egl/sfopenvg/riPath.cpp
branchEGL_MERGE
changeset 57 2bf8a359aa2f
child 88 a5a3a8cb368e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/egl/sfopenvg/riPath.cpp	Wed May 12 11:20:41 2010 +0100
@@ -0,0 +1,2580 @@
+/*------------------------------------------------------------------------
+ *
+ * OpenVG 1.1 Reference Implementation
+ * -----------------------------------
+ *
+ * Copyright (c) 2007 The Khronos Group Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and /or associated documentation files
+ * (the "Materials "), to deal in the Materials without restriction,
+ * including without limitation the rights to use, copy, modify, merge,
+ * publish, distribute, sublicense, and/or sell copies of the Materials,
+ * and to permit persons to whom the Materials are furnished to do so,
+ * subject to the following conditions: 
+ *
+ * The above copyright notice and this permission notice shall be included 
+ * in all copies or substantial portions of the Materials. 
+ *
+ * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+ * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
+ * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR
+ * THE USE OR OTHER DEALINGS IN THE MATERIALS.
+ *
+ *//**
+ * \file
+ * \brief	Implementation of Path functions.
+ * \note	
+ *//*-------------------------------------------------------------------*/
+
+#include "riPath.h"
+
+using namespace OpenVGRI;
+//==============================================================================================
+
+
+//==============================================================================================
+
+namespace OpenVGRI
+{
+
+RIfloat inputFloat(VGfloat f);	//defined in riApi.cpp
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Form a reliable normalized average of the two unit input vectors.
+*           The average always lies to the given direction from the first
+*			vector.
+* \param	u0, u1 Unit input vectors.
+* \param	cw True if the average should be clockwise from u0, false if
+*              counterclockwise.
+* \return	Average of the two input vectors.
+* \note		
+*//*-------------------------------------------------------------------*/
+
+static const Vector2 unitAverage(const Vector2& u0, const Vector2& u1, bool cw)
+{
+	Vector2 u = 0.5f * (u0 + u1);
+	Vector2 n0 = perpendicularCCW(u0);
+
+	if( dot(u, u) > 0.25f )
+	{	//the average is long enough and thus reliable
+		if( dot(n0, u1) < 0.0f )
+			u = -u;	//choose the larger angle
+	}
+	else
+	{	// the average is too short, use the average of the normals to the vectors instead
+		Vector2 n1 = perpendicularCW(u1);
+		u = 0.5f * (n0 + n1);
+	}
+	if( cw )
+		u = -u;
+
+	return normalize(u);
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Form a reliable normalized average of the two unit input vectors.
+*			The average lies on the side where the angle between the input
+*			vectors is less than 180 degrees.
+* \param	u0, u1 Unit input vectors.
+* \return	Average of the two input vectors.
+* \note		
+*//*-------------------------------------------------------------------*/
+
+static const Vector2 unitAverage(const Vector2& u0, const Vector2& u1)
+{
+	Vector2 u = 0.5f * (u0 + u1);
+
+	if( dot(u, u) < 0.25f )
+	{	// the average is unreliable, use the average of the normals to the vectors instead
+		Vector2 n0 = perpendicularCCW(u0);
+		Vector2 n1 = perpendicularCW(u1);
+		u = 0.5f * (n0 + n1);
+		if( dot(n1, u0) < 0.0f )
+			u = -u;
+	}
+
+	return normalize(u);
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Interpolate the given unit tangent vectors to the given
+*			direction on a unit circle.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+static const Vector2 circularLerp(const Vector2& t0, const Vector2& t1, RIfloat ratio, bool cw)
+{
+	Vector2 u0 = t0, u1 = t1;
+	RIfloat l0 = 0.0f, l1 = 1.0f;
+	for(int i=0;i<18;i++)
+	{
+		Vector2 n = unitAverage(u0, u1, cw);
+		RIfloat l = 0.5f * (l0 + l1);
+		if( ratio < l )
+		{
+			u1 = n;
+			l1 = l;
+		}
+		else
+		{
+			u0 = n;
+			l0 = l;
+		}
+	}
+	return u0;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Interpolate the given unit tangent vectors on a unit circle.
+*			Smaller angle between the vectors is used.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+static const Vector2 circularLerp(const Vector2& t0, const Vector2& t1, RIfloat ratio)
+{
+	Vector2 u0 = t0, u1 = t1;
+	RIfloat l0 = 0.0f, l1 = 1.0f;
+	for(int i=0;i<18;i++)
+	{
+		Vector2 n = unitAverage(u0, u1);
+		RIfloat l = 0.5f * (l0 + l1);
+		if( ratio < l )
+		{
+			u1 = n;
+			l1 = l;
+		}
+		else
+		{
+			u0 = n;
+			l0 = l;
+		}
+	}
+	return u0;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Path constructor.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+Path::Path(VGint format, VGPathDatatype datatype, RIfloat scale, RIfloat bias, int segmentCapacityHint, int coordCapacityHint, VGbitfield caps) :
+	m_format(format),
+	m_datatype(datatype),
+	m_scale(scale),
+	m_bias(bias),
+	m_capabilities(caps),
+	m_referenceCount(0),
+	m_segments(),
+	m_data(),
+	m_vertices(),
+	m_segmentToVertex(),
+	m_userMinx(0.0f),
+	m_userMiny(0.0f),
+	m_userMaxx(0.0f),
+	m_userMaxy(0.0f)
+{
+	RI_ASSERT(format == VG_PATH_FORMAT_STANDARD);
+	RI_ASSERT(datatype >= VG_PATH_DATATYPE_S_8 && datatype <= VG_PATH_DATATYPE_F);
+	if(segmentCapacityHint > 0)
+		m_segments.reserve(RI_INT_MIN(segmentCapacityHint, 65536));
+	if(coordCapacityHint > 0)
+		m_data.reserve(RI_INT_MIN(coordCapacityHint, 65536) * getBytesPerCoordinate(datatype));
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Path destructor.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+Path::~Path()
+{
+	RI_ASSERT(m_referenceCount == 0);
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Reads a coordinate and applies scale and bias.
+* \param	
+* \return	
+*//*-------------------------------------------------------------------*/
+
+RIfloat Path::getCoordinate(int i) const
+{
+	RI_ASSERT(i >= 0 && i < m_data.size() / getBytesPerCoordinate(m_datatype));
+	RI_ASSERT(m_scale != 0.0f);
+
+	const RIuint8* ptr = &m_data[0];
+	switch(m_datatype)
+	{
+	case VG_PATH_DATATYPE_S_8:
+		return (RIfloat)(((const RIint8*)ptr)[i]) * m_scale + m_bias;
+
+	case VG_PATH_DATATYPE_S_16:
+		return (RIfloat)(((const RIint16*)ptr)[i]) * m_scale + m_bias;
+
+	case VG_PATH_DATATYPE_S_32:
+		return (RIfloat)(((const RIint32*)ptr)[i]) * m_scale + m_bias;
+
+	default:
+		RI_ASSERT(m_datatype == VG_PATH_DATATYPE_F);
+		return (RIfloat)(((const RIfloat32*)ptr)[i]) * m_scale + m_bias;
+	}
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Writes a coordinate, subtracting bias and dividing out scale.
+* \param	
+* \return	
+* \note		If the coordinates do not fit into path datatype range, they
+*			will overflow silently.
+*//*-------------------------------------------------------------------*/
+
+void Path::setCoordinate(Array<RIuint8>& data, VGPathDatatype datatype, RIfloat scale, RIfloat bias, int i, RIfloat c)
+{
+	RI_ASSERT(i >= 0 && i < data.size()/getBytesPerCoordinate(datatype));
+	RI_ASSERT(scale != 0.0f);
+
+	c -= bias;
+	c /= scale;
+
+	RIuint8* ptr = &data[0];
+	switch(datatype)
+	{
+	case VG_PATH_DATATYPE_S_8:
+		((RIint8*)ptr)[i] = (RIint8)floor(c + 0.5f);	//add 0.5 for correct rounding
+		break;
+
+	case VG_PATH_DATATYPE_S_16:
+		((RIint16*)ptr)[i] = (RIint16)floor(c + 0.5f);	//add 0.5 for correct rounding
+		break;
+
+	case VG_PATH_DATATYPE_S_32:
+		((RIint32*)ptr)[i] = (RIint32)floor(c + 0.5f);	//add 0.5 for correct rounding
+		break;
+
+	default:
+		RI_ASSERT(datatype == VG_PATH_DATATYPE_F);
+		((RIfloat32*)ptr)[i] = (RIfloat32)c;
+		break;
+	}
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Given a datatype, returns the number of bytes per coordinate.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+int Path::getBytesPerCoordinate(VGPathDatatype datatype)
+{
+	if(datatype == VG_PATH_DATATYPE_S_8)
+		return 1;
+	if(datatype == VG_PATH_DATATYPE_S_16)
+		return 2;
+	RI_ASSERT(datatype == VG_PATH_DATATYPE_S_32 || datatype == VG_PATH_DATATYPE_F);
+	return 4;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Given a path segment type, returns the number of coordinates
+*			it uses.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+int Path::segmentToNumCoordinates(VGPathSegment segment)
+{
+	RI_ASSERT(((int)segment >> 1) >= 0 && ((int)segment >> 1) <= 12);
+	static const int coords[13] = {0,2,2,1,1,4,6,2,4,5,5,5,5};
+	return coords[(int)segment >> 1];
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Computes the number of coordinates a segment sequence uses.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+int Path::countNumCoordinates(const RIuint8* segments, int numSegments)
+{
+	RI_ASSERT(segments);
+	RI_ASSERT(numSegments >= 0);
+
+	int coordinates = 0;
+	for(int i=0;i<numSegments;i++)
+		coordinates += segmentToNumCoordinates(getPathSegment(segments[i]));
+	return coordinates;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Clears path segments and data, and resets capabilities.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+void Path::clear(VGbitfield capabilities)
+{
+	m_segments.clear();
+	m_data.clear();
+	m_capabilities = capabilities;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Appends user segments and data.
+* \param	
+* \return	
+* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::appendData(const RIuint8* segments, int numSegments, const RIuint8* data)
+{
+	RI_ASSERT(numSegments > 0);
+	RI_ASSERT(segments && data);
+	RI_ASSERT(m_referenceCount > 0);
+
+	//allocate new arrays
+	int oldSegmentsSize = m_segments.size();
+	int newSegmentsSize = oldSegmentsSize + numSegments;
+	Array<RIuint8> newSegments;
+	newSegments.resize(newSegmentsSize);	//throws bad_alloc
+
+	int newCoords = countNumCoordinates(segments, numSegments);
+	int bytesPerCoordinate = getBytesPerCoordinate(m_datatype);
+	int newDataSize = m_data.size() + newCoords * bytesPerCoordinate;
+	Array<RIuint8> newData;
+	newData.resize(newDataSize);	//throws bad_alloc
+	//if we get here, the memory allocations have succeeded
+
+	//copy old segments and append new ones
+	if(m_segments.size())
+		memcpy(&newSegments[0], &m_segments[0], m_segments.size());
+	memcpy(&newSegments[0] + m_segments.size(), segments, numSegments);
+
+	//copy old data and append new ones
+	if(newData.size())
+	{
+		if(m_data.size())
+			memcpy(&newData[0], &m_data[0], m_data.size());
+		if(m_datatype == VG_PATH_DATATYPE_F)
+		{
+			RIfloat32* d = (RIfloat32*)(&newData[0] + m_data.size());
+			const RIfloat32* s = (const RIfloat32*)data;
+			for(int i=0;i<newCoords;i++)
+				*d++ = (RIfloat32)inputFloat(*s++);
+		}
+		else
+		{
+			memcpy(&newData[0] + m_data.size(), data, newCoords * bytesPerCoordinate);
+		}
+	}
+
+	RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
+
+	//replace old arrays
+	m_segments.swap(newSegments);
+	m_data.swap(newData);
+
+	int c = 0;
+	for(int i=0;i<m_segments.size();i++)
+	{
+		VGPathSegment segment = getPathSegment(m_segments[i]);
+		int coords = segmentToNumCoordinates(segment);
+		c += coords;
+	}
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Appends a path.
