|
1 // Copyright (c) 2000-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // Bidirectional text reordering; based on the Unicode Bidirectional Reordering Algorithm. |
|
15 // |
|
16 // |
|
17 |
|
18 #include <bidi.h> |
|
19 #include "BidiCopy.h" |
|
20 #include <s32std.h> |
|
21 |
|
22 const TInt KBidirectionalStateOverrideStreamValueNone = 0; |
|
23 const TInt KBidirectionalStateOverrideStreamValueLeftToRight = 1; |
|
24 const TInt KBidirectionalStateOverrideStreamValueRightToLeft = 2; |
|
25 |
|
26 inline TBool IsSupplementary(TUint aChar) |
|
27 /** |
|
28 @param aChar The 32-bit code point value of a Unicode character. |
|
29 |
|
30 @return True, if aChar is supplementary character; false, otherwise. |
|
31 */ |
|
32 { |
|
33 return (aChar > 0xFFFF); |
|
34 } |
|
35 |
|
36 inline TBool IsHighSurrogate(TText16 aInt16) |
|
37 /** |
|
38 @return True, if aText16 is high surrogate; false, otherwise. |
|
39 */ |
|
40 { |
|
41 return (aInt16 & 0xFC00) == 0xD800; |
|
42 } |
|
43 |
|
44 inline TBool IsLowSurrogate(TText16 aInt16) |
|
45 /** |
|
46 @return True, if aText16 is low surrogate; false, otherwise. |
|
47 */ |
|
48 { |
|
49 return (aInt16 & 0xFC00) == 0xDC00; |
|
50 } |
|
51 |
|
52 inline TUint JoinSurrogate(TText16 aHighSurrogate, TText16 aLowSurrogate) |
|
53 /** |
|
54 Combine a high surrogate and a low surrogate into a supplementary character. |
|
55 |
|
56 @return The 32-bit code point value of the generated Unicode supplementary |
|
57 character. |
|
58 */ |
|
59 { |
|
60 return ((aHighSurrogate - 0xD7F7) << 10) + aLowSurrogate; |
|
61 } |
|
62 |
|
63 TBool TextDefaultsToRightToLeft(const TDesC& aText, TBool* aFound); |
|
64 |
|
65 TBidirectionalState::TCategory TBidirectionalState::CharToBdCat(TChar::TBdCategory aCat) |
|
66 { |
|
67 return static_cast<TBidirectionalState::TCategory>( |
|
68 1 << static_cast<TInt>(aCat)); |
|
69 } |
|
70 |
|
71 TBidirectionalState::TCategory TBidirectionalState::UintToBdCat(TUint aCat) |
|
72 { |
|
73 return static_cast<TBidirectionalState::TCategory>(1 << aCat); |
|
74 } |
|
75 |
|
76 void TBidirectionalState::TReorderContext::SetNextCategory( |
|
77 TChar::TBdCategory aCat) |
|
78 { |
|
79 iNextCategory = CharToBdCat(aCat); |
|
80 } |
|
81 |
|
82 void TBidirectionalState::TReorderContext::SetNextStrongCategory( |
|
83 TChar::TBdCategory aCat) |
|
84 { |
|
85 iNextStrongCategory = CharToBdCat(aCat); |
|
86 } |
|
87 |
|
88 |
|
89 EXPORT_C void TBidirectionalState::ReverseGroups(TText* aStart,TInt aLength) |
|
90 /** A utility to reverse text apart from combining characters, which remains after |
|
91 their base characters. This is what is needed when drawing right-to-left text. |
|
92 |
|
93 @param aStart Start position of text to be reversed. |
|
94 @param aLength Length of text to be reversed. */ |
|
95 { |
|
96 BidiCopy::ReverseCodes(aStart, aLength); |
|
97 BidiCopy::DeleteUnreversedSurrogates(aStart, aLength); |
|
98 BidiCopy::SubstituteMirrorImages(aStart, aLength); |
|
99 BidiCopy::CorrectGroups(aStart, aLength); |
|
100 BidiCopy::CorrectSurrogatePairs(aStart, aLength); |
|
101 } |
|
102 |
|
103 |
|
104 // A local helper function. Get the next character from a buffer. This |
|
105 // function won't check buffer length. |
|
106 // |
|
107 // @param aText The text buffer to read character from. |
|
108 // @param aCharacterIndex Count of characters to skip in aText. |
|
109 // @return The character. |
|
110 TUint GetOneCharacter(const TText16 *aText, TInt aCharacterIndex) |
|
111 { |
|
112 const TText16 *p = aText; |
|
113 TUint c = 0xFFFF; |
|
114 while (aCharacterIndex >= 0) |
|
115 { |
|
116 c = *p++; |
|
117 ASSERT(!IsLowSurrogate(c)); |
|
118 if (IsHighSurrogate(c)) |
|
119 { |
|
120 ASSERT(IsLowSurrogate(*p)); |
|
121 c = JoinSurrogate(c, *p++); |
|
122 } |
|
123 --aCharacterIndex; |
|
124 } |
|
125 return c; |
|
126 } |
|
127 |
|
128 |
|
129 TInt TBidirectionalState::GenerateBdRunArray(const TText* aText, TInt aLength, |
|
130 TBidirectionalState::TRunInfo* aRun, TInt aMaxRuns) |
|
131 /** Analyse the input text for runs of characters that share the same |
|
132 bidirectional class. Categories TChar::EEuropeanNumberSeparator and |
|
133 TChar::ECommonNumberSeparator are kept as singletons due to a limitation in |
|
134 the reordering logic. |
|
135 @param aText The text to be analysed. |
|
136 @param aLength The length of the text to be analysed. |
|
137 @param aRun Output buffer for the runs after analysis. May be null if there |
|
138 is to be no output. |
|
139 @param aMaxRuns The size of the aRun array. No more than this number of runs |
|
140 will be output. |
|
141 @return The number of runs that are required for the full results of the |
|
142 analysis. |
|
143 @internalTechnology */ |
|
144 { |
|
145 if (aLength == 0) |
|
146 { |
|
147 if (aRun && 0 < aMaxRuns) |
|
148 { |
|
149 aRun[0].iCategory = TChar::EOtherNeutral; |
|
150 aRun[0].iStart = 0; |
|
151 aRun[0].iLength = 0; |
|
152 } |
|
153 return 1; |
|
154 } |
|
155 int runs = 0; |
|
156 int run_start = 0; |
|
157 int run_end = 1; |
|
158 const TText* p = aText; |
|
159 const TText* q = p + aLength; |
|
160 |
|
