|
1 // Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // |
|
15 |
|
16 #include "BMDRAW.H" |
|
17 |
|
18 /** |
|
19 Performs a blend based on the PD method, with 2* 16 bit in one 32 bit operation optimisation. |
|
20 Note that this method assumes both input s are NOT alpha pre multiplied, but the output IS pre multiplied. |
|
21 The mechanism of this method is non-standard and non-intuitive, and is being addressed in 9.3 |
|
22 by developing distinct classes for the premultiplied and nonmultiplied cases. |
|
23 The mechanism remains hybrid to maintain compatibility and colour channel overflows caused by rounding |
|
24 overflows have been addressed. |
|
25 PD is basically CDest=CSrc*MulSrc+CDest*MulDest |
|
26 //A second optimisation is that multiplier value must be scaled from 0..255 to 0.0..1.0, this is 1/255 = 0.00392156. |
|
27 A second optimisation is that multiplier value must be scaled from 257..65535 to 0.0..1.0, this is 1/65535 = 0.0000152590. |
|
28 This used to be done by simply adding 1, giving 1..256/256 |
|
29 but this allows overflows to occur when the fractional parts are added together. |
|
30 We want to keep adding the fractional parts as that gives a better result. |
|
31 Instead I am now using an approximation of 0.00392151, based on 255*257/256. |
|
32 To describe it imagine a "decimal" colour mode, where the channels count from 0..9, and 10-based operations are "efficient". |
|
33 We need 9 to generate 1.0 or 10/10 meaning "all". |
|
34 If we add 1, then we get 1..10 ==> 0.1 .. 1.0 |
|
35 If we multiply by 1.1 then we get 0.0 .. 9.9. |
|
36 And finally add a 0.5 rounding to the result. |
|
37 I do this multiply after the CSrc*MulSrc, while I still have a 16bit intermediate result. |
|
38 It is possible to generate a faster, less accurate result by exhaustively finding |
|
39 the highest value that can be added instead of rb = rb+((rb>>8)&0x00ff00ff)+0x00800080; without causing an overflow. |
|
40 */ |
|
41 FORCEINLINE TUint32 OptimizedBlend32A(TUint32 aBeneath,TUint32 aSrcColor,TUint8 aMaskBuffer) |
|
42 { |
|
43 if(aMaskBuffer) |
|
44 { |
|
45 if(aMaskBuffer == 0xff) // opaque, so unchanged |
|
46 { |
|
47 //Still need to convert source to destination from non-multiplied to pre-multiplied |
|
48 //But this code resolves to a copy. The ARM optimiser prefers shifts over big constants. |
|
49 return (aSrcColor|(aMaskBuffer<<24)); |
|
50 } |
|
51 else |
|
52 { |
|
53 //0, 1, 2, 3 |
|
54 //b, g, r, alpha |
|
55 |
|
56 const TUint32 srcMult = aMaskBuffer; |
|
57 TUint32 destMult = ((255 - aMaskBuffer) * ((aBeneath >> 24))); |
|
58 //This gives a slightly more accurate result than ((aBeneath >> 24)+1) |
|
59 destMult=destMult+(destMult>>8); |
|
60 destMult+= 0x0080; |
|
61 destMult >>= 8; |
|
62 |
|
63 TUint32 rb =(((aSrcColor&0x00ff00ff)*srcMult)) + (((aBeneath&0x00ff00ff)*destMult)); |
|
64 rb = rb+((rb>>8)&0x00ff00ff); |
|
65 rb+=0x00800080; |
|
66 rb>>=8; |
|
67 TUint32 ag = (((aSrcColor&0x0000ff00)*srcMult)) + (((aBeneath&0x0000ff00)*destMult)); |
|
68 ag>>=8; //Note that if alpha is processed here, this shift must be performed before the multiplies |
|
69 ag = ag+((ag>>8)&0x00ff00ff); |
|
70 ag+=0x00800080; |
|
71 TUint32 aa = srcMult+destMult; |
|