+* \param	
+* \return	
+* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::append(const Path* srcPath)
+{
+	RI_ASSERT(srcPath);
+	RI_ASSERT(m_referenceCount > 0 && srcPath->m_referenceCount > 0);
+
+	if(srcPath->m_segments.size())
+	{
+		//allocate new arrays
+		int newSegmentsSize = m_segments.size() + srcPath->m_segments.size();
+		Array<RIuint8> newSegments;
+		newSegments.resize(newSegmentsSize);	//throws bad_alloc
+
+		int newDataSize = m_data.size() + srcPath->getNumCoordinates() * getBytesPerCoordinate(m_datatype);
+		Array<RIuint8> newData;
+		newData.resize(newDataSize);	//throws bad_alloc
+		//if we get here, the memory allocations have succeeded
+
+		//copy old segments and append new ones
+		if(m_segments.size())
+			memcpy(&newSegments[0], &m_segments[0], m_segments.size());
+		if(srcPath->m_segments.size())
+			memcpy(&newSegments[0] + m_segments.size(), &srcPath->m_segments[0], srcPath->m_segments.size());
+
+		//copy old data and append new ones
+		if(m_data.size())
+			memcpy(&newData[0], &m_data[0], m_data.size());
+		for(int i=0;i<srcPath->getNumCoordinates();i++)
+			setCoordinate(newData, m_datatype, m_scale, m_bias, i + getNumCoordinates(), srcPath->getCoordinate(i));
+
+		RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
+
+		//replace old arrays
+		m_segments.swap(newSegments);
+		m_data.swap(newData);
+	}
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Modifies existing coordinate data.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+void Path::modifyCoords(int startIndex, int numSegments, const RIuint8* data)
+{
+	RI_ASSERT(numSegments > 0);
+	RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size());
+	RI_ASSERT(data);
+	RI_ASSERT(m_referenceCount > 0);
+
+	int startCoord = countNumCoordinates(&m_segments[0], startIndex);
+	int numCoords = countNumCoordinates(&m_segments[startIndex], numSegments);
+	if(!numCoords)
+		return;
+	int bytesPerCoordinate = getBytesPerCoordinate(m_datatype);
+	RIuint8* dst = &m_data[startCoord * bytesPerCoordinate];
+	if(m_datatype == VG_PATH_DATATYPE_F)
+	{
+		RIfloat32* d = (RIfloat32*)dst;
+		const RIfloat32* s = (const RIfloat32*)data;
+		for(int i=0;i<numCoords;i++)
+			*d++ = (RIfloat32)inputFloat(*s++);
+	}
+	else
+	{
+		memcpy(dst, data, numCoords*bytesPerCoordinate);
+	}
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Appends a transformed copy of the source path.
+* \param	
+* \return	
+* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::transform(const Path* srcPath, const Matrix3x3& matrix)
+{
+	RI_ASSERT(srcPath);
+	RI_ASSERT(m_referenceCount > 0 && srcPath->m_referenceCount > 0);
+	RI_ASSERT(matrix.isAffine());
+
+	if(!srcPath->m_segments.size())
+		return;
+
+	//count the number of resulting coordinates
+	int numSrcCoords = 0;
+	int numDstCoords = 0;
+	for(int i=0;i<srcPath->m_segments.size();i++)
+	{
+		VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
+		int coords = segmentToNumCoordinates(segment);
+		numSrcCoords += coords;
+		if(segment == VG_HLINE_TO || segment == VG_VLINE_TO)
+			coords = 2;	//convert hline and vline to lines
+		numDstCoords += coords;
+	}
+
+	//allocate new arrays
+	Array<RIuint8> newSegments;
+	newSegments.resize(m_segments.size() + srcPath->m_segments.size());	//throws bad_alloc
+	Array<RIuint8> newData;
+	newData.resize(m_data.size() + numDstCoords * getBytesPerCoordinate(m_datatype));	//throws bad_alloc
+	//if we get here, the memory allocations have succeeded
+
+	//copy old segments
+	if(m_segments.size())
+		memcpy(&newSegments[0], &m_segments[0], m_segments.size());
+
+	//copy old data
+	if(m_data.size())
+		memcpy(&newData[0], &m_data[0], m_data.size());
+
+	int srcCoord = 0;
+	int dstCoord = getNumCoordinates();
+	Vector2 s(0,0);		//the beginning of the current subpath
+	Vector2 o(0,0);		//the last point of the previous segment
+	for(int i=0;i<srcPath->m_segments.size();i++)
+	{
+		VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
+		VGPathAbsRel absRel = getPathAbsRel(srcPath->m_segments[i]);
+		int coords = segmentToNumCoordinates(segment);
+
+		switch(segment)
+		{
+		case VG_CLOSE_PATH:
+		{
+			RI_ASSERT(coords == 0);
+			o = s;
+			break;
+		}
+
+		case VG_MOVE_TO:
+		{
+			RI_ASSERT(coords == 2);
+			Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            Vector2 tc;
+
+			if (absRel == VG_ABSOLUTE)
+                tc = affineTransform(matrix, c);
+            else
+            {
+                tc = affineTangentTransform(matrix, c);
+				c += o;
+            }
+			
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
+			s = c;
+			o = c;
+			break;
+		}
+
+		case VG_LINE_TO:
+		{
+			RI_ASSERT(coords == 2);
+			Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            Vector2 tc;
+
+			if (absRel == VG_ABSOLUTE)
+                tc = affineTransform(matrix, c);
+            else
+            {
+                tc = affineTangentTransform(matrix, c);
+				c += o;
+            }
+
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
+			o = c;
+			break;
+		}
+
+		case VG_HLINE_TO:
+		{
+			RI_ASSERT(coords == 1);
+			Vector2 c(srcPath->getCoordinate(srcCoord+0), 0);
+            Vector2 tc;
+
+			if (absRel == VG_ABSOLUTE)
+            {
+                c.y = o.y;
+                tc = affineTransform(matrix, c);
+            }
+            else
+            {
+                tc = affineTangentTransform(matrix, c);
+				c += o;
+            }
+
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
+			o = c;
+			segment = VG_LINE_TO;
+			break;
+		}
+
+		case VG_VLINE_TO:
+		{
+			RI_ASSERT(coords == 1);
+			Vector2 c(0, srcPath->getCoordinate(srcCoord+0));
+            Vector2 tc;
+
+			if (absRel == VG_ABSOLUTE)
+            {
+                c.x = o.x;
+                tc = affineTransform(matrix, c);
+            }
+            else
+            {
+                tc = affineTangentTransform(matrix, c);
+				c += o;
+            }
+
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
+			o = c;
+			segment = VG_LINE_TO;
+			break;
+		}
+
+		case VG_QUAD_TO:
+		{
+			RI_ASSERT(coords == 4);
+			Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+			Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
+            Vector2 tc0, tc1;
+
+			if (absRel == VG_ABSOLUTE)
+            {
+                tc0 = affineTransform(matrix, c0);
+                tc1 = affineTransform(matrix, c1);
+            }
+            else
+            {
+                tc0 = affineTangentTransform(matrix, c0);
+                tc1 = affineTangentTransform(matrix, c1);
+                c1 += o;
+            }
+
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.x);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.y);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
+			o = c1;
+			break;
+		}
+
+		case VG_CUBIC_TO:
+		{
+			RI_ASSERT(coords == 6);
+			Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+			Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
+			Vector2 c2(srcPath->getCoordinate(srcCoord+4), srcPath->getCoordinate(srcCoord+5));
+            Vector2 tc0, tc1, tc2;
+
+			if (absRel == VG_ABSOLUTE)
+            {
+                tc0 = affineTransform(matrix, c0);
+                tc1 = affineTransform(matrix, c1);
+                tc2 = affineTransform(matrix, c2);
+            }
+            else
+            {
+                tc0 = affineTangentTransform(matrix, c0);
+                tc1 = affineTangentTransform(matrix, c1);
+                tc2 = affineTangentTransform(matrix, c2);
+                c2 += o;
+            }
+
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.x);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.y);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.x);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.y);
+			o = c2;
+			break;
+		}
+
+		case VG_SQUAD_TO:
+		{
+			RI_ASSERT(coords == 2);
+			Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+            Vector2 tc1;
+
+			if (absRel == VG_ABSOLUTE)
+                tc1 = affineTransform(matrix, c1);
+            else
+            {
+                tc1 = affineTangentTransform(matrix, c1);
+                c1 += o;
+            }
+
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
+			o = c1;
+			break;
+		}
+
+		case VG_SCUBIC_TO:
+		{
+			RI_ASSERT(coords == 4);
+			Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+			Vector2 c2(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
+            Vector2 tc1, tc2;
+
+			if (absRel == VG_ABSOLUTE)
+            {
+                tc1 = affineTransform(matrix, c1);
+                tc2 = affineTransform(matrix, c2);
+            }
+            else
+            {
+                tc1 = affineTangentTransform(matrix, c1);
+                tc2 = affineTangentTransform(matrix, c2);
+                c2 += o;
+            }
+
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.x);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.y);
+			o = c2;
+			break;
+		}
+
+		default:
+		{
+			RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
+					  segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