161 // get the character pointed by 'p', then move 'p' to next character, and adjust 'run_end' if need |
|
162 TChar pc = ::GetOneCharacter(p, 0); |
|
163 TChar::TBdCategory cur_cat = pc.GetBdCategory(); |
|
164 ++p; |
|
165 if (IsSupplementary(pc)) |
|
166 { |
|
167 ++p; |
|
168 run_end = 2; // run_end points to "end" of current character |
|
169 } |
|
170 |
|
171 while (p < q) |
|
172 { |
|
173 // get the character pointed by 'p' |
|
174 pc = ::GetOneCharacter(p, 0); |
|
175 |
|
176 TChar::TBdCategory new_cat = pc.GetBdCategory(); |
|
177 if (new_cat != cur_cat) |
|
178 { |
|
179 if (new_cat == TChar::ENonSpacingMark && |
|
180 cur_cat != TChar::ELeftToRightEmbedding && |
|
181 cur_cat != TChar::ELeftToRightOverride && |
|
182 cur_cat != TChar::ERightToLeftEmbedding && |
|
183 cur_cat != TChar::ERightToLeftOverride && |
|
184 cur_cat != TChar::EPopDirectionalFormat) |
|
185 new_cat = cur_cat; |
|
186 else if (p < q - 1 && |
|
187 (new_cat == TChar::EWhitespace || |
|
188 new_cat == TChar::EEuropeanNumberSeparator || |
|
189 new_cat == TChar::ECommonNumberSeparator)) |
|
190 { |
|
191 TChar nextChar = ::GetOneCharacter(p, 1); |
|
192 TChar::TBdCategory next_cat = nextChar.GetBdCategory(); |
|
193 if (new_cat == TChar::EWhitespace) |
|
194 { |
|
195 if ((cur_cat == TChar::ELeftToRight || |
|
196 cur_cat == TChar::ERightToLeft || |
|
197 cur_cat == TChar::ERightToLeftArabic) && cur_cat == next_cat) |
|
198 new_cat = cur_cat; |
|
199 } |
|
200 else if (cur_cat == TChar::EEuropeanNumber && next_cat == TChar::EEuropeanNumber) |
|
201 new_cat = TChar::EEuropeanNumber; |
|
202 } |
|
203 } |
|
204 |
|
205 if (new_cat != cur_cat || |
|
206 cur_cat == TChar::EEuropeanNumberSeparator || |
|
207 cur_cat == TChar::ECommonNumberSeparator) |
|
208 { |
|
209 if (aRun && runs < aMaxRuns) |
|
210 { |
|
211 aRun[runs].iCategory = cur_cat; |
|
212 aRun[runs].iStart = run_start; |
|
213 aRun[runs].iLength = run_end - run_start; |
|
214 } |
|
215 |
|
216 runs++; |
|
217 run_start = run_end; |
|
218 } |
|
219 |
|
220 p++; |
|
221 run_end++; |
|
222 |
|
223 // adjust 'p' and 'run_end' |
|
224 if (IsSupplementary(pc)) |
|
225 { |
|
226 p++; |
|
227 run_end++; |
|
228 } |
|
229 |
|
230 cur_cat = new_cat; |
|
231 } |
|
232 |
|
233 if (aRun && runs < aMaxRuns) |
|
234 { |
|
235 aRun[runs].iCategory = cur_cat; |
|
236 aRun[runs].iStart = run_start; |
|
237 aRun[runs].iLength = run_end - run_start; |
|
238 } |
|
239 |
|
240 return runs + 1; |
|
241 } |
|
242 |
|
243 |
|
244 EXPORT_C TInt TBidirectionalState::ReorderText(const TText* aText,TInt aLength,TBool aParRightToLeft, |
|
245 TText*& aNewText) |
|
246 /** Reorders text according to the Unicode Bidirectional Reordering algorithm. |
|
247 |
|
248 Reorders the input text from logical order (which may be bidirectional) to |
|
249 display order (strictly left to right). |
|
250 |
|
251 @param aText The input text in logical order. |
|
252 @param aLength The length of the input text. |
|
253 @param aParRightToLeft ETrue if the default directionality of the text to be |
|
254 re-ordered is right-to-left. |
|
255 @param aNewText Returns the re-ordered text. If the text did not need re-ordering, |
|
256 or if there was an error, aText will be returned. Otherwise, ownership of |
|
257 a newly allocated buffer will be returned to the caller. This buffer must |
|
258 be deleted with delete[] (or CleanupArrayDeletePushL()) and not delete (or |
|
259 CleanupStack::PushL()). |
|
260 @return A system-wide error value if there has been an error; KErrNone if there |
|
261 has not. */ |
|
262 { |
|
263 aNewText = const_cast<TText*>(aText); |
|
264 if (aLength < 2) |
|
265 return KErrNone; |
|
266 |
|
267 int error = KErrNone; |
|
268 TBidirectionalState::TRunInfo run_info; |
|
269 run_info.iDirection = 0; |
|
270 run_info.iIndex = 0; |
|
271 run_info.iStart = 0; |
|
272 run_info.iLength = aLength; |
|
273 TBidirectionalState::TRunInfo* run_info_array = &run_info; |
|
274 TBidirectionalState::TRunInfo* allocated_run_info_array = 0; |
|
275 int runs = GenerateBdRunArray(aText, aLength, run_info_array, 1); |
|
276 if (runs > 1) |
|
277 { |
|
278 allocated_run_info_array = new TBidirectionalState::TRunInfo[runs]; |
|
279 if (allocated_run_info_array) |
|
280 { |
|
281 run_info_array = allocated_run_info_array; |
|
282 GenerateBdRunArray(aText, aLength, run_info_array, runs); |
|
283 } |
|
284 else |
|
285 { |
|
286 // the run cannot be allocated: stick with our single l-to-r run |
|
287 error = KErrNoMemory; |
|
288 runs = 1; |
|
289 } |
|
290 } |
|
291 if (error == KErrNone) |
|
292 { |
|
293 TBidirectionalState state; |
|
294 state.ReorderLine(run_info_array, runs, ETrue, ETrue, aParRightToLeft, |
|
295 TChar::EOtherNeutral, TChar::EOtherNeutral); |
|
296 } |
|
297 |
|
298 // If there was only one run and it's left-to-right, we've finished. |
|
299 if (!allocated_run_info_array && run_info.iDirection == 0) |
|
300 return error; |
|
301 |
|
302 // Reorder the text into a new buffer. |
|
303 TText* buffer = new TText[aLength]; |
|
304 if (!buffer) |
|
305 { |
|
306 delete [] allocated_run_info_array; |
|
307 return KErrNoMemory; |
|
308 } |
|
309 const TBidirectionalState::TRunInfo* r = run_info_array; |
|
310 TText* dest = buffer; |
