|
1 // Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // |
|
15 |
|
16 #include <palette.h> |
|
17 #include "TRGB.H" |
|
18 |
|
19 |
|
20 CTRgb::CTRgb(CTestStep* aStep): |
|
21 CTGraphicsBase(aStep) |
|
22 { |
|
23 INFO_PRINTF1(_L("Testing TRgb colour functions")); |
|
24 } |
|
25 |
|
26 void CTRgb::RunTestCaseL(TInt aCurTestCase) |
|
27 { |
|
28 ((CTRgbStep*)iStep)->SetTestStepID(KUnknownSYMTestCaseIDName); |
|
29 switch(aCurTestCase) |
|
30 { |
|
31 case 1: |
|
32 /** |
|
33 @SYMTestCaseID GRAPHICS-GDI-RGB-0001 |
|
34 */ |
|
35 ((CTRgbStep*)iStep)->SetTestStepID(_L("GRAPHICS-GDI-RGB-0001")); |
|
36 TestGray2(); |
|
37 break; |
|
38 case 2: |
|
39 /** |
|
40 @SYMTestCaseID GRAPHICS-GDI-RGB-0002 |
|
41 */ |
|
42 ((CTRgbStep*)iStep)->SetTestStepID(_L("GRAPHICS-GDI-RGB-0002")); |
|
43 TestGray4(); |
|
44 break; |
|
45 case 3: |
|
46 /** |
|
47 @SYMTestCaseID GRAPHICS-GDI-RGB-0003 |
|
48 */ |
|
49 ((CTRgbStep*)iStep)->SetTestStepID(_L("GRAPHICS-GDI-RGB-0003")); |
|
50 TestGray16(); |
|
51 break; |
|
52 case 4: |
|
53 /** |
|
54 @SYMTestCaseID GRAPHICS-GDI-RGB-0004 |
|
55 */ |
|
56 ((CTRgbStep*)iStep)->SetTestStepID(_L("GRAPHICS-GDI-RGB-0004")); |
|
57 TestGray256(); |
|
58 break; |
|
59 case 5: |
|
60 /** |
|
61 @SYMTestCaseID GRAPHICS-GDI-RGB-0005 |
|
62 */ |
|
63 ((CTRgbStep*)iStep)->SetTestStepID(_L("GRAPHICS-GDI-RGB-0005")); |
|
64 TestColor16(); |
|
65 break; |
|
66 case 6: |
|
67 /** |
|
68 @SYMTestCaseID GRAPHICS-GDI-RGB-0006 |
|
69 */ |
|
70 ((CTRgbStep*)iStep)->SetTestStepID(_L("GRAPHICS-GDI-RGB-0006")); |
|
71 TestColor256(); |
|
72 break; |
|
73 case 7: |
|
74 /** |
|
75 @SYMTestCaseID GRAPHICS-GDI-RGB-0007 |
|
76 */ |
|
77 ((CTRgbStep*)iStep)->SetTestStepID(_L("GRAPHICS-GDI-RGB-0007")); |
|
78 TestColor4K(); |
|
79 break; |
|
80 case 8: |
|
81 /** |
|
82 @SYMTestCaseID GRAPHICS-GDI-RGB-0008 |
|
83 */ |
|
84 ((CTRgbStep*)iStep)->SetTestStepID(_L("GRAPHICS-GDI-RGB-0008")); |
|
85 TestColor64K(); |
|
86 break; |
|
87 case 9: |
|
88 /** |
|
89 @SYMTestCaseID GRAPHICS-GDI-RGB-0009 |
|
90 */ |
|
91 ((CTRgbStep*)iStep)->SetTestStepID(_L("GRAPHICS-GDI-RGB-0009")); |
|
92 TestColor16M(); |
|
93 break; |
|
94 case 10: |
|
95 /** |
|
96 @SYMTestCaseID GRAPHICS-GDI-RGB-0010 |
|
97 */ |
|
98 ((CTRgbStep*)iStep)->SetTestStepID(_L("GRAPHICS-GDI-RGB-0010")); |
|
99 TestColor16MU(); |
|
100 break; |
|
101 case 11: |
|
102 /** |
|
103 @SYMTestCaseID GRAPHICS-GDI-RGB-0011 |
|
104 */ |
|
105 ((CTRgbStep*)iStep)->SetTestStepID(_L("GRAPHICS-GDI-RGB-0011")); |
|
106 TestColor16MA(); |
|
107 break; |
|
108 case 12: |
|
109 /** |
|
110 @SYMTestCaseID GRAPHICS-GDI-RGB-0012 |
|
111 */ |
|
112 ((CTRgbStep*)iStep)->SetTestStepID(_L("GRAPHICS-GDI-RGB-0012")); |
|
113 TestColor256Util(); |
|
114 break; |
|
115 case 13: |
|
116 /** |
|
117 @SYMTestCaseID GRAPHICS-GDI-RGB-0013 |
|
118 */ |
|
119 ((CTRgbStep*)iStep)->SetTestStepID(_L("GRAPHICS-GDI-RGB-0013")); |
|
120 TestColor16MAP(); |
|
121 break; |
|
122 case 14: |
|