+			RI_ASSERT(coords == 5);
+			RIfloat rh = srcPath->getCoordinate(srcCoord+0);
+			RIfloat rv = srcPath->getCoordinate(srcCoord+1);
+			RIfloat rot = srcPath->getCoordinate(srcCoord+2);
+			Vector2 c(srcPath->getCoordinate(srcCoord+3), srcPath->getCoordinate(srcCoord+4));
+
+			rot = RI_DEG_TO_RAD(rot);
+			Matrix3x3 u((RIfloat)cos(rot)*rh, -(RIfloat)sin(rot)*rv,  0,
+						(RIfloat)sin(rot)*rh,  (RIfloat)cos(rot)*rv,  0,
+						0,                   0,                   1);
+			u = matrix * u;
+			u[2].set(0,0,1);		//force affinity
+			//u maps from the unit circle to transformed ellipse
+
+			//compute new rh, rv and rot
+			Vector2	p(u[0][0], u[1][0]);
+			Vector2	q(u[1][1], -u[0][1]);
+			bool swapped = false;
+			if(dot(p,p) < dot(q,q))
+			{
+				RI_SWAP(p.x,q.x);
+				RI_SWAP(p.y,q.y);
+				swapped = true;
+			}
+			Vector2 h = (p+q) * 0.5f;
+			Vector2 hp = (p-q) * 0.5f;
+			RIfloat hlen = h.length();
+			RIfloat hplen = hp.length();
+			rh = hlen + hplen;
+			rv = hlen - hplen;
+			h = hplen * h + hlen * hp;
+			hlen = dot(h,h);
+			if(hlen == 0.0f)
+				rot = 0.0f;
+			else
+			{
+				h.normalize();
+				rot = (RIfloat)acos(h.x);
+				if(h.y < 0.0f)
+					rot = 2.0f*PI - rot;
+			}
+			if(swapped)
+				rot += PI*0.5f;
+
+            Vector2 tc;
+			if (absRel == VG_ABSOLUTE)
+                tc = affineTransform(matrix, c);
+            else
+            {
+                tc = affineTangentTransform(matrix, c);
+                c += o;
+            }
+
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, rh);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, rv);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, RI_RAD_TO_DEG(rot));
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
+			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
+			o = c;
+
+            //flip winding if the determinant is negative
+            if (matrix.det() < 0)
+            {
+                switch (segment)
+                {
+                case VG_SCCWARC_TO: segment = VG_SCWARC_TO;     break;
+                case VG_SCWARC_TO:  segment = VG_SCCWARC_TO;    break;
+                case VG_LCCWARC_TO: segment = VG_LCWARC_TO;     break;
+                case VG_LCWARC_TO:  segment = VG_LCCWARC_TO;    break;
+                default:                                        break;
+                }
+            }
+            break;
+		}
+		}
+
+		newSegments[m_segments.size() + i] = (RIuint8)(segment | absRel);
+		srcCoord += coords;
+	}
+	RI_ASSERT(srcCoord == numSrcCoords);
+	RI_ASSERT(dstCoord == getNumCoordinates() + numDstCoords);
+
+	RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
+
+	//replace old arrays
+	m_segments.swap(newSegments);
+	m_data.swap(newData);
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Normalizes a path for interpolation.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+void Path::normalizeForInterpolation(const Path* srcPath)
+{
+	RI_ASSERT(srcPath);
+	RI_ASSERT(srcPath != this);
+	RI_ASSERT(srcPath->m_referenceCount > 0);
+
+	//count the number of resulting coordinates
+	int numSrcCoords = 0;
+	int numDstCoords = 0;
+	for(int i=0;i<srcPath->m_segments.size();i++)
+	{
+		VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
+		int coords = segmentToNumCoordinates(segment);
+		numSrcCoords += coords;
+		switch(segment)
+		{
+		case VG_CLOSE_PATH:
+		case VG_MOVE_TO:
+		case VG_LINE_TO:
+			break;
+
+		case VG_HLINE_TO:
+		case VG_VLINE_TO:
+			coords = 2;
+			break;
+
+		case VG_QUAD_TO:
+		case VG_CUBIC_TO:
+		case VG_SQUAD_TO:
+		case VG_SCUBIC_TO:
+			coords = 6;
+			break;
+
+		default:
+			RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
+					  segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
+			break;
+		}
+		numDstCoords += coords;
+	}
+
+	m_segments.resize(srcPath->m_segments.size());	//throws bad_alloc
+	m_data.resize(numDstCoords * getBytesPerCoordinate(VG_PATH_DATATYPE_F));	//throws bad_alloc
+
+	int srcCoord = 0;
+	int dstCoord = 0;
+	Vector2 s(0,0);		//the beginning of the current subpath
+	Vector2 o(0,0);		//the last point of the previous segment
+
+	// the last internal control point of the previous segment, if the
+	//segment was a (regular or smooth) quadratic or cubic
+	//Bezier, or else the last point of the previous segment
+	Vector2 p(0,0);		
+	for(int i=0;i<srcPath->m_segments.size();i++)
+	{
+		VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
+		VGPathAbsRel absRel = getPathAbsRel(srcPath->m_segments[i]);
+		int coords = segmentToNumCoordinates(segment);
+
+		switch(segment)
+		{
+		case VG_CLOSE_PATH:
+		{
+			RI_ASSERT(coords == 0);
+			p = s;
+			o = s;
+			break;
+		}
+
+		case VG_MOVE_TO:
+		{
+			RI_ASSERT(coords == 2);
+			Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+			if(absRel == VG_RELATIVE)
+				c += o;
+			setCoordinate(dstCoord++, c.x);
+			setCoordinate(dstCoord++, c.y);
+			s = c;
+			p = c;
+			o = c;
+			break;
+		}
+
+		case VG_LINE_TO:
+		{
+			RI_ASSERT(coords == 2);
+			Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+			if(absRel == VG_RELATIVE)
+				c += o;
+			setCoordinate(dstCoord++, c.x);
+			setCoordinate(dstCoord++, c.y);
+			p = c;
+			o = c;
+			break;
+		}
+
+		case VG_HLINE_TO:
+		{
+			RI_ASSERT(coords == 1);
+			Vector2 c(srcPath->getCoordinate(srcCoord+0), o.y);
+			if(absRel == VG_RELATIVE)
+				c.x += o.x;
+			setCoordinate(dstCoord++, c.x);
+			setCoordinate(dstCoord++, c.y);
+			p = c;
+			o = c;
+			segment = VG_LINE_TO;
+			break;
+		}
+
+		case VG_VLINE_TO:
+		{
+			RI_ASSERT(coords == 1);
+			Vector2 c(o.x, srcPath->getCoordinate(srcCoord+0));
+			if(absRel == VG_RELATIVE)
+				c.y += o.y;
+			setCoordinate(dstCoord++, c.x);
+			setCoordinate(dstCoord++, c.y);
+			p = c;
+			o = c;
+			segment = VG_LINE_TO;
+			break;
+		}
+
+		case VG_QUAD_TO:
+		{
+			RI_ASSERT(coords == 4);
+			Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+			Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
+			if(absRel == VG_RELATIVE)
+			{
+				c0 += o;
+				c1 += o;
+			}
+			Vector2 d0 = (1.0f/3.0f) * (o + 2.0f * c0);
+			Vector2 d1 = (1.0f/3.0f) * (c1 + 2.0f * c0);
+			setCoordinate(dstCoord++, d0.x);
+			setCoordinate(dstCoord++, d0.y);
+			setCoordinate(dstCoord++, d1.x);
+			setCoordinate(dstCoord++, d1.y);
+			setCoordinate(dstCoord++, c1.x);
+			setCoordinate(dstCoord++, c1.y);
+			p = c0;
+			o = c1;
+			segment = VG_CUBIC_TO;
+			break;
+		}
+
+		case VG_CUBIC_TO:
+		{
+			RI_ASSERT(coords == 6);
+			Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+			Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
+			Vector2 c2(srcPath->getCoordinate(srcCoord+4), srcPath->getCoordinate(srcCoord+5));
+			if(absRel == VG_RELATIVE)
+			{
+				c0 += o;
+				c1 += o;
+				c2 += o;
+			}
+			setCoordinate(dstCoord++, c0.x);
+			setCoordinate(dstCoord++, c0.y);
+			setCoordinate(dstCoord++, c1.x);
+			setCoordinate(dstCoord++, c1.y);
+			setCoordinate(dstCoord++, c2.x);
+			setCoordinate(dstCoord++, c2.y);
+			p = c1;
+			o = c2;
+			break;
+		}
+
+		case VG_SQUAD_TO:
+		{
+			RI_ASSERT(coords == 2);
+			Vector2 c0 = 2.0f * o - p;
+			Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+			if(absRel == VG_RELATIVE)
+				c1 += o;
+			Vector2 d0 = (1.0f/3.0f) * (o + 2.0f * c0);
+			Vector2 d1 = (1.0f/3.0f) * (c1 + 2.0f * c0);
+			setCoordinate(dstCoord++, d0.x);
+			setCoordinate(dstCoord++, d0.y);
+			setCoordinate(dstCoord++, d1.x);
+			setCoordinate(dstCoord++, d1.y);
+			setCoordinate(dstCoord++, c1.x);
+			setCoordinate(dstCoord++, c1.y);
+			p = c0;
+			o = c1;
+			segment = VG_CUBIC_TO;
+			break;
+		}
+
+		case VG_SCUBIC_TO:
+		{
+			RI_ASSERT(coords == 4);
+			Vector2 c0 = 2.0f * o - p;
+			Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
+			Vector2 c2(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
+			if(absRel == VG_RELATIVE)
+			{
+				c1 += o;
+				c2 += o;
+			}
+			setCoordinate(dstCoord++, c0.x);
+			setCoordinate(dstCoord++, c0.y);
+			setCoordinate(dstCoord++, c1.x);
+			setCoordinate(dstCoord++, c1.y);
+			setCoordinate(dstCoord++, c2.x);
+			setCoordinate(dstCoord++, c2.y);
+			p = c1;
+			o = c2;
+			segment = VG_CUBIC_TO;
+			break;
+		}
+
+		default:
+		{
+			RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
+					  segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
+			RI_ASSERT(coords == 5);
+			RIfloat rh = srcPath->getCoordinate(srcCoord+0);
+			RIfloat rv = srcPath->getCoordinate(srcCoord+1);
+			RIfloat rot = srcPath->getCoordinate(srcCoord+2);
+			Vector2 c(srcPath->getCoordinate(srcCoord+3), srcPath->getCoordinate(srcCoord+4));
+			if(absRel == VG_RELATIVE)
+				c += o;
+			setCoordinate(dstCoord++, rh);
+			setCoordinate(dstCoord++, rv);
+			setCoordinate(dstCoord++, rot);
+			setCoordinate(dstCoord++, c.x);
+			setCoordinate(dstCoord++, c.y);
+			p = c;
+			o = c;
+			break;
+		}
+		}
+
+		m_segments[i] = (RIuint8)(segment | VG_ABSOLUTE);
+		srcCoord += coords;
+	}
+	RI_ASSERT(srcCoord == numSrcCoords);
+	RI_ASSERT(dstCoord == numDstCoords);
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Appends a linearly interpolated copy of the two source paths.