|
311 for (int i = 0; i < runs; i++, r++) |
|
312 { |
|
313 const TText* source = &aText[r->iStart]; |
|
314 int length = r->iLength; |
|
315 Mem::Copy(dest,source,length * sizeof(TText)); |
|
316 if (r->iDirection) |
|
317 ReverseGroups(dest,length); |
|
318 dest += length; |
|
319 } |
|
320 |
|
321 delete [] allocated_run_info_array; |
|
322 aNewText = buffer; |
|
323 return KErrNone; |
|
324 } |
|
325 |
|
326 |
|
327 EXPORT_C TBidirectionalState::TBidirectionalState() |
|
328 /** Standard constructor. */ |
|
329 { |
|
330 Reset(); |
|
331 } |
|
332 |
|
333 |
|
334 /** Reorders a line of text and updates the bidirectional state for the next line. |
|
335 |
|
336 @param aRunInfo An array of objects representing runs of characters with the |
|
337 same bidirectional category. Any number of characters can be combined into |
|
338 a run if they have the same category, except for the categories TChar::EEuropeanNumberSeparator |
|
339 and TChar::ECommonNumberSeparator, which should be put into single-character |
|
340 runs because the reordering logic depends on this. |
|
341 @param aRuns Number of 'run info' objects. |
|
342 @param aParStart Tells the function whether the line is the first line of a |
|
343 paragraph. |
|
344 @param aParEnd Tells the function whether the line is the last line of a paragraph. |
|
345 @param aParRightToLeft ETrue if the default directionality of the text to be |
|
346 re-ordered is right-to-left. |
|
347 @param aNextCategory The category of the character immediately after the end |
|
348 of the line. This is ignored if aParEnd is ETrue. |
|
349 @param aNextStrongCategory The category of the first strong character (one |
|
350 of the categories ELeftToRight, ELeftToRightEmbedding, ELeftToRightOverride, |
|
351 ERightToLeft, ERightToLeftArabic, ERightToLeftEmbedding or ERightToLeftOverride) |
|
352 after the end of the line. This is ignored if aParEnd is ETrue. |
|
353 @param aVisualEndIsAmbiguous EFalse if the logical end of this line is at the |
|
354 visual end and the logical beginning of the next line is at the visual beginning. |
|
355 */ |
|
356 EXPORT_C void TBidirectionalState::ReorderLine(TRunInfo* aRunInfo, TInt aRuns, |
|
357 TBool aParStart, TBool aParEnd, TBool aParRightToLeft, |
|
358 TChar::TBdCategory aNextCategory, TChar::TBdCategory aNextStrongCategory, |
|
359 TBool& aVisualEndIsAmbiguous) |
|
360 { |
|
361 ReorderLine(aRunInfo, aRuns, aParStart, aParEnd, aParRightToLeft, |
|
362 aNextCategory, aNextStrongCategory); |
|
363 if (iStackLevel != 0) |
|
364 { |
|
365 aVisualEndIsAmbiguous = ETrue; |
|
366 return; |
|
367 } |
|
368 TCategory nextCat = CharToBdCat(aNextCategory); |
|
369 TCategory nextStrong = CharToBdCat(aNextStrongCategory); |
|
370 const TUint KAllStrongLeftToRight = |
|
371 ELeftToRight | ELeftToRightEmbedding | ELeftToRightOverride; |
|
372 const TUint KAllStrongRightToLeft = |
|
373 ERightToLeft | ERightToLeftArabic | ERightToLeftEmbedding | ERightToLeftOverride; |
|
374 if (aParRightToLeft) |
|
375 { |
|
376 // Ambiguous if any of the surrounding categories are strongly left-to-right |
|
377 aVisualEndIsAmbiguous = |
|
378 (iPreviousStrongCategory | iPreviousCategory | nextCat | nextStrong) |
|
379 & KAllStrongLeftToRight; |
|
380 } |
|
381 else |
|
382 { |
|
383 // Ambiguous if any of the surrounding categories are strongly right-to-left |
|
384 aVisualEndIsAmbiguous = |
|
385 (iPreviousStrongCategory | iPreviousCategory | nextCat | nextStrong) |
|
386 & KAllStrongRightToLeft; |
|
387 } |
|
388 } |
|
389 /** Reorders a line of text and updates the bidirectional state for the next line. |
|
390 |
|
391 @param aRunInfo An array of objects representing runs of characters with the |
|
392 same bidirectional category. Any number of characters can be combined into |
|
393 a run if they have the same category, except for the categories TChar::EEuropeanNumberSeparator |
|
394 and TChar::ECommonNumberSeparator, which should be put into single-character |
|
395 runs because the reordering logic depends on this. |
|
396 @param aRuns Number of 'run info' objects. |
|
397 @param aParStart Tells the function whether the line is the first line of a |
|
398 paragraph. |
|
399 @param aParEnd Tells the function whether the line is the last line of a paragraph. |
|
400 @param aParRightToLeft ETrue if the default directionality of the text to be |
|
401 re-ordered is right-to-left. |
|
402 @param aNextCategory The category of the character immediately after the end |
|
403 of the line. This is ignored if aParEnd is ETrue. |
|
404 @param aNextStrongCategory The category of the first strong character (one |
|
405 of the categories ELeftToRight, ELeftToRightEmbedding, ELeftToRightOverride, |
|
406 ERightToLeft, ERightToLeftArabic, ERightToLeftEmbedding or ERightToLeftOverride) |
|
407 after the end of the line. This is ignored if aParEnd is ETrue. */ |
|
408 EXPORT_C void TBidirectionalState::ReorderLine(TRunInfo* aRunInfo, TInt aRuns, |
|
409 TBool aParStart, TBool aParEnd, TBool aParRightToLeft, |
|
410 TChar::TBdCategory aNextCategory, TChar::TBdCategory aNextStrongCategory) |
|
411 { |
|
412 // Reset if this is a new paragraph. |
|
413 if (aParStart) |
|
414 { |
|
415 Reset(); |
|
416 iPreviousCategory = EOtherNeutral; |
|
417 if (aParRightToLeft) |
|
418 { |
|
419 iStack[0].iEmbeddingLevel = 1; |
|
420 iPreviousStrongCategory = ERightToLeft; |
|
421 } |
|
422 } |
|
423 |
|
424 // Initialise the context object. |
|
425 TReorderContext context; |
|
426 context.iRunInfo = aRunInfo; |
|
427 context.iRuns = aRuns; |
|
428 context.iLastStrongCategory = iPreviousStrongCategory; |
|
429 if (aParEnd) |
|
430 context.iNextCategory = context.iNextStrongCategory = EOtherNeutral; |
|
431 else |
|
432 { |
|
433 context.iNextCategory = CharToBdCat(aNextCategory); |
|
434 context.iNextStrongCategory = CharToBdCat(aNextStrongCategory); |
|
435 } |
|
436 |
|
437 // Initialise output data and find out what categories are present so that unnecessary steps can be skipped. |
|
438 context.iCategories = iPreviousCategory | context.iNextCategory | context.iNextStrongCategory; |
|
439 for (TInt i = 0; i != aRuns; ++i) |
|
440 { |
|
441 aRunInfo[i].iEmbeddingLevel = iStack[0].iEmbeddingLevel; |
|
442 aRunInfo[i].iDirection = 0; |
|
443 aRunInfo[i].iIndex = i; |
|
444 aRunInfo[i].iCategory = UintToBdCat(aRunInfo[i].iCategory); |
|
445 context.iCategories |= aRunInfo[i].iCategory; |
|
446 } |
|
447 |
|
448 // Do nothing if no right-to-left material is present. |
|
449 if (aRuns == 0 || |
|
450 (iStackLevel == 0 && iStack[0].iEmbeddingLevel == 0 && |
|
451 !(context.iCategories & (ERightToLeftGroup | EBdControlsGroup)))) |
|
452 return; |
|
453 |
|
454 // Perform the bidirectional algorithm. |
|
455 if ((context.iCategories & EBdControlsGroup) || |
|
456 State().iOverrideState != ENoOverrideState) |
|
457 HandleBdControls(context); |
|
458 ResolveWeakTypesW1W2W3(context); |
|
459 ResolveWeakTypesW4W5W6(context); |
|
460 ResolveWeakTypesW7(context); |
|
461 if (context.iCategories & EOtherNeutral) |
|
462 ResolveNeutralTypes(context); |
|
463 ResolveImplicitLevels(context); |
|
464 PrepareForNextLine(context); |
|
465 ReorderRuns(context); |
|
466 } |
|
467 |
|
468 |
|
469 void TBidirectionalState::PrepareForNextLine(const TReorderContext& aContext) |
|
470 /** |
|
471 Fold context information back into TBidirectionalState. |
|
472 @internalComponent |
|
473 */ |
|
474 { |
|
475 if (aContext.iRuns != 0) |
|
476 { |
|
477 iPreviousCategory = static_cast<TCategory>( |
|
478 aContext.iRunInfo[aContext.iRuns - 1].iCategory); |
|
479 iPreviousStrongCategory = aContext.iLastStrongCategory; |
|
480 } |
|
481 } |
|
482 |
|
483 |
|
484 void TBidirectionalState::HandleBdControls(TReorderContext& aContext) |
|
485 /** |
|
486 Handle LRO, RLO, LRE, RLE and PDF. After this phase, these categories will no |
|
487 longer be found. |
|
488 |
|
489 This corresponds to Unicode(3.2) Bidirectional Algorithm phases X1-X7. |
|
490 Phase X8 is not required as the run is assumed to be all in one paragraph. |
|
491 Phases X9-X10 are implicit in other functions. |
|
492 |
|
493 @internalComponent |
|
494 */ |
|
495 { |
|
496 aContext.iCategories = iPreviousCategory | aContext.iNextCategory; |
|
497 for (TInt i = 0; i != aContext.iRuns; ++i) |
|
498 { |
|
499 TRunInfo* r = aContext.iRunInfo + i; |
|
500 TCategory nextCatInLine = i < aContext.iRuns - 1? |
|
501 (TCategory)(r[1].iCategory) : ENoCategory; |
|
502 |
|
503 TBool was_pdf = FALSE; |
|
504 if (r->iCategory & EBdControlsGroup) |
|
505 { |
|
506 if (r->iCategory == EPopDirectionalFormat) |
|
507 { |
|
508 if (iStackLevel > 0) |
|
509 { |
|
510 was_pdf = TRUE; |
|
511 r->iEmbeddingLevel = State().iEmbeddingLevel; |
|
512 if (nextCatInLine == State().iStartCategory) |
|
513 // Ignore POP-PUSH pair with nothing between. |
|
514 // This is surely wrong? Perhaps it is a hack to |
|
515 // help other parts of the algorithm. Must investigate. |
|
516 // TPB. |
|
517 r->iCategory = r[1].iCategory = EBoundaryNeutral; |
|
518 else |
|
519 { |
|
520 r->iCategory = Pop(); |
|
521 } |
|
522 } |
|
523 else |
|
524 r->iCategory = EBoundaryNeutral; |
|
525 } |
|
526 else |
|
527 { |
|
528 // Category is LRE, RLE, LRO or RLO. |
|
529 if (nextCatInLine == EPopDirectionalFormat) |
|
530 // Ignore PUSH-POP pair with nothing between. |
|
531 r->iCategory = r[1].iCategory = EBoundaryNeutral; |
|
532 else |
|
533 r->iCategory = Push(static_cast<TCategory>(r->iCategory)); |
|
534 } |
|
535 } |
|
536 |
|
537 if (!was_pdf) |
|
538 { |
|
539 switch (State().iOverrideState) |
|
540 { |
|
541 case ELeftToRightOverrideState: |
|
542 r->iCategory = ELeftToRight; |
|
543 break; |
|
544 case ERightToLeftOverrideState: |
|
545 r->iCategory = ERightToLeft; |
|
546 break; |
|
547 default: |
|
548 break; |
|
549 } |
|
550 r->iEmbeddingLevel = State().iEmbeddingLevel; |
|
551 } |
|
552 if (r->iCategory & EStrongGroup) |
|
553 aContext.iLastStrongCategory = static_cast<TCategory>(r->iCategory); |
|
554 aContext.iCategories |= r->iCategory; |
|
555 } |
|
556 } |
|
557 |
|
558 |
|
559 void TBidirectionalState::ResolveWeakTypesW1W2W3(TReorderContext& aContext) |
|
560 /** |
|
561 Unicode(3.2) Bidirectional Algorithm phases W1, W2 and W3. |
|
562 @internalComponent |
|
563 */ |
|
564 { |
|
565 if (!(aContext.iCategories |
|
566 & (ENonSpacingMark | ERightToLeftArabic | EEuropeanNumber))) |
|
567 return; |
|
568 |
|
569 TRunInfo* endOfRuns = aContext.iRunInfo + aContext.iRuns; |
|
570 TCategory prev_cat = iPreviousCategory; |
|
571 TBool european_to_arabic_number = iPreviousStrongCategory == ERightToLeftArabic; |
|
572 |
|
573 aContext.iCategories = iPreviousCategory | aContext.iNextCategory; |
|
574 for (TRunInfo* r = aContext.iRunInfo; r != endOfRuns; r++) |
|
575 { |
|
576 switch (r->iCategory) |
|
577 { |
|
578 case ENonSpacingMark: // non-spacing marks change to the previous category |
|
579 r->iCategory = prev_cat; |
|
580 break; |
|
581 case ELeftToRight: |
|
582 european_to_arabic_number = EFalse; |
|
583 break; |
|
584 case ERightToLeft: |
|
585 european_to_arabic_number = EFalse; |
|
586 break; |
|
587 case ERightToLeftArabic: // Arabic letters change to R |
|
588 european_to_arabic_number = ETrue; |
|
589 r->iCategory = ERightToLeft; |
|
590 break; |
|
591 case EEuropeanNumber: // European numbers change to Arabic if last strong category was R |
|
592 if (european_to_arabic_number) |
|
593 r->iCategory = EArabicNumber; |
|
594 break; |
|
595 default: |
|
596 break; |
|
597 } |
|
598 aContext.iCategories |= r->iCategory; |
|
599 prev_cat = static_cast<TCategory>(r->iCategory); |
|
600 } |
|
601 } |
|
602 /** |
|
603 This phase removes categories NSM, AL, ES, ET, CS, BS, S, WS and BN, leaving |
|
604 only L, R, EN, AN and ON. |
|
605 @internalComponent |
|
606 */ |
|
607 void TBidirectionalState::ResolveWeakTypesW4W5W6(TReorderContext& aContext) |
|
608 { |
|
609 int i; |
|
610 TRunInfo* r; |
|
611 TCategory prev_cat = iPreviousCategory; |
|
612 TCategory next_cat = EOtherNeutral; |
|
613 |
|
614 // Phase P0b. |
|
615 prev_cat = iPreviousCategory; |
|
616 if (aContext.iCategories & EBoundaryNeutral) |
|
617 { |
|
618 for (i = 0, aContext.iCategories = iPreviousCategory | aContext.iNextCategory, r = aContext.iRunInfo; |
|
619 i < aContext.iRuns; |
|
620 i++, aContext.iCategories |= r->iCategory, r++) |
|
621 { |
|
622 if (r->iCategory == EBoundaryNeutral) // runs of boundary neutrals change to EN, ET or AN if adjacent to |
|
623 { // one of these, otherwise to ON |
|
624 int end = i + 1; |
|
625 while (end < aContext.iRuns && aContext.iRunInfo[end].iCategory == EBoundaryNeutral) |
|
626 end++; |
|
627 next_cat = end < aContext.iRuns ? (TCategory)(aContext.iRunInfo[end].iCategory) : aContext.iNextCategory; |
|
628 TCategory c = EOtherNeutral; |
|
629 if (prev_cat == EEuropeanNumber || next_cat == EEuropeanNumber) |
|
630 c = EEuropeanNumber; |
|
631 else if (prev_cat == EEuropeanNumberTerminator || next_cat == EEuropeanNumberTerminator) |
|
632 c = EEuropeanNumberTerminator; |
|
633 else if (prev_cat == EArabicNumber || next_cat == EArabicNumber) |
|
634 c = EArabicNumber; |
|
635 for (int j = i; j < end; j++) |
|
636 aContext.iRunInfo[j].iCategory = c; |
|
637 i = end - 1; |
|
638 r = &aContext.iRunInfo[i]; |
|
639 } |
|
640 prev_cat = (TCategory)r->iCategory; |
|
641 } |
|
642 } |
|
643 |
|
644 // Phase P1. |
|
645 prev_cat = iPreviousCategory; |
|
646 if (aContext.iCategories & (EEuropeanNumberSeparator | ECommonNumberSeparator)) |
|
647 { |
|
648 for (i = 0, aContext.iCategories = iPreviousCategory | aContext.iNextCategory, r = aContext.iRunInfo; |
|
649 i < aContext.iRuns; |
|
650 i++, aContext.iCategories |= r->iCategory, r++) |
|
651 { |
|
652 next_cat = i < aContext.iRuns - 1 ? (TCategory)(r[1].iCategory) : aContext.iNextCategory; |
|
653 switch (r->iCategory) |
|
654 { |
|
655 case EEuropeanNumberSeparator: // European separators change to EN if between two ENs, else to ON |
|
656 if (prev_cat == EEuropeanNumber && next_cat == EEuropeanNumber) |
|
657 r->iCategory = EEuropeanNumber; |
|
658 else |
|
659 r->iCategory = EOtherNeutral; |
|
660 break; |
|
661 case ECommonNumberSeparator: // CSs change to EN or AN if between two of the same, else to ON |
|
662 if (prev_cat == EEuropeanNumber && next_cat == EEuropeanNumber) |
|
663 r->iCategory = EEuropeanNumber; |
|
664 else if (prev_cat == EArabicNumber && next_cat == EArabicNumber) |
|
665 r->iCategory = EArabicNumber; |
|
666 else |
|
667 r->iCategory = EOtherNeutral; |
|
668 break; |
|
669 default: |
|
670 break; |
|
671 } |
|
672 prev_cat = (TCategory)r->iCategory; |
|
673 } |
|
674 } |
|
675 |
|
676 /* |
|
677 Phase L1: tabs, whitespace before tabs, and trailing whitespace, is set to the base embedding level. |
|
678 We ought to do this just before the final reordering, but the whitespace and segment separator |
|
679 categories have disappeared by then so we use the sentinel value 255 which tells |
|
680 ResolveImplicitLevels what to do. |
|
681 */ |
|
682 TBool demote_whitespace = TRUE; |
|
683 for (i = aContext.iRuns - 1, r = &aContext.iRunInfo[i]; i >= 0; i--, r--) |
|
684 { |
|
685 switch (r->iCategory) |
|
686 { |
|
687 case EWhitespace: |
|
688 break; |
|
689 case ESegmentSeparator: |
|
690 demote_whitespace = TRUE; |
|
691 break; |
|
692 default: |
|
693 demote_whitespace = FALSE; |
|
694 break; |
|
695 } |
|
696 if (demote_whitespace) |
|
697 r->iEmbeddingLevel = 255; |
|
698 } |
|
699 |
|
700 // Phases P2 and P3. |
|
701 prev_cat = iPreviousCategory; |
|
702 if (aContext.iCategories & (EEuropeanNumberTerminator | ESegmentSeparator | EWhitespace)) |
|
703 { |
|
704 for (i = 0, aContext.iCategories = iPreviousCategory | aContext.iNextCategory, r = aContext.iRunInfo; |
|
705 i < aContext.iRuns; |
|
706 i++, aContext.iCategories |= r->iCategory, r++) |
|
707 { |
|
708 next_cat = i < aContext.iRuns - 1 ? (TCategory)(r[1].iCategory) : aContext.iNextCategory; |
|
709 switch (r->iCategory) |
|
710 { |
|
711 case EEuropeanNumberTerminator: // runs of ETs change to ENs if next to an EN, else to ON |
|
712 { |
|
713 int end = i + 1; |
|
714 while (end < aContext.iRuns && aContext.iRunInfo[end].iCategory == EEuropeanNumberTerminator) |
|
715 end++; |
|
716 next_cat = end < aContext.iRuns ? (TCategory)(aContext.iRunInfo[end].iCategory) : aContext.iNextCategory; |
|
717 TCategory c = EOtherNeutral; |
|
718 if (prev_cat == EEuropeanNumber || next_cat == EEuropeanNumber) |
|
719 c = EEuropeanNumber; |
|
720 for (int j = i; j < end; j++) |
|
721 aContext.iRunInfo[j].iCategory = c; |
|
722 i = end - 1; |
|
723 r = &aContext.iRunInfo[i]; |
|
724 } |
|
725 break; |
|
726 case ESegmentSeparator: // S and WS change to ON |
|
727 case EWhitespace: |
|
728 r->iCategory = EOtherNeutral; |
|
729 break; |
|
730 default: |
|
731 break; |
|
732 } |
|
733 prev_cat = (TCategory)r->iCategory; |
|
734 } |
|
735 } |
|
736 } |
|
737 |
|
738 void TBidirectionalState::ResolveWeakTypesW7(TReorderContext& aContext) |
|
739 { |
|
740 if (!(aContext.iCategories & EEuropeanNumber)) |
|
741 return; |
|
742 |
|
743 TCategory prev_strong_cat = iPreviousStrongCategory; |
|
744 |
|
745 aContext.iCategories = iPreviousCategory | aContext.iNextCategory; |
|
746 TRunInfo* endOfRuns = aContext.iRunInfo + aContext.iRuns; |
|
747 for (TRunInfo* r = aContext.iRunInfo; r != endOfRuns; r++) |
|
748 { |
|
749 switch (r->iCategory) |
|
750 { |
|
751 case ELeftToRight: |
|
752 prev_strong_cat = ELeftToRight; |
|
753 break; |
|
754 case ERightToLeft: |
|
755 prev_strong_cat = ERightToLeft; |
|
756 break; |
|
757 case EEuropeanNumber: |
|
758 if (prev_strong_cat == ELeftToRight) |
|
759 r->iCategory = ELeftToRight; |
|
760 break; |
|
761 default: |
|
762 break; |
|
763 } |
|
764 aContext.iCategories |= r->iCategory; |
|
765 } |
|
766 } |
|
767 |
|
768 |
|
769 |
|
770 void TBidirectionalState::DeneutralizeRuns(TRunInfo* aStart, TRunInfo* aEnd, |
|
771 TCategory aStartCategory, TCategory aEndCategory) |
|
772 /** |
|
773 Turn all ON (Other Neutral) into non-neutrals according to the rules N1 and N2. |
|
774 @param aStart The start of the run array to be altered. |
|
775 @param aEnd One past the end of the run array to be altered. |
|
776 @param aStartCategory |
|
777 The last non-neutral before the run, must be ELeftToRight or ERightToLeft. |
|
778 @param aEndCategory |
|
779 The first non-neutral after the run, must be ELeftToRight or ERightToLeft. |
|
780 @internalComponent |
|
781 */ { |
|
782 // if sandwiched by the same category, neutrals become that. |
|
783 if (aStartCategory == aEndCategory) |
|
784 { |
|
785 for (; aStart != aEnd; ++aStart) |
|
786 aStart->iCategory = aStartCategory; |
|
787 return; |
|
788 } |
|
789 // otherwise look at the embedding level in each case |
|
790 for (; aStart != aEnd; ++aStart) |
|
791 { |
|
792 aStart->iCategory = aStart->iEmbeddingLevel & 1? |
|
793 ERightToLeft : ELeftToRight; |
|
794 } |
|
795 } |
|
796 |
|
797 |
|
798 void TBidirectionalState::ResolveNeutralTypes(TReorderContext& aContext) |
|
799 /** |
|
800 This phase removes the ON (Other Neutral) category, leaving only L, R, EN, and |
|
801 AN; no need to update aContext.iCategories. |
|
802 @internalComponent |
|
803 */ |
|
804 { |
|
805 // Really we should find if any number intervenes, but this would require |
|
806 // a BC break. |
|
807 TCategory prevNonNeutral = iPreviousStrongCategory; |
|
808 if (prevNonNeutral & ELeftToRightGroup) |
|
809 prevNonNeutral = ELeftToRight; |
|
810 else if (prevNonNeutral & ERightToLeftGroup) |
|
811 prevNonNeutral = ERightToLeft; |
|
812 TRunInfo *prevNonNeutralRun = aContext.iRunInfo; // one past the last non-neutral found |
|
813 TRunInfo *endOfRuns = aContext.iRunInfo + aContext.iRuns; |
|
814 |
|
815 // All neutrals have now been changed to ON; change them to L or R depending on context. |
|
816 for (TRunInfo *p = aContext.iRunInfo; p != endOfRuns; ++p) |
|
817 { |
|
818 TCategory nonNeutral = EOtherNeutral; |
|
819 switch (p->iCategory) |
|
820 { |
|
821 case ELeftToRight: |
|
822 nonNeutral = ELeftToRight; |
|
823 break; |
|
824 case ERightToLeft: |
|
825 nonNeutral = ERightToLeft; |
|
826 break; |
|
827 case EArabicNumber: |
|
828 case EEuropeanNumber: |
|
829 nonNeutral = ERightToLeft; |
|
830 break; |
|
831 default: |
|
832 break; |
|
833 } |
|
834 if (nonNeutral != EOtherNeutral) |
|
835 { |
|
836 if (p != prevNonNeutralRun) |
|
837 DeneutralizeRuns(prevNonNeutralRun, p, |
|
838 prevNonNeutral, nonNeutral); |
|
839 prevNonNeutral = nonNeutral; |
|
840 prevNonNeutralRun = p + 1; |
|
841 } |
|
842 } |
|
843 DeneutralizeRuns(prevNonNeutralRun, endOfRuns, prevNonNeutral, |
|
844 aContext.iNextStrongCategory); |
|
845 } |
|
846 |
|
847 |
