

	Root Server API Reference

	Owner:
	Networking TA

	Last revised:
	12 January 2005

	Revision:
	1.1

	Status:
	Issued

	Contributors:
	Dmitry Lyokhin

	Key Reviewers:
	

	Distribution
	

	
	
	
	

	Approved By:
	Networking TA
	Approval Ref.:
	

Contents

31.
Introduction

1.1
Purpose and scope
3
1.2
Document History
3
2.
Overview
4
2.1
Functionality
4
2.2
Startup
5
3.
API Reference
6
3.1
RRootServ
6
3.1.1
Member Function Documentation
6
3.1.1.1
EXPORT_C TInt Connect()
6
3.1.1.2
EXPORT_C TVersion Version() const
6
3.1.1.3
EXPORT _C TInt SetMBufPoolSize(TUint aPoolSize)
7
3.1.1.4
EXPORT _C void LoadCpm(TRequestStatus& aStatus, const TRSStartModuleParams& aParams, const TDesC8& aIniData)
7
3.1.1.5
EXPORT _C void UnloadCpm(TRequestStatus& aStatus, const TRSUnLoadInfo& aUnLoadInfo)
7
3.1.1.6
EXPORT_C void SendMessage(TRequestStatus& aStatus, const TCFModuleName& aName, TInt aType, TDes8& aData)
7
3.1.1.7
EXPORT_C TInt SendMessage(const TCFModuleName& aName, TInt aType, TDes8& aData)
7
3.1.1.8
EXPORT _C void Bind(TRequestStatus& aStatus, TRSBindingInfo& aBindInfo)
7
3.1.1.9
EXPORT _C void Unbind(TRequestStatus& aStatus, TRSUnBindingInfo& aUnBindInfo)
7
3.1.1.10
EXPORT _C TInt GetModuleInfo(const TCFModuleName& aName, TRSModuleInfo& aModuleInfo)
7
3.1.1.11
EXPORT _C TInt EnumerateModules(TRSEnumerateModuleInfo& aEnumerateInfo, TCFModuleName& aModuleName)
7
3.1.1.12
EXPORT _C TInt EnumerateSubModules(TRSEnumerateSubModuleInfo& aEnumerateInfo, TCFSubModuleName& aSubModuleName)
8
3.1.1.13
EXPORT _C TInt EnumerateBindings(TRSEnumerateBindInfo& aBindInfo, TRSBindingInfo& aBinding)
8
3.1.1.14
EXPORT _C void CancelLoadCpm(const TCFModuleName& aName)
8
3.1.1.15
EXPORT _C void CancelUnloadCpm(const TCFModuleName& aName)
8
3.1.1.16
EXPORT _C void CancelBind(TRSModuleAddress& aName1, TRSModuleAddress& aName2)
8
3.1.1.17
EXPORT _C void CancelUnbind(TRSModuleAddress& aName1, TRSModuleAddress& aName2)
8
3.1.1.18
EXPORT _C void Shutdown()
8
3.1.1.19
EXPORT _C void Close()
8
3.2
Root Server Errors
9

1. Introduction

The SymbianOS 8.0 release includes the new Rootserver component, which is responsible for loading Comms Provider Modules as well as managing dying modules and bindings between them.

1.1 Purpose and scope

This document defines each class, member function & member data in the Root Server client API accessible by a client application. It is designed to be used as a reference for client application programmers using the API.

1.2 Document History

	Date
	Version
	Status
	Description

	2002-07-30
	0.1
	Draft
	First draft of Root Server API Reference document.

	2003-02-03
	0.2
	Draft
	Update to include changes to Root Server API

	2003-02-20
	0.3
	Draft
	Update to include changes to Root Server API

	2003-02-26
	0.4
	Draft
	Update to include changes to Root Server API

	2003-11-08
	1.0
	Issued
	

	2005-02-09
	1.1
	Issued
	Update to include changes to Root Server API (SendMessage API), updated error codes table.

2. Overview

2.1 Functionality

The Root Server is the component of the new Comms layer in Symbian OS v8.0, which has the responsibility of managing all other threads in the C32 process - the process running all Comms threads. As such, the Root Server is the main thread of the C32 process and it has the responsibility of starting and stopping server modules such as ESock, ETel and C32 (the Serial Server). Servers and non-server modules (sometimes referred to as providers) are treated as one entity in the Root Server, and will be referred to as CPM’s (Comms Provider Module) from this point in the document.

[image: image1.png]symbian

Figure 1: Threads and processes

A CPM is a DLL with these attributes:

· The type (2nd UID) is KUidCommsProviderModule (0x101f7418)

· It exports a function which acts as the main function of a new thread, i.e. taking a single TCFModuleInfo* parameter and returning TInt when the CPM unloads. This function is called when the CPM is loaded and communicates with the Root Server across the Comms Channels provided in the TCFModuleInfo [1].

