequestStatus

RMessage

::

Complete

Figure 10 Components and Dependencies

3.3.1.1 Comms Server Process

As shown at Figure 10, the process contains the following threads:

1. RootServer, that contains Bind Manager module;

2. A number of CPM threads. They are uniquely identified by the module name such as “esock:” and “etel:” at the figure. They can contain a number of sub-modules. Sub-modules are identified by the name in form module_name:submodule_name.

Channels among RootServer (i.e. Bind Manager) and modules are created on module creation and are used to carry messages such as those to bind/unbind particular sub-modules. See document [1] for the full list of messages.

In order to create protocol stacks, any two sub-modules can be bound to each other and communicate using a private message interface. Consider a hypothetical scenario where ESock has a ProtMan submodule and tcpip6 runs in a different thread with each protocol as a sub-module (Figure 11). Bind Manager owns all channels on the figure. The module channels would be created by the RootServer, when the module is started and the sub-module to sub-module channel by Bind requests.

[image: image1.wmf]RootServer

esock

etel

BindMger

tcpip6 module

tcpip6:tcp

tcpip6:udp

tcpip6:ip

Bind Manager – Module channels

Submodule-Submodule channels

esock

:protman

Figure 11 Comms Server process

3.3.2 Design

The design of Bind Manager is based upon the following requirements:

· There will be a single instance of the component running under active scheduler framework.

· It will be used by Root Server component (thread) only i.e. concurrency is not an issue.

· The component should be able to accept and maintain any number of requests at the same time.

· The requests containing TRequestStatus as an input parameter are supposed to complete in a definite time (with the status indicating timeout if it occurs).

· The design should provide mechanism to cancel any outstanding operation in a safe manner. Also, any cancelled request has to be able to resume – if another identical request arrives from RootServer.

· The messages towards CPMs must not be duplicated. If a requests of RootServer requires a message to be sent to a module and the same massage is already sent (and reply has not arrived yet) as result of a previous request, no another message will be sent to the module.

3.3.2.1 Interface

Bind Manager component will be instantiated by creation of an object of the class CBindManager. Therefore, the class interface represents the interface of the component and it is as follows:

3.3.2.1.1 NewL

static CBindManager* CBindManager::NewL(MRootserverNotify& aRootServerNotifier)

Creates an instance of CBindManager, leaving if already created.

The input argument will serve to transfer to Root Server all messages coming from server/provider modules that are not part of bind/unbind process and have to be passed directly to Root Server rather then being processed by Bind Manager.

3.3.2.1.2 CreateModuleL

void CreateModuleL(TRequestStatus& aStatus,
const TCFModuleName& aModule,
const RCFChannel aInputQueues,
const RCFChannel aOutputQueues);

Creates module access point that will control (send and receive) messages from/to server/provider module. The Bind Manager will become responsible for the RCFChannels and should close them when the module is deleted. The Bind Manager will issue a Discovery message to the module and await a valid DiscoveryResp before complete the request.

3.3.2.1.3 BindSubmodulesL

TInt BindSubmodulesL(TRequestStatus& aStatus,
const TRSBindType aType,
const TCFSubModuleAddress& aUpperSubmodule,
const TCFSubModuleAddress& aLowerSubmodule);

Creates binding between two sub-modules. They can be ether the part of the same module or belong to different ones.

“aType” represents the type of binding as defined in [1].

3.3.2.1.4 UnbindSubmodulesL

void UnbindSubmodulesL(TRequestStatus& aStatus,
const TCFSubModuleAddress& aUpperSubmodule,
const TCFSubModuleAddress& aLowerSubmodule);

Unbinds two sub-modules.

3.3.2.1.5 UnbindAllFromModuleL

void UnbindAllFromModuleL(TRequestStatus& aStatus,
const TCFModuleName& aModule);

Unbinds all bindings that involve the module defined by the input argument.