+* \param	
+* \return	
+* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+bool Path::interpolate(const Path* startPath, const Path* endPath, RIfloat amount)
+{
+	RI_ASSERT(startPath && endPath);
+	RI_ASSERT(m_referenceCount > 0 && startPath->m_referenceCount > 0 && endPath->m_referenceCount > 0);
+
+	if(!startPath->m_segments.size() || startPath->m_segments.size() != endPath->m_segments.size())
+		return false;	//start and end paths are incompatible or zero length
+
+	Path start(VG_PATH_FORMAT_STANDARD, VG_PATH_DATATYPE_F, 1.0f, 0.0f, 0, 0, 0);
+	start.normalizeForInterpolation(startPath);	//throws bad_alloc
+
+	Path end(VG_PATH_FORMAT_STANDARD, VG_PATH_DATATYPE_F, 1.0f, 0.0f, 0, 0, 0);
+	end.normalizeForInterpolation(endPath);	//throws bad_alloc
+
+	//check that start and end paths are compatible
+	if(start.m_data.size() != end.m_data.size() || start.m_segments.size() != end.m_segments.size())
+		return false;	//start and end paths are incompatible
+
+	//allocate new arrays
+	Array<RIuint8> newSegments;
+	newSegments.resize(m_segments.size() + start.m_segments.size());	//throws bad_alloc
+	Array<RIuint8> newData;
+	newData.resize(m_data.size() + start.m_data.size() * getBytesPerCoordinate(m_datatype) / getBytesPerCoordinate(start.m_datatype));	//throws bad_alloc
+	//if we get here, the memory allocations have succeeded
+
+	//copy old segments
+	if(m_segments.size())
+		memcpy(&newSegments[0], &m_segments[0], m_segments.size());
+
+	//copy old data
+	if(m_data.size())
+		memcpy(&newData[0], &m_data[0], m_data.size());
+
+	//copy segments
+	for(int i=0;i<start.m_segments.size();i++)
+	{
+		VGPathSegment s = getPathSegment(start.m_segments[i]);
+		VGPathSegment e = getPathSegment(end.m_segments[i]);
+
+		if(s == VG_SCCWARC_TO || s == VG_SCWARC_TO || s == VG_LCCWARC_TO || s == VG_LCWARC_TO)
+		{
+			if(e != VG_SCCWARC_TO && e != VG_SCWARC_TO && e != VG_LCCWARC_TO && e != VG_LCWARC_TO)
+				return false;	//start and end paths are incompatible
+			if(amount < 0.5f)
+				newSegments[m_segments.size() + i] = start.m_segments[i];
+			else
+				newSegments[m_segments.size() + i] = end.m_segments[i];
+		}
+		else
+		{
+			if(s != e)
+				return false;	//start and end paths are incompatible
+			newSegments[m_segments.size() + i] = start.m_segments[i];
+		}
+	}
+
+	//interpolate data
+	int oldNumCoords = getNumCoordinates();
+	for(int i=0;i<start.getNumCoordinates();i++)
+		setCoordinate(newData, m_datatype, m_scale, m_bias, oldNumCoords + i, start.getCoordinate(i) * (1.0f - amount) + end.getCoordinate(i) * amount);
+
+	RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
+
+	//replace old arrays
+	m_segments.swap(newSegments);
+	m_data.swap(newData);
+
+	return true;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Tessellates a path for filling and appends resulting edges
+*			to a rasterizer.
+* \param	
+* \return	
+* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::fill(const Matrix3x3& pathToSurface, Rasterizer& rasterizer)
+{
+	RI_ASSERT(m_referenceCount > 0);
+	RI_ASSERT(pathToSurface.isAffine());
+
+	tessellate(pathToSurface, 0.0f);	//throws bad_alloc
+
+	try
+	{
+		Vector2 p0(0,0), p1(0,0);
+		for(int i=0;i<m_vertices.size();i++)
+		{
+			p1 = affineTransform(pathToSurface, m_vertices[i].userPosition);
+
+			if(!(m_vertices[i].flags & START_SEGMENT))
+			{	//in the middle of a segment
+				rasterizer.addEdge(p0, p1);	//throws bad_alloc
+			}
+
+			p0 = p1;
+		}
+	}
+	catch(std::bad_alloc)
+	{
+		rasterizer.clear();	//remove the unfinished path
+		throw;
+	}
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Smoothly interpolates between two StrokeVertices. Positions
+*			are interpolated linearly, while tangents are interpolated
+*			on a unit circle. Stroking is implemented so that overlapping
+*			geometry doesnt cancel itself when filled with nonzero rule.
+*			The resulting polygons are closed.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+void Path::interpolateStroke(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const StrokeVertex& v0, const StrokeVertex& v1, RIfloat strokeWidth) const
+{
+	Vector2 pccw = affineTransform(pathToSurface, v0.ccw);
+	Vector2 pcw = affineTransform(pathToSurface, v0.cw);
+	Vector2 p = affineTransform(pathToSurface, v0.p);
+	Vector2 endccw = affineTransform(pathToSurface, v1.ccw);
+	Vector2 endcw = affineTransform(pathToSurface, v1.cw);
+	Vector2 endp = affineTransform(pathToSurface, v1.p);
+
+	const RIfloat tessellationAngle = 5.0f;
+
+	RIfloat angle = RI_RAD_TO_DEG((RIfloat)acos(RI_CLAMP(dot(v0.t, v1.t), -1.0f, 1.0f))) / tessellationAngle;
+	int samples = RI_INT_MAX((int)ceil(angle), 1);
+
+	for(int j=0;j<samples-1;j++)
+	{
+		RIfloat t = (RIfloat)(j+1) / (RIfloat)samples;
+		Vector2 position = v0.p * (1.0f - t) + v1.p * t;
+		Vector2 tangent = circularLerp(v0.t, v1.t, t);
+		Vector2 normal = normalize(perpendicularCCW(tangent)) * strokeWidth * 0.5f;
+
+		Vector2 nccw = affineTransform(pathToSurface, position + normal);
+		Vector2 ncw = affineTransform(pathToSurface, position - normal);
+		Vector2 n = affineTransform(pathToSurface, position);
+
+        rasterizer.clear();
+		rasterizer.addEdge(p, pccw);	//throws bad_alloc
+		rasterizer.addEdge(pccw, nccw);	//throws bad_alloc
+		rasterizer.addEdge(nccw, n);	//throws bad_alloc
+		rasterizer.addEdge(n, ncw);     //throws bad_alloc
+		rasterizer.addEdge(ncw, pcw);	//throws bad_alloc
+		rasterizer.addEdge(pcw, p);	    //throws bad_alloc
+        rasterizer.fill();
+
+		pccw = nccw;
+		pcw = ncw;
+        p = n;
+	}
+
+	//connect the last segment to the end coordinates
+    rasterizer.clear();
+	rasterizer.addEdge(p, pccw);	    //throws bad_alloc
+	rasterizer.addEdge(pccw, endccw);	//throws bad_alloc
+	rasterizer.addEdge(endccw, endp);	//throws bad_alloc
+	rasterizer.addEdge(endp, endcw);	//throws bad_alloc
+	rasterizer.addEdge(endcw, pcw);     //throws bad_alloc
+	rasterizer.addEdge(pcw, p);         //throws bad_alloc
+    rasterizer.fill();
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Generate edges for stroke caps. Resulting polygons are closed.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+void Path::doCap(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const StrokeVertex& v, RIfloat strokeWidth, VGCapStyle capStyle) const
+{
+	Vector2 ccwt = affineTransform(pathToSurface, v.ccw);
+	Vector2 cwt = affineTransform(pathToSurface, v.cw);
+	Vector2 p = affineTransform(pathToSurface, v.p);
+
+    rasterizer.clear();
+	switch(capStyle)
+	{
+	case VG_CAP_BUTT:
+		break;
+
+	case VG_CAP_ROUND:
+	{
+        const RIfloat tessellationAngle = 5.0f;
+
+		RIfloat angle = 180.0f / tessellationAngle;
+
+		int samples = (int)ceil(angle);
+		RIfloat step = 1.0f / samples;
+		RIfloat t = step;
+		Vector2 u0 = normalize(v.ccw - v.p);
+		Vector2 u1 = normalize(v.cw - v.p);
+		Vector2 prev = ccwt;
+		rasterizer.addEdge(p, ccwt);	//throws bad_alloc
+		for(int j=1;j<samples;j++)
+		{
+			Vector2 next = v.p + circularLerp(u0, u1, t, true) * strokeWidth * 0.5f;
+			next = affineTransform(pathToSurface, next);
+
+			rasterizer.addEdge(prev, next);	//throws bad_alloc
+			prev = next;
+			t += step;
+		}
+		rasterizer.addEdge(prev, cwt);	//throws bad_alloc
+		rasterizer.addEdge(cwt, p);     //throws bad_alloc
+		break;
+	}
+
+	default:
+	{
+		RI_ASSERT(capStyle == VG_CAP_SQUARE);
+		Vector2 t = v.t;
+		t.normalize();
+		Vector2 ccws = affineTransform(pathToSurface, v.ccw + t * strokeWidth * 0.5f);
+		Vector2 cws = affineTransform(pathToSurface, v.cw + t * strokeWidth * 0.5f);
+		rasterizer.addEdge(p, ccwt);	//throws bad_alloc
+		rasterizer.addEdge(ccwt, ccws);	//throws bad_alloc
+		rasterizer.addEdge(ccws, cws);	//throws bad_alloc
+		rasterizer.addEdge(cws, cwt);	//throws bad_alloc
+		rasterizer.addEdge(cwt, p);     //throws bad_alloc
+		break;
+	}
+	}
+    rasterizer.fill();
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Generate edges for stroke joins. Resulting polygons are closed.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+void Path::doJoin(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const StrokeVertex& v0, const StrokeVertex& v1, RIfloat strokeWidth, VGJoinStyle joinStyle, RIfloat miterLimit) const
+{
+	Vector2 ccw0t = affineTransform(pathToSurface, v0.ccw);
+	Vector2 cw0t = affineTransform(pathToSurface, v0.cw);
+	Vector2 m0t = affineTransform(pathToSurface, v0.p);
+	Vector2 ccw1t = affineTransform(pathToSurface, v1.ccw);
+	Vector2 cw1t = affineTransform(pathToSurface, v1.cw);
+	Vector2 m1t = affineTransform(pathToSurface, v1.p);
+
+	Vector2 tccw = v1.ccw - v0.ccw;
+	Vector2 s, e, m, st, et;
+	bool cw;
+
+    rasterizer.clear();
+
+	if( dot(tccw, v0.t) > 0.0f )
+	{	//draw ccw miter (draw from point 0 to 1)
+		s = ccw0t;
+		e = ccw1t;
+		st = v0.t;
+		et = v1.t;
+		m = v0.ccw;
+		cw = false;
+		rasterizer.addEdge(m0t, ccw0t);	//throws bad_alloc
+		rasterizer.addEdge(ccw1t, m1t);	//throws bad_alloc
+		rasterizer.addEdge(m1t, m0t);	//throws bad_alloc
+	}
+	else
+	{	//draw cw miter (draw from point 1 to 0)
+		s = cw1t;
+		e = cw0t;
+		st = v1.t;
+		et = v0.t;
+		m = v0.cw;
+		cw = true;
+		rasterizer.addEdge(cw0t, m0t);	//throws bad_alloc
+		rasterizer.addEdge(m1t, cw1t);	//throws bad_alloc
+		rasterizer.addEdge(m0t, m1t);	//throws bad_alloc
+	}
+
+	switch(joinStyle)
+	{
+	case VG_JOIN_MITER:
+	{
+		RIfloat theta = (RIfloat)acos(RI_CLAMP(dot(v0.t, -v1.t), -1.0f, 1.0f));
+		RIfloat miterLengthPerStrokeWidth = 1.0f / (RIfloat)sin(theta*0.5f);
+		if( miterLengthPerStrokeWidth < miterLimit )
+		{	//miter
+			RIfloat l = (RIfloat)cos(theta*0.5f) * miterLengthPerStrokeWidth * (strokeWidth * 0.5f);
+			l = RI_MIN(l, RI_FLOAT_MAX);	//force finite
+			Vector2 c = m + v0.t * l;
+			c = affineTransform(pathToSurface, c);
+			rasterizer.addEdge(s, c);	//throws bad_alloc
+			rasterizer.addEdge(c, e);	//throws bad_alloc
+		}
+		else
+		{	//bevel
+			rasterizer.addEdge(s, e);	//throws bad_alloc
+		}
+		break;
+	}
+
+	case VG_JOIN_ROUND:
+	{
+		const RIfloat tessellationAngle = 5.0f;
+
+		Vector2 prev = s;
+		RIfloat angle = RI_RAD_TO_DEG((RIfloat)acos(RI_CLAMP(dot(st, et), -1.0f, 1.0f))) / tessellationAngle;
+		int samples = (int)ceil(angle);
+		if( samples )
+		{
+			RIfloat step = 1.0f / samples;
+			RIfloat t = step;
+			for(int j=1;j<samples;j++)
+			{
+				Vector2 position = v0.p * (1.0f - t) + v1.p * t;
+				Vector2 tangent = circularLerp(st, et, t, true);
+
+				Vector2 next = position + normalize(perpendicular(tangent, cw)) * strokeWidth * 0.5f;
+				next = affineTransform(pathToSurface, next);
+
+				rasterizer.addEdge(prev, next);	//throws bad_alloc
+				prev = next;
+				t += step;
+			}
+		}
+		rasterizer.addEdge(prev, e);	//throws bad_alloc
+		break;
+	}
+
+	default:
+		RI_ASSERT(joinStyle == VG_JOIN_BEVEL);
+		if(!cw)
+			rasterizer.addEdge(ccw0t, ccw1t);	//throws bad_alloc
+		else
+			rasterizer.addEdge(cw1t, cw0t);		//throws bad_alloc
+		break;
+	}
+    rasterizer.fill();
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Tessellate a path, apply stroking, dashing, caps and joins, and
+*			append resulting edges to a rasterizer.