123 ((CTRgbStep*)iStep)->SetTestStepID(KNotATestSYMTestCaseIDName); |
|
124 ((CTRgbStep*)iStep)->CloseTMSGraphicsStep(); |
|
125 TestComplete(); |
|
126 break; |
|
127 } |
|
128 ((CTRgbStep*)iStep)->RecordTestResultL(); |
|
129 } |
|
130 |
|
131 /** |
|
132 Test Gray2 colour set |
|
133 |
|
134 Cycle through each Gray2 colour & compare the grayscale value used to create the colour |
|
135 against the index value retrieved from the colour palette. |
|
136 Cycle through a series of RGB values & compare the Gray2 TRgb value with a subset of the Gray256 colour-set. |
|
137 |
|
138 Expect the conversion from index value to grayscale colour value & back again produces identical value. |
|
139 Expect the Gray2 rgb colour set forms a subset of the Gray256 colour rgb set |
|
140 */ |
|
141 void CTRgb::TestGray2() |
|
142 { |
|
143 INFO_PRINTF1(_L("Gray2")); |
|
144 |
|
145 for (TInt index = 0; index < 2; index++) |
|
146 { |
|
147 TRgb color = TRgb::Gray2(index); |
|
148 TEST(color.Gray2() == index); |
|
149 } |
|
150 |
|
151 for (TUint32 value = 0; value <= 0x00ffffff; value += 31) |
|
152 { |
|
153 TRgb color(value); |
|
154 TEST(color.Gray2() == color.Gray256() / 128); |
|
155 } |
|
156 } |
|
157 |
|
158 /** |
|
159 Cycle through each Gray4 colour & compare the grayscale value used to create the colour |
|
160 against the index value retrieved from the colour palette. |
|
161 Cycle through a series of RGB values & compare the Gray4 TRgb colour value with a subset of the Gray256 colour-set. |
|
162 |
|
163 Expect conversion from index value to grayscale colour value & back again produces identical value. |
|
164 Expect the Gray4 rgb colour set forms a subset of the Gray256 colour rgb set |
|
165 */ |
|
166 void CTRgb::TestGray4() |
|
167 { |
|
168 INFO_PRINTF1(_L("Gray4")); |
|
169 |
|
170 for (TInt index = 0; index < 4; index++) |
|
171 { |
|
172 TRgb color = TRgb::Gray4(index); |
|
173 TEST(color.Gray4() == index); |
|
174 } |
|
175 |
|
176 for (TUint32 value = 0; value <= 0x00ffffff; value += 31) |
|
177 { |
|
178 TRgb color(value); |
|
179 TEST(color.Gray4() == color.Gray256() / 64); |
|
180 } |
|
181 } |
|
182 |
|
183 /** |
|
184 Cycle through each Gray16 colour & compare the grayscale value used to create the colour |
|
185 against the index value retrieved from the colour palette. |
|
186 Cycle through a series of RGB values & compare the Gray16 TRgb value with a subset of the Gray256 colour-set. |
|
187 |
|
188 Expect the conversion from index value to grayscale colour value & back again produces identical value. |
|
189 Expect the Gray16 rgb colour set forms a subset of the Gray256 colour rgb set |
|
190 */ |
|
191 void CTRgb::TestGray16() |
|
192 { |
|
193 INFO_PRINTF1(_L("Gray16")); |
|
194 |
|
195 for (TInt index = 0; index < 16; index++) |
|
196 { |
|
197 TRgb color = TRgb::Gray16(index); |
|
198 TEST(color.Gray16() == index); |
|
199 } |
|
200 |
|
201 for (TUint32 value = 0; value <= 0x00ffffff; value += 31) |
|
202 { |
|
203 TRgb color(value); |
|