|
848 void TBidirectionalState::ResolveImplicitLevels(TReorderContext& aContext) |
|
849 /** |
|
850 Phases I1 and I2. |
|
851 @internalComponent |
|
852 */ { |
|
853 int i; |
|
854 TRunInfo* r; |
|
855 for (i = 0, r = aContext.iRunInfo; i < aContext.iRuns; i++, r++) |
|
856 { |
|
857 if (r->iEmbeddingLevel == 255) // sentinel indicating this is a tab or segment-final whitespace |
|
858 r->iEmbeddingLevel = iStack[0].iEmbeddingLevel; |
|
859 else switch (r->iCategory) |
|
860 { |
|
861 case ELeftToRight: |
|
862 if (r->iEmbeddingLevel & 1) |
|
863 r->iEmbeddingLevel++; |
|
864 break; |
|
865 case ERightToLeft: |
|
866 if (!(r->iEmbeddingLevel & 1)) |
|
867 r->iEmbeddingLevel++; |
|
868 break; |
|
869 case EEuropeanNumber: case EArabicNumber: |
|
870 if (r->iEmbeddingLevel & 1) |
|
871 r->iEmbeddingLevel++; |
|
872 else |
|
873 r->iEmbeddingLevel += 2; |
|
874 break; |
|
875 default: |
|
876 break; |
|
877 } |
|
878 } |
|
879 } |
|
880 |
|
881 |
|
882 void TBidirectionalState::ReorderRuns(TReorderContext& aContext) |
|
883 /** |
|
884 Phase L2. |
|
885 @internalComponent |
|
886 */ { |
|
887 // Find the highest level and lowest odd level. |
|
888 int i; |
|
889 TRunInfo* r; |
|
890 int highest = 0; |
|
891 int lowest_odd = EMaxLevel; |
|
892 int level = 0; |
|
893 for (i = 0, r = aContext.iRunInfo; i < aContext.iRuns; i++, r++) |
|
894 { |
|
895 level = r->iEmbeddingLevel; |
|
896 if (level > highest) |
|
897 highest = level; |
|
898 if ((level & 1) && level < lowest_odd) |
|
899 lowest_odd = level; |
|
900 } |
|
901 |
|
902 // From the highest level to the lowest odd level, reverse any run at that level or higher. |
|
903 for (level = highest; level >= lowest_odd; level--) |
|
904 { |
|
905 int run_start = 0; |
|
906 r = aContext.iRunInfo; |
|
907 while (run_start < aContext.iRuns) |
|
908 { |
|
909 while (run_start < aContext.iRuns && r->iEmbeddingLevel < level) |
|
910 { |
|
911 run_start++; |
|
912 r++; |
|
913 } |
|
914 int run_end = run_start; |
|
915 while (run_end < aContext.iRuns && r->iEmbeddingLevel >= level) |
|
916 { |
|
917 r->iDirection = !r->iDirection; |
|
918 run_end++; |
|
919 r++; |
|
920 } |
|
921 TRunInfo* p = &aContext.iRunInfo[run_start]; |
|
922 TRunInfo* q = &aContext.iRunInfo[run_end - 1]; |
|
923 while (p < q) |
|
924 { |
|
925 TRunInfo temp = *p; |
|
926 *p = *q; |
|
927 *q = temp; |
|
928 p++; |
|
929 q--; |
|
930 } |
|
931 run_start = run_end; |
|
932 } |
|
933 } |
|
934 } |
|
935 |
|
936 |
|
937 TBidirectionalState::TCategory TBidirectionalState::Push(TCategory aStartCategory) |
|
938 /** @internalComponent */ |
|
939 { |
|
940 TInt rightToLeftFlag = (static_cast<TInt>(aStartCategory) |
|
941 & ERightToLeftGroup)? 1 : 0; |
|
942 TInt oldLevel = State().iEmbeddingLevel; |
|
943 TInt newLevel = oldLevel + 1; |
|
944 // And add an extra one if the bottom bit is not correct. |
|
945 newLevel += (newLevel & 1) ^ rightToLeftFlag; |
|
946 |
|
947 if (EMaxExplicitLevel < newLevel) |
|
948 { |
|
949 if (oldLevel == 60) |
|
950 ++iPushesBeyond60; |
|
951 else |
|
952 ++iPushesBeyond61; |
|
953 return EBoundaryNeutral; |
|
954 } |
|
955 |
|
956 ++iStackLevel; |
|
957 TStackItem& state = iStack[iStackLevel]; |
|
958 state.iEmbeddingLevel = static_cast<TUint8>(newLevel); |
|
959 state.iOverrideState = static_cast<TOverrideState>(aStartCategory |
|
960 & (ELeftToRightOverride | ERightToLeftOverride)); |
|
961 state.iStartCategory = aStartCategory; |
|
962 |
|
963 return rightToLeftFlag? ERightToLeft : ELeftToRight; |
|
964 } |
|
965 |
|
966 |
|
967 TBidirectionalState::TCategory TBidirectionalState::Pop() |
|
968 /** @internalComponent */ |
|
969 { |
|
970 __ASSERT_DEBUG(0 < iStackLevel, User::Invariant()); |
|
971 TInt level = State().iEmbeddingLevel; |
|
972 if (level < 60) |
|
973 --iStackLevel; |
|
974 else if (iPushesBeyond61 != 0) |
|
975 --iPushesBeyond61; |
|
976 else if (level == 61) |
|
977 --iStackLevel; |
|
978 else if (iPushesBeyond60) |
|
979 --iPushesBeyond60; |
|
980 else |
|
981 --iStackLevel; |
|
982 return (level & 1)? ERightToLeft : ELeftToRight; |
|
983 } |
|
984 |
|
985 |
|
986 EXPORT_C void TBidirectionalState::Reset() |
|
987 /** Sets the object to its default 'start of paragraph' state. */ |
|
988 { |
|
989 iStackLevel = 0; |
|
990 iPushesBeyond60 = 0; |
|
991 iPushesBeyond61 = 0; |
|
992 iStack[0].iEmbeddingLevel = 0; |
|
993 iStack[0].iOverrideState = ENoOverrideState; |
|
994 iStack[0].iStartCategory = EOtherNeutral; |
|
995 iPreviousCategory = ELeftToRight; |
|
996 iPreviousStrongCategory = ELeftToRight; |
|
997 } |
|
998 |
|
999 |
|
1000 EXPORT_C TBool TBidirectionalState::IsDefault() const |
|
1001 /** Returns Gets the default 'start of paragraph' state. |
|
1002 |
|
1003 @return ETrue if the object is in its default 'start of paragraph' state. */ |
|
1004 { |
|
1005 return iStackLevel == 0 && |
|
1006 iStack[0].iEmbeddingLevel == 0 && |
|
1007 iStack[0].iOverrideState == ENoOverrideState && |
|
1008 iStack[0].iStartCategory == EOtherNeutral && |
|
1009 iPreviousCategory == ELeftToRight && |
|
1010 iPreviousStrongCategory == ELeftToRight; |
|
1011 } |
|
1012 |
|
1013 |
|
1014 EXPORT_C TBool TBidirectionalState::operator==(const TBidirectionalState& aState) const |
|
1015 /** Return ETrue if two bidirectional states are identical. |
|
1016 |
|
1017 @param aState A bidirectional state. |
|
1018 @return ETrue if two bidirectional states are identical. */ |
|
1019 { |
|
1020 if (iPreviousCategory != aState.iPreviousCategory || |
|
1021 iPreviousStrongCategory != aState.iPreviousStrongCategory || |
|
1022 iStackLevel != aState.iStackLevel) |
|
1023 return FALSE; |
|
1024 const TStackItem* p = iStack; |
|
1025 const TStackItem* q = aState.iStack; |
|
1026 for (int i = 0; i <= iStackLevel; i++, p++, q++) |
|
1027 { |
|
1028 if (p->iStartCategory != q->iStartCategory || |
|
1029 p->iOverrideState != q->iOverrideState || |
|
1030 p->iEmbeddingLevel != q->iEmbeddingLevel) |
|
1031 return FALSE; |
|
1032 } |
|
1033 return TRUE; |
|
1034 } |
|
1035 |
|
1036 |
|
1037 TInt TBidirectionalState::CatToNumber(TInt aCat) |
|
1038 /** |
|
1039 Finds the highest bit set in the input. Used to convert |
|
1040 TBidirectionalState::TCategory into TChar::TBdCategory. |
|
1041 @param aCat a TBidirectionalState::TCategory. |
|
1042 @return The equivalent TChar::TBdCategory. |
|
1043 @internalComponent |
|
1044 */ { |
|
1045 TInt shifts = 0; |
|
1046 TInt bits = 32; |
|
1047 TInt mask = ~0L; |
|
1048 while (bits != 0) |
|
1049 { |
|
1050 bits >>= 1; |
|
1051 mask <<= bits; |
|
1052 if ((aCat & mask) == 0) |
|
1053 { |
|
1054 aCat <<= bits; |
|
1055 shifts += bits; |
|
1056 } |
|
1057 } |
|
1058 return 31 - shifts; |
|
1059 } |
|
1060 |
|
1061 |
|
1062 EXPORT_C void TBidirectionalState::ExternalizeL(RWriteStream& aDest) |
|
1063 /** Serializes a bidirectional state to an output stream. |
|
1064 |
|
1065 @param aDest An output stream. */ |
|
1066 { |
|
1067 //+ put the prev cat, prev strong cat and stack levels in one number? |
|
1068 // Write the previous category and previous strong category. |
|
1069 aDest.WriteInt8L(CatToNumber(iPreviousCategory)); |
|
1070 aDest.WriteInt8L(CatToNumber(iPreviousStrongCategory)); |
|
1071 |
|
1072 // Write the number of stack levels |
|
1073 aDest.WriteInt8L(iStackLevel); |
|
1074 |
|
1075 /* |
|
1076 Write each stack level as a single number: 5 bits for the start category, 2 for the override state, |
|
1077 6 for the embedding level. |
|
1078 */ |
|
1079 for (int i = 0; i <= iStackLevel; i++) |
|
1080 { |
|
1081 TInt x = CatToNumber(iStack[i].iStartCategory); |
|
1082 if (iStack[i].iOverrideState == ELeftToRightOverrideState) |
|
1083 { |
|
1084 x |= (KBidirectionalStateOverrideStreamValueLeftToRight << 5); |
|
1085 } |
|
1086 else if (iStack[i].iOverrideState == ERightToLeftOverrideState) |
|
1087 { |
|
1088 x |= (KBidirectionalStateOverrideStreamValueRightToLeft << 5); |
|
1089 } |
|
1090 x |= ((TInt)iStack[i].iEmbeddingLevel << 7); |
|
1091 aDest.WriteInt16L(x); |
|
1092 } |
|
1093 |
|
1094 TInt level = State().iEmbeddingLevel; |
|
1095 if (60 <= level) |
|
1096 { |
|
1097 aDest.WriteInt8L(iPushesBeyond60); |
|
1098 aDest.WriteInt8L(iPushesBeyond61); |
|
1099 } |
|
1100 } |
|
1101 |
|
1102 |
|
1103 EXPORT_C void TBidirectionalState::InternalizeL(RReadStream& aSource) |
|
1104 /** Reads a bidirectional state from an input stream, translating it from its serialized |
|
1105 form. |
|
1106 |
|
1107 @param aSource A source stream. */ |
|
1108 { |
|
1109 // Read the previous category and the previous strong category. |
|
1110 TInt x = aSource.ReadInt8L(); |
|
1111 iPreviousCategory = (TCategory)(1 << x); |
|
1112 x = aSource.ReadInt8L(); |
|
1113 iPreviousStrongCategory = (TCategory)(1 << x); |
|
1114 |
|
1115 // Read the number of stack levels. |
|
1116 iStackLevel = aSource.ReadInt8L(); |
|
1117 |
|
1118 // Read the stack levels. |
|
1119 for (int i = 0; i <= iStackLevel; i++) |
|
1120 { |
|
1121 x = aSource.ReadInt16L(); |
|
1122 iStack[i].iStartCategory = (TCategory)(1 << (x & 0x1F)); |
|
1123 switch ((x >> 5) & 3) |
|
1124 { |
|
1125 case KBidirectionalStateOverrideStreamValueLeftToRight: |
|
1126 iStack[i].iOverrideState = ELeftToRightOverrideState; |
|
1127 break; |
|
1128 case KBidirectionalStateOverrideStreamValueRightToLeft: |
|
1129 iStack[i].iOverrideState = ERightToLeftOverrideState; |
|
1130 break; |
|
1131 case KBidirectionalStateOverrideStreamValueNone: |
|
1132 default: iStack[i].iOverrideState = ENoOverrideState; break; |
|
1133 }; |
|
1134 iStack[i].iEmbeddingLevel = (TUint8)(x >> 7); |
|
1135 } |
|
1136 |
|
1137 TInt level = State().iEmbeddingLevel; |
|
1138 if (60 <= level) |
|
1139 { |
|
1140 iPushesBeyond60 = aSource.ReadInt8L(); |
|
1141 iPushesBeyond61 = aSource.ReadInt8L(); |
|
1142 } |
|
1143 else |
|
1144 { |
|
1145 iPushesBeyond60 = 0; |
|
1146 iPushesBeyond61 = 0; |
|
1147 } |
|
1148 } |
|
1149 |
|
1150 |
|
1151 TBidirectionalState::TBidirectionalState(TChar::TBdCategory aPrevCat, |
|
1152 TChar::TBdCategory aPrevStrongCat, |
|
1153 TBool aParRightToLeft) |
|
1154 /** |
|
1155 Constructor suitable for test code. |
|
1156 @internalComponent |
|
1157 */ |
|
1158 { |
|
1159 Reset(); |
|
1160 iPreviousCategory = CharToBdCat(aPrevCat); |
|
1161 iPreviousStrongCategory = CharToBdCat(aPrevStrongCat); |
|
1162 iStack[0].iEmbeddingLevel = (TUint8) (aParRightToLeft? 1 : 0); |
|
1163 } |