+* \param	
+* \return	
+* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::stroke(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const Array<RIfloat>& dashPattern, RIfloat dashPhase, bool dashPhaseReset, RIfloat strokeWidth, VGCapStyle capStyle, VGJoinStyle joinStyle, RIfloat miterLimit)
+{
+	RI_ASSERT(pathToSurface.isAffine());
+	RI_ASSERT(m_referenceCount > 0);
+	RI_ASSERT(strokeWidth >= 0.0f);
+	RI_ASSERT(miterLimit >= 1.0f);
+
+	tessellate(pathToSurface, strokeWidth);	//throws bad_alloc
+
+	if(!m_vertices.size())
+		return;
+
+	bool dashing = true;
+	int dashPatternSize = dashPattern.size();
+	if( dashPattern.size() & 1 )
+		dashPatternSize--;	//odd number of dash pattern entries, discard the last one
+	RIfloat dashPatternLength = 0.0f;
+	for(int i=0;i<dashPatternSize;i++)
+		dashPatternLength += RI_MAX(dashPattern[i], 0.0f);
+	if(!dashPatternSize || dashPatternLength == 0.0f )
+		dashing = false;
+	dashPatternLength = RI_MIN(dashPatternLength, RI_FLOAT_MAX);
+
+	//walk along the path
+	//stop at the next event which is either:
+	//-path vertex
+	//-dash stop
+	//for robustness, decisions based on geometry are done only once.
+	//inDash keeps track whether the last point was in dash or not
+
+	//loop vertex events
+	try
+	{
+		RIfloat nextDash = 0.0f;
+		int d = 0;
+		bool inDash = true;
+		StrokeVertex v0, v1, vs;
+		for(int i=0;i<m_vertices.size();i++)
+		{
+			//read the next vertex
+			Vertex& v = m_vertices[i];
+			v1.p = v.userPosition;
+			v1.t = v.userTangent;
+			RI_ASSERT(!isZero(v1.t));	//don't allow zero tangents
+			v1.ccw = v1.p + normalize(perpendicularCCW(v1.t)) * strokeWidth * 0.5f;
+			v1.cw = v1.p + normalize(perpendicularCW(v1.t)) * strokeWidth * 0.5f;
+			v1.pathLength = v.pathLength;
+			v1.flags = v.flags;
+			v1.inDash = dashing ? inDash : true;	//NOTE: for other than START_SEGMENT vertices inDash will be updated after dashing
+
+			//process the vertex event
+			if(v.flags & START_SEGMENT)
+			{
+				if(v.flags & START_SUBPATH)
+				{
+					if( dashing )
+					{	//initialize dashing by finding which dash or gap the first point of the path lies in
+						if(dashPhaseReset || i == 0)
+						{
+							d = 0;
+							inDash = true;
+							nextDash = v1.pathLength - RI_MOD(dashPhase, dashPatternLength);
+							for(;;)
+							{
+								RIfloat prevDash = nextDash;
+								nextDash = prevDash + RI_MAX(dashPattern[d], 0.0f);
+								if(nextDash >= v1.pathLength)
+									break;
+
+								if( d & 1 )
+									inDash = true;
+								else
+									inDash = false;
+								d = (d+1) % dashPatternSize;
+							}
+							v1.inDash = inDash;
+							//the first point of the path lies between prevDash and nextDash
+							//d in the index of the next dash stop
+							//inDash is true if the first point is in a dash
+						}
+					}
+					vs = v1;	//save the subpath start point
+				}
+				else
+				{
+					if( v.flags & IMPLICIT_CLOSE_SUBPATH )
+					{	//do caps for the start and end of the current subpath
+						if( v0.inDash )
+							doCap(pathToSurface, rasterizer, v0, strokeWidth, capStyle);	//end cap	//throws bad_alloc
+						if( vs.inDash )
+						{
+							StrokeVertex vi = vs;
+							vi.t = -vi.t;
+							RI_SWAP(vi.ccw.x, vi.cw.x);
+							RI_SWAP(vi.ccw.y, vi.cw.y);
+							doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);	//start cap	//throws bad_alloc
+						}
+					}
+					else
+					{	//join two segments
+						RI_ASSERT(v0.inDash == v1.inDash);
+						if( v0.inDash )
+							doJoin(pathToSurface, rasterizer, v0, v1, strokeWidth, joinStyle, miterLimit);	//throws bad_alloc
+					}
+				}
+			}
+			else
+			{	//in the middle of a segment
+				if( !(v.flags & IMPLICIT_CLOSE_SUBPATH) )
+				{	//normal segment, do stroking
+					if( dashing )
+					{
+						StrokeVertex prevDashVertex = v0;	//dashing of the segment starts from the previous vertex
+
+						if(nextDash + 10000.0f * dashPatternLength < v1.pathLength)
+							throw std::bad_alloc();		//too many dashes, throw bad_alloc
+
+						//loop dash events until the next vertex event
+						//zero length dashes are handled as a special case since if they hit the vertex,
+						//we want to include their starting point to this segment already in order to generate a join
+						int numDashStops = 0;
+						while(nextDash < v1.pathLength || (nextDash <= v1.pathLength && dashPattern[(d+1) % dashPatternSize] == 0.0f))
+						{
+							RIfloat edgeLength = v1.pathLength - v0.pathLength;
+							RIfloat ratio = 0.0f;
+							if(edgeLength > 0.0f)
+								ratio = (nextDash - v0.pathLength) / edgeLength;
+							StrokeVertex nextDashVertex;
+							nextDashVertex.p = v0.p * (1.0f - ratio) + v1.p * ratio;
+							nextDashVertex.t = circularLerp(v0.t, v1.t, ratio);
+							nextDashVertex.ccw = nextDashVertex.p + normalize(perpendicularCCW(nextDashVertex.t)) * strokeWidth * 0.5f;
+							nextDashVertex.cw = nextDashVertex.p + normalize(perpendicularCW(nextDashVertex.t)) * strokeWidth * 0.5f;
+
+							if( inDash )
+							{	//stroke from prevDashVertex -> nextDashVertex
+								if( numDashStops )
+								{	//prevDashVertex is not the start vertex of the segment, cap it (start vertex has already been joined or capped)
+									StrokeVertex vi = prevDashVertex;
+									vi.t = -vi.t;
+									RI_SWAP(vi.ccw.x, vi.cw.x);
+									RI_SWAP(vi.ccw.y, vi.cw.y);
+									doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);	//throws bad_alloc
+								}
+								interpolateStroke(pathToSurface, rasterizer, prevDashVertex, nextDashVertex, strokeWidth);	//throws bad_alloc
+								doCap(pathToSurface, rasterizer, nextDashVertex, strokeWidth, capStyle);	//end cap	//throws bad_alloc
+							}
+							prevDashVertex = nextDashVertex;
+
+							if( d & 1 )
+							{	//dash starts
+								RI_ASSERT(!inDash);
+								inDash = true;
+							}
+							else
+							{	//dash ends
+								RI_ASSERT(inDash);
+								inDash = false;
+							}
+							d = (d+1) % dashPatternSize;
+							nextDash += RI_MAX(dashPattern[d], 0.0f);
+							numDashStops++;
+						}
+						
+						if( inDash )
+						{	//stroke prevDashVertex -> v1
+							if( numDashStops )
+							{	//prevDashVertex is not the start vertex of the segment, cap it (start vertex has already been joined or capped)
+								StrokeVertex vi = prevDashVertex;
+								vi.t = -vi.t;
+								RI_SWAP(vi.ccw.x, vi.cw.x);
+								RI_SWAP(vi.ccw.y, vi.cw.y);
+								doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);	//throws bad_alloc
+							}
+							interpolateStroke(pathToSurface, rasterizer, prevDashVertex, v1, strokeWidth);	//throws bad_alloc
+							//no cap, leave path open
+						}
+
+						v1.inDash = inDash;	//update inDash status of the segment end point
+					}
+					else	//no dashing, just interpolate segment end points
+						interpolateStroke(pathToSurface, rasterizer, v0, v1, strokeWidth);	//throws bad_alloc
+				}
+			}
+
+			if((v.flags & END_SEGMENT) && (v.flags & CLOSE_SUBPATH))
+			{	//join start and end of the current subpath
+				if( v1.inDash && vs.inDash )
+					doJoin(pathToSurface, rasterizer, v1, vs, strokeWidth, joinStyle, miterLimit);	//throws bad_alloc
+				else
+				{	//both start and end are not in dash, cap them
+					if( v1.inDash )
+						doCap(pathToSurface, rasterizer, v1, strokeWidth, capStyle);	//end cap	//throws bad_alloc
+					if( vs.inDash )
+					{
+						StrokeVertex vi = vs;
+						vi.t = -vi.t;
+						RI_SWAP(vi.ccw.x, vi.cw.x);
+						RI_SWAP(vi.ccw.y, vi.cw.y);
+						doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);	//start cap	//throws bad_alloc
+					}
+				}
+			}
+
+			v0 = v1;
+		}
+	}
+	catch(std::bad_alloc)
+	{
+		rasterizer.clear();	//remove the unfinished path
+		throw;
+	}
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Tessellates a path, and returns a position and a tangent on the path
+*			given a distance along the path.
+* \param	
+* \return	
+* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::getPointAlong(int startIndex, int numSegments, RIfloat distance, Vector2& p, Vector2& t)
+{
+	RI_ASSERT(m_referenceCount > 0);
+	RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size() && numSegments > 0);
+
+	Matrix3x3 identity;
+	identity.identity();
+	tessellate(identity, 0.0f);	//throws bad_alloc
+
+	RI_ASSERT(startIndex >= 0 && startIndex < m_segmentToVertex.size());
+	RI_ASSERT(startIndex + numSegments >= 0 && startIndex + numSegments <= m_segmentToVertex.size());
+
+    // ignore move segments at the start of the path
+    while (numSegments && (m_segments[startIndex] & ~VG_RELATIVE) == VG_MOVE_TO)
+    {
+        startIndex++;
+        numSegments--;
+    }
+
+    // ignore move segments at the end of the path
+    while (numSegments && (m_segments[startIndex + numSegments - 1] & ~VG_RELATIVE) == VG_MOVE_TO)
+        numSegments--;
+
+    // empty path?