204 TEST(color.Gray16() == color.Gray256() / 16); |
|
205 } |
|
206 } |
|
207 |
|
208 /** |
|
209 Cycle through each Gray256 colour & compare the grayscale value used to create the colour |
|
210 against the index value retrieved from the colour palette. |
|
211 Cycle through a series of RGB values & compare the Gray256 TRgb colour value with the value produced by generic algorithm |
|
212 |
|
213 Expect the conversion from index value to grayscale colour value & back again produces identical value. |
|
214 Confirm the algorithm used to produce Gray256 colour set |
|
215 */ |
|
216 void CTRgb::TestGray256() |
|
217 { |
|
218 INFO_PRINTF1(_L("Gray256")); |
|
219 |
|
220 for (TInt index = 0; index < 256; index++) |
|
221 { |
|
222 TRgb color = TRgb::Gray256(index); |
|
223 TEST(color.Gray256() == index); |
|
224 } |
|
225 |
|
226 for (TUint32 value = 0; value <= 0x00ffffff; value += 31) |
|
227 { |
|
228 TRgb color(value); |
|
229 TInt algGray256 = (((value & 0xff) * 2) + (((value >> 8) & 0xff) * 5) + ((value >> 16) & 0xff)) / 8; |
|
230 TEST(color.Gray256() == algGray256); |
|
231 } |
|
232 } |
|
233 |
|
234 /** |
|
235 Test 16 Colour colour set |
|
236 |
|
237 Cycle through each Color16 colour & test the value used to create the colour |
|
238 against the index value retrieved from the colour palette. |
|
239 Compare the rgb value for each Color16 colour matches that returned by the DynamicPalette colour palette |
|
240 |
|
241 Expect the RGB colour value returned matches the 16colour palette |
|
242 */ |
|
243 void CTRgb::TestColor16() |
|
244 { |
|
245 INFO_PRINTF1(_L("Color16")); |
|
246 |
|
247 for (TInt index = 0; index < 16; index++) |
|
248 { |
|
249 TRgb color = TRgb::Color16(index); |
|
250 TEST(color.Color16() == index); |
|
251 TEST(TRgb::Color16(index) == TRgb(DynamicPalette::Color16array()[index])); |
|
252 } |
|
253 } |
|
254 |
|
255 /** |
|
256 Test 256 colour set |
|
257 |
|
258 Cycle through each Color256 colour & test the value used to create the colour |
|
259 against the index value retrieved from the colour palette. |
|
260 Compare the rgb value for each Color256 colour against the rgb value returned by the DynamicPalette colour palette |
|
261 Cycle through each Color256 colour & confirm it matches the Netscape Colour Cube |
|
262 |
|
263 Expect the RGB colour returned matches the 256 colour palette |
|
264 */ |
|
265 void CTRgb::TestColor256() |
|
266 { |
|
267 INFO_PRINTF1(_L("Color256")); |
|
268 |
|
269 const TInt mainValues[6] = {0x00, 0x33, 0x66, 0x99, 0xcc, 0xff }; |
|
270 const TInt lowerValues[5] = {0x11, 0x22, 0x44, 0x55, 0x77 }; |
|
271 const TInt upperValues[5] = {0x88, 0xaa, 0xbb, 0xdd, 0xee }; |
|
272 |
|
273 TInt index; |
|
274 for (index = 0; index < 256; index++) |
|
275 { |
|
276 TRgb color = TRgb::Color256(index); |
|
277 TEST(color.Color256() == index); |
|
278 TEST(TRgb::Color256(index) == TRgb(DynamicPalette::DefaultColor256Util()->iColorTable[index])); |
|
279 } |
|
280 |
|
281 for (index = 0; index < 108; index++) |
|
282 { |
|
283 TRgb color = TRgb::Color256(index); |
|
284 TEST(color.Red() == mainValues[index % 6]); |
|
285 TEST(color.Green() == mainValues[(index / 6) % 6]); |
|
286 TEST(color.Blue() == mainValues[(index / 36) % 6]); |
|
287 } |
|
288 for (; index < 113; index++) |
|
289 { |
|
290 TRgb color = TRgb::Color256(index); |
|
291 TEST(color.Red() == color.Green()); |
|
292 TEST(color.Green() == color.Blue()); |
|
293 TEST(color.Blue() == lowerValues[index - 108]); |
|
294 } |
|
295 for (; index < 118; index++) |
|
296 { |
|
297 TRgb color = TRgb::Color256(index); |
|
298 TEST(color.Red() == lowerValues[index - 113]); |
|
299 TEST(color.Green() == 0); |
|
300 TEST(color.Blue() == 0); |
|
301 } |
|
302 for (; index < 123; index++) |
|
303 { |
|
304 TRgb color = TRgb::Color256(index); |
|
305 TEST(color.Red() == 0); |
|
306 TEST(color.Green() == lowerValues[index - 118]); |
|
307 TEST(color.Blue() == 0); |
|
308 } |
|
309 for (; index < 128; index++) |
|
310 { |
|
311 TRgb color = TRgb::Color256(index); |
|
312 TEST(color.Red() == 0); |
|
313 TEST(color.Green() == 0); |
|
314 TEST(color.Blue() == lowerValues[index - 123]); |
|
315 } |
|
316 for (; index < 133; index++) |
|
317 { |
|
318 TRgb color = TRgb::Color256(index); |
|
319 TEST(color.Red() == 0); |
|
320 TEST(color.Green() == 0); |
|
321 TEST(color.Blue() == upperValues[index - 128]); |
|
322 } |
|
323 for (; index < 138; index++) |
|
324 { |
|
325 TRgb color = TRgb::Color256(index); |
|
326 TEST(color.Red() == 0); |
|
327 TEST(color.Green() == upperValues[index - 133]); |
|
328 TEST(color.Blue() == 0); |
|
329 } |
|
330 for (; index < 143; index++) |
|
331 { |
|
332 TRgb color = TRgb::Color256(index); |
|
333 TEST(color.Red() == upperValues[index - 138]); |
|
334 TEST(color.Green() == 0); |
|
335 TEST(color.Blue() == 0); |
|
336 } |
|
337 for (; index < 148; index++) |
|
338 { |
|
339 TRgb color = TRgb::Color256(index); |
|
340 TEST(color.Red() == color.Green()); |
|
341 TEST(color.Green() == color.Blue()); |
|
342 TEST(color.Blue() == upperValues[index - 143]); |
|
343 } |
|
344 for (; index < 256; index++) |
|
345 { |
|
346 TRgb color = TRgb::Color256(index); |
|
347 TEST(color.Red() == mainValues[(index - 40) % 6]); |
|
348 TEST(color.Green() == mainValues[((index - 40) / 6) % 6]); |
|
349 TEST(color.Blue() == mainValues[((index - 40) / 36) % 6]); |
|
350 } |
|
351 } |
|
352 |
|
353 /** |
|
354 Test 4096 colour set |
|
355 |
|
356 Cycle through each Color4K colour & compare the colorscale value used to create the colour |
|
357 against the index value retrieved from the colour palette. |
|
358 Cycle through a series of RGB values & compare the Color4K TRgb value against that produced by the algorithm |
|
359 |
|
360 Confirm the conversion from index value to 4096 colour value & back again produces identical value. |
|
361 Confirm the algorithm used to produce 4096 colour set |
|
362 */ |
|
363 void CTRgb::TestColor4K() |
|
364 { |
|
365 INFO_PRINTF1(_L("Color4K")); |
|
366 |
|
367 for (TInt index = 0; index < 4096; index++) |
|
368 { |
|
369 TRgb color = TRgb::Color4K(index); |
|
370 TEST(color.Color4K() == index); |
|
371 } |
|
372 |
|
373 for (TUint32 value = 0; value <= 0x00ffffff; value += 31) |
|
374 { |
|
375 TRgb color(value); |
|
376 TInt color4K = ((value & 0xf00000) >> 20) | ((value & 0x00f000) >> 8) | ((value & 0x0000f0) << 4); |
|
377 TEST(color.Color4K() == color4K); |
|
378 } |
|
379 } |
|
380 |
|
381 /** |
|
382 Test 64K colour set |
|
383 |
|
384 Cycle through each Color64K colour & compare the TRgb value used to create the colour |
|
385 against the index value retrieved from the colour palette. |
|
386 Cycle through a series of RGB values & compare the Color64K TRgb value against that produced by the algorithm |
|
387 |
|
388 Confirm the conversion from index value to 64K colour value & back again produces identical value. |
|
389 Confirm the algorithm used to produce 64K colour set |
|
390 */ |
|
391 void CTRgb::TestColor64K() |
|
392 { |
|
393 INFO_PRINTF1(_L("Color64K")); |
|
394 |
|
395 for (TInt index = 0; index < 65536; index++) |
|
396 { |
|
397 TRgb color = TRgb::Color64K(index); |
|
398 TEST(color.Color64K() == index); |
|
399 } |
|
400 |
|
401 for (TUint32 value = 0; value <= 0x00ffffff; value += 31) |
|
402 { |
|
403 TRgb color(value); |
|
404 TInt color64K = ((value & 0xf8) << 8) + ((value & 0xfc00) >> 5) + ((value & 0xf80000) >> 19); |
|
405 TEST(color.Color64K() == color64K); |
|
406 } |
|
407 } |
|
408 |
|
409 /** |
|
410 Test 16M colour set |
|
411 |
|
412 Cycle through each Color16M colour & compare the TRgb value used to create the colour |
|
413 against the index value retrieved from the colour palette. |
|
414 Cycle through a series of RGB values & compare the Color16M TRgb value against that produced by the algorithm |
|
415 |
|
416 Confirm the conversion from index value to 16M colour value & back again produces identical value. |
|
417 Confirm the algorithm used to produce 16M colour set |
|
418 */ |
|
419 void CTRgb::TestColor16M() |
|
420 { |
|
421 INFO_PRINTF1(_L("Color16M")); |
|
422 |
|
423 for (TUint32 value = 0; value <= 0x00ffffff; value += 31) |
|
424 { |
|
425 TRgb color(value); |
|
426 TInt color16M = ((value & 0xff0000) >> 16) | (value & 0x00ff00) | ((value & 0x0000ff) << 16); |
|
427 TRgb generatedColor = TRgb::Color16M(color16M); |
|
428 TEST(color == generatedColor); |
|
429 TEST(color.Color16M() == color16M); |
|
430 } |
|
431 } |
|
432 |
|
433 /** |
|
434 Test 16MU colour set |
|
435 |
|
436 Cycle through each Color16MU colour & compare the TRgb value used to create the colour |
|
437 against the index value retrieved from the colour palette. |
|
438 Cycle through a series of RGB values & compare the Color16MU TRgb value against that produced by the algorithm |
|
439 |
|
440 Confirm the conversion from index value to 16MU colour value & back again produces identical value. |
|
441 Confirm the algorithm used to produce 16MU colour set |
|
442 */ |
|
443 void CTRgb::TestColor16MU() |
|
444 { |
|
445 INFO_PRINTF1(_L("Color16MU")); |
|
446 |
|
447 for (TUint32 value = 0; value <= 0x00ffffff; value += 31) |
|
448 { |
|
449 TRgb color(value); |
|
450 TInt color16MU = ((value & 0xff0000) >> 16) | (value & 0x00ff00) | ((value & 0x0000ff) << 16); |
|
451 TRgb generatedColor = TRgb::Color16MU(color16MU); |
|
452 TEST(color == generatedColor); |
|
453 TEST(color.Color16MU() == color16MU); |
|
454 } |
|
455 } |
|
456 |
|
457 /** |
|
458 Test 16MA colour set |
|
459 |
|
460 Cycle through each Color16MA colour & compare the TRgb value used to create the colour |
|
461 against the index value retrieved from the colour palette. |
|
462 Cycle through a series of RGB values & compare the Color16MA TRgb value against that produced by the algorithm |
|
463 |
|
464 Confirm the conversion from index value to 16MA colour value & back again produces identical value. |
|
465 Confirm the algorithm used to produce 16MA colour set |
|
466 */ |
|
467 void CTRgb::TestColor16MA() |
|
468 { |
|
469 INFO_PRINTF1(_L("Color16MA")); |
|
470 |
|
471 for (TUint32 high = 0; high <= 0xffff; high += 51) |
|
472 for (TUint32 low = 0; low <= 0xffff; low += 51) |
|
473 { |
|
474 TUint32 value = (high << 16) + low; // '+' operator has higher precedance than '<<' operator |
|
475 TRgb color(value); |
|
476 TInt color16MA = (0xff000000 - (value & 0xff000000)) | ((value & 0xff0000) >> 16) | (value & 0x00ff00) | ((value & 0x0000ff) << 16); |
|
477 TRgb generatedColor = TRgb::Color16MA(color16MA); |
|
478 TEST(color == generatedColor); |
|
479 TEST(color.Color16MA() == color16MA); |
|
480 } |
|
481 } |
|
482 |
|
483 /** |
|
484 Test TColor256Util |
|
485 |
|
486 Test functionality contained within TColor256Util. |
|
487 |
|
488 Confirm TColor256Util converts correctly between TRgb values & the corresponding index in the colour palette |
|
489 |
|
490 */ |
|
491 void CTRgb::TestColor256Util() |
|
492 { |
|
493 INFO_PRINTF1(_L("TColor256Util")); |
|
494 |
|
495 __UHEAP_MARK; |
|
496 |
|
497 TColor256Util* util = new TColor256Util; |
|
498 CPalette* palette = NULL; |
|
499 TRAPD(err,palette = CPalette::NewDefaultL(EColor256)); |
|
500 TEST(err==KErrNone); |
|
501 util->Construct(*palette); |
|
502 TEST(Mem::Compare((TUint8*)util,sizeof(TColor256Util),(TUint8*)DynamicPalette::DefaultColor256Util(),sizeof(TColor256Util))==0); |
|
503 |
|
504 TInt index; |
|
505 for (index = 0; index < 256; index++) |
|
506 { |
|
507 TRgb color = TRgb::Color256(index); |
|
508 TEST(util->Color256(index) == color); |
|
509 TEST(util->Color256(color) == index); |
|
510 } |
|
511 |
|
512 TRgb* rgbBuffer = new TRgb[256]; |
|
513 TUint8* indexBuffer = new TUint8[256]; |
|
514 for (index = 0; index < 256; index++) |
|
515 rgbBuffer[index] = TRgb::Color256(index); |
|
516 util->Color256(indexBuffer,rgbBuffer,256); |
|
517 for (index = 0; index < 256; index++) |
|
518 TEST(indexBuffer[index]==index); |
|
519 |
|
520 delete[] rgbBuffer; |
|
521 delete[] indexBuffer; |
|
522 delete palette; |
|
523 delete util; |
|
524 |
|
525 __UHEAP_MARKEND; |
|
526 } |
|
527 |
|
528 /** |
|
529 Validate the PreMultiplied value and the Non PreMultiplied value with the expected values. |
|
530 @param aAlpha Alpha value of the color. |
|
531 @param aValue The value of the color channel(ie. one of Red,Green or Blue). |
|
532 @param aPreMulVal The PreMutiplied color value for aValue. |
|
533 @param aNonPreMulValue The Non PreMutiplied value for aValue |
|
534 (i.e the value received by Non PreMutiplying aPreMulVal). |
|
535 |
|
536 */ |
|
537 void CTRgb::ValidatePMAndNPM(TInt aAlpha, TInt aValue, TInt aPreMulVal, TInt aNonPreMulValue) |
|
538 { |
|
539 TInt expPreMulValue = (aValue*(aAlpha+1))/256; |
|
540 TInt expNonPreMulValMin = (expPreMulValue * 255) / aAlpha; |
|
541 TInt expNonPreMulValMax = expNonPreMulValMin + 1; |
|
542 if (expNonPreMulValMax > 255) |
|
543 { |
|
544 expNonPreMulValMax = 255; |
|
545 } |
|
546 TEST(expPreMulValue == aPreMulVal); |
|
547 TEST(expNonPreMulValMin <= aNonPreMulValue && expNonPreMulValMax >= aNonPreMulValue); |
|
548 } |
|
549 |
|
550 /** |
|
551 DEF103742 - Test the PreMultiply and Non PreMultiply conversion. |
|
552 |
|
553 Convert the color values into PreMultiplied color values and again back to |
|
554 the Non PreMultiplied color values. |
|
555 Compare the converted values with the expected values to validate the functionality. |
|
556 |
|
557 Confirm the PreMultiplied and Non PreMultiplied color values match with the expected values. |
|
558 */ |
|
559 void CTRgb::TestColor16MAP() |
|
560 { |
|
561 INFO_PRINTF1(_L("Color16MAP")); |
|
562 for (TInt alpha = 0; alpha < 256; alpha += 51) |
|
563 { |
|
564 for (TUint32 value = 0; value <= 0x00ffffff; value += 0x1f1f) |
|
565 { |
|
566 TRgb color(value, alpha); |
|
567 TUint pmColor = color.Color16MAP(); |
|
568 TRgb npmColor = TRgb::Color16MAP(pmColor); |
|
569 |
|
570 TInt pmAlpha = (pmColor & 0xFF000000) >> 24; |
|
571 |
|
572 // These really must be right! |
|
573 TEST(pmAlpha == alpha); |
|
574 TEST(npmColor.Alpha() == alpha); |
|
575 |
|
576 // These definitely ought to be right |
|
577 if (alpha == 0) // Full transparency, expect black |
|
578 { |
|
579 TEST(pmColor == 0); |
|
580 TEST(npmColor.Internal() == 0); |
|
581 } |
|
582 else if (alpha == 255) // Full opacity, expect roundtrip |
|
583 { |
|
584 TEST(pmColor == color.Internal()); |
|
585 TEST(npmColor == color); |
|
586 } |
|
587 else |
|
588 { |
|
589 // Most awkward cases: semi-transparency. |
|
590 TInt pmRed = (pmColor & 0x00FF0000) >> 16; |
|
591 TInt pmGreen = (pmColor & 0x0000FF00) >> 8; |
|
592 TInt pmBlue = pmColor & 0xFF; |
|
593 ValidatePMAndNPM(alpha, color.Red(), pmRed, npmColor.Red()); |
|
594 ValidatePMAndNPM(alpha, color.Green(), pmGreen, npmColor.Green()); |
|
595 ValidatePMAndNPM(alpha, color.Blue(), pmBlue, npmColor.Blue()); |
|
596 } |
|
597 } |
|
598 } |
|
599 } |
|
600 |
|
601 //-------------- |
|
602 __CONSTRUCT_STEP__(Rgb) |