3.3.2.1.6 UnbindAlreadyDeadModuleL

void UnbindAlreadyDeadL(TRequestStatus& aStatus,
const TCFModuleName& aModule);

Unbinds all bindings that involve the module defined by the input argument. As the module is presumed dead, the messages are sent to other modules only.

3.3.2.1.7 UnbindAllAndShutDownL

void UnbindAllAndShutDownL(TRequestStatus& aStatus,
const TCFModuleName& aModule);

Unbinds all bindings that involve the module defined by aModule and sends shut down message to the module.

3.3.2.1.8 ModuleEndedL

void ModuleEndedL(const TCFModuleName& aModule);

Delete module access point created by CreateModuleL(). It will be also used as the final trigger to finish UnbindAndShutDownL() request (if a such request is previously issued).

3.3.2.1.9 SendL
void SendL(const TCFModuleName& aModule, const RMessage2& aMessage);

Sends the message to the server/provider module as specified by the input arguments. Bind Manager is not concerned by the content of the message.

3.3.2.1.10 CancelL

void CancelL(TRequestStatus& aStatus);

Cancels pending request defined by the input argument.

3.3.2.1.11 NumBindings

TInt NumBindingsL(const TCFSubModuleAddress& aSubModule,
TInt& aBindingNo);

Returns the number of bindings with the specified sub-module or a complete module if the submodule name in the parameter is empty (ie zero length). Returns an error code if the module/sub-module is not found, otherwise KErrNone.

3.3.2.1.12 BindingInfoL

void BindingInfoL(const TCFSubModuleAddress& aSubModule,
RCFBindInfoPointerArray& aInfo);

Returns information about bindings of the sub-module specified in the parameter, or a complete module if the submodule name in the parameter is empty (ie zero length).This is in the form of an array of pointers to binding information, which consists of the two bound modules, the binding type, the state of each binding, and any status codes returned by the sub-modules during the bind operation. The data pointed to is const and owned by the BindManager class. However, the array itself is owned by the calling function and should be Closed when no longer required.

3.3.2.2 Basic Internal Architecture

The class diagram showing the basic concept of the design is at Figure 12.

CBindManager object keeps the list of modules (CModule objects) in the system.

CModule has the messaging channels, owned by the RootServer (iSendChannel and iRecvChannel) to particular module and the list of all tasks (messages) that have been sent to the module and are waiting for a reply. CModule (as an active object) is always pending on receiving channel from the module (through iRecvChannel object).

The list of CBindInfo keeps the current state of bindings and it is updated every time a new Root Server request is received or a server/provider module reply arrives, or a job timeout occurs.

CJob list represents all current requests in progress. A CJob contains the list of TaskId+CModule tuples defining all of the tasks that belong to given job. Also, it owns a CJobTimeout object that will generate Timeout() event after a period, ending the request with TimeoutOccured status.

[image: image2.wmf]CActive

CTimer

MBMNotifyTimerShot

ModuleTimerShot()

MBindManagerNotify

ReceivedMessage()

TaskCompleted()

CCFChannelSendQueue

Send()

CTask

iMessage : TCFMessage

iTaskId : TInt

CheckIfSame()

NeedReply()

ReplyMatches()

CJobTimeout

-iNotifier

MRootServerNotify

ReceivedMessage()

CModule

iName : TCFModuleName

iRecvChannel : RCFChannel

iSendChannel : RCFChannel

iTaskList : TDblQue<CTask>

DoBindL()

DoDiscoverL()

DoShutdownL()

DoUnbindL()

-iNotifier

-iSendQueue

0..n

1

0..n

+iTaskList

1

CJob

iCancelled : TBool

iRsStatus : TRequestStatus&

AddTaskL()

Cancel()

HasStatus()

HasTask()

ModuleTimerShot()

StartTimeout()

TaskCompleted()

UnCancel()