+    if (!m_vertices.size() || !numSegments)
+    {
+		p.set(0,0);
+		t.set(1,0);
+		return;
+    }
+
+	int startVertex = m_segmentToVertex[startIndex].start;
+	int endVertex = m_segmentToVertex[startIndex + numSegments - 1].end;
+
+	if(startVertex == -1)
+		startVertex = 0;
+
+    // zero length?
+    if (startVertex >= endVertex)
+    {
+		p = m_vertices[startVertex].userPosition;
+		t.set(1,0);
+		return;
+    }
+
+	RI_ASSERT(startVertex >= 0 && startVertex < m_vertices.size());
+	RI_ASSERT(endVertex >= 0 && endVertex < m_vertices.size());
+
+	distance += m_vertices[startVertex].pathLength;	//map distance to the range of the whole path
+
+	if(distance <= m_vertices[startVertex].pathLength)
+	{	//return the first point of the path
+		p = m_vertices[startVertex].userPosition;
+		t = m_vertices[startVertex].userTangent;
+		return;
+	}
+
+	if(distance >= m_vertices[endVertex].pathLength)
+	{	//return the last point of the path
+		p = m_vertices[endVertex].userPosition;
+		t = m_vertices[endVertex].userTangent;
+		return;
+	}
+
+	//search for the segment containing the distance
+	for(int s=startIndex;s<startIndex+numSegments;s++)
+	{
+		int start = m_segmentToVertex[s].start;
+		int end = m_segmentToVertex[s].end;
+		if(start < 0)
+			start = 0;
+		if(end < 0)
+			end = 0;
+		RI_ASSERT(start >= 0 && start < m_vertices.size());
+		RI_ASSERT(end >= 0 && end < m_vertices.size());
+
+		if(distance >= m_vertices[start].pathLength && distance < m_vertices[end].pathLength)
+		{	//segment contains the queried distance
+			for(int i=start;i<end;i++)
+			{
+				const Vertex& v0 = m_vertices[i];
+				const Vertex& v1 = m_vertices[i+1];
+				if(distance >= v0.pathLength && distance < v1.pathLength)
+				{	//segment found, interpolate linearly between its end points
+					RIfloat edgeLength = v1.pathLength - v0.pathLength;
+					RI_ASSERT(edgeLength > 0.0f);
+					RIfloat r = (distance - v0.pathLength) / edgeLength;
+					p = (1.0f - r) * v0.userPosition + r * v1.userPosition;
+					t = (1.0f - r) * v0.userTangent + r * v1.userTangent;
+					return;
+				}
+			}
+		}
+	}
+
+	RI_ASSERT(0);	//point not found (should never get here)
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Tessellates a path, and computes its length.
+* \param	
+* \return	
+* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+RIfloat Path::getPathLength(int startIndex, int numSegments)
+{
+	RI_ASSERT(m_referenceCount > 0);
+	RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size() && numSegments > 0);
+
+	Matrix3x3 identity;
+	identity.identity();
+	tessellate(identity, 0.0f);	//throws bad_alloc
+
+	RI_ASSERT(startIndex >= 0 && startIndex < m_segmentToVertex.size());
+	RI_ASSERT(startIndex + numSegments >= 0 && startIndex + numSegments <= m_segmentToVertex.size());
+
+	int startVertex = m_segmentToVertex[startIndex].start;
+	int endVertex = m_segmentToVertex[startIndex + numSegments - 1].end;
+
+	if(!m_vertices.size())
+		return 0.0f;
+
+	RIfloat startPathLength = 0.0f;
+	if(startVertex >= 0)
+	{
+		RI_ASSERT(startVertex >= 0 && startVertex < m_vertices.size());
+		startPathLength = m_vertices[startVertex].pathLength;
+	}
+	RIfloat endPathLength = 0.0f;
+	if(endVertex >= 0)
+	{
+		RI_ASSERT(endVertex >= 0 && endVertex < m_vertices.size());
+		endPathLength = m_vertices[endVertex].pathLength;
+	}
+
+	return endPathLength - startPathLength;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Tessellates a path, and computes its bounding box in user space.
+* \param	
+* \return	
+* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::getPathBounds(RIfloat& minx, RIfloat& miny, RIfloat& maxx, RIfloat& maxy)
+{
+	RI_ASSERT(m_referenceCount > 0);
+
+	Matrix3x3 identity;
+	identity.identity();
+	tessellate(identity, 0.0f);	//throws bad_alloc
+
+	if(m_vertices.size())
+	{
+		minx = m_userMinx;
+		miny = m_userMiny;
+		maxx = m_userMaxx;
+		maxy = m_userMaxy;
+	}
+	else
+	{
+		minx = miny = 0;
+		maxx = maxy = -1;
+	}
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Tessellates a path, and computes its bounding box in surface space.
+* \param	
+* \return	
+* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
+*//*-------------------------------------------------------------------*/
+
+void Path::getPathTransformedBounds(const Matrix3x3& pathToSurface, RIfloat& minx, RIfloat& miny, RIfloat& maxx, RIfloat& maxy)
+{
+	RI_ASSERT(m_referenceCount > 0);
+	RI_ASSERT(pathToSurface.isAffine());
+
+	Matrix3x3 identity;
+	identity.identity();
+	tessellate(identity, 0.0f);	//throws bad_alloc
+
+	if(m_vertices.size())
+	{
+		Vector3 p0(m_userMinx, m_userMiny, 1.0f);
+		Vector3 p1(m_userMinx, m_userMaxy, 1.0f);
+		Vector3 p2(m_userMaxx, m_userMaxy, 1.0f);
+		Vector3 p3(m_userMaxx, m_userMiny, 1.0f);
+		p0 = pathToSurface * p0;
+		p1 = pathToSurface * p1;
+		p2 = pathToSurface * p2;
+		p3 = pathToSurface * p3;
+
+		minx = RI_MIN(RI_MIN(RI_MIN(p0.x, p1.x), p2.x), p3.x);
+		miny = RI_MIN(RI_MIN(RI_MIN(p0.y, p1.y), p2.y), p3.y);
+		maxx = RI_MAX(RI_MAX(RI_MAX(p0.x, p1.x), p2.x), p3.x);
+		maxy = RI_MAX(RI_MAX(RI_MAX(p0.y, p1.y), p2.y), p3.y);
+	}
+	else
+	{
+		minx = miny = 0;
+		maxx = maxy = -1;
+	}
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Adds a vertex to a tessellated path.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+void Path::addVertex(const Vector2& p, const Vector2& t, RIfloat pathLength, unsigned int flags)
+{
+	RI_ASSERT(!isZero(t));
+
+	Vertex v;
+	v.pathLength = pathLength;
+	v.userPosition = p;
+	v.userTangent = t;
+	v.flags = flags;
+	m_vertices.push_back(v);	//throws bad_alloc
+    m_numTessVertices++;
+
+	m_userMinx = RI_MIN(m_userMinx, v.userPosition.x);
+	m_userMiny = RI_MIN(m_userMiny, v.userPosition.y);
+	m_userMaxx = RI_MAX(m_userMaxx, v.userPosition.x);
+	m_userMaxy = RI_MAX(m_userMaxy, v.userPosition.y);
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Adds an edge to a tessellated path.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+void Path::addEdge(const Vector2& p0, const Vector2& p1, const Vector2& t0, const Vector2& t1, unsigned int startFlags, unsigned int endFlags)
+{
+	Vertex v;
+	RIfloat pathLength = 0.0f;
+
+	RI_ASSERT(!isZero(t0) && !isZero(t1));
+
+	//segment midpoints are shared between edges
+	if(!m_numTessVertices)
+	{
+		if(m_vertices.size() > 0)
+			pathLength = m_vertices[m_vertices.size()-1].pathLength;
+
+		addVertex(p0, t0, pathLength, startFlags);	//throws bad_alloc
+	}
+
+	//other than implicit close paths (caused by a MOVE_TO) add to path length
+	if( !(endFlags & IMPLICIT_CLOSE_SUBPATH) )
+	{
+		//NOTE: with extremely large coordinates the floating point path length is infinite
+		RIfloat l = (p1 - p0).length();
+		pathLength = m_vertices[m_vertices.size()-1].pathLength + l;
+		pathLength = RI_MIN(pathLength, RI_FLOAT_MAX);
+	}
+
+	addVertex(p1, t1, pathLength, endFlags);	//throws bad_alloc
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Tessellates a close-path segment.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+void Path::addEndPath(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, bool subpathHasGeometry, unsigned int flags)
+{
+	RI_UNREF(pathToSurface);
+    m_numTessVertices = 0;
+	if(!subpathHasGeometry)
+	{	//single vertex
+		Vector2 t(1.0f,0.0f);
+		addEdge(p0, p1, t, t, START_SEGMENT | START_SUBPATH, END_SEGMENT | END_SUBPATH);	//throws bad_alloc
+        m_numTessVertices = 0;
+		addEdge(p0, p1, -t, -t, IMPLICIT_CLOSE_SUBPATH | START_SEGMENT, IMPLICIT_CLOSE_SUBPATH | END_SEGMENT);	//throws bad_alloc
+		return;
+	}
+	//the subpath contains segment commands that have generated geometry
+
+	//add a close path segment to the start point of the subpath
+	RI_ASSERT(m_vertices.size() > 0);
+	m_vertices[m_vertices.size()-1].flags |= END_SUBPATH;
+
+	Vector2 t = normalize(p1 - p0);
+	if(isZero(t))
+		t = m_vertices[m_vertices.size()-1].userTangent;	//if the segment is zero-length, use the tangent of the last segment end point so that proper join will be generated
+	RI_ASSERT(!isZero(t));
+
+	addEdge(p0, p1, t, t, flags | START_SEGMENT, flags | END_SEGMENT);	//throws bad_alloc
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Tessellates a line-to segment.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+bool Path::addLineTo(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, bool subpathHasGeometry)
+{
+	RI_UNREF(pathToSurface);
+	if(p0 == p1)
+		return false;	//discard zero-length segments
+
+	//compute end point tangents
+	Vector2 t = normalize(p1 - p0);
+	RI_ASSERT(!isZero(t));
+
+    m_numTessVertices = 0;
+	unsigned int startFlags = START_SEGMENT;
+	if(!subpathHasGeometry)
+		startFlags |= START_SUBPATH;
+	addEdge(p0, p1, t, t, startFlags, END_SEGMENT);	//throws bad_alloc
+	return true;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Tessellates a quad-to segment.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+bool Path::addQuadTo(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, const Vector2& p2, bool subpathHasGeometry, float strokeWidth)