It is also the responsibility of the Root Server to monitor threads for Sudden Death (premature end of the thread routine), possibly due to some erroneous condition. This is handled by using Publish and Subscribe, meaning that any privileged client that wish to be notified about such deaths must subscribe to the RProperty kept by the Root Server. Since all threads run in the same process the Root Server can only promise a best effort cleanup if a module dies. That means it can delete resources it knows of, but any resource allocated on the process heap by the dead module is lost (leaked). The only way to remedy this would be to run each module in a separate process but this is too heavy weight.

The Root Server will do nothing on its own initiative, however. Stopping and starting CPM’s has to be requested by a privileged application sending such requests via the Root Server Client Library. So has something not mentioned until now: bindings. It is possible for CPM's to be bound to each other (via the message queues provided in Symbian OS), hence providers can be bound together and providers can be bound to servers. A further responsibility of the Root Server is to receive such binding requests, verify the validity of the arguments and forward the requests for the Binding Manager component to carry out. The Binding Manager will be loaded within the Root Server thread.

A final note is that the Root Server will not implement any policy for restarting dead CPM’s. If a CPM dies, any subscribers to death are notified, and client applications will then have to figure out which CPM’s (any privileged client can query the Root Server for loaded modules) are dead (and how many) and what to do about it.

For efficiency reasons a client can have any number of pending requests with the Root Server at any given time. This means for example, that many CPM’s (of any type) can be started simultaneously and a CPM that is a slow starter will not delay the starting of any other CPM.

The Rootserver client API is available in the header file c32root.h and the library c32root.dll.

2.2 Startup

For starting and configuring the Comms Process in a controlled fashion the library function StartC32() is provided. StartC32() will execute the reference comms configuration application (c32start.exe) and return when the configuration application has signalled that the Comms Process is running and fully configured.

StartC32() is defined in rsshared.h and exported from the library c32root.dll.

3. API Reference

3.1 RRootServ

This class encapsulates all Root Server functionality available to the client application.

EXPORT_C TInt Connect()

EXPORT_C TVersion Version() const

EXPORT _C TInt SetMBufPoolSize(TUint aPoolSize)

EXPORT _C void LoadCpm(TRequestStatus& aStatus, const TRSStartModuleParams& aParams, const TDesC8& aIniData)

EXPORT _C void UnloadCpm(TRequestStatus& aStatus, const TRSUnLoadInfo& aUnLoadInfo)

EXPORT_C void SendMessage(TRequestStatus& aStatus, const TCFModuleName& aName, TInt aType, TDes8& aData)

EXPORT_C TInt SendMessage(const TCFModuleName& aName, TInt aType, TDes8& aData)

EXPORT _C void Bind(TRequestStatus& aStatus, TRSBindingInfo& aBindInfo)

EXPORT _C void Unbind(TRequestStatus& aStatus, TRSUnBindingInfo& aUnBindInfo)

EXPORT _C TInt GetModuleInfo(const TCFModuleName& aName, TRSModuleInfo& aModuleInfo)

EXPORT _C TInt EnumerateModules(TRSEnumerateModuleInfo& aEnumerateInfo, TCFModuleName& aModuleName)

EXPORT _C TInt EnumerateSubModules(TRSEnumerateSubModuleInfo& aEnumerateInfo, TCFSubModuleName& aSubModuleNames)

EXPORT _C TInt EnumerateBindings(TRSEnumerateBindInfo& aBindInfo, TRSBindingInfo& aBinding)

EXPORT _C void CancelLoadCpm(const TCFModuleName& aName)

EXPORT _C void CancelUnloadCpm(const TCFModuleName& aName)

EXPORT _C void CancelBind(TRSModuleAddress& aName1, TRSModuleAddress& aName2)

EXPORT _C void CancelUnbind(TRSModuleAddress& aName1, TRSModuleAddress& aName2)

EXPORT _C void Shutdown()

EXPORT _C void Close()
3.1.1 Member Function Documentation

3.1.1.1 xe "Attach:RPacketService"

xe "RPacketService:Attach" EXPORT_C TInt Connect()
The connect function controls access to the Root Server. Any client, regardless of privileges, can connect to the Root Server, and this function creates a session between the client and the Root Server. API Policing ensures that only the privileged clients can actually issue requests on the Root Server, however, with all other connected clients’ requests being rejected with KErrPermissionDenied.

3.1.1.2 EXPORT_C TVersion Version() const

Returns the client side version number.

3.1.1.3 EXPORT _C TInt SetMBufPoolSize(TUint aPoolSize)

Sets the size of the Mbuf pool. This function can only be called before the first CPM is loaded.