72 return (rb&0x00ff00ff) | (ag&0x0000ff00) | (aa << 24); |
|
73 |
|
74 } |
|
75 } |
|
76 else // completely transparent |
|
77 { |
|
78 return aBeneath; |
|
79 } |
|
80 |
|
81 } |
|
82 |
|
83 TInt CDrawThirtyTwoBppBitmapAlpha::Construct(TSize aSize) |
|
84 { |
|
85 return Construct(aSize, aSize.iWidth << 2); |
|
86 } |
|
87 |
|
88 TInt CDrawThirtyTwoBppBitmapAlpha::Construct(TSize aSize, TInt aStride) |
|
89 { |
|
90 iDispMode = EColor16MA; |
|
91 return CDrawThirtyTwoBppBitmapCommon::Construct(aSize, aStride); |
|
92 } |
|
93 |
|
94 void CDrawThirtyTwoBppBitmapAlpha::Shadow(TUint32& aColor) |
|
95 { |
|
96 TUint32 value = aColor & 0x00ffffff; |
|
97 if (iShadowMode & EFade) |
|
98 { |
|
99 #if defined(SYMBIAN_USE_FAST_FADING) |
|
100 value = ((value >> 1) & ~0x00808080) + (SYMBIAN_USE_FAST_FADING); |
|
101 #else |
|
102 const TInt wordFadeMapOffset = ((iFadeMapOffset & 0xff) << 16) | (iFadeMapOffset & 0xff); |
|
103 const TInt rb = ((((value & 0x00ff00ff) * iFadeMapFactor) >> 8) + wordFadeMapOffset) & 0x00ff00ff; |
|
104 const TInt g = ((((value & 0x0000ff00) * iFadeMapFactor) >> 16) + iFadeMapOffset) << 8; |
|
105 value = rb | g; |
|
106 #endif |
|
107 } |
|
108 |
|
109 if (iShadowMode & EShadow) |
|
110 { |
|
111 const TInt r = (value & 0x00c00000) ? ((value & 0x00ff0000)-0x00400000) : 0; |
|
112 const TInt g = (value & 0x0000c000) ? ((value & 0x0000ff00)-0x00004000) : 0; |
|
113 const TInt b = (value & 0x000000c0) ? ((value & 0x000000ff)-0x00000040) : 0; |
|
114 value = r | g | b; |
|
115 } |
|
116 // alpha is unchanged. |
|
117 aColor = (aColor & 0xff000000) | value; |
|
118 } |
|
119 |
|
120 /** |
|
121 MAlphaBlend::WriteRgbAlphaLine() implementation. |
|
122 @see MAlphaBlend::WriteRgbAlphaLine() |
|
123 */ |
|
124 void CDrawThirtyTwoBppBitmapAlpha::WriteRgbAlphaLine(TInt aX, TInt aY, TInt aLength, |
|
125 const TUint8* aRgbBuffer, |
|
126 const TUint8* aMaskBuffer, |
|
127 MAlphaBlend::TShadowing aShadowing, |
|
128 CGraphicsContext::TDrawMode /*aDrawMode*/) |
|
129 { |
|
130 // precondition for this function is that the aRgbBuffer lies on a word boundary |
|
131 // Assert checks that the pointer is at a word boundary |
|
132 __ASSERT_DEBUG(!(((TUint)aRgbBuffer) & 0x3), Panic(EScreenDriverPanicInvalidPointer)); |
|
133 |
|
134 DeOrientate(aX,aY); |
|
135 TUint32* pixelPtr = PixelAddress(aX,aY); |
|
136 const TInt pixelPtrInc = PixelAddressIncrement(); |
|
137 const TUint8* maskBufferPtrLimit = aMaskBuffer + aLength; |
|
138 |
|
139 // The purpose of this conditional is to remove if statements from within the loop |
|
140 // if shadow mode is not enabled and the UserDispMode is none or EColor16MA |
|
141 if(!(iShadowMode & (EFade | EShadow)) && (iUserDispMode ==EColor16MA || iUserDispMode == ENone)) |
|
142 { |
|
143 while (aMaskBuffer < maskBufferPtrLimit) |
|
144 { |
|
145 if(*aMaskBuffer) |
|
146 { |
|
147 *pixelPtr = OptimizedBlend32A(*pixelPtr, *((TUint32*)(aRgbBuffer)), *aMaskBuffer); |
|
148 } |
|
149 pixelPtr += pixelPtrInc; |
|
150 aRgbBuffer += 4; |
|
151 aMaskBuffer++; |
|
152 } |
|
153 } |
|
154 else |
|
155 { |
|
156 while (aMaskBuffer < maskBufferPtrLimit) |
|
157 { |
|
158 if(*aMaskBuffer) |
|
159 { |
|
160 TUint32 srcColor = *((TUint32*)(aRgbBuffer)); |
|
161 if(aShadowing == MAlphaBlend::EShdwBefore) |
|
162 { |
|
163 Shadow(srcColor); |
|
164 } |
|
165 |
|
166 TUint32 pixelClr = 0x0; |
|
167 |
|
168 pixelClr = OptimizedBlend32A(*pixelPtr, srcColor, *aMaskBuffer); |
|
169 |
|
170 if(aShadowing == MAlphaBlend::EShdwAfter) |
|
171 { |
|
172 Shadow(pixelClr); |
|
173 } |
|
174 |
|
175 if(iUserDispMode !=EColor16MA && iUserDispMode != ENone) |
|
176 { |
|
177 TInt red = TUint8(pixelClr >> 16); |
|
178 TInt green = TUint8(pixelClr >> 8); |
|
179 TInt blue = TUint8(pixelClr); |
|
180 CDrawBitmap::MapColorToUserDisplayMode(red,green,blue); |
|
181 pixelClr = (pixelClr&0xff000000) | (red << 16) | (green << 8) | blue; |
|
182 } |
|
183 *pixelPtr = pixelClr; |
|
184 } |
|
185 pixelPtr += pixelPtrInc; |
|
186 aRgbBuffer += 4; |
|
187 aMaskBuffer++; |
|
188 } |
|
189 } |
|
190 } |
|
191 |
|
192 void CDrawThirtyTwoBppBitmapAlpha::WriteRgbAlphaMulti(TInt aX,TInt aY,TInt aLength,TRgb aColor,const TUint8* aMaskBuffer) |
|
193 { |
|
194 DeOrientate(aX,aY); |
|
195 TUint32* pixelPtr = PixelAddress(aX,aY); |
|
196 const TInt pixelPtrInc = PixelAddressIncrement(); |
|
197 const TUint8* maskBufferPtrLimit = aMaskBuffer + aLength; |
|
198 |
|
199 TUint32 srcColor = aColor.Internal(); |
|
200 if (iShadowMode) |
|
201 Shadow(srcColor); |
|
202 |
|
203 const TInt red = (srcColor & 0x00ff0000) >> 16; |
|
204 const TInt green = (srcColor & 0x0000ff00) >> 8; |
|
205 const TInt blue = srcColor & 0x000000ff; |
|
206 const TInt alpha = srcColor >> 24; |
|
207 |
|
208 if (alpha == 255) |
|
209 { |
|
210 // the most common case |
|
211 // source is opaque, so we simply blend it using the mask |
|
212 while (aMaskBuffer < maskBufferPtrLimit) |
|
213 { |
|
214 |
|
215 *pixelPtr = OptimizedBlend32A(*pixelPtr, srcColor, *aMaskBuffer); |
|
216 |
|
217 pixelPtr += pixelPtrInc; |
|
218 aMaskBuffer++; |
|
219 } |
|
220 } |
|
221 else |
|
222 { |
|
223 // pen is semi-transparent, so we must blend using both the mask and pen alpha |
|
224 while (aMaskBuffer < maskBufferPtrLimit) |
|
225 { |
|
226 TUint8* componentPtr = reinterpret_cast <TUint8*> (pixelPtr); |
|
227 const TUint32 srcAlpha = alpha * aMaskBuffer[0]; |
|
228 const TUint32 srcMult = srcAlpha * 255; |
|
229 const TUint32 destMult = (255*255 - srcAlpha) * componentPtr[3]; |
|
230 componentPtr[0] = TUint8(((blue * srcMult) + (componentPtr[0] * destMult)) / (255*255*255)); |
|
231 componentPtr[1] = TUint8(((green * srcMult) + (componentPtr[1] * destMult)) / (255*255*255)); |
|
232 componentPtr[2] = TUint8(((red * srcMult) + (componentPtr[2] * destMult)) / (255*255*255)); |
|
233 componentPtr[3] = TUint8((srcMult + destMult) / (255*255)); |
|
234 // ie alpha' = srcAlpha + (1-srcAlpha)*destAlpha |
|
235 |
|
236 pixelPtr += pixelPtrInc; |
|
237 aMaskBuffer++; |
|
238 } |
|
239 } |
|
240 } |
|
241 |
|
242 void CDrawThirtyTwoBppBitmapAlpha::WriteRgb(TInt aX,TInt aY,TRgb aColor) |
|
243 { |
|
244 const TInt sourceAlpha = aColor.Alpha(); |
|
245 |
|
246 if(sourceAlpha==255) |
|
247 { |
|
248 TUint32* componentPtr = PixelAddress(aX,aY); |
|
249 *componentPtr=aColor.Internal(); |
|
250 } |
|
251 else if (sourceAlpha==0) |
|
252 { |
|
253 return; |
|
254 } |
|
255 else |
|
256 { |
|
257 TUint8* componentPtr = reinterpret_cast <TUint8*> (PixelAddress(aX,aY)); |