+{
+	RI_UNREF(pathToSurface);
+	RI_UNREF(strokeWidth);
+	if(p0 == p1 && p0 == p2)
+	{
+		RI_ASSERT(p1 == p2);
+		return false;	//discard zero-length segments
+	}
+
+	//compute end point tangents
+
+	Vector2 incomingTangent = normalize(p1 - p0);
+	Vector2 outgoingTangent = normalize(p2 - p1);
+	if(p0 == p1)
+		incomingTangent = normalize(p2 - p0);
+	if(p1 == p2)
+		outgoingTangent = normalize(p2 - p0);
+	RI_ASSERT(!isZero(incomingTangent) && !isZero(outgoingTangent));
+
+    m_numTessVertices = 0;
+	unsigned int startFlags = START_SEGMENT;
+	if(!subpathHasGeometry)
+		startFlags |= START_SUBPATH;
+
+	const int segments = RI_NUM_TESSELLATED_SEGMENTS;
+	Vector2 pp = p0;
+	Vector2 tp = incomingTangent;
+	unsigned int prevFlags = startFlags;
+	for(int i=1;i<segments;i++)
+	{
+		RIfloat t = (RIfloat)i / (RIfloat)segments;
+		RIfloat u = 1.0f-t;
+		Vector2 pn = u*u * p0 + 2.0f*t*u * p1 + t*t * p2;
+		Vector2 tn = (-1.0f+t) * p0 + (1.0f-2.0f*t) * p1 + t * p2;
+		tn = normalize(tn);
+		if(isZero(tn))
+			tn = tp;
+
+		addEdge(pp, pn, tp, tn, prevFlags, 0);	//throws bad_alloc
+
+		pp = pn;
+		tp = tn;
+		prevFlags = 0;
+	}
+	addEdge(pp, p2, tp, outgoingTangent, prevFlags, END_SEGMENT);	//throws bad_alloc
+	return true;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Tessellates a cubic-to segment.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+bool Path::addCubicTo(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, const Vector2& p2, const Vector2& p3, bool subpathHasGeometry, float strokeWidth)
+{
+	RI_UNREF(pathToSurface);
+	RI_UNREF(strokeWidth);
+
+	if(p0 == p1 && p0 == p2 && p0 == p3)
+	{
+		RI_ASSERT(p1 == p2 && p1 == p3 && p2 == p3);
+		return false;	//discard zero-length segments
+	}
+
+	//compute end point tangents
+	Vector2 incomingTangent = normalize(p1 - p0);
+	Vector2 outgoingTangent = normalize(p3 - p2);
+	if(p0 == p1)
+	{
+		incomingTangent = normalize(p2 - p0);
+		if(p1 == p2)
+			incomingTangent = normalize(p3 - p0);
+	}
+	if(p2 == p3)
+	{
+		outgoingTangent = normalize(p3 - p1);
+		if(p1 == p2)
+			outgoingTangent = normalize(p3 - p0);
+	}
+	RI_ASSERT(!isZero(incomingTangent) && !isZero(outgoingTangent));
+
+    m_numTessVertices = 0;
+	unsigned int startFlags = START_SEGMENT;
+	if(!subpathHasGeometry)
+		startFlags |= START_SUBPATH;
+
+	const int segments = RI_NUM_TESSELLATED_SEGMENTS;
+	Vector2 pp = p0;
+	Vector2 tp = incomingTangent;
+	unsigned int prevFlags = startFlags;
+	for(int i=1;i<segments;i++)
+	{
+		RIfloat t = (RIfloat)i / (RIfloat)segments;
+		Vector2 pn = (1.0f - 3.0f*t + 3.0f*t*t - t*t*t) * p0 + (3.0f*t - 6.0f*t*t + 3.0f*t*t*t) * p1 + (3.0f*t*t - 3.0f*t*t*t) * p2 + t*t*t * p3;
+		Vector2 tn = (-3.0f + 6.0f*t - 3.0f*t*t) * p0 + (3.0f - 12.0f*t + 9.0f*t*t) * p1 + (6.0f*t - 9.0f*t*t) * p2 + 3.0f*t*t * p3;
+
+		tn = normalize(tn);
+		if(isZero(tn))
+			tn = tp;
+
+		addEdge(pp, pn, tp, tn, prevFlags, 0);	//throws bad_alloc
+
+		pp = pn;
+		tp = tn;
+		prevFlags = 0;
+	}
+	addEdge(pp, p3, tp, outgoingTangent, prevFlags, END_SEGMENT);	//throws bad_alloc
+	return true;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Finds an ellipse center and transformation from the unit circle to
+*			that ellipse.
+* \param	rh Length of the horizontal axis
+*			rv Length of the vertical axis
+*			rot Rotation angle
+*			p0,p1 User space end points of the arc
+*			c0,c1 (Return value) Unit circle space center points of the two ellipses
+*			u0,u1 (Return value) Unit circle space end points of the arc
+*			unitCircleToEllipse (Return value) A matrix mapping from unit circle space to user space
+* \return	true if ellipse exists, false if doesn't
+* \note		
+*//*-------------------------------------------------------------------*/
+
+static bool findEllipses(RIfloat rh, RIfloat rv, RIfloat rot, const Vector2& p0, const Vector2& p1, VGPathSegment segment, Vector2& c0, Vector2& c1, Vector2& u0, Vector2& u1, Matrix3x3& unitCircleToEllipse, bool& cw)
+{
+	rh = RI_ABS(rh);
+	rv = RI_ABS(rv);
+	if(rh == 0.0f || rv == 0.0f || p0 == p1)
+		return false;	//degenerate ellipse
+
+	rot = RI_DEG_TO_RAD(rot);
+	unitCircleToEllipse.set((RIfloat)cos(rot)*rh, -(RIfloat)sin(rot)*rv,  0,
+							(RIfloat)sin(rot)*rh,  (RIfloat)cos(rot)*rv,  0,
+							0,                   0,                   1);
+	Matrix3x3 ellipseToUnitCircle = invert(unitCircleToEllipse);
+	//force affinity
+	ellipseToUnitCircle[2][0] = 0.0f;
+	ellipseToUnitCircle[2][1] = 0.0f;
+	ellipseToUnitCircle[2][2] = 1.0f;
+
+	// Transform p0 and p1 into unit space
+	u0 = affineTransform(ellipseToUnitCircle, p0);
+	u1 = affineTransform(ellipseToUnitCircle, p1);
+
+	Vector2 m = 0.5f * (u0 + u1);
+	Vector2 d = u0 - u1;
+
+	RIfloat lsq = (RIfloat)dot(d,d);
+	if(lsq <= 0.0f)
+		return false;	//the points are coincident
+
+	RIfloat disc = (1.0f / lsq) - 0.25f;
+	if(disc < 0.0f)
+	{	//the points are too far apart for a solution to exist, scale the axes so that there is a solution
+		RIfloat l = (RIfloat)sqrt(lsq);
+		rh *= 0.5f * l;
+		rv *= 0.5f * l;
+
+		//redo the computation with scaled axes
+		unitCircleToEllipse.set((RIfloat)cos(rot)*rh, -(RIfloat)sin(rot)*rv,  0,
+								(RIfloat)sin(rot)*rh,  (RIfloat)cos(rot)*rv,  0,
+								0,                   0,                   1);
+		ellipseToUnitCircle = invert(unitCircleToEllipse);
+		//force affinity
+		ellipseToUnitCircle[2][0] = 0.0f;
+		ellipseToUnitCircle[2][1] = 0.0f;
+		ellipseToUnitCircle[2][2] = 1.0f;
+
+		// Transform p0 and p1 into unit space
+		u0 = affineTransform(ellipseToUnitCircle, p0);
+		u1 = affineTransform(ellipseToUnitCircle, p1);
+
+		// Solve for intersecting unit circles
+		d = u0 - u1;
+		m = 0.5f * (u0 + u1);
+
+		lsq = dot(d,d);
+		if(lsq <= 0.0f)
+			return false;	//the points are coincident
+
+		disc = RI_MAX(0.0f, 1.0f / lsq - 0.25f);
+	}
+
+	if(u0 == u1)
+		return false;
+
+	Vector2 sd = d * (RIfloat)sqrt(disc);
+	Vector2 sp = perpendicularCW(sd);
+	c0 = m + sp;
+	c1 = m - sp;
+
+	//choose the center point and direction
+	Vector2 cp = c0;
+	if(segment == VG_SCWARC_TO || segment == VG_LCCWARC_TO)
+		cp = c1;
+	cw = false;
+	if(segment == VG_SCWARC_TO || segment == VG_LCWARC_TO)
+		cw = true;
+
+	//move the unit circle origin to the chosen center point
+	u0 -= cp;
+	u1 -= cp;
+
+	if(u0 == u1 || isZero(u0) || isZero(u1))
+		return false;
+
+	//transform back to the original coordinate space
+	cp = affineTransform(unitCircleToEllipse, cp);
+	unitCircleToEllipse[0][2] = cp.x;
+	unitCircleToEllipse[1][2] = cp.y;
+	return true;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Tessellates an arc-to segment.
+* \param	
+* \return	
+* \note		
+*//*-------------------------------------------------------------------*/
+
+bool Path::addArcTo(const Matrix3x3& pathToSurface, const Vector2& p0, RIfloat rh, RIfloat rv, RIfloat rot, const Vector2& p1, const Vector2& p1r, VGPathSegment segment, bool subpathHasGeometry, float strokeWidth)
+{
+	RI_UNREF(pathToSurface);
+	RI_UNREF(strokeWidth);
+	if(p0 == p1)
+		return false;	//discard zero-length segments
+
+	Vector2 c0, c1, u0, u1;
+	Matrix3x3 unitCircleToEllipse;
+	bool cw;
+
+    m_numTessVertices = 0;
+	unsigned int startFlags = START_SEGMENT;
+	if(!subpathHasGeometry)
+		startFlags |= START_SUBPATH;
+
+	if(!findEllipses(rh, rv, rot, Vector2(), p1r, segment, c0, c1, u0, u1, unitCircleToEllipse, cw))
+	{	//ellipses don't exist, add line instead
+		Vector2 t = normalize(p1r);
+		RI_ASSERT(!isZero(t));
+		addEdge(p0, p1, t, t, startFlags, END_SEGMENT);	//throws bad_alloc
+		return true;
+	}
+
+	//compute end point tangents
+	Vector2 incomingTangent = perpendicular(u0, cw);
+	incomingTangent = affineTangentTransform(unitCircleToEllipse, incomingTangent);
+	incomingTangent = normalize(incomingTangent);
+	Vector2 outgoingTangent = perpendicular(u1, cw);
+	outgoingTangent = affineTangentTransform(unitCircleToEllipse, outgoingTangent);
+	outgoingTangent = normalize(outgoingTangent);
+	RI_ASSERT(!isZero(incomingTangent) && !isZero(outgoingTangent));
+
+	const int segments = RI_NUM_TESSELLATED_SEGMENTS;
+	Vector2 pp = p0;
+	Vector2 tp = incomingTangent;
+	unsigned int prevFlags = startFlags;
+	for(int i=1;i<segments;i++)
+	{
+		RIfloat t = (RIfloat)i / (RIfloat)segments;
+		Vector2 pn = circularLerp(u0, u1, t, cw);
+		Vector2 tn = perpendicular(pn, cw);
+		tn = affineTangentTransform(unitCircleToEllipse, tn);
+		pn = affineTransform(unitCircleToEllipse, pn) + p0;
+		tn = normalize(tn);
+		if(isZero(tn))
+			tn = tp;
+
+		addEdge(pp, pn, tp, tn, prevFlags, 0);	//throws bad_alloc
+
+		pp = pn;
+		tp = tn;
+		prevFlags = 0;
+	}
+	addEdge(pp, p1, tp, outgoingTangent, prevFlags, END_SEGMENT);	//throws bad_alloc
+	return true;
+}
+
+/*-------------------------------------------------------------------*//*!