-iTimeout

CBindInfo

iChannel1 : RCFChannel

iChannel2 : RCFChannel

iSubModuleAddr1 : const TCFSubModuleAddress&

iSubModuleAddr2 : const TCFSubModuleAddress&

iType : TRSBindType

TaskCompleted()

CBindManager

BindSubmodulesL()

BindingInfo()

Cancel()

CreateModuleL()

ModuleEndedL()

NumBindings()

UnbindAllAndShutDownL()

UnbindAllL()

UnbindAlreadyDeadL()

UnbindSubmodulesL()

DoSendUnbindSubmodulesL()

UnbindAllModuleL()

UnbindAllSubModuleL()

-iNotify

0..n

1

0..n

+iModuleList

1

0..n

1

0..n

+iJobList

1

0..n

1

0..n

+iBindList

1

Figure 12 Component Class Diagram

3.3.2.3 CBindInfo object

This object contains information about a particular binding and owns the communication channels between two modules (CommsChannel1 and CommsChannel2).

[image: image3.wmf]CBindInfo

iLink : TDblQueLink

iType : TRSBindType

iSubModuleAddr1 : const

TCFSubModuleAddress&

iSubModuleAddr2 : const

TCFSubModuleAddress&

iChannel1 :

RCFChannel

iChannel2 :

RCFChannel

TaskCompleted(aTask : const CTask &) :

void

(from Logical View)

TBMBindState

EBindInProgress

EBindError

EBound

EUnbindInProgress

EUnbindError

EUnbound

<<enum>>

-iSubModuleState1

-iSubModuleState2

Figure 13 CBindInfo

It is created by the BindManager and added to its iBindList when a Bind request is received from the RootServer. iState1 and iState2 hold the binding state of both ends. The possible values are:

· EBindInProgress(=0). The BindRequest message has been sent to the module but a confirmation has not arrived.

· EBindError(=1). Either the server/provider module has replied with a status other then KErrNone, or it has not replied before the job timeout.

· EBound(=2). Module is bound (a positive confirmation has arrived).

· EUnbindInProgress(=3). Message is sent to the module to unbind but the conformation has not arrived yet.

· EUnbindError(=4). Server/provider module replied with a status different then KErrNone, or it has not arrived at all within defined interval.

· EUnbound(=5). Module is unbound (conformation has arrived).

The object will be removed from the list and deleted when:

· Both states are unbound, or

· Module (CModule object) involved in the binding is about to be deleted.

CBindInfo objects will be used to provide information necessary for:

· Defining the list of CTask objects that are created on any bind/unbind request;

· NumBinding() and BindingInfo() requests;

· Validation on any bind/unbind request.

3.3.2.4 CTask object

They represent messages that are sent to server/provider modules and are created by CBindManager object on arrival of Root Server request to bind or unbind. While BindSubmodulesL() and UnbindSubmodulesL() requests always require two tasks to be completed (sending a message to both peers), request such as UnbindAll() may create a number of CTasks objects as it depends on current binding state in the system recorded by CBindInfo list.

[image: image4.emf]CTask

iLink : TDblQueLink

iMessage : TCFMessage

iTaskId : TInt

CheckIfSame(aMessage : TCFMessage &) : TBool

NeedReply() : TBool

ReplyMatches(aMessage : TCFMessage &) : TBool

(from Logical View)

Figure 14 CTask

Once the object is created and a message is sent by CModule object, CTask object lives in task list of particular CModule until reply from the module arrives or timeout for particular CJob object (request) occurs. The object is then passed back to CBindManager along with the status (where it will be used to update CBindInfo objects) and destroyed.

The object is able to generate TCommMesage structure that has to be sent to the module. Also, it can recognise if reply from the module matches the message that it represents.

3.3.2.5 CModule object

These are created by the BindManager when it receives a CreateModuleL() request. Once the CModule object is created, the BindManager will automatically start a Discover job on the CModule to determine which sub-modules it contains. This list is then stored in each CModule and used to validate all Bind requests.