|
258 const TUint32 srcMult = sourceAlpha * 255; |
|
259 const TUint32 destMult = (255 - sourceAlpha) * componentPtr[3]; |
|
260 componentPtr[0] = TUint8(((aColor.Blue() * srcMult) + (componentPtr[0] * destMult)) / (255*255)); |
|
261 componentPtr[1] = TUint8(((aColor.Green() * srcMult) + (componentPtr[1] * destMult)) / (255*255)); |
|
262 componentPtr[2] = TUint8(((aColor.Red() * srcMult) + (componentPtr[2] * destMult)) / (255*255)); |
|
263 componentPtr[3] = TUint8((srcMult + destMult) / 255); |
|
264 // ie alpha' = srcAlpha + (1-srcAlpha)*destAlpha |
|
265 } |
|
266 } |
|
267 |
|
268 void CDrawThirtyTwoBppBitmapAlpha::WriteBinary(TInt aX,TInt aY,TUint32* aBuffer,TInt aLength,TInt aHeight,TRgb aColor) |
|
269 { |
|
270 const TInt sourceAlpha = aColor.Alpha(); |
|
271 if (sourceAlpha==255) |
|
272 { |
|
273 CDrawThirtyTwoBppBitmapCommon::WriteBinary(aX,aY,aBuffer,aLength,aHeight,aColor); |
|
274 return; |
|
275 } |
|
276 if (sourceAlpha==0) |
|
277 return; |
|
278 |
|
279 DeOrientate(aX,aY); |
|
280 |
|
281 TInt pixelInc; |
|
282 TInt rowInc; |
|
283 |
|
284 switch(iOrientation) |
|
285 { |
|
286 case EOrientationNormal: |
|
287 { |
|
288 pixelInc = 1; |
|
289 rowInc = iScanLineWords; |
|
290 break; |
|
291 } |
|
292 case EOrientationRotated90: |
|
293 { |
|
294 pixelInc = iScanLineWords; |
|
295 rowInc = -1; |
|
296 break; |
|
297 } |
|
298 case EOrientationRotated180: |
|
299 { |
|
300 pixelInc = -1; |
|
301 rowInc = -iScanLineWords; |
|
302 break; |
|
303 } |
|
304 default: // EOrientationRotated270 |
|
305 { |
|
306 pixelInc = -iScanLineWords; |
|
307 rowInc = 1; |
|
308 } |
|
309 } |
|
310 |
|
311 const TUint32* dataLimit = aBuffer + aHeight; |
|
312 const TUint32 dataMaskLimit = (aLength < 32) ? 1 << aLength : 0; |
|
313 |
|
314 TUint32* pixelPtr = PixelAddress(aX,aY); |
|
315 |
|
316 const TInt sourceRed = aColor.Red(); |
|
317 const TInt sourceGreen = aColor.Green(); |
|
318 const TInt sourceBlue = aColor.Blue(); |
|
319 |
|
320 while (aBuffer < dataLimit) |
|
321 { |
|
322 TUint32 dataWord = *aBuffer++; |
|
323 TUint32 dataMask = 1; |
|
324 TUint32* tempPixelPtr = pixelPtr; |
|
325 |
|
326 while (dataMask != dataMaskLimit) |
|
327 { |
|
328 if(dataWord & dataMask) |
|
329 { |
|
330 TUint8* componentPtr = reinterpret_cast <TUint8*> (tempPixelPtr); |
|
331 const TUint32 srcMult = sourceAlpha * 255; |
|
332 const TUint32 destMult = (255 - sourceAlpha) * componentPtr[3]; |
|
333 componentPtr[0] = TUint8(((sourceBlue * srcMult) + (componentPtr[0] * destMult)) / (255*255)); |
|
334 componentPtr[1] = TUint8(((sourceGreen * srcMult) + (componentPtr[1] * destMult)) / (255*255)); |
|
335 componentPtr[2] = TUint8(((sourceRed * srcMult) + (componentPtr[2] * destMult)) / (255*255)); |
|
336 componentPtr[3] = TUint8((srcMult + destMult) / 255); |
|
337 // ie alpha' = srcAlpha + (1-srcAlpha)*destAlpha |
|
338 } |
|
339 |
|
340 tempPixelPtr += pixelInc; |
|
341 dataMask <<= 1; |
|
342 } |
|
343 |
|
344 pixelPtr += rowInc; |
|
345 } |
|
346 } |
|
347 |
|
348 void CDrawThirtyTwoBppBitmapAlpha::WriteBinaryLineVertical(TInt aX,TInt aY,TUint32* aBuffer,TInt aHeight,TRgb aColor,TBool aUp) |
|
349 { |
|
350 const TInt sourceAlpha = aColor.Alpha(); |
|
