Fixed lots of issues with installing a low-caps version of fshell from SIS file.
* Fixed issue in CCommandFactory whereby some APIs like GetCommandInfoL could trigger allocations on the wrong heap or signals to the wrong thread. The symptoms were often seen as a crash in the which_00 thread when running ciftest.
* Lots of build fixes for when FSHELL_PROTECTED_UIDS isn't defined and when all capabilities aren't available.
* Added new platform.mmh macro FSHELL_OPEN_SIGNED.
* Open signing of fshell SIS files is now supported for production S60 handsets. Build fshell with the FSHELL_OPEN_SIGNED macro defined (and without defining FSHELL_CAP_ALL or FSHELL_PROTECTED_UIDS) in your platform.mmh and submit \epoc32\fshell\fshell.unsigned.sis to https://www.symbiansigned.com/app/page/public/openSignedOnline.do . The following commands are not available when using Open Signing due to Platform Security restrictions: fdb; kerninfo; chunkinfo; svrinfo; objinfo; sudo; fsck; localdrive; ramdefrag; readmem; reboot; setcritical; setpriority. Others such as chkdeps, e32header, ps, and fshell itself will run but in a restricted capacity (for example, fshell will no longer allow you to modify files in the \sys\bin directory).
* Removed commands objinfo, svrinfo, chunkinfo, readmem, fsck completely when memory access isn't present - previously they would still appear in the help but would give an error if you tried to run them.
// dobject_compat.cpp
//
// Copyright (c) 2007 - 2010 Accenture. All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Accenture - Initial contribution
//
#include "dobject_compat.h"
extern TBool gRunningWithOldDefinition = ETrue;
NONSHARABLE_CLASS(DObjectWithPaddingOnly) : public DObject
{
public:
DOBJECT_PADDING;
};
TBool CalculateDObjectSize()
{
DObjectWithPaddingOnly* obj = new DObjectWithPaddingOnly;
if (!obj) return EFalse;
// objectId points to the mem location where iObjectId will be. So if running on a system with the new size DOBject it will always be non-zero (because objectIds are set in the DObject constructor, and are always non-zero), but if running on earlier systems it will be zero because DBase zero-fills the object
TUint64& objectId = *reinterpret_cast<TUint64*>((TUint8*)&obj->iName + sizeof(HBuf*));
if (objectId != 0)
{
//Kern::Printf("Detected MemoryAccess is running with new larger DObject");
gRunningWithOldDefinition = EFalse;
}
else
{
//Kern::Printf("Detected MemoryAccess is running with old-format DObject");
}
obj->Close(NULL);
return ETrue;
}