Improvements to robustness of CThreadPool.
Rationalised CThreadPool a bit, so that only the main thread is used for thread death notifications. This means that the death of parent threads no longer causes a panic when the child threads is shut down.
// chkdrift.cpp
//
// Copyright (c) 2008 - 2010 Accenture. All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Accenture - Initial contribution
//
#include <hal.h>
#include <fshell/ioutils.h>
using namespace IoUtils;
class CCmdChkdrift : public CCommandBase
{
public:
static CCommandBase* NewLC();
~CCmdChkdrift();
private:
CCmdChkdrift();
private: // From CCommandBase.
virtual const TDesC& Name() const;
virtual void DoRunL();
};
CCommandBase* CCmdChkdrift::NewLC()
{
CCmdChkdrift* self = new(ELeave) CCmdChkdrift();
CleanupStack::PushL(self);
self->BaseConstructL();
return self;
}
CCmdChkdrift::~CCmdChkdrift()
{
}
CCmdChkdrift::CCmdChkdrift()
{
}
const TDesC& CCmdChkdrift::Name() const
{
_LIT(KName, "chkdrift");
return KName;
}
TInt NanoTickPeriod()
{
TInt nanoTickPeriod;
if (HAL::Get(HAL::ENanoTickPeriod, nanoTickPeriod) != KErrNone)
{
nanoTickPeriod = 1000;
}
return nanoTickPeriod;
}
TInt FastCounterFrequency()
{
TInt fastCounterFrequency;
if (HAL::Get(HAL::EFastCounterFrequency, fastCounterFrequency) != KErrNone)
{
fastCounterFrequency = 1000;
}
return fastCounterFrequency;
}
TBool FastCounterCountsUp()
{
TBool countsUp;
if (HAL::Get(HAL::EFastCounterCountsUp, countsUp) != KErrNone)
{
countsUp = EFalse;
}
return countsUp;
}
void FormatTime(const TTimeIntervalMicroSeconds& aInterval, TDes& aBuf)
{
const TInt ms = 1000;
const TInt s = ms * ms;
TBuf<16> format(_L("%.2f "));
TReal interval = aInterval.Int64();
if (interval >= s)
{
interval /= s;
format.Append(_L("s"));
}
else if (interval >= ms)
{
interval /= ms;
format.Append(_L("ms"));
}
else
{
format.Append(_L("us"));
}
aBuf.Format(format, interval);
}
void CCmdChkdrift::DoRunL()
{
TInt nanoTickPeriod = NanoTickPeriod();
Printf(_L("NKern tick period: %d\r\n"), nanoTickPeriod);
TInt fastCounterFrequency = FastCounterFrequency();
Printf(_L("Fast counter frequency: %d\r\n\r\n"), fastCounterFrequency);
Printf(_L("Press any key to start test\r\n"));
TBuf<1> key;
ReadL(key);
TUint fast1 = User::FastCounter();
TUint nano1 = User::NTickCount();
Printf(_L("Press any key to stop test\r\n"));
ReadL(key);
TUint fast2 = User::FastCounter();
TUint nano2 = User::NTickCount();
Printf(_L("before: nano: %u, fast: %u\r\n"), nano1, fast1);
Printf(_L("after: nano: %u, fast: %u\r\n"), nano2, fast2);
TUint64 diffNano = nano2 - nano1;
diffNano *= NanoTickPeriod();
TUint64 diffFast;
if (FastCounterCountsUp())
{
diffFast = fast2 - fast1;
}
else
{
diffFast = fast1 - fast2;
}
TUint64 fastCounterPeriod = 1000000 / FastCounterFrequency();
diffFast *= fastCounterPeriod;
TBuf<32> timeNano;
FormatTime(diffNano, timeNano);
TBuf<32> timeFast;
FormatTime(diffFast, timeFast);
Printf(_L("difference:\r\n\tnano: %u ticks (%Lu us, %S)\r\n\tfast: %u ticks (%Lu us, %S)\r\n"), nano2 - nano1, diffNano, &timeNano, fast2 - fast1, diffFast, &timeFast);
}
EXE_BOILER_PLATE(CCmdChkdrift)