libraries/ltkutils/src/heaphackery.cpp
author Tom Sutcliffe <thomas.sutcliffe@accenture.com>
Tue, 07 Sep 2010 20:04:42 +0100
changeset 63 ea6622dea85a
parent 0 7f656887cf89
child 62 17466b56148d
permissions -rw-r--r--
Build fixes for bmarm, terminal keyboard on TB9.2, gcc 2.9

// heaphackery.cpp
// 
// Copyright (c) 2010 Accenture. All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
// 
// Initial Contributors:
// Accenture - Initial contribution
//
#ifdef TEST_HYBRIDHEAP_ASSERTS
#define private public
#include <e32def.h>
#include "slab.h"
#include "page_alloc.h"
#include "heap_hybrid.h"
#endif

#include "heaputils.h"

#ifdef __KERNEL_MODE__

#include <kern_priv.h>
#define MEM Kern
__ASSERT_COMPILE(sizeof(LtkUtils::RKernelSideAllocatorHelper) == 10*4);
#define KERN_ENTER_CS() NKern::ThreadEnterCS()
#define KERN_LEAVE_CS() NKern::ThreadLeaveCS()
#define LOG(args...)
#define HUEXPORT_C
#else

#include <e32std.h>
#define MEM User
#define KERN_ENTER_CS()
#define KERN_LEAVE_CS()
//#include <e32debug.h>
//#define LOG(args...) RDebug::Printf(args)
#define LOG(args...)

#ifdef STANDALONE_ALLOCHELPER
#define HUEXPORT_C
#else
#define HUEXPORT_C EXPORT_C
#endif

#endif // __KERNEL_MODE__

using LtkUtils::RAllocatorHelper;
const TUint KPageSize = 4096;
__ASSERT_COMPILE(sizeof(RAllocatorHelper) == 9*4);

// RAllocatorHelper

HUEXPORT_C RAllocatorHelper::RAllocatorHelper()
	: iAllocatorAddress(0), iAllocatorType(EUnknown), iInfo(NULL), iValidInfo(0), iTempSlabBitmap(NULL), iPageCache(NULL), iPageCacheAddr(0)
#ifdef __KERNEL_MODE__
	, iChunk(NULL)
#endif
	{
	}

namespace LtkUtils
	{
	class THeapInfo
		{
	public:
		THeapInfo()
			{
			ClearStats();
			}

		void ClearStats()
			{
			memclr(this, sizeof(THeapInfo));
			}

		TInt iAllocatedSize; // number of bytes in allocated cells (excludes free cells, cell header overhead)
		TInt iCommittedSize; // amount of memory actually committed (includes cell header overhead, gaps smaller than an MMU page)
		TInt iAllocationCount; // number of allocations currently
		TInt iMaxCommittedSize; // or thereabouts
		TInt iMinCommittedSize;
		TInt iUnusedPages;
		TInt iCommittedFreeSpace;
		// Heap-only stats
		TInt iHeapFreeCellCount;
		// Hybrid-only stats
		TInt iDlaAllocsSize;
		TInt iDlaAllocsCount;
		TInt iDlaFreeSize;
		TInt iDlaFreeCount;
		TInt iSlabAllocsSize;
		TInt iSlabAllocsCount;
		TInt iPageAllocsSize;
		TInt iPageAllocsCount;
		TInt iSlabFreeCellSize;
		TInt iSlabFreeCellCount;
		TInt iSlabFreeSlabSize;
		TInt iSlabFreeSlabCount;
		};
	}

const TInt KTempBitmapSize = 256; // KMaxSlabPayload / mincellsize, technically. Close enough.

#ifdef __KERNEL_MODE__

TInt RAllocatorHelper::OpenKernelHeap()
	{
	_LIT(KName, "SvHeap");
	NKern::ThreadEnterCS();
	DObjectCon* chunkContainer = Kern::Containers()[EChunk];
	chunkContainer->Wait();
	const TInt chunkCount = chunkContainer->Count();
	DChunk* foundChunk = NULL;
	for(TInt i=0; i<chunkCount; i++)
		{
		DChunk* chunk = (DChunk*)(*chunkContainer)[i];
		if (chunk->NameBuf() && chunk->NameBuf()->Find(KName) != KErrNotFound)
			{
			// Found it. No need to open it, we can be fairly confident the kernel heap isn't going to disappear from under us
			foundChunk = chunk;
			break;
			}
		}
	iChunk = foundChunk;
    chunkContainer->Signal();
#ifdef __WINS__
	TInt err = OpenChunkHeap((TLinAddr)foundChunk->Base(), 0); // It looks like DChunk::iBase/DChunk::iFixedBase should both be ok for the kernel chunk
#else
	// Copied from P::KernelInfo
	const TRomHeader& romHdr=Epoc::RomHeader();
	const TRomEntry* primaryEntry=(const TRomEntry*)Kern::SuperPage().iPrimaryEntry;
	const TRomImageHeader* primaryImageHeader=(const TRomImageHeader*)primaryEntry->iAddressLin;
	TLinAddr stack = romHdr.iKernDataAddress + Kern::RoundToPageSize(romHdr.iTotalSvDataSize);
	TLinAddr heap = stack + Kern::RoundToPageSize(primaryImageHeader->iStackSize);
	TInt err = OpenChunkHeap(heap, 0); // aChunkMaxSize is only used for trying the middle of the chunk for hybrid allocatorness, and the kernel heap doesn't use that (thankfully). So we can safely pass in zero.

#endif
	if (!err) err = FinishConstruction();
	NKern::ThreadLeaveCS();
	return err;
	}

#else

HUEXPORT_C TInt RAllocatorHelper::Open(RAllocator* aAllocator)
	{
	iAllocatorAddress = (TLinAddr)aAllocator;
	TInt udeb = EuserIsUdeb();
	if (udeb < 0) return udeb; // error

	TInt err = IdentifyAllocatorType(udeb);
	if (!err)
		{
		err = FinishConstruction(); // Allocate everything up front
		}
	if (!err)
		{
		// We always stealth our own allocations, again to avoid tripping up allocator checks
		SetCellNestingLevel(iInfo, -1);
		SetCellNestingLevel(iTempSlabBitmap, -1);
		SetCellNestingLevel(iPageCache, -1);
		}
	return err;
	}

#endif

TInt RAllocatorHelper::FinishConstruction()
	{
	TInt err = KErrNone;
	KERN_ENTER_CS();
	if (!iInfo)
		{
		iInfo = new THeapInfo;
		if (!iInfo) err = KErrNoMemory;
		}
	if (!err && !iTempSlabBitmap)
		{
		iTempSlabBitmap = (TUint8*)MEM::Alloc(KTempBitmapSize);
		if (!iTempSlabBitmap) err = KErrNoMemory;
		}
	if (!err && !iPageCache)
		{
		iPageCache = MEM::Alloc(KPageSize);
		if (!iPageCache) err = KErrNoMemory;
		}

	if (err)
		{
		delete iInfo;
		iInfo = NULL;
		MEM::Free(iTempSlabBitmap);
		iTempSlabBitmap = NULL;
		MEM::Free(iPageCache);
		iPageCache = NULL;
		}
	KERN_LEAVE_CS();
	return err;
	}

TInt RAllocatorHelper::ReadWord(TLinAddr aLocation, TUint32& aResult) const
	{
	// Check if we can satisfy the read from the cache
	if (aLocation >= iPageCacheAddr)
		{
		TUint offset = aLocation - iPageCacheAddr;
		if (offset < KPageSize)
			{
			aResult = ((TUint32*)iPageCache)[offset >> 2];
			return KErrNone;
			}
		}

	// If we reach here, not in page cache. Try and read in the new page
	if (iPageCache)
		{
		TLinAddr pageAddr = aLocation & ~(KPageSize-1);
		TInt err = ReadData(pageAddr, iPageCache, KPageSize);
		if (!err)
			{
			iPageCacheAddr = pageAddr;
			aResult = ((TUint32*)iPageCache)[(aLocation - iPageCacheAddr) >> 2];
			return KErrNone;
			}
		}

	// All else fails, try just reading it uncached
	return ReadData(aLocation, &aResult, sizeof(TUint32));
	}

TInt RAllocatorHelper::ReadByte(TLinAddr aLocation, TUint8& aResult) const
	{
	// Like ReadWord but 8-bit

	// Check if we can satisfy the read from the cache
	if (aLocation >= iPageCacheAddr)
		{
		TUint offset = aLocation - iPageCacheAddr;
		if (offset < KPageSize)
			{
			aResult = ((TUint8*)iPageCache)[offset];
			return KErrNone;
			}
		}

	// If we reach here, not in page cache. Try and read in the new page
	if (iPageCache)
		{
		TLinAddr pageAddr = aLocation & ~(KPageSize-1);
		TInt err = ReadData(pageAddr, iPageCache, KPageSize);
		if (!err)
			{
			iPageCacheAddr = pageAddr;
			aResult = ((TUint8*)iPageCache)[(aLocation - iPageCacheAddr)];
			return KErrNone;
			}
		}

	// All else fails, try just reading it uncached
	return ReadData(aLocation, &aResult, sizeof(TUint8));
	}


TInt RAllocatorHelper::WriteWord(TLinAddr aLocation, TUint32 aWord)
	{
	// Invalidate the page cache if necessary
	if (aLocation >= iPageCacheAddr && aLocation - iPageCacheAddr < KPageSize)
		{
		iPageCacheAddr = 0;
		}

	return WriteData(aLocation, &aWord, sizeof(TUint32));
	}

TInt RAllocatorHelper::ReadData(TLinAddr aLocation, TAny* aResult, TInt aSize) const
	{
	// RAllocatorHelper base class impl is for allocators in same address space, so just copy it
	memcpy(aResult, (const TAny*)aLocation, aSize);
	return KErrNone;
	}

TInt RAllocatorHelper::WriteData(TLinAddr aLocation, const TAny* aData, TInt aSize)
	{
	memcpy((TAny*)aLocation, aData, aSize);
	return KErrNone;
	}

#ifdef __KERNEL_MODE__

LtkUtils::RKernelSideAllocatorHelper::RKernelSideAllocatorHelper()
	: iThread(NULL)
	{}

void LtkUtils::RKernelSideAllocatorHelper::Close()
	{
	NKern::ThreadEnterCS();
	if (iThread)
		{
		iThread->Close(NULL);
		}
	iThread = NULL;
	RAllocatorHelper::Close();
	NKern::ThreadLeaveCS();
	}

TInt LtkUtils::RKernelSideAllocatorHelper::ReadData(TLinAddr aLocation, TAny* aResult, TInt aSize) const
	{
	return Kern::ThreadRawRead(iThread, (const TAny*)aLocation, aResult, aSize);
	}

TInt LtkUtils::RKernelSideAllocatorHelper::WriteData(TLinAddr aLocation, const TAny* aData, TInt aSize)
	{
	return Kern::ThreadRawWrite(iThread, (TAny*)aLocation, aData, aSize);
	}

TInt LtkUtils::RKernelSideAllocatorHelper::TryLock()
	{
	return KErrNotSupported;
	}

void LtkUtils::RKernelSideAllocatorHelper::TryUnlock()
	{
	// Not supported
	}

TInt LtkUtils::RKernelSideAllocatorHelper::OpenUserHeap(TUint aThreadId, TLinAddr aAllocatorAddress, TBool aEuserIsUdeb)
	{
	NKern::ThreadEnterCS();
	DObjectCon* threads = Kern::Containers()[EThread];
	threads->Wait();
	iThread = Kern::ThreadFromId(aThreadId);
	if (iThread && iThread->Open() != KErrNone)
		{
		// Failed to open
		iThread = NULL;
		}
	threads->Signal();
	NKern::ThreadLeaveCS();
	if (!iThread) return KErrNotFound;
	iAllocatorAddress = aAllocatorAddress;
	TInt err = IdentifyAllocatorType(aEuserIsUdeb);
	if (err) Close();
	return err;
	}

#endif // __KERNEL_MODE__

TInt RAllocatorHelper::OpenChunkHeap(TLinAddr aChunkBase, TInt aChunkMaxSize)
	{
	iAllocatorAddress = aChunkBase;
#ifdef __KERNEL_MODE__
	// Must be in CS
	// Assumes that this only ever gets called for the kernel heap. Otherwise goes through RKernelSideAllocatorHelper::OpenUserHeap.
	TInt udeb = EFalse; // We can't figure this out until after we've got the heap
#else
	// Assumes the chunk isn't the kernel heap. It's not a good idea to try messing with the kernel heap from user side...
	TInt udeb = EuserIsUdeb();
	if (udeb < 0) return udeb; // error
#endif

	TInt err = IdentifyAllocatorType(udeb);
	if (err == KErrNone && iAllocatorType == EAllocator)
		{
		// We've no reason to assume it's an allocator because we don't know the iAllocatorAddress actually is an RAllocator*
		err = KErrNotFound;
		}
	if (err)
		{
		TInt oldErr = err;
		TAllocatorType oldType = iAllocatorType;
		// Try middle of chunk, in case it's an RHybridHeap
		iAllocatorAddress += aChunkMaxSize / 2;
		err = IdentifyAllocatorType(udeb);
		if (err || iAllocatorType == EAllocator)
			{
			// No better than before
			iAllocatorAddress = aChunkBase;
			iAllocatorType = oldType;
			err = oldErr;
			}
		}
#ifdef __KERNEL_MODE__
	if (err == KErrNone)
		{
		// Now we know the allocator, we can figure out the udeb-ness
		RAllocator* kernelAllocator = reinterpret_cast<RAllocator*>(iAllocatorAddress);
		kernelAllocator->DebugFunction(RAllocator::ESetFail, (TAny*)9999, (TAny*)0); // Use an invalid fail reason - this should have no effect on the operation of the heap
		TInt err = kernelAllocator->DebugFunction(7, NULL, NULL); // 7 is RAllocator::TAllocDebugOp::EGetFail
		if (err == 9999)
			{
			// udeb new
			udeb = ETrue;
			}
		else if (err == KErrNotSupported)
			{
			// Old heap - fall back to slightly nasty non-thread-safe method
			kernelAllocator->DebugFunction(RAllocator::ESetFail, (TAny*)RAllocator::EFailNext, (TAny*)1);
			TAny* res = Kern::Alloc(4);
			if (res) udeb = ETrue;
			Kern::Free(res);
			}
		else
			{
			// it's new urel
			}

		// Put everything back
		kernelAllocator->DebugFunction(RAllocator::ESetFail, (TAny*)RAllocator::ENone, (TAny*)0);
		// And update the type now we know the udeb-ness for certain
		err = IdentifyAllocatorType(udeb);
		}
#endif
	return err;
	}


// The guts of RAllocatorHelper

enum TWhatToGet
	{
	ECommitted = 1,
	EAllocated = 2,
	ECount = 4,
	EMaxSize = 8,
	EUnusedPages = 16,
	ECommittedFreeSpace = 32,
	EMinSize = 64,
	EHybridStats = 128,
	};

class RHackAllocator : public RAllocator
	{
public:
	using RAllocator::iHandles;
	using RAllocator::iTotalAllocSize;
	using RAllocator::iCellCount;
	};

class RHackHeap : public RHeap
	{
public:
	// Careful, only allowed to use things that are still in the new RHeap, and are still in the same place
	using RHeap::iMaxLength;
	using RHeap::iChunkHandle;
	using RHeap::iLock;
	using RHeap::iBase;
	using RHeap::iAlign;
	using RHeap::iTop;
	};

const TInt KChunkSizeOffset = 30*4;
const TInt KPageMapOffset = 141*4;
//const TInt KDlOnlyOffset = 33*4;
const TInt KMallocStateOffset = 34*4;
const TInt KMallocStateTopSizeOffset = 3*4;
const TInt KMallocStateTopOffset = 5*4;
const TInt KMallocStateSegOffset = 105*4;
const TInt KUserHybridHeapSize = 186*4;
const TInt KSparePageOffset = 167*4;
const TInt KPartialPageOffset = 165*4;
const TInt KFullSlabOffset = 166*4;
const TInt KSlabAllocOffset = 172*4;
const TInt KSlabParentOffset = 1*4;
const TInt KSlabChild1Offset = 2*4;
const TInt KSlabChild2Offset = 3*4;
const TInt KSlabPayloadOffset = 4*4;
const TInt KSlabsetSize = 4;

#ifdef TEST_HYBRIDHEAP_ASSERTS
__ASSERT_COMPILE(_FOFF(RHybridHeap, iChunkSize) == KChunkSizeOffset);
__ASSERT_COMPILE(_FOFF(RHybridHeap, iPageMap) == KPageMapOffset);
__ASSERT_COMPILE(_FOFF(RHybridHeap, iGlobalMallocState) == KMallocStateOffset);
__ASSERT_COMPILE(sizeof(malloc_state) == 107*4);
__ASSERT_COMPILE(_FOFF(malloc_state, iTopSize) == KMallocStateTopSizeOffset);
__ASSERT_COMPILE(_FOFF(malloc_state, iTop) == KMallocStateTopOffset);
__ASSERT_COMPILE(_FOFF(malloc_state, iSeg) == KMallocStateSegOffset);
__ASSERT_COMPILE(sizeof(RHybridHeap) == KUserHybridHeapSize);
__ASSERT_COMPILE(_FOFF(RHybridHeap, iSparePage) == KSparePageOffset);
__ASSERT_COMPILE(_FOFF(RHybridHeap, iPartialPage) == KPartialPageOffset);
__ASSERT_COMPILE(_FOFF(RHybridHeap, iSlabAlloc) == KSlabAllocOffset);
__ASSERT_COMPILE(_FOFF(slab, iParent) == KSlabParentOffset);
__ASSERT_COMPILE(_FOFF(slab, iChild1) == KSlabChild1Offset);
__ASSERT_COMPILE(_FOFF(slab, iChild2) == KSlabChild2Offset);
__ASSERT_COMPILE(_FOFF(slab, iPayload) == KSlabPayloadOffset);
__ASSERT_COMPILE(sizeof(slabset) == KSlabsetSize);
#endif

TInt RAllocatorHelper::TryLock()
	{
#ifdef __KERNEL_MODE__
	NKern::ThreadEnterCS();
	DMutex* m = *(DMutex**)(iAllocatorAddress + _FOFF(RHackHeap, iLock));
	if (m) Kern::MutexWait(*m);
	return KErrNone;
#else
	if (iAllocatorType != EUnknown && iAllocatorType != EAllocator)
		{
		RFastLock& lock = *reinterpret_cast<RFastLock*>(iAllocatorAddress + _FOFF(RHackHeap, iLock));
		lock.Wait();
		return KErrNone;
		}
	return KErrNotSupported;
#endif
	}

void RAllocatorHelper::TryUnlock()
	{
#ifdef __KERNEL_MODE__
	DMutex* m = *(DMutex**)(iAllocatorAddress + _FOFF(RHackHeap, iLock));
	if (m) Kern::MutexSignal(*m);
	NKern::ThreadLeaveCS();
#else
	if (iAllocatorType != EUnknown && iAllocatorType != EAllocator)
		{
		RFastLock& lock = *reinterpret_cast<RFastLock*>(iAllocatorAddress + _FOFF(RHackHeap, iLock));
		lock.Signal();
		}
#endif
	}

HUEXPORT_C void RAllocatorHelper::Close()
	{
	KERN_ENTER_CS();
	iAllocatorType = EUnknown;
	iAllocatorAddress = 0;
	delete iInfo;
	iInfo = NULL;
	iValidInfo = 0;
	MEM::Free(iTempSlabBitmap);
	iTempSlabBitmap = NULL;
	MEM::Free(iPageCache);
	iPageCache = NULL;
	iPageCacheAddr = 0;
	KERN_LEAVE_CS();
	}

TInt RAllocatorHelper::IdentifyAllocatorType(TBool aAllocatorIsUdeb)
	{
	iAllocatorType = EUnknown;

	TUint32 handlesPtr = 0;
	TInt err = ReadWord(iAllocatorAddress + _FOFF(RHackAllocator, iHandles), handlesPtr);

	if (err) return err;
	if (handlesPtr == iAllocatorAddress + _FOFF(RHackHeap, iChunkHandle) || handlesPtr == iAllocatorAddress + _FOFF(RHackHeap, iLock))
		{
		// It's an RHeap of some kind - I doubt any other RAllocator subclass will use iHandles in this way
		TUint32 base = 0;
		err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iBase), base);
		if (err) return err;
		TInt objsize = (TInt)base - (TInt)iAllocatorAddress;
		if (objsize <= 32*4)
			{
			// Old RHeap
			iAllocatorType = aAllocatorIsUdeb ? EUdebOldRHeap : EUrelOldRHeap;
			}
		else
			{
			// new hybrid heap - bigger than the old one. Likewise figure out if udeb or urel.
			iAllocatorType = aAllocatorIsUdeb ? EUdebHybridHeap : EUrelHybridHeap;
			}
		}
	else
		{
		iAllocatorType = EAllocator;
		}
	return KErrNone;
	}

HUEXPORT_C TInt RAllocatorHelper::SetCellNestingLevel(TAny* aCell, TInt aNestingLevel)
	{
	TInt err = KErrNone;

	switch (iAllocatorType)
		{
		case EUdebOldRHeap:
		case EUdebHybridHeap:
			// By this reckoning, they're in the same place amazingly
			{
			TLinAddr nestingAddr = (TLinAddr)aCell - 8;
			err = WriteWord(nestingAddr, aNestingLevel);
			break;
			}
		default:
			break;
		}
	return err;
	}

HUEXPORT_C TInt RAllocatorHelper::GetCellNestingLevel(TAny* aCell, TInt& aNestingLevel)
	{
	switch (iAllocatorType)
		{
		case EUdebOldRHeap:
		case EUdebHybridHeap:
			// By this reckoning, they're in the same place amazingly
			{
			TLinAddr nestingAddr = (TLinAddr)aCell - 8;
			return ReadWord(nestingAddr, (TUint32&)aNestingLevel);
			}
		default:
			return KErrNotSupported;
		}
	}

TInt RAllocatorHelper::RefreshDetails(TUint aMask)
	{
	TInt err = FinishConstruction();
	if (err) return err;

	// Invalidate the page cache
	iPageCacheAddr = 0;

	TryLock();
	err = DoRefreshDetails(aMask);
	TryUnlock();
	return err;
	}

const TInt KHeapWalkStatsForOldHeap = (EUnusedPages|ECommittedFreeSpace);
const TInt KHeapWalkStatsForNewHeap = (EAllocated|ECount|EUnusedPages|ECommittedFreeSpace|EHybridStats);

TInt RAllocatorHelper::DoRefreshDetails(TUint aMask)
	{
	TInt err = KErrNotSupported;
	switch (iAllocatorType)
		{
		case EUrelOldRHeap:
		case EUdebOldRHeap:
			{
			if (aMask & ECommitted)
				{
				// The old RHeap::Size() used to use iTop - iBase, which was effectively chunkSize - sizeof(RHeap)
				// I think that for CommittedSize we should include the size of the heap object, just as it includes
				// the size of heap cell metadata and overhead. Plus it makes sure the committedsize is a multiple of the page size
				TUint32 top = 0;
				//TUint32 base = 0;
				//err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iBase), base);
				//if (err) return err;
				err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iTop), top);
				if (err) return err;

				//iInfo->iCommittedSize = top - base;
				iInfo->iCommittedSize = top - iAllocatorAddress;
				iValidInfo |= ECommitted;
				}
			if (aMask & EAllocated)
				{
				TUint32 allocSize = 0;
				err = ReadWord(iAllocatorAddress + _FOFF(RHackAllocator, iTotalAllocSize), allocSize);
				if (err) return err;
				iInfo->iAllocatedSize = allocSize;
				iValidInfo |= EAllocated;
				}
			if (aMask & ECount)
				{
				TUint32 count = 0;
				err = ReadWord(iAllocatorAddress + _FOFF(RHackAllocator, iCellCount), count);
				if (err) return err;
				iInfo->iAllocationCount = count;
				iValidInfo |= ECount;
				}
			if (aMask & EMaxSize)
				{
				TUint32 maxlen = 0;
				err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iMaxLength), maxlen);
				if (err) return err;
				iInfo->iMaxCommittedSize = maxlen;
				iValidInfo |= EMaxSize;
				}
			if (aMask & EMinSize)
				{
				TUint32 minlen = 0;
				err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iMaxLength) - 4, minlen); // This isn't a typo! iMinLength is 4 bytes before iMaxLength, on old heap ONLY
				if (err) return err;
				iInfo->iMinCommittedSize = minlen;
				iValidInfo |= EMinSize;
				}
			if (aMask & KHeapWalkStatsForOldHeap)
				{
				// Need a heap walk
				iInfo->ClearStats();
				iValidInfo = 0;
				err = DoWalk(&WalkForStats, NULL);
				if (err == KErrNone) iValidInfo |= KHeapWalkStatsForOldHeap;
				}
			return err;
			}
		case EUrelHybridHeap:
		case EUdebHybridHeap:
			{
			TBool needWalk = EFalse;
			if (aMask & ECommitted)
				{
				// RAllocator::Size uses iChunkSize - sizeof(RHybridHeap);
				// We can't do exactly the same, because we can't calculate sizeof(RHybridHeap), only ROUND_UP(sizeof(RHybridHeap), iAlign)
				// And if fact we don't bother and just use iChunkSize
				TUint32 chunkSize = 0;
				err = ReadWord(iAllocatorAddress + KChunkSizeOffset, chunkSize);
				if (err) return err;
				//TUint32 baseAddr = 0;
				//err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iBase), baseAddr);
				//if (err) return err;
				iInfo->iCommittedSize = chunkSize; // - (baseAddr - iAllocatorAddress);
				iValidInfo |= ECommitted;
				}
			if (aMask & (EAllocated|ECount))
				{
				if (iAllocatorType == EUdebHybridHeap)
					{
					// Easy, just get them from the counter
					TUint32 totalAlloc = 0;
					err = ReadWord(iAllocatorAddress + _FOFF(RHackAllocator, iTotalAllocSize), totalAlloc);
					if (err) return err;
					iInfo->iAllocatedSize = totalAlloc;
					iValidInfo |= EAllocated;

					TUint32 cellCount = 0;
					err = ReadWord(iAllocatorAddress + _FOFF(RHackAllocator, iCellCount), cellCount);
					if (err) return err;
					iInfo->iAllocationCount = cellCount;
					iValidInfo |= ECount;
					}
				else
					{
					// A heap walk is needed
					needWalk = ETrue;
					}
				}
			if (aMask & EMaxSize)
				{
				TUint32 maxlen = 0;
				err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iMaxLength), maxlen);
				if (err) return err;
				iInfo->iMaxCommittedSize = maxlen;
				iValidInfo |= EMaxSize;
				}
			if (aMask & EMinSize)
				{
				TUint32 minlen = 0;
				err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iAlign) + 4*4, minlen); // iMinLength is in different place to old RHeap
				if (err) return err;
				iInfo->iMinCommittedSize = minlen;
				iValidInfo |= EMinSize;
				}
			if (aMask & (EUnusedPages|ECommittedFreeSpace|EHybridStats))
				{
				// EAllocated and ECount have already been taken care of above
				needWalk = ETrue;
				}

			if (needWalk)
				{
				iInfo->ClearStats();
				iValidInfo = 0;
				err = DoWalk(&WalkForStats, NULL);
				if (err == KErrNone) iValidInfo |= KHeapWalkStatsForNewHeap;
				}
			return err;
			}
		default:
			return KErrNotSupported;
		}
	}

TInt RAllocatorHelper::CheckValid(TUint aMask)
	{
	if ((iValidInfo & aMask) == aMask)
		{
		return KErrNone;
		}
	else
		{
		return RefreshDetails(aMask);
		}
	}

HUEXPORT_C TInt RAllocatorHelper::CommittedSize()
	{
	TInt err = CheckValid(ECommitted);
	if (err) return err;
	return iInfo->iCommittedSize;
	}

HUEXPORT_C TInt RAllocatorHelper::AllocatedSize()
	{
	TInt err = CheckValid(EAllocated);
	if (err) return err;
	return iInfo->iAllocatedSize;
	}

HUEXPORT_C TInt RAllocatorHelper::AllocationCount()
	{
	TInt err = CheckValid(ECount);
	if (err) return err;
	return iInfo->iAllocationCount;
	}

HUEXPORT_C TInt RAllocatorHelper::RefreshDetails()
	{
	return RefreshDetails(iValidInfo);
	}

HUEXPORT_C TInt RAllocatorHelper::MaxCommittedSize()
	{
	TInt err = CheckValid(EMaxSize);
	if (err) return err;
	return iInfo->iMaxCommittedSize;
	}

HUEXPORT_C TInt RAllocatorHelper::MinCommittedSize()
	{
	TInt err = CheckValid(EMinSize);
	if (err) return err;
	return iInfo->iMinCommittedSize;
	}

HUEXPORT_C TInt RAllocatorHelper::AllocCountForCell(TAny* aCell) const
	{
	TUint32 allocCount = 0;
	switch (iAllocatorType)
		{
		case EUdebOldRHeap:
		case EUdebHybridHeap: // Both are in the same place, amazingly
			{
			TLinAddr allocCountAddr = (TLinAddr)aCell - 4;
			TInt err = ReadWord(allocCountAddr, allocCount);
			if (err) return err;
			return (TInt)allocCount;
			}
		default:
			return KErrNotSupported;
		}
	}

struct SContext3
	{
	RAllocatorHelper::TWalkFunc3 iOrigWalkFn;
	TAny* iOrigContext;
	};

TBool RAllocatorHelper::DispatchClientWalkCallback(RAllocatorHelper& aHelper, TAny* aContext, RAllocatorHelper::TExtendedCellType aCellType, TLinAddr aCellPtr, TInt aCellLength)
	{
	WalkForStats(aHelper, NULL, aCellType, aCellPtr, aCellLength);
	SContext3* context = static_cast<SContext3*>(aContext);
	return (*context->iOrigWalkFn)(aHelper, context->iOrigContext, aCellType, aCellPtr, aCellLength);
	}

HUEXPORT_C TInt RAllocatorHelper::Walk(TWalkFunc3 aCallbackFn, TAny* aContext)
	{
	// Might as well take the opportunity of updating our stats at the same time as walking the heap for the client
	SContext3 context = { aCallbackFn, aContext };

	TInt err = FinishConstruction(); // In case this hasn't been done yet
	if (err) return err;

	TryLock();
	err = DoWalk(&DispatchClientWalkCallback, &context);
	TryUnlock();
	return err;
	}

TInt RAllocatorHelper::DoWalk(TWalkFunc3 aCallbackFn, TAny* aContext)
	{
	TInt err = KErrNotSupported;
	switch (iAllocatorType)
		{
		case EUdebOldRHeap:
		case EUrelOldRHeap:
			err = OldSkoolWalk(aCallbackFn, aContext);
			break;
		case EUrelHybridHeap:
		case EUdebHybridHeap:
			err = NewHotnessWalk(aCallbackFn, aContext);
			break;
		default:
			err = KErrNotSupported;
			break;
		}
	return err;
	}

struct SContext
	{
	RAllocatorHelper::TWalkFunc iOrigWalkFn;
	TAny* iOrigContext;
	};

struct SContext2
	{
	RAllocatorHelper::TWalkFunc2 iOrigWalkFn;
	TAny* iOrigContext;
	};

#define New2Old(aNew) (((aNew)&RAllocatorHelper::EAllocationMask) ? RAllocatorHelper::EAllocation : ((aNew)&RAllocatorHelper::EFreeMask) ? RAllocatorHelper::EFreeSpace : RAllocatorHelper::EBadness)

TBool DispatchOldTWalkFuncCallback(RAllocatorHelper& /*aHelper*/, TAny* aContext, RAllocatorHelper::TExtendedCellType aCellType, TLinAddr aCellPtr, TInt aCellLength)
	{
	SContext* context = static_cast<SContext*>(aContext);
	return (*context->iOrigWalkFn)(context->iOrigContext, New2Old(aCellType), aCellPtr, aCellLength);
	}

TBool DispatchOldTWalk2FuncCallback(RAllocatorHelper& aHelper, TAny* aContext, RAllocatorHelper::TExtendedCellType aCellType, TLinAddr aCellPtr, TInt aCellLength)
	{
	SContext2* context = static_cast<SContext2*>(aContext);
	return (*context->iOrigWalkFn)(aHelper, context->iOrigContext, New2Old(aCellType), aCellPtr, aCellLength);
	}

HUEXPORT_C TInt RAllocatorHelper::Walk(TWalkFunc aCallbackFn, TAny* aContext)
	{
	// For backwards compatability insert a compatability callback to map between the different types of callback that clients requested
	SContext context = { aCallbackFn, aContext };
	return Walk(&DispatchOldTWalkFuncCallback, &context);
	}

HUEXPORT_C TInt RAllocatorHelper::Walk(TWalkFunc2 aCallbackFn, TAny* aContext)
	{
	SContext2 context = { aCallbackFn, aContext };
	return Walk(&DispatchOldTWalk2FuncCallback, &context);
	}


TInt RAllocatorHelper::OldSkoolWalk(TWalkFunc3 aCallbackFn, TAny* aContext)
	{
	TLinAddr pC = 0;
	TInt err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iBase), pC); // pC = iBase; // allocated cells
	if (err) return err;
	TLinAddr pF = iAllocatorAddress + _FOFF(RHackHeap, iAlign) + 3*4; // pF = &iFree; // free cells

	TLinAddr top = 0;
	err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iTop), top);
	if (err) return err;
	const TInt KAllocatedCellHeaderSize = iAllocatorType == EUdebOldRHeap ? 12 : 4;
	TInt minCell = 0;
	err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iAlign) + 4, (TUint32&)minCell);
	if (err) return err;
	TInt align = 0;
	err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iAlign), (TUint32&)align);
	if (err) return err;

	FOREVER
		{
		err = ReadWord(pF+4, pF); // pF = pF->next; // next free cell
		if (err) return err;
		TLinAddr pFnext = 0;
		if (pF) err = ReadWord(pF + 4, pFnext);
		if (err) return err;

		if (!pF)
			{
			pF = top; // to make size checking work
			}
		else if (pF>=top || (pFnext && pFnext<=pF) )
			{
			// free cell pointer off the end or going backwards
			//Unlock();
			(*aCallbackFn)(*this, aContext, EHeapBadFreeCellAddress, pF, 0);
			return KErrCorrupt;
			}
		else
			{
			TInt l; // = pF->len
			err = ReadWord(pF, (TUint32&)l);
			if (err) return err;
			if (l<minCell || (l & (align-1)))
				{
				// free cell length invalid
				//Unlock();
				(*aCallbackFn)(*this, aContext, EHeapBadFreeCellSize, pF, l);
				return KErrCorrupt;
				}
			}
		while (pC!=pF)				// walk allocated cells up to next free cell
			{
			TInt l; // pC->len;
			err = ReadWord(pC, (TUint32&)l);
			if (err) return err;
			if (l<minCell || (l & (align-1)))
				{
				// allocated cell length invalid
				//Unlock();
				(*aCallbackFn)(*this, aContext, EHeapBadAllocatedCellSize, pC, l);
				return KErrCorrupt;
				}
			TBool shouldContinue = (*aCallbackFn)(*this, aContext, EHeapAllocation, pC + KAllocatedCellHeaderSize, l - KAllocatedCellHeaderSize);
			if (!shouldContinue) return KErrNone;
			
			//SCell* pN = __NEXT_CELL(pC);
			TLinAddr pN = pC + l;
			if (pN > pF)
				{
				// cell overlaps next free cell
				//Unlock();
				(*aCallbackFn)(*this, aContext, EHeapBadAllocatedCellAddress, pC, l);
				return KErrCorrupt;
				}
			pC = pN;
			}
		if (pF == top)
			break;		// reached end of heap
		TInt pFlen = 0;
		err = ReadWord(pF, (TUint32&)pFlen);
		if (err) return err;
		pC = pF + pFlen; // pC = __NEXT_CELL(pF);	// step to next allocated cell
		TBool shouldContinue = (*aCallbackFn)(*this, aContext, EHeapFreeCell, pF, pFlen);
		if (!shouldContinue) return KErrNone;
		}
	return KErrNone;
	}

HUEXPORT_C TInt RAllocatorHelper::CountUnusedPages()
	{
	TInt err = CheckValid(EUnusedPages);
	if (err) return err;
	return iInfo->iUnusedPages;
	}

HUEXPORT_C TInt RAllocatorHelper::CommittedFreeSpace()
	{
	TInt err = CheckValid(ECommittedFreeSpace);
	if (err) return err;
	return iInfo->iCommittedFreeSpace;
	}

#define ROUND_DOWN(val, pow2) ((val) & ~((pow2)-1))
#define ROUND_UP(val, pow2) ROUND_DOWN((val) + (pow2) - 1, (pow2))

HUEXPORT_C TLinAddr RAllocatorHelper::AllocatorAddress() const
	{
	return iAllocatorAddress;
	}

TBool RAllocatorHelper::WalkForStats(RAllocatorHelper& aSelf, TAny* /*aContext*/, TExtendedCellType aType, TLinAddr aCellPtr, TInt aCellLength)
	{
	//ASSERT(aCellLength >= 0);
	THeapInfo& info = *aSelf.iInfo;

	TInt pagesSpanned = 0; // The number of pages that fit entirely inside the payload of this cell
	if ((TUint)aCellLength > KPageSize)
		{
		TLinAddr nextPageAlignedAddr = ROUND_UP(aCellPtr, KPageSize);
		pagesSpanned = ROUND_DOWN(aCellPtr + aCellLength - nextPageAlignedAddr, KPageSize) / KPageSize;
		}

	if (aSelf.iAllocatorType == EUrelOldRHeap || aSelf.iAllocatorType == EUdebOldRHeap)
		{
		if (aType & EFreeMask)
			{
			info.iUnusedPages += pagesSpanned;
			info.iCommittedFreeSpace += aCellLength;
			info.iHeapFreeCellCount++;
			}
		}
	else
		{
		if (aType & EAllocationMask)
			{
			info.iAllocatedSize += aCellLength;
			info.iAllocationCount++;
			}
		else if (aType & EFreeMask)
			{
			// I *think* that DLA will decommit pages from inside free cells...
			TInt committedLen = aCellLength - (pagesSpanned * KPageSize);
			info.iCommittedFreeSpace += committedLen;
			}

		switch (aType)
			{
			case EDlaAllocation:
				info.iDlaAllocsSize += aCellLength;
				info.iDlaAllocsCount++;
				break;
			case EPageAllocation:
				info.iPageAllocsSize += aCellLength;
				info.iPageAllocsCount++;
				break;
			case ESlabAllocation:
				info.iSlabAllocsSize += aCellLength;
				info.iSlabAllocsCount++;
				break;
			case EDlaFreeCell:
				info.iDlaFreeSize += aCellLength;
				info.iDlaFreeCount++;
				break;
			case ESlabFreeCell:
				info.iSlabFreeCellSize += aCellLength;
				info.iSlabFreeCellCount++;
				break;
			case ESlabFreeSlab:
				info.iSlabFreeSlabSize += aCellLength;
				info.iSlabFreeSlabCount++;
				break;
			default:
				break;
			}
		}

	return ETrue;
	}

#define PAGESHIFT 12

TUint RAllocatorHelper::PageMapOperatorBrackets(unsigned ix, TInt& err) const
	{
	//return 1U&(iBase[ix>>3] >> (ix&7));
	TUint32 basePtr = 0;
	err = ReadWord(iAllocatorAddress + KPageMapOffset, basePtr);
	if (err) return 0;

	TUint8 res = 0;
	err = ReadByte(basePtr + (ix >> 3), res);
	if (err) return 0;

	return 1U&(res >> (ix&7));
	}


TInt RAllocatorHelper::PageMapFind(TUint start, TUint bit, TInt& err)
	{
	TUint32 iNbits = 0;
	err = ReadWord(iAllocatorAddress + KPageMapOffset + 4, iNbits);
	if (err) return 0;

	if (start<iNbits) do
		{
		//if ((*this)[start]==bit)
		if (PageMapOperatorBrackets(start, err) == bit || err)
			return start;
		} while (++start<iNbits);
	return -1;
	}

TUint RAllocatorHelper::PagedDecode(TUint pos, TInt& err)
	{
	unsigned bits = PageMapBits(pos,2,err);
	if (err) return 0;
	bits >>= 1;
	if (bits == 0)
		return 1;
	bits = PageMapBits(pos+2,2,err);
	if (err) return 0;
	if ((bits & 1) == 0)
		return 2 + (bits>>1);
	else if ((bits>>1) == 0)
		{
		return PageMapBits(pos+4, 4,err);
		}
	else
		{
		return PageMapBits(pos+4, 18,err);
		}
	}

TUint RAllocatorHelper::PageMapBits(unsigned ix, unsigned len, TInt& err)
	{
	int l=len;
	unsigned val=0;
	unsigned bit=0;
	while (--l>=0)
		{
		//val |= (*this)[ix++]<<bit++;
		val |= PageMapOperatorBrackets(ix++, err) << bit++;
		if (err) return 0;
		}
	return val;
	}

enum TSlabType { ESlabFullInfo, ESlabPartialInfo, ESlabEmptyInfo };

#ifndef TEST_HYBRIDHEAP_ASSERTS
#define MAXSLABSIZE		56
#define	SLABSHIFT		10
#define	SLABSIZE		(1 << SLABSHIFT)
const TInt KMaxSlabPayload = SLABSIZE - KSlabPayloadOffset;
#endif

TInt RAllocatorHelper::NewHotnessWalk(TWalkFunc3 aCallbackFn, TAny* aContext)
	{
	// RHybridHeap does paged, slab then DLA, so that's what we do too
	// Remember Kernel RHybridHeaps don't even have the page and slab members

	TUint32 basePtr;
	TInt err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iBase), basePtr);
	if (err) return err;
	if (basePtr < iAllocatorAddress + KUserHybridHeapSize)
		{
		// Must be a kernel one - don't do page and slab
		}
	else
		{
		// Paged
		TUint32 membase = 0;
		err = ReadWord(iAllocatorAddress + KPageMapOffset + 8, membase);
		if (err) return err;

		TBool shouldContinue = ETrue;
		for (int ix = 0;(ix = PageMapFind(ix,1,err)) >= 0 && err == KErrNone;)
			{
			int npage = PagedDecode(ix, err);
			if (err) return err;
			// Introduce paged buffer to the walk function 
			TLinAddr bfr = membase + (1 << (PAGESHIFT-1))*ix;
			int len = npage << PAGESHIFT;
			if ( (TUint)len > KPageSize )
				{ // If buffer is not larger than one page it must be a slab page mapped into bitmap
				if (iAllocatorType == EUdebHybridHeap)
					{
					bfr += 8;
					len -= 8;
					}
				shouldContinue = (*aCallbackFn)(*this, aContext, EPageAllocation, bfr, len);
				if (!shouldContinue) return KErrNone;
				}
			ix += (npage<<1);
			}
		if (err) return err;

		// Slab
		TUint32 sparePage = 0;
		err = ReadWord(iAllocatorAddress + KSparePageOffset, sparePage);
		if (err) return err;
		if (sparePage)
			{
			//Walk(wi, iSparePage, iPageSize, EGoodFreeCell, ESlabSpare); // Introduce Slab spare page to the walk function 
			// This counts as 4 spare slabs
			for (TInt i = 0; i < 4; i++)
				{
				shouldContinue = (*aCallbackFn)(*this, aContext, ESlabFreeSlab, sparePage + SLABSIZE*i, SLABSIZE);
				if (!shouldContinue) return KErrNone;
				}
			}

		//TreeWalk(&iFullSlab, &SlabFullInfo, i, wi);
		TInt err = TreeWalk(iAllocatorAddress + KFullSlabOffset, ESlabFullInfo, aCallbackFn, aContext, shouldContinue);
		if (err || !shouldContinue) return err;
		for (int ix = 0; ix < (MAXSLABSIZE>>2); ++ix)
			{
			TUint32 partialAddr = iAllocatorAddress + KSlabAllocOffset + ix*KSlabsetSize;
			//TreeWalk(&iSlabAlloc[ix].iPartial, &SlabPartialInfo, i, wi);
			err = TreeWalk(partialAddr, ESlabPartialInfo, aCallbackFn, aContext, shouldContinue);
			if (err || !shouldContinue) return err;
			}
		//TreeWalk(&iPartialPage, &SlabEmptyInfo, i, wi);
		TreeWalk(iAllocatorAddress + KPartialPageOffset, ESlabEmptyInfo, aCallbackFn, aContext, shouldContinue);
		}

	// DLA
#define CHUNK_OVERHEAD (sizeof(TUint))
#define CHUNK_ALIGN_MASK (7) 
#define CHUNK2MEM(p)        ((TLinAddr)(p) + 8)
#define MEM2CHUNK(mem)      ((TLinAddr)(p) - 8)
/* chunk associated with aligned address A */
#define ALIGN_OFFSET(A)\
	((((TLinAddr)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
	((8 - ((TLinAddr)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
#define ALIGN_AS_CHUNK(A)   ((A) + ALIGN_OFFSET(CHUNK2MEM(A)))
#define CINUSE_BIT 2
#define INUSE_BITS 3

	TUint32 topSize = 0;
	err = ReadWord(iAllocatorAddress + KMallocStateOffset + KMallocStateTopSizeOffset, topSize);
	if (err) return err;

	TUint32 top = 0;
	err = ReadWord(iAllocatorAddress + KMallocStateOffset + KMallocStateTopOffset, top);
	if (err) return err;

	TInt max = ((topSize-1) & ~CHUNK_ALIGN_MASK) - CHUNK_OVERHEAD;
	if ( max < 0 )
		max = 0;
	
	TBool shouldContinue = (*aCallbackFn)(*this, aContext, EDlaFreeCell, top, max);
	if (!shouldContinue) return KErrNone;
	
	TUint32 mallocStateSegBase = 0;
	err = ReadWord(iAllocatorAddress + KMallocStateOffset + KMallocStateSegOffset, mallocStateSegBase);
	if (err) return err;

	for (TLinAddr q = ALIGN_AS_CHUNK(mallocStateSegBase); q != top; /*q = NEXT_CHUNK(q)*/)
		{
		TUint32 qhead = 0;
		err = ReadWord(q + 4, qhead);
		if (err) return err;
		//TInt sz = CHUNKSIZE(q);
		TInt sz = qhead & ~(INUSE_BITS);
		if (!(qhead & CINUSE_BIT))
			{
			//Walk(wi, CHUNK2MEM(q), sz, EGoodFreeCell, EDougLeaAllocator); // Introduce DL free buffer to the walk function 
			shouldContinue = (*aCallbackFn)(*this, aContext, EDlaFreeCell, CHUNK2MEM(q), sz);
			if (!shouldContinue) return KErrNone;
			}
		else
			{
			//Walk(wi, CHUNK2MEM(q), (sz- CHUNK_OVERHEAD), EGoodAllocatedCell, EDougLeaAllocator); // Introduce DL allocated buffer to the walk function 
			TLinAddr addr = CHUNK2MEM(q);
			TInt size = sz - CHUNK_OVERHEAD;
			if (iAllocatorType == EUdebHybridHeap)
				{
				size -= 8;
				addr += 8;
				}
			shouldContinue = (*aCallbackFn)(*this, aContext, EDlaAllocation, addr, size);
			if (!shouldContinue) return KErrNone;
			}
		// This is q = NEXT_CHUNK(q) expanded
		q = q + sz;
		}
	return KErrNone;
	}

TInt RAllocatorHelper::TreeWalk(TUint32 aSlabRoot, TInt aSlabType, TWalkFunc3 aCallbackFn, TAny* aContext, TBool& shouldContinue)
	{
	const TSlabType type = (TSlabType)aSlabType;

	TUint32 s = 0;
	TInt err = ReadWord(aSlabRoot, s);
	if (err) return err;
	//slab* s = *root;
	if (!s)
		return KErrNone;
	
	for (;;)
		{
		//slab* c;
		//while ((c = s->iChild1) != 0)
		//	s = c;		// walk down left side to end
		TUint32 c;
		for(;;)
			{
			err = ReadWord(s + KSlabChild1Offset, c);
			if (err) return err;
			if (c == 0) break;
			else s = c;
			}
		for (;;)
			{
			//TODOf(s, i, wi);
			//TODO __HEAP_CORRUPTED_TEST_STATIC
			TUint32 h;
			err = ReadWord(s, h); // = aSlab->iHeader;
			if (err) return err;
			TUint32 size = (h&0x0003f000)>>12; //SlabHeaderSize(h);
			TUint debugheadersize = 0;
			if (iAllocatorType == EUdebHybridHeap) debugheadersize = 8;
			TUint32 usedCount = (((h&0x0ffc0000)>>18) + 4) / size; // (SlabHeaderUsedm4(h) + 4) / size;
			switch (type)
				{
				case ESlabFullInfo:
					{
					TUint32 count = usedCount;
					TUint32 i = 0;
					while ( i < count )
						{
						TUint32 addr = s + KSlabPayloadOffset + i*size; //&aSlab->iPayload[i*size];
						shouldContinue = (*aCallbackFn)(*this, aContext, ESlabAllocation, addr + debugheadersize, size - debugheadersize);
						if (!shouldContinue) return KErrNone;
						i++;
						}
					break;
					}
				case ESlabPartialInfo:
					{
					//TODO __HEAP_CORRUPTED_TEST_STATIC
					TUint32 count = KMaxSlabPayload / size;
					TUint32 freeOffset = (h & 0xff) << 2;
					if (freeOffset == 0)
						{
						// TODO Shouldn't happen for a slab on the partial list
						}
					memset(iTempSlabBitmap, 1, KTempBitmapSize); // Everything defaults to in use
					TUint wildernessCount = count - usedCount;
					while (freeOffset)
						{
						wildernessCount--;
						TInt idx = (freeOffset-KSlabPayloadOffset)/size;
						LOG("iTempSlabBitmap freeOffset %d index %d", freeOffset, idx);
						iTempSlabBitmap[idx] = 0; // Mark it as free

						TUint32 addr = s + freeOffset;
						TUint8 nextCell = 0;
						err = ReadByte(addr, nextCell);
						if (err) return err;
						freeOffset = ((TUint32)nextCell) << 2;
						}
					memset(iTempSlabBitmap + count - wildernessCount, 0, wildernessCount); // Mark the wilderness as free
					for (TInt i = 0; i < count; i++)
						{
						TLinAddr addr = s + KSlabPayloadOffset + i*size;
						if (iTempSlabBitmap[i])
							{
							// In use
							shouldContinue = (*aCallbackFn)(*this, aContext, ESlabAllocation, addr + debugheadersize, size - debugheadersize);
							}
						else
							{
							// Free
							shouldContinue = (*aCallbackFn)(*this, aContext, ESlabFreeCell, addr, size);
							}
						if (!shouldContinue) return KErrNone;
						}
					break;
					}
				case ESlabEmptyInfo:
					{
					// Check which slabs of this page are empty
					TUint32 pageAddr = ROUND_DOWN(s, KPageSize);
					TUint32 headerForPage = 0;
					err = ReadWord(pageAddr, headerForPage);
					if (err) return err;
					TUint32 slabHeaderPageMap = (headerForPage & 0x00000f00)>>8; // SlabHeaderPagemap(unsigned h)
					for (TInt slabIdx = 0; slabIdx < 4; slabIdx++)
						{
						if (slabHeaderPageMap & (1<<slabIdx))
							{
							TUint32 addr = pageAddr + SLABSIZE*slabIdx + KSlabPayloadOffset; //&aSlab->iPayload[i*size];
							shouldContinue = (*aCallbackFn)(*this, aContext, ESlabFreeSlab, addr, KMaxSlabPayload);
							if (!shouldContinue) return KErrNone;
							}
						}
					break;
					}
				}

			//c = s->iChild2;
			err = ReadWord(s + KSlabChild2Offset, c);
			if (err) return err;

			if (c)
				{	// one step down right side, now try and walk down left
				s = c;
				break;
				}
			for (;;)
				{	// loop to walk up right side
				TUint32 pp = 0;
				err = ReadWord(s + KSlabParentOffset, pp);
				if (err) return err;
				//slab** pp = s->iParent;
				if (pp == aSlabRoot)
					return KErrNone;
#define SlabFor(x) ROUND_DOWN(x, SLABSIZE)
				s = SlabFor(pp);
				//if (pp == &s->iChild1)
				if (pp == s + KSlabChild1Offset)
					break;
				}
			}
		}
	}

HUEXPORT_C TInt RAllocatorHelper::SizeForCellType(TExtendedCellType aType)
	{
	if (aType & EBadnessMask) return KErrArgument;
	if (aType == EAllocationMask) return AllocatedSize();

	if (iAllocatorType == EUdebOldRHeap || iAllocatorType == EUrelOldRHeap)
		{
		switch (aType)
			{
			case EHeapAllocation:
				return AllocatedSize();
			case EHeapFreeCell:
			case EFreeMask:
				return CommittedFreeSpace();
			default:
				return KErrNotSupported;
			}
		}
	else if (iAllocatorType == EUrelHybridHeap || iAllocatorType == EUdebHybridHeap)
		{
		TInt err = CheckValid(EHybridStats);
		if (err) return err;

		switch (aType)
			{
			case EHeapAllocation:
			case EHeapFreeCell:
				return KErrNotSupported;
			case EDlaAllocation:
				return iInfo->iDlaAllocsSize;
			case EPageAllocation:
				return iInfo->iPageAllocsSize;
			case ESlabAllocation:
				return iInfo->iSlabAllocsSize;
			case EDlaFreeCell:
				return iInfo->iDlaFreeSize;
			case ESlabFreeCell:
				return iInfo->iSlabFreeCellSize;
			case ESlabFreeSlab:
				return iInfo->iSlabFreeSlabSize;
			case EFreeMask:
				// Note this isn't the same as asking for CommittedFreeSpace(). SizeForCellType(EFreeMask) may include decommitted pages that lie inside a free cell
				return iInfo->iDlaFreeSize + iInfo->iSlabFreeCellSize + iInfo->iSlabFreeSlabSize;
			default:
				return KErrNotSupported;
			}
		}
	else
		{
		return KErrNotSupported;
		}
	}

HUEXPORT_C TInt RAllocatorHelper::CountForCellType(TExtendedCellType aType)
	{
	if (aType & EBadnessMask) return KErrArgument;
	if (aType == EAllocationMask) return AllocationCount();

	if (iAllocatorType == EUdebOldRHeap || iAllocatorType == EUrelOldRHeap)
		{
		switch (aType)
			{
			case EHeapAllocation:
				return AllocationCount();
			case EHeapFreeCell:
			case EFreeMask:
				{
				TInt err = CheckValid(ECommittedFreeSpace);
				if (err) return err;
				return iInfo->iHeapFreeCellCount;
				}
			default:
				return KErrNotSupported;
			}
		}
	else if (iAllocatorType == EUrelHybridHeap || iAllocatorType == EUdebHybridHeap)
		{
		TInt err = CheckValid(EHybridStats);
		if (err) return err;

		switch (aType)
			{
			case EHeapAllocation:
			case EHeapFreeCell:
				return KErrNotSupported;
			case EDlaAllocation:
				return iInfo->iDlaAllocsCount;
			case EPageAllocation:
				return iInfo->iPageAllocsCount;
			case ESlabAllocation:
				return iInfo->iSlabAllocsCount;
			case EDlaFreeCell:
				return iInfo->iDlaFreeCount;
			case ESlabFreeCell:
				return iInfo->iSlabFreeCellCount;
			case ESlabFreeSlab:
				return iInfo->iSlabFreeSlabCount;
			case EFreeMask:
				// This isn't a hugely meaningful value, but if that's what they asked for...
				return iInfo->iDlaFreeCount + iInfo->iSlabFreeCellCount + iInfo->iSlabFreeSlabCount;
			default:
				return KErrNotSupported;
			}
		}
	else
		{
		return KErrNotSupported;
		}
	}

HUEXPORT_C TBool LtkUtils::RAllocatorHelper::AllocatorIsUdeb() const
	{
	return iAllocatorType == EUdebOldRHeap || iAllocatorType == EUdebHybridHeap;
	}


HUEXPORT_C const TDesC& LtkUtils::RAllocatorHelper::Description() const
	{
	_LIT(KRHeap, "RHeap");
	_LIT(KRHybridHeap, "RHybridHeap");
	_LIT(KUnknown, "Unknown");
	switch (iAllocatorType)
		{
		case EUrelOldRHeap:
		case EUdebOldRHeap:
			return KRHeap;
		case EUrelHybridHeap:
		case EUdebHybridHeap:
			return KRHybridHeap;
		case EAllocator:
		case EUnknown:
		default:
			return KUnknown;
		}
	}

#ifdef __KERNEL_MODE__

DChunk* LtkUtils::RAllocatorHelper::OpenUnderlyingChunk()
	{
	// Enter and leave in CS and with no locks held. On exit the returned DChunk has been Open()ed.
	TInt err = iChunk->Open();
	if (err) return NULL;
	return iChunk;
	}

DChunk* LtkUtils::RKernelSideAllocatorHelper::OpenUnderlyingChunk()
	{
	if (iAllocatorType != EUrelOldRHeap && iAllocatorType != EUdebOldRHeap && iAllocatorType != EUrelHybridHeap && iAllocatorType != EUdebHybridHeap) return NULL;
	// Note RKernelSideAllocatorHelper doesn't use or access RAllocatorHelper::iChunk, because we figure out the chunk handle in a different way.
	// It is for this reason that iChunk is private, to remove temptation
	
	// Enter and leave in CS and with no locks held. On exit the returned DChunk has been Open()ed.
	TUint32 chunkHandle = 0;
	TInt err = ReadData(iAllocatorAddress + _FOFF(RHackHeap, iChunkHandle), &chunkHandle, sizeof(TUint32));
	if (err) return NULL;

	NKern::LockSystem();
	DChunk* result = (DChunk*)Kern::ObjectFromHandle(iThread, chunkHandle, EChunk);
	if (result && result->Open() != KErrNone)
		{
		result = NULL;
		}
	NKern::UnlockSystem();
	return result;
	}

LtkUtils::RAllocatorHelper::TType LtkUtils::RAllocatorHelper::GetType() const
	{
	switch (iAllocatorType)
		{
		case EUrelOldRHeap:
		case EUdebOldRHeap:
			return ETypeRHeap;
		case EUrelHybridHeap:
		case EUdebHybridHeap:
			return ETypeRHybridHeap;
		case EAllocator:
		case EUnknown:
		default:
			return ETypeUnknown;
		}
	}

#else

TInt LtkUtils::RAllocatorHelper::EuserIsUdeb()
	{
	TAny* buf = User::Alloc(4096);
	if (!buf) return KErrNoMemory;
	RAllocator* dummyHeap = UserHeap::FixedHeap(buf, 4096, 4, ETrue);
	if (!dummyHeap) return KErrNoMemory; // Don't think this can happen

	dummyHeap->__DbgSetAllocFail(RAllocator::EFailNext, 1);
	TAny* ptr = dummyHeap->Alloc(4);
	// Because we specified singleThreaded=ETrue we can allow dummyHeap to just go out of scope here
	User::Free(buf);

	if (ptr)
		{
		// Clearly the __DbgSetAllocFail had no effect so we must be urel
		// We don't need to free ptr because it came from the dummy heap
		return EFalse;
		}
	else
		{
		return ETrue;
		}
	}

#ifndef STANDALONE_ALLOCHELPER

#include <fshell/ltkutils.h>
HUEXPORT_C void LtkUtils::MakeHeapCellInvisible(TAny* aCell)
	{
	RAllocatorHelper helper;
	TInt err = helper.Open(&User::Allocator());
	if (err == KErrNone)
		{
		helper.SetCellNestingLevel(aCell, -1);
		helper.Close();
		}
	}
#endif // STANDALONE_ALLOCHELPER

#endif