3.1.1.4 EXPORT _C void LoadCpm(TRequestStatus& aStatus, const TRSStartModuleParams& aParams, const TDesC8& aIniData)

Loads any CPM. Will load MbufManager if not in place. Sets up message channels, prompts the Bind Manager to do it’s active discovery of the module retrieving any sub-modules that are under the module.

3.1.1.5 EXPORT _C void UnloadCpm(TRequestStatus& aStatus, const TRSUnLoadInfo& aUnLoadInfo)

Unloads a loaded CPM. Instructs Bind Manager to unbind all bindings within the module and send a shutdown request to the module.
3.1.1.6 EXPORT_C void SendMessage(TRequestStatus& aStatus, const TCFModuleName& aName, TInt aType, TDes8& aData)

Sends a message to the specified CPM asynchronously. The type of data in the message is specified in aType parameter. All message data is expected to be CNetMessage based serialised instance.
3.1.1.7 EXPORT_C TInt SendMessage(const TCFModuleName& aName, TInt aType, TDes8& aData)

The same as above, but synchronous version.
3.1.1.8 EXPORT _C void Bind(TRequestStatus& aStatus, TRSBindingInfo& aBindInfo)

Binds two sub-modules. TRSBindingInfo is a struct containing the names of the sub-modules that should be bound, the type of binding requested, and the state of the binding with each sub-module. The states are set by the Root Server as output, enabling a failed binding to be investigated directly from the return information.

3.1.1.9 EXPORT _C void Unbind(TRequestStatus& aStatus, TRSUnBindingInfo& aUnBindInfo)

Unbinds two sub-modules. TRSUnBindingInfo is a struct containing the names of the two sub-modules to be unbound, and the states of the unbinding with each sub-module; again this output information will enable the client to find out the reason why an unbinding may have failed.

3.1.1.10 EXPORT _C TInt GetModuleInfo(const TCFModuleName& aName, TRSModuleInfo& aModuleInfo)

Retrieves state information regarding the specified module, such as the dll name, running state, and the number of sub-modules it has underneath it.

3.1.1.11 EXPORT _C TInt EnumerateModules(TRSEnumerateModuleInfo& aEnumerateInfo, TCFModuleName& aModuleName)

Enables the client to assemble a list of modules by retrieving the name of one module at a time from all modules loaded in the Root Server. The client must allocate a TCFModuleName for the name to be written into.

The TRSEnumerateModuleInfo struct controls the enumeration. With the iReset field set to ETrue, it enables the client to specify that this is the first enumerate request, and the Root Server is to write from the beginning of its list. Subsequent requests will set this iReset field to EFalse and the Root Server will resuming writing names, from where it left off in the last request. The client will know that there are more module names to be retrieved by the iTotal field and the iWritten field provides a neat way to control the client loop for requesting module names until there are none left – iWritten will become zero!

3.1.1.12 EXPORT _C TInt EnumerateSubModules(TRSEnumerateSubModuleInfo& aEnumerateInfo, TCFSubModuleName& aSubModuleName)

Enables the client to assemble a list of sub-modules under a module by retrieving the name of one sub-module at a time from all sub-modules running. The client must allocate a TCFSubModuleName for the name to be written into.

The TRSEnumerateSubModuleInfo struct controls the enumeration. The iName field specifies the module whose sub-modules are required. With the iReset field set to ETrue, it enables the client to specify that this is the first enumerate request, and the Root Server is to write from the beginning of its list. Subsequent requests will set this iReset field to EFalse and the Root Server will resuming writing names, from where it left off in the last request. The client will know that there are more sub-module names to be retrieved by the iTotal field and the iWritten field provides a neat way to control the client loop for requesting sub-module names until there are none left – iWritten will become zero!

3.1.1.13 EXPORT _C TInt EnumerateBindings(TRSEnumerateBindInfo& aBindInfo, TRSBindingInfo& aBinding)

Enables the client to assemble a list of bindings that a sub-module is involved in by retrieving one TRSBindingInfo struct at a time. The client must allocate this struct for the data to be written into.

The TRSEnumerateBindInfo struct controls the enumeration. The iName field specifies the sub-module whose binding info is required. With the iReset field set to ETrue, it enables the client to specify that this is the first enumerate request, and the Root Server is to write from the beginning of its list. Subsequent requests will set this iReset field to EFalse and the Root Server will resuming writing from where it left off in the last request. The client will know that there are more bindings to be retrieved by the iTotal field. The iWritten field provides a neat way to control the client loop for requesting binding until there are none left – iWritten will become zero!

3.1.1.14 EXPORT _C void CancelLoadCpm(const TCFModuleName& aName)

Attempt to cancel a load request.

3.1.1.15 EXPORT _C void CancelUnloadCpm(const TCFModuleName& aName)

Attempt to cancel an unload request.