351 if (sourceAlpha==255) |
|
352 { |
|
353 CDrawThirtyTwoBppBitmapCommon::WriteBinaryLineVertical(aX,aY,aBuffer,aHeight,aColor,aUp); |
|
354 return; |
|
355 } |
|
356 if (sourceAlpha==0) |
|
357 return; |
|
358 |
|
359 DeOrientate(aX,aY); |
|
360 |
|
361 TInt scanlineWordLength; |
|
362 |
|
363 switch(iOrientation) |
|
364 { |
|
365 case EOrientationNormal: |
|
366 scanlineWordLength = iScanLineWords; |
|
367 break; |
|
368 case EOrientationRotated90: |
|
369 scanlineWordLength = -1; |
|
370 break; |
|
371 case EOrientationRotated180: |
|
372 scanlineWordLength = -iScanLineWords; |
|
373 break; |
|
374 default: // EOrientationRotated270 |
|
375 scanlineWordLength = 1; |
|
376 } |
|
377 |
|
378 if (aUp) |
|
379 scanlineWordLength = -scanlineWordLength; |
|
380 |
|
381 TUint32* pixelPtr = PixelAddress(aX,aY); |
|
382 const TUint32* pixelPtrLimit = pixelPtr + (aHeight * scanlineWordLength); |
|
383 TUint32 dataWord = *aBuffer; |
|
384 TUint32 dataMask = 1; |
|
385 |
|
386 const TInt sourceRed = aColor.Red(); |
|
387 const TInt sourceGreen = aColor.Green(); |
|
388 const TInt sourceBlue = aColor.Blue(); |
|
389 |
|
390 while(pixelPtr != pixelPtrLimit) |
|
391 { |
|
392 if(!dataMask) |
|
393 { |
|
394 dataMask = 1; |
|
395 aBuffer++; |
|
396 dataWord = *aBuffer; |
|
397 } |
|
398 |
|
399 if(dataWord & dataMask) |
|
400 { |
|
401 TUint8* componentPtr = reinterpret_cast <TUint8*> (pixelPtr); |
|
402 const TUint32 srcMult = sourceAlpha * 255; |
|
403 const TUint32 destMult = (255 - sourceAlpha) * componentPtr[3]; |
|
404 componentPtr[0] = TUint8(((sourceBlue * srcMult) + (componentPtr[0] * destMult)) / (255*255)); |
|
405 componentPtr[1] = TUint8(((sourceGreen * srcMult) + (componentPtr[1] * destMult)) / (255*255)); |
|
406 componentPtr[2] = TUint8(((sourceRed * srcMult) + (componentPtr[2] * destMult)) / (255*255)); |
|
407 componentPtr[3] = TUint8((srcMult + destMult) / 255); |
|
408 // ie alpha' = srcAlpha + (1-srcAlpha)*destAlpha |
|
409 } |
|
410 |
|
411 dataMask <<= 1; |
|
412 pixelPtr += scanlineWordLength; |
|
413 } |
|
414 } |
|
415 |
|
416 void CDrawThirtyTwoBppBitmapAlpha::MapBufferToUserDisplayMode(TInt aLength,TUint32* aBuffer) |
|
417 { |
|
418 const TUint32* bufferLimit = aBuffer + aLength; |
|
419 TRgb color; |
|
420 |
|
421 switch (iUserDispMode) |
|
422 { |
|
423 case EGray2: |
|
424 while (aBuffer < bufferLimit) |
|
425 { |
|
426 color = TRgb::_Color16MA(*aBuffer); |
|
427 color = TRgb::_Gray2(color._Gray2()); |
|
428 *aBuffer++ = color._Color16MA(); |
|
429 } |
|
430 break; |
|
431 case EGray4: |
|
432 while (aBuffer < bufferLimit) |
|
433 { |
|
434 color = TRgb::_Color16MA(*aBuffer); |
|
435 color = TRgb::_Gray4(color._Gray4()); |
|
436 *aBuffer++ = color._Color16MA(); |
|
437 } |
|
438 break; |
|
439 case EGray16: |
|
440 while (aBuffer < bufferLimit) |
|
441 { |
|
442 color = TRgb::_Color16MA(*aBuffer); |
|
443 color = TRgb::_Gray16(color._Gray16()); |
|
444 *aBuffer++ = color._Color16MA(); |
|
445 } |
|
446 break; |
|
447 case EGray256: |
|
448 while (aBuffer < bufferLimit) |
|
449 { |
|
450 color = TRgb::_Color16MA(*aBuffer); |
|
451 color = TRgb::_Gray256(color._Gray256()); |
|
452 *aBuffer++ = color._Color16MA(); |
|
453 } |
|
454 break; |
|
455 case EColor16: |
|
456 while (aBuffer < bufferLimit) |
|
457 { |
|
458 color = TRgb::_Color16MA(*aBuffer); |
|
459 color = TRgb::Color16(color.Color16()); |
|
460 *aBuffer++ = color._Color16MA(); |
|
461 } |
|
462 break; |
|
463 case EColor256: |
|
464 while (aBuffer < bufferLimit) |
|
465 { |
|
466 color = TRgb::_Color16MA(*aBuffer); |
|
467 color = TRgb::Color256(color.Color256()); |
|
468 *aBuffer++ = color._Color16MA(); |
|
469 } |
|
470 break; |
|
471 case EColor4K: |
|
472 while (aBuffer < bufferLimit) |
|
473 { |
|
474 color = TRgb::_Color16MA(*aBuffer); |
|
475 color = TRgb::_Color4K(color._Color4K()); |
|
476 *aBuffer++ = color._Color16MA(); |
|
477 } |
|
478 break; |
|
479 case EColor64K: |
|
480 while (aBuffer < bufferLimit) |
|
481 { |
|
482 color = TRgb::_Color16MA(*aBuffer); |
|
483 color = TRgb::_Color64K(color._Color64K()); |
|
484 *aBuffer++ = color._Color16MA(); |
|
485 } |
|
486 break; |
|
487 default: |
|
488 break; |
|
489 } |
|
490 } |
|
491 |
|
492 void CDrawThirtyTwoBppBitmapAlpha::BlendRgbMulti(TInt aX,TInt aY,TInt aLength,TInt aHeight,TRgb aColor) |
|
493 { |
|
494 const TInt sourceAlpha = aColor.Alpha(); |
|
495 if (sourceAlpha==255)// opaque |
|
496 { |
|
497 WriteRgbMulti(aX,aY,aLength,aHeight,aColor); |
|
498 return; |
|
499 } |
|
500 if (sourceAlpha==0)// transparent |
|
501 return; |
|
502 |
|
503 TUint32* pixelPtr = PixelAddress(aX,aY); |
|
504 TUint32* pixelRowPtrLimit = pixelPtr + (aHeight * iScanLineWords); |
|
505 TUint32* pixelPtrLimit = pixelPtr + aLength; |
|
506 |
|
507 const TInt sourceRed = aColor.Red(); |
|
508 const TInt sourceGreen = aColor.Green(); |
|
509 const TInt sourceBlue = aColor.Blue(); |
|
510 TUint srcValue = aColor._Color16MA(); |
|
511 while (pixelPtr < pixelRowPtrLimit) |
|
512 { |
|
513 for (TUint32* tempPixelPtr = pixelPtr; tempPixelPtr < pixelPtrLimit; tempPixelPtr++) |
|
514 { |
|
515 // check that the alpha value is not 0xFF |
|
516 if((*tempPixelPtr & 0xFF000000) ^ 0xFF000000) |
|
517 { |
|
518 TUint8* componentPtr = reinterpret_cast <TUint8*> (tempPixelPtr); |
|
519 const TUint32 srcMult = sourceAlpha * 255; |
|
520 const TUint32 destMult = (255 - sourceAlpha) * componentPtr[3]; |
|
521 componentPtr[0] = TUint8(((sourceBlue * srcMult) + (componentPtr[0] * destMult)) / (255*255)); |
|
522 componentPtr[1] = TUint8(((sourceGreen * srcMult) + (componentPtr[1] * destMult)) / (255*255)); |
|
523 componentPtr[2] = TUint8(((sourceRed * srcMult) + (componentPtr[2] * destMult)) / (255*255)); |
|
524 componentPtr[3] = TUint8((srcMult + destMult) / 255); |
|
525 } |
|
526 else |
|
527 { |
|
528 AlphaBlendPixelToDest(srcValue, (TUint8)sourceAlpha, tempPixelPtr); |
|
529 } |
|
530 |
|
531 // ie alpha' = srcAlpha + (1-srcAlpha)*destAlpha |
|
532 } |
|
533 |
|
534 pixelPtr += iScanLineWords; |
|
535 pixelPtrLimit += iScanLineWords; |
|
536 } |
|
537 } |
|
538 |
|
539 void CDrawThirtyTwoBppBitmapAlpha::BlendLine(TInt aX,TInt aY,TInt aLength,TUint32* aBuffer) |
|
540 { |
|
541 TUint32* pixelPtr = PixelAddress(aX,aY); |
|
542 |
|
543 const TUint32* bufferPtrLimit = aBuffer + aLength; |
|
544 const TInt pixelPtrInc = (iOrientation == EOrientationNormal) ? 1 : PixelAddressIncrement(); |
|
545 |
|
546 while (aBuffer < bufferPtrLimit) |
|
547 { |
|
548 *pixelPtr = OptimizedBlend32A(*pixelPtr, *aBuffer, (*aBuffer)>>24); |
|
549 |
|
550 aBuffer++; |
|
551 pixelPtr += pixelPtrInc; |
|
552 } |
|
553 } |
|
554 |
|
555 TRgb CDrawThirtyTwoBppBitmapAlpha::RgbColor(TUint32 aColor) const |
|
556 { |
|
557 return TRgb::_Color16MA(aColor); |
|
558 } |
|
559 |
|
560 TUint32 CDrawThirtyTwoBppBitmapAlpha::Color(const TRgb& aColor) |
|
561 { |
|
562 return aColor._Color16MA(); |
|
563 } |
|
564 |
|
565 void CDrawThirtyTwoBppBitmapAlpha::ShadowArea(const TRect& aRect) |
|
566 { |
|
567 const TRect rect(DeOrientate(aRect)); |
|
568 |
|
569 __ASSERT_DEBUG(rect.iTl.iX>=0 && rect.iBr.iX<=iSize.iWidth,Panic(EScreenDriverPanicOutOfBounds)); |
|
570 __ASSERT_DEBUG(rect.iTl.iY>=0 && rect.iBr.iY<=iSize.iHeight,Panic(EScreenDriverPanicOutOfBounds)); |
|
571 |
|
572 TUint32* pixelPtr = PixelAddress(rect.iTl.iX,rect.iTl.iY); |
|
573 TUint32* pixelRowPtrLimit = pixelPtr + (rect.Height() * iScanLineWords); |
|
574 |
|
575 TUint32* pixelRowPtr = pixelPtr; |
|
576 TUint32* pixelPtrLimit = pixelPtr + rect.Width(); |
|
577 |
|
578 if (iShadowMode & EFade) |
|
579 { |
|
580 #if !defined(SYMBIAN_USE_FAST_FADING) |
|
581 const TInt wordFadeMapOffset = ((iFadeMapOffset & 0xff) << 16) | (iFadeMapOffset & 0xff); |
|
582 #endif |
|
583 while (pixelRowPtr < pixelRowPtrLimit) |
|
584 { |
|
585 TUint32* tempPixelPtr = pixelRowPtr; |
|
586 |
|
587 while (tempPixelPtr < pixelPtrLimit) |
|
588 { |
|
589 const TUint32 color = *tempPixelPtr; |
|
590 #if defined(SYMBIAN_USE_FAST_FADING) |
|
591 *tempPixelPtr++ = (color & 0xff000000) | ((((color & 0x00ffffff) >> 1) & ~0x00808080) + (SYMBIAN_USE_FAST_FADING)); |
|
592 #else |
|
593 const TInt rb = ((((color & 0x00ff00ff) * iFadeMapFactor) >> 8) + wordFadeMapOffset) & 0x00ff00ff; |
|
594 const TInt g = ((((color & 0x0000ff00) * iFadeMapFactor) >> 16) + iFadeMapOffset) << 8; |
|
595 *tempPixelPtr++ = (color & 0xff000000) | rb | g; |
|
596 #endif |
|
597 } |
|
598 |
|
599 pixelRowPtr += iScanLineWords; |
|
600 pixelPtrLimit += iScanLineWords; |
|
601 } |
|
602 } |
|
603 |
|
604 if (iShadowMode & EShadow) |
|
605 { |
|
606 pixelRowPtr = pixelPtr; |
|
607 pixelPtrLimit = pixelPtr + rect.Width(); |
|
608 |
|
609 while (pixelRowPtr < pixelRowPtrLimit) |
|
610 { |
|
611 TUint32* tempPixelPtr = pixelRowPtr; |
|
612 |
|
613 while (tempPixelPtr < pixelPtrLimit) |
|
614 { |
|
615 const TUint32 color = *tempPixelPtr; |
|
616 const TInt r = (color & 0x00c00000) ? ((color & 0x00ff0000)-0x00400000) : 0; |
|
617 const TInt g = (color & 0x0000c000) ? ((color & 0x0000ff00)-0x00004000) : 0; |
|
618 const TInt b = (color & 0x000000c0) ? ((color & 0x000000ff)-0x00000040) : 0; |
|
619 *tempPixelPtr++ = (color & 0xff000000) | r | g | b; |
|
620 } |
|
621 |
|
622 pixelRowPtr += iScanLineWords; |
|
623 pixelPtrLimit += iScanLineWords; |
|
624 } |
|
625 } |
|
626 } |
|
627 |
|
628 TInt CDrawThirtyTwoBppBitmapAlpha::WriteRgbOutlineAndShadow(TInt aX, TInt aY, const TInt aLength, |
|
629 TUint32 aOutlinePenColor, TUint32 aShadowColor, |
|
630 TUint32 aFillColor, const TUint8* aDataBuffer) |
|
631 { |
|
632 DeOrientate(aX,aY); |
|
633 TUint32* pixelPtr = PixelAddress(aX,aY); |
|
634 const TInt pixelPtrInc = PixelAddressIncrement(); |
|
635 const TUint8* dataBufferPtrLimit = aDataBuffer + aLength; |
|
636 TInt blendedRedColor; |
|
637 TInt blendedGreenColor; |
|
638 TInt blendedBlueColor; |
|
639 TUint8 index = 0; |
|
640 TUint32 finalColor; |
|
641 |
|
642 //Get red color. Equivalent to TRgb::Red() |
|
643 const TInt redOutlinePenColor = (aOutlinePenColor & 0xff0000) >> 16; |
|
644 const TInt redShadowColor = (aShadowColor & 0xff0000) >> 16; |
|
645 const TInt redFillColor = (aFillColor & 0xff0000) >> 16; |
|
646 |
|
647 //Get green color. Equivalent to TRgb::Green() |
|
648 const TInt greenOutlinePenColor = (aOutlinePenColor & 0xff00) >> 8; |
|
649 const TInt greenShadowColor = (aShadowColor & 0xff00) >> 8; |
|
650 const TInt greenFillColor = (aFillColor & 0xff00) >> 8; |
|
651 |
|
652 //Get blue color. Equivalent to TRgb::Blue() |
|
653 const TInt blueOutlinePenColor = aOutlinePenColor & 0xff; |
|
654 const TInt blueShadowColor = aShadowColor & 0xff; |
|
655 const TInt blueFillColor = aFillColor & 0xff; |
|
656 const TInt alpha = aOutlinePenColor >> 24; |
|
657 |
|
658 while (aDataBuffer < dataBufferPtrLimit) |
|
659 { |
|
660 index = *aDataBuffer++; |
|
661 if(255 == FourColorBlendLookup[index][KBackgroundColorIndex]) |
|
662 { |
|
663 //background colour |
|
664 //No drawing required so move on to next pixel. |
|
665 pixelPtr += pixelPtrInc; |
|
666 continue; |
|
667 } |
|
668 else if (255 == FourColorBlendLookup[index][KFillColorIndex]) |
|
669 { |
|
670 //Use fill colour to draw |
|
671 finalColor = aFillColor; |
|
672 } |
|
673 else if (255 == FourColorBlendLookup[index][KShadowColorIndex]) |
|
674 { |
|
675 //Use shadow colour to draw |
|
676 finalColor = aShadowColor; |
|
677 } |
|
678 else if (255 == FourColorBlendLookup[index][KOutlineColorIndex]) |
|
679 { |
|
680 //Use outline colour to draw |
|
681 finalColor = aOutlinePenColor; |
|
682 } |
|
683 else |
|
684 { |
|
685 const TUint32 backgroundColor = *pixelPtr; |
|
686 |
|
687 blendedRedColor = (redOutlinePenColor * FourColorBlendLookup[index][KOutlineColorIndex] + |
|
688 redShadowColor * FourColorBlendLookup[index][KShadowColorIndex] + |
|
689 redFillColor * FourColorBlendLookup[index][KFillColorIndex] + |
|
690 ((backgroundColor & 0xff0000) >> 16) * FourColorBlendLookup[index][KBackgroundColorIndex]) >> 8; |
|
691 |
|
692 blendedGreenColor = (greenOutlinePenColor * FourColorBlendLookup[index][KOutlineColorIndex] + |
|
693 greenShadowColor * FourColorBlendLookup[index][KShadowColorIndex] + |
|
694 greenFillColor * FourColorBlendLookup[index][KFillColorIndex] + |
|
695 ((backgroundColor & 0xff00) >> 8) * FourColorBlendLookup[index][KBackgroundColorIndex]) >> 8; |
|
696 |
|
697 blendedBlueColor = (blueOutlinePenColor * FourColorBlendLookup[index][KOutlineColorIndex] + |
|
698 blueShadowColor * FourColorBlendLookup[index][KShadowColorIndex] + |
|
699 blueFillColor * FourColorBlendLookup[index][KFillColorIndex] + |
|
700 (backgroundColor & 0xff) * FourColorBlendLookup[index][KBackgroundColorIndex]) >> 8; |
|
701 |
|
702 finalColor = (blendedRedColor << 16) | (blendedGreenColor << 8) | blendedBlueColor | 0xff000000; |
|
703 } |
|
704 *pixelPtr = OptimizedBlend32A(*pixelPtr, finalColor, alpha); |
|
705 pixelPtr += pixelPtrInc; |
|
706 } |
|
707 return KErrNone; |
|
708 } |