Before creating a new task, the message is checked against each of the existing tasks in the CModule (using the CTask::CheckIfSame method) and if a match is found then the TaskId of the existing task is returned to the BindManager. Otherwise a new task is created and its TaskId returned.

When a new task is created, the CModule will also construct and send the associated message to the server/provider module.

The SendMessage() method allows BindManager to send a message directly to the the server/provider module, without using the Task structures.

CModules are active objects, and once created will call the asynchronous NotifyDataAvailable() function on their receive queues. When a message is received, it will be checked against all the existing tasks in the reply list and if matches any, BindManager will be notified using the TaskCompleted upcall. If it does not match any replies, then the generic ReceivedMessage upcall will be used.

3.3.2.6 BindSubmodulesL request

The following are sequence diagrams for Bind request that cover several scenarios. As the sequence of the events in the component does not really depend on which request is called, the figures bellow could serve as description of any CBindManager public method call to bind/unbind. The diagrams do not show the events and messages within CModule objects, as they are already explained.

On BindSubmodulesL() request, Bind Manager will perform the following tasks:

· Validates request, checking that the modules exist, and that no completed binding (ie bind states set to Bound) exists.

· Request the modules (or module) to create the bind tasks. If a matching task is already in progress, then the module will return its TaskId, otherwise it will create a new task with a new Id and send the message to the module.

· See if there is an existing ca
ncelled CJob with the same set of TaskIds by calling the UnCancelIfHasTasks() method on each CJob. If the CJob matches, then it resets its Cancelled flag and sets its Status object to the new request.

· If no job is Uncancelled, the a new CJob object will be created with the TaskIds and added to the TaskList.

· The StartTimeout method of CJob is called.

The request will be completed when all tasks are met (ie confirmation received from both submodules), the CJob times out, or a cancel request is received – whichever happens first.

When a task is completed, all CJob object in the BindManager’s list will be informed in order to update their lists of tasks (actually just a list of TaskIds). When a CJob has no more outstanding tasks it completes the RootServer’s RequestStatus, Cancels the timeout (not strictly necessary) and deletes itself.

All CBindInfos must also be told of each completed task so that they can update the status of each binding.

People

	Role
	Person / People

	Contributor(s)
	

	Reviewer(s)
	Thomas Goodfellow, Stephen Larkin, Philippe Gabriel.

3.4 References

	No.
	Document Reference
	Version
	Description

	[1]
	SGL.GT0167.nnn
	Latest
	Comms Framework Message API

	
	
	
	

3.5 Glossary

The following technical terms and abbreviations are used within this document.

	Term
	Definition

	CPM
	Comms Protocol Module

3.6 Document History

	Date
	Version
	Status
	Description

	2002-07-24
	0.5
	Ready for review
	Updated after review by Thomas Goodfellow and Stephen Larkin.

	2002-07-29
	0.6
	Ready for review
	Updated after review by Philippe Gabriel.

	2002-12-12
	1.3
	ISSUED
	Added UID requirements for client API.

	2002-12-13
	1.4
	Issued
	[Neil Maitland] Added design of Bind Manager.

	2003-04-05
	1.8
	Issued
	Removed specific project names in favour of targeted OS release.

	2003-04-10
	1.9
	DRAFT
	[TG] Added TRSUnLoadType::EOptional

	2003-05-28
	2.2
	DRAFT
	[TG] Changed EnumerateModuleI), EnumerateSubModue() EnumerateBinding() to stateless model

	2003-06-06
	2.3
	DRAFT
	[TG] Switched enumeration iterator to TRSIter

	2003-07-01
	2.6
	DRAFT
	[TG] Switched to trivial shutdown (client has responsibility of unloading modules)

	2003-07-16
	2.7
	DRAFT
	[TG] Improved description of CPM

	2003-09-24
	2.8
	DRAFT
	Update after review.

	2003-11-08
	2.9
	ISSUED
	

	2004-07-09
	3.0
	DRAFT
	Added API Policing details

	2005-02-09
	3.1
	ISSUED
	Updated according to the RootServer API changes (added SendMessage API)

3.7 Document Review Date

2005-01-12

Future considerations

A.1.1 RootServer and Bind Manager separation issue

Originally the architecture of the RootServer and Bind Manager devised that they should be separate components. The Bind Manager should be a load-able plug-in to the RootServer. However, reviews have since resulted in the two components being statically linked as it is unrealistic to see an alternative implementation of the Bind Manager, partly because it supports functionality defined by the Comms Framework, such as sub-modules, which were included in the Comms Architecture at a later date.

The two components have thus become interdependent and one can refer to the Root Server as being both (which is often done), but at the same time they are artificially separated with an overly complicated interface between them. A suggestion to ease maintenance and size would be to integrate the Bind Manager into the RootServer functionality. That is:

1. They should live in the same DLL (c32rootsrv.dll).

2. The interface between should be simplified somewhat, possibly fewer CActive objects could be achieved by using interfaces (Mixing classes).

A more radical, and architecturally desirable, step would be to completely assimilate the Bind Manager functionality into the Root Server as opposed to it being a contained class. This would also remove some redundant information as well as removing the interface between them completely. The RootServer would understand and manage sub-modules as well.

However, the value of rewrites is often overrated and engaging in such exercise on components that already work satisfactory might be a useless exercise.
Client/server IPC

Root Server Thread

Thread creation/control

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

Provider Module Thread

C32 Process

Comms Channels

Root Server

Reference to Provider Module Thread

Reference to Provider Module Thread

MBuf Manager component (DLL)

Binding Manager component (DLL)

Root Server Client library

Provider Module Thread

Provider Module Thread

Server specific client library

C32 Process

Comms Channels

Manage

User Process

Root Server Client Library

SymbianOS client/server IPC

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

© Copyright Symbian Ltd. 2003. This document may not be reproduced in any form, in whole or in part, by any means whatsoever, without the written permission of the copyright holder.

© Copyright Symbian Ltd. 2002
Internal
Page 2 of 45

[image: image17.wmf]Bind

Manager

Root

Server

Comms

Channel

Provider

Module2

Provider

Module1

[image: image18.emf]Session :

CRootServerSession

Module Instance :

CProviderModule

New thread Binding

Manager

Active object :

CSessionResponse

Root Server :

CRootServer

Client library

RsUnLoadCpm

Get CProviderModule instance

iState==ERunning?

iState=EStopping

UnbindAll

TRequestStatus

Request Unload

MSG CPMUnload

Start Timer

Undertaker

Stop timer

TRequestStatus

RMessage::Complete

Delete self

When the thread

ends, the undertaker

is notified

Notify of death

[image: image19.emf]Session :

CRootServerSession

Module Instance :

CProviderModule

New thread Binding

Manager

Active object :

CSessionResponse

Root Server :

CRootServer

Client library

Undertaker

Timer shot

Delete self

TRequestStatus

Request Unload

MSG CPMUnload

Start Timer

TRequestStatus

RsUnLoadCpm

Get CProviderModule instance

iState==ERunning?

iState=EStopping

UnbindAll

RMessage::Complete

Kill thread by force

Notify of death

[image: image20.emf]Session :

CRootServerSession

Binding

Manager

Active object :

CSessionResponse

Root Server :

CRootServer

Client library

RSBind

Get first module

Get second module

Request Binding

TRequestStatus

RMessage::Complete

_1101297996.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf][image: image5.emf][image: image6.emf][image: image7.emf][image: image8.emf][image: image9.emf][image: image10.emf][image: image11.emf][image: image12.emf][image: image13.emf][image: image14.emf]

CActive

CTimer

MBMNotifyTimerShot

ModuleTimerShot()

MBindManagerNotify

ReceivedMessage()

TaskCompleted()

CCFChannelSendQueue

Send()

CTask

iMessage : TCFMessage

iTaskId : TInt

CheckIfSame()

NeedReply()

ReplyMatches()

CJobTimeout

-iNotifier

MRootServerNotify

ReceivedMessage()

CModule

iName : TCFModuleName

iRecvChannel : RCFChannel

iSendChannel : RCFChannel

iTaskList : TDblQue<CTask>

DoBindL()

DoDiscoverL()

DoShutdownL()

DoUnbindL()

-iNotifier

-iSendQueue

0..n

1

0..n

+iTaskList

1

CJob

iCancelled : TBool

iRsStatus : TRequestStatus&

AddTaskL()

Cancel()

HasStatus()

HasTask()

ModuleTimerShot()

StartTimeout()

TaskCompleted()

UnCancel()

-iTimeout

CBindInfo

iChannel1 : RCFChannel

iChannel2 : RCFChannel

iSubModuleAddr1 : const TCFSubModuleAddress&

iSubModuleAddr2 : const TCFSubModuleAddress&

iType : TRSBindType

TaskCompleted()

CBindManager

BindSubmodulesL()

BindingInfo()

Cancel()

CreateModuleL()

ModuleEndedL()

NumBindings()

UnbindAllAndShutDownL()

UnbindAllL()

UnbindAlreadyDeadL()

UnbindSubmodulesL()

DoSendUnbindSubmodulesL()

UnbindAllModuleL()

UnbindAllSubModuleL()

-iNotify

0..n

1

0..n

+iModuleList

1

0..n

1

0..n

+iJobList

1

0..n

1

0..n

+iBindList

1

_1117364520.doc

Bind

Manager

Root

Server

Comms

Channel

Provider

Module2

Provider

Module1

_1117365094.doc

esock

tcpip6:tcp

tcpip6:udp

tcpip6:ip

tcpip6 module

etel

esock:protman

RootServer

BindMger

Bind Manager – Module channels

Submodule-Submodule channels

_1152358800.doc

CSessionResponse

CRootServerSession

1..*

1..*

CBindMgr

CMbufMgr

CCPM

CPolicyServer

CRootServer

1..1

1..1

1..1

1..1

1..1

0..*

CSharableSession

CServer

0..*

0..*

_1117359264.doc

Session :

CRootServerSession

Module Instance :

CProviderModule

New thread

Binding

Manager

Active object :

CSessionResponse

Root Server :

CRootServer

Client library

RSLoadCpm

Create module

Load CPM

iState==EIdle?

iState=EStarting

Start thread

Rendezvous

Undertaker logon

Notify of new CPM

iState=ERunning

TRequestStatus

RMessage::Complete

_1101718654.doc

CActive

CTimer

MNotifyTimerShot

MNotifySuddenDeath

CModuleTimer

1..1

1..1

CCPM

1..1

CModuleUndertaker

1..1

1..1

1..1

1..1

1..1

_1095840101.doc

Session :

CRootServerSession

Module Instance :

CProviderModule

Binding

Manager

Undertaker :

CModuleUndertaker

Active object :

CSessionResponse

Root Server :

CRootServer

Client library

Subscribe to RProperty

Thread Suddenly Died

iStatus==EZoombie

Died - unbind all

TRequestStatus

SuddenDeath

Publish RProperty

Delete self

_1101297716.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf][image: image5.emf][image: image6.emf]

CBindInfo

iLink : TDblQueLink

iType : TRSBindType

iSubModuleAddr1 : const TCFSubModuleAddress&

iSubModuleAddr2 : const TCFSubModuleAddress&

iChannel1 : RCFChannel

iChannel2 : RCFChannel

TaskCompleted(aTask : const CTask &) : void

(from Logical View)

TBMBindState

EBindInProgress

EBindError

EBound

EUnbindInProgress

EUnbindError

EUnbound

<<enum>>

-iSubModuleState1

-iSubModuleState2

_1068468344