+* \brief	Tessellates a path.
+* \param	
+* \return	
+* \note		tessellation output format: A list of vertices describing the
+*			path tessellated into line segments and relevant aspects of the
+*			input data. Each path segment has a start vertex, a number of
+*			internal vertices (possibly zero), and an end vertex. The start
+*			and end of segments and subpaths have been flagged, as well as
+*			implicit and explicit close subpath segments.
+*//*-------------------------------------------------------------------*/
+
+void Path::tessellate(const Matrix3x3& pathToSurface, float strokeWidth)
+{
+	m_vertices.clear();
+
+	m_userMinx = RI_FLOAT_MAX;
+	m_userMiny = RI_FLOAT_MAX;
+	m_userMaxx = -RI_FLOAT_MAX;
+	m_userMaxy = -RI_FLOAT_MAX;
+
+	try
+	{
+		m_segmentToVertex.resize(m_segments.size());
+
+		int coordIndex = 0;
+		Vector2 s(0,0);		//the beginning of the current subpath
+		Vector2 o(0,0);		//the last point of the previous segment
+		Vector2 p(0,0);		//the last internal control point of the previous segment, if the segment was a (regular or smooth) quadratic or cubic Bezier, or else the last point of the previous segment
+
+		//tessellate the path segments
+		coordIndex = 0;
+		s.set(0,0);
+		o.set(0,0);
+		p.set(0,0);
+		bool subpathHasGeometry = false;
+		VGPathSegment prevSegment = VG_MOVE_TO;
+		for(int i=0;i<m_segments.size();i++)
+		{
+			VGPathSegment segment = getPathSegment(m_segments[i]);
+			VGPathAbsRel absRel = getPathAbsRel(m_segments[i]);
+			int coords = segmentToNumCoordinates(segment);
+			m_segmentToVertex[i].start = m_vertices.size();
+
+			switch(segment)
+			{
+			case VG_CLOSE_PATH:
+			{
+				RI_ASSERT(coords == 0);
+				addEndPath(pathToSurface, o, s, subpathHasGeometry, CLOSE_SUBPATH);
+				p = s;
+				o = s;
+				subpathHasGeometry = false;
+				break;
+			}
+
+			case VG_MOVE_TO:
+			{
+				RI_ASSERT(coords == 2);
+				Vector2 c(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
+				if(absRel == VG_RELATIVE)
+					c += o;
+				if(prevSegment != VG_MOVE_TO && prevSegment != VG_CLOSE_PATH)
+					addEndPath(pathToSurface, o, s, subpathHasGeometry, IMPLICIT_CLOSE_SUBPATH);
+				s = c;
+				p = c;
+				o = c;
+				subpathHasGeometry = false;
+				break;
+			}
+
+			case VG_LINE_TO:
+			{
+				RI_ASSERT(coords == 2);
+				Vector2 c(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
+				if(absRel == VG_RELATIVE)
+					c += o;
+				if(addLineTo(pathToSurface, o, c, subpathHasGeometry))
+					subpathHasGeometry = true;
+				p = c;
+				o = c;
+				break;
+			}
+
+			case VG_HLINE_TO:
+			{
+				RI_ASSERT(coords == 1);
+				Vector2 c(getCoordinate(coordIndex+0), o.y);
+				if(absRel == VG_RELATIVE)
+					c.x += o.x;
+				if(addLineTo(pathToSurface, o, c, subpathHasGeometry))
+					subpathHasGeometry = true;
+				p = c;
+				o = c;
+				break;
+			}
+
+			case VG_VLINE_TO:
+			{
+				RI_ASSERT(coords == 1);
+				Vector2 c(o.x, getCoordinate(coordIndex+0));
+				if(absRel == VG_RELATIVE)
+					c.y += o.y;
+				if(addLineTo(pathToSurface, o, c, subpathHasGeometry))
+					subpathHasGeometry = true;
+				p = c;
+				o = c;
+				break;
+			}
+
+			case VG_QUAD_TO:
+			{
+				RI_ASSERT(coords == 4);
+				Vector2 c0(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
+				Vector2 c1(getCoordinate(coordIndex+2), getCoordinate(coordIndex+3));
+				if(absRel == VG_RELATIVE)
+				{
+					c0 += o;
+					c1 += o;
+				}
+				if(addQuadTo(pathToSurface, o, c0, c1, subpathHasGeometry, strokeWidth))
+					subpathHasGeometry = true;
+				p = c0;
+				o = c1;
+				break;
+			}
+
+			case VG_SQUAD_TO:
+			{
+				RI_ASSERT(coords == 2);
+				Vector2 c0 = 2.0f * o - p;
+				Vector2 c1(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
+				if(absRel == VG_RELATIVE)
+					c1 += o;
+				if(addQuadTo(pathToSurface, o, c0, c1, subpathHasGeometry, strokeWidth))
+					subpathHasGeometry = true;
+				p = c0;
+				o = c1;
+				break;
+			}
+
+			case VG_CUBIC_TO:
+			{
+				RI_ASSERT(coords == 6);
+				Vector2 c0(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
+				Vector2 c1(getCoordinate(coordIndex+2), getCoordinate(coordIndex+3));
+				Vector2 c2(getCoordinate(coordIndex+4), getCoordinate(coordIndex+5));
+				if(absRel == VG_RELATIVE)
+				{
+					c0 += o;
+					c1 += o;
+					c2 += o;
+				}
+				if(addCubicTo(pathToSurface, o, c0, c1, c2, subpathHasGeometry, strokeWidth))
+					subpathHasGeometry = true;
+				p = c1;
+				o = c2;
+				break;
+			}
+
+			case VG_SCUBIC_TO:
+			{
+				RI_ASSERT(coords == 4);
+				Vector2 c0 = 2.0f * o - p;
+				Vector2 c1(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
+				Vector2 c2(getCoordinate(coordIndex+2), getCoordinate(coordIndex+3));
+				if(absRel == VG_RELATIVE)
+				{
+					c1 += o;
+					c2 += o;
+				}
+				if(addCubicTo(pathToSurface, o, c0, c1, c2, subpathHasGeometry, strokeWidth))
+					subpathHasGeometry = true;
+				p = c1;
+				o = c2;
+				break;
+			}
+
+			default:
+			{
+				RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
+						  segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
+				RI_ASSERT(coords == 5);
+				RIfloat rh = getCoordinate(coordIndex+0);
+				RIfloat rv = getCoordinate(coordIndex+1);
+				RIfloat rot = getCoordinate(coordIndex+2);
+				Vector2 c(getCoordinate(coordIndex+3), getCoordinate(coordIndex+4));
+
+                Vector2 cr = c;
+				if(absRel == VG_ABSOLUTE)
+                    cr -= o;
+                else
+					c += o;
+
+				if(addArcTo(pathToSurface, o, rh, rv, rot, c, cr, segment, subpathHasGeometry, strokeWidth))
+					subpathHasGeometry = true;
+				p = c;
+				o = c;
+				break;
+			}
+			}
+
+			if(m_vertices.size() > m_segmentToVertex[i].start)
+			{	//segment produced vertices
+				m_segmentToVertex[i].end = m_vertices.size() - 1;
+			}
+			else
+			{	//segment didn't produce vertices (zero-length segment). Ignore it.
+				m_segmentToVertex[i].start = m_segmentToVertex[i].end = m_vertices.size()-1;
+			}
+			prevSegment = segment;
+			coordIndex += coords;
+		}
+
+		//add an implicit MOVE_TO to the end to close the last subpath.
+		//if the subpath contained only zero-length segments, this produces the necessary geometry to get it stroked
+		// and included in path bounds. The geometry won't be included in the pointAlongPath query.
+		if(prevSegment != VG_MOVE_TO && prevSegment != VG_CLOSE_PATH)
+			addEndPath(pathToSurface, o, s, subpathHasGeometry, IMPLICIT_CLOSE_SUBPATH);
+
+		//check that the flags are correct
+#ifdef RI_DEBUG
+		int prev = -1;
+		bool subpathStarted = false;
+		bool segmentStarted = false;
+		for(int i=0;i<m_vertices.size();i++)
+		{
+			Vertex& v = m_vertices[i];
+
+			if(v.flags & START_SUBPATH)
+			{
+				RI_ASSERT(!subpathStarted);
+				RI_ASSERT(v.flags & START_SEGMENT);
+				RI_ASSERT(!(v.flags & END_SUBPATH));
+				RI_ASSERT(!(v.flags & END_SEGMENT));
+				RI_ASSERT(!(v.flags & CLOSE_SUBPATH));
+				RI_ASSERT(!(v.flags & IMPLICIT_CLOSE_SUBPATH));
+				subpathStarted = true;
+			}
+			
+			if(v.flags & START_SEGMENT)
+			{
+				RI_ASSERT(subpathStarted || (v.flags & CLOSE_SUBPATH) || (v.flags & IMPLICIT_CLOSE_SUBPATH));
+				RI_ASSERT(!segmentStarted);
+				RI_ASSERT(!(v.flags & END_SUBPATH));
+				RI_ASSERT(!(v.flags & END_SEGMENT));
+				segmentStarted = true;
+			}
+			
+			if( v.flags & CLOSE_SUBPATH )
+			{
+				RI_ASSERT(segmentStarted);
+				RI_ASSERT(!subpathStarted);
+				RI_ASSERT((v.flags & START_SEGMENT) || (v.flags & END_SEGMENT));
+				RI_ASSERT(!(v.flags & IMPLICIT_CLOSE_SUBPATH));
+				RI_ASSERT(!(v.flags & START_SUBPATH));
+				RI_ASSERT(!(v.flags & END_SUBPATH));
+			}
+			if( v.flags & IMPLICIT_CLOSE_SUBPATH )
+			{
+				RI_ASSERT(segmentStarted);
+				RI_ASSERT(!subpathStarted);
+				RI_ASSERT((v.flags & START_SEGMENT) || (v.flags & END_SEGMENT));
+				RI_ASSERT(!(v.flags & CLOSE_SUBPATH));
+				RI_ASSERT(!(v.flags & START_SUBPATH));
+				RI_ASSERT(!(v.flags & END_SUBPATH));
+			}
+			
+			if( prev >= 0 )
+			{
+				RI_ASSERT(segmentStarted);
+				RI_ASSERT(subpathStarted || ((m_vertices[prev].flags & CLOSE_SUBPATH) && (m_vertices[i].flags & CLOSE_SUBPATH)) ||
+						  ((m_vertices[prev].flags & IMPLICIT_CLOSE_SUBPATH) && (m_vertices[i].flags & IMPLICIT_CLOSE_SUBPATH)));
+			}
+
+			prev = i;
+			if(v.flags & END_SEGMENT)
+			{
+				RI_ASSERT(subpathStarted || (v.flags & CLOSE_SUBPATH) || (v.flags & IMPLICIT_CLOSE_SUBPATH));
+				RI_ASSERT(segmentStarted);
+				RI_ASSERT(!(v.flags & START_SUBPATH));
+				RI_ASSERT(!(v.flags & START_SEGMENT));
+				segmentStarted = false;
+				prev = -1;
+			}
+			
+			if(v.flags & END_SUBPATH)
+			{