diff -r 000000000000 -r 7f656887cf89 libraries/spcre/libpcre/pcre/doc/html/pcrematching.html --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libraries/spcre/libpcre/pcre/doc/html/pcrematching.html Wed Jun 23 15:52:26 2010 +0100 @@ -0,0 +1,224 @@ + +
++Return to the PCRE index page. +
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+This document describes the two different algorithms that are available in PCRE +for matching a compiled regular expression against a given subject string. The +"standard" algorithm is the one provided by the pcre_exec() function. +This works in the same was as Perl's matching function, and provides a +Perl-compatible matching operation. +
++An alternative algorithm is provided by the pcre_dfa_exec() function; +this operates in a different way, and is not Perl-compatible. It has advantages +and disadvantages compared with the standard algorithm, and these are described +below. +
++When there is only one possible way in which a given subject string can match a +pattern, the two algorithms give the same answer. A difference arises, however, +when there are multiple possibilities. For example, if the pattern +
+ ^<.*> ++is matched against the string +
+ <something> <something else> <something further> ++there are three possible answers. The standard algorithm finds only one of +them, whereas the alternative algorithm finds all three. + +
+The set of strings that are matched by a regular expression can be represented +as a tree structure. An unlimited repetition in the pattern makes the tree of +infinite size, but it is still a tree. Matching the pattern to a given subject +string (from a given starting point) can be thought of as a search of the tree. +There are two ways to search a tree: depth-first and breadth-first, and these +correspond to the two matching algorithms provided by PCRE. +
++In the terminology of Jeffrey Friedl's book "Mastering Regular +Expressions", the standard algorithm is an "NFA algorithm". It conducts a +depth-first search of the pattern tree. That is, it proceeds along a single +path through the tree, checking that the subject matches what is required. When +there is a mismatch, the algorithm tries any alternatives at the current point, +and if they all fail, it backs up to the previous branch point in the tree, and +tries the next alternative branch at that level. This often involves backing up +(moving to the left) in the subject string as well. The order in which +repetition branches are tried is controlled by the greedy or ungreedy nature of +the quantifier. +
++If a leaf node is reached, a matching string has been found, and at that point +the algorithm stops. Thus, if there is more than one possible match, this +algorithm returns the first one that it finds. Whether this is the shortest, +the longest, or some intermediate length depends on the way the greedy and +ungreedy repetition quantifiers are specified in the pattern. +
++Because it ends up with a single path through the tree, it is relatively +straightforward for this algorithm to keep track of the substrings that are +matched by portions of the pattern in parentheses. This provides support for +capturing parentheses and back references. +
++This algorithm conducts a breadth-first search of the tree. Starting from the +first matching point in the subject, it scans the subject string from left to +right, once, character by character, and as it does this, it remembers all the +paths through the tree that represent valid matches. In Friedl's terminology, +this is a kind of "DFA algorithm", though it is not implemented as a +traditional finite state machine (it keeps multiple states active +simultaneously). +
++The scan continues until either the end of the subject is reached, or there are +no more unterminated paths. At this point, terminated paths represent the +different matching possibilities (if there are none, the match has failed). +Thus, if there is more than one possible match, this algorithm finds all of +them, and in particular, it finds the longest. In PCRE, there is an option to +stop the algorithm after the first match (which is necessarily the shortest) +has been found. +
++Note that all the matches that are found start at the same point in the +subject. If the pattern +
+ cat(er(pillar)?) ++is matched against the string "the caterpillar catchment", the result will be +the three strings "cat", "cater", and "caterpillar" that start at the fourth +character of the subject. The algorithm does not automatically move on to find +matches that start at later positions. + +
+There are a number of features of PCRE regular expressions that are not +supported by the alternative matching algorithm. They are as follows: +
++1. Because the algorithm finds all possible matches, the greedy or ungreedy +nature of repetition quantifiers is not relevant. Greedy and ungreedy +quantifiers are treated in exactly the same way. However, possessive +quantifiers can make a difference when what follows could also match what is +quantified, for example in a pattern like this: +
+ ^a++\w! ++This pattern matches "aaab!" but not "aaa!", which would be matched by a +non-possessive quantifier. Similarly, if an atomic group is present, it is +matched as if it were a standalone pattern at the current point, and the +longest match is then "locked in" for the rest of the overall pattern. + +
+2. When dealing with multiple paths through the tree simultaneously, it is not +straightforward to keep track of captured substrings for the different matching +possibilities, and PCRE's implementation of this algorithm does not attempt to +do this. This means that no captured substrings are available. +
++3. Because no substrings are captured, back references within the pattern are +not supported, and cause errors if encountered. +
++4. For the same reason, conditional expressions that use a backreference as the +condition or test for a specific group recursion are not supported. +
++5. Because many paths through the tree may be active, the \K escape sequence, +which resets the start of the match when encountered (but may be on some paths +and not on others), is not supported. It causes an error if encountered. +
++6. Callouts are supported, but the value of the capture_top field is +always 1, and the value of the capture_last field is always -1. +
++7. The \C escape sequence, which (in the standard algorithm) matches a single +byte, even in UTF-8 mode, is not supported because the alternative algorithm +moves through the subject string one character at a time, for all active paths +through the tree. +
++8. Except for (*FAIL), the backtracking control verbs such as (*PRUNE) are not +supported. (*FAIL) is supported, and behaves like a failing negative assertion. +
++Using the alternative matching algorithm provides the following advantages: +
++1. All possible matches (at a single point in the subject) are automatically +found, and in particular, the longest match is found. To find more than one +match using the standard algorithm, you have to do kludgy things with +callouts. +
++2. There is much better support for partial matching. The restrictions on the +content of the pattern that apply when using the standard algorithm for partial +matching do not apply to the alternative algorithm. For non-anchored patterns, +the starting position of a partial match is available. +
++3. Because the alternative algorithm scans the subject string just once, and +never needs to backtrack, it is possible to pass very long subject strings to +the matching function in several pieces, checking for partial matching each +time. +
++The alternative algorithm suffers from a number of disadvantages: +
++1. It is substantially slower than the standard algorithm. This is partly +because it has to search for all possible matches, but is also because it is +less susceptible to optimization. +
++2. Capturing parentheses and back references are not supported. +
++3. Although atomic groups are supported, their use does not provide the +performance advantage that it does for the standard algorithm. +
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+Last updated: 19 April 2008
+
+Copyright © 1997-2008 University of Cambridge.
+
+
+Return to the PCRE index page. +