3.1.1.16 EXPORT _C void CancelBind(TRSModuleAddress& aName1, TRSModuleAddress& aName2)

Attempt to cancel a bind request.

3.1.1.17 EXPORT _C void CancelUnbind(TRSModuleAddress& aName1, TRSModuleAddress& aName2)

Attempt to cancel an unbind request.

3.1.1.18 EXPORT _C void Shutdown()

Shutdown the Root Server. This function unbinds and unloads all running CPM’s then once there are no more running CPM’s, shuts down the Root Server.

3.1.1.19 EXPORT _C void Close()
Close a session to the Root Server.

Root Server Errors

The following are errors generated specifically by the Root Server system.

	Error code
	Definition

	KErrRSSuddenDeath
	This cause is returned to the sudden Death Listeners if a module has died/exited.

	KErrRSRequestCancelled
	This is returned if the request was cancelled

	KErrRSInvalidParameter
	This cause is returned if a client request contains an invalid parameter.

	KErrRSInvalidParameterFile
	This cause is returned if a LoadCpm or LoadServer request contains an invalid filename.

	KErrRSInvalidParameterName
	This cause is returned if a LoadCpm or LoadServer request contains an invalid name.

	KErrRSInvalidParameterStackSize
	This cause is returned if a LoadCpm or LoadServer request contains an invalid stack size.

	KErrRSInvalidParameterHeapSize
	The heap size was invalid

	KErrRSInvalidUidType
	This cause is returned if a LoadCpm or LoadServer request specifies a DLL which contains an invalid UID.

	KErrRSModuleAlreadyExist
	This cause is returned if a LoadCpm or LoadServer request specifies an already existing name.

	KErrRSInvalidMBufPoolSize
	This cause is returned if an invalid MBufPool size is requested.

	KErrRSModuleNotRunning
	This is returned if an UnloadCpm is requested on a CPM which has not completed loading yet

	KErrRSModuleNotLoaded
	This is returned if UnloadCpm, Bind or Unbind requests are made for a module which is not loaded.

	KErrRSAlreadyBound
	This is returned if a Bind request is made on two sub-modules which already have a binding with each other.

	KErrRSModulesStillRunning
	This is returned if a Shutdown request is made on the Root Server, and it discovers there are modules still loaded. A call through the API should never return this error, as Shutdown unloads all modules, before issuing the shutdown request to the Root Server.

	KErrRSNoNewHeapsAvailable
	This is returned if a LoadCpm request is made for a CPM which requires a new heap, and the maximum limit of 8 heaps for the C32 process has been reached

	KErrRSRequestTimedOut
	This is returned if the Bind Manager gets no response from a module after a set timeout, when it issues commands on that module.

	KErrRSModuleUnknown
	This is returned if the Bind Manager receives any request, such as ModuleEnded for a module name it has no record of

	KErrRSSubModuleUnknown
	This is returned if the Bind Manager receives a Bind/Unbind request concerning a sub-module name it has no record of.

	KErrRSBindingUnknown
	This is returned if the Bind Manager receives an Unbind request for a binding it has no record of.

	KErrRSStatusUnknown
	This is returned if the Bind Manager cannot match a status which the Root Server has requested be Cancelled.

	KErrRSBindingExists
	This is returned if the Bind Manager receives a ModuleEnded notification for a module which still has bindings.

	KErrRSModuleNotReady
	This is returned if the Bind Manager receives a Bind request for a sub-module which has not finished startup.

	KErrRSBindingInProgress
	This is returned if the Bind Manager receives an unbind request for two sub-modules which have not completed their binding

	KErrRSUnableToOpenHeap
	This is returned if the Root Server is unable to open a handle to the heap of a CPM which another CPM is sharing

	KErrRSUnableToFindHeap
	This is returned if the Root Server is unable to find the specified heap for a CPM to share

	KErrRSUnableToCreateQueues
	This is returned if the Root Server fails to create the Send and Receive channels + message queues.

	KErrRSZombie
	This is returned if the Root Server loads a CPM but it fails to complete its startup, such as failing to respond to its discovery request.

	KErrRSInvalidParameterThreadFuncOrdinal
	This is returned if an invalid thread function ordinal number is specified for a loadCPM.

	KErrRSInvalidBinding
	This is returned in the case of Invalid binding.

	KErrRSInvalidQueueLength
	This is returned if Queue length of binding is invalid.

SymbianOS client/server IPC

Root Server Client Library

User Process

Provider Module Thread

Root Server Thread

C32 Process

Manage

© Copyright Symbian LTD 2001. This document may not be reproduced in any form, in whole or in part, by any means whatsoever, without the written permission of the copyright holder.

1 of 11

_1024819472.doc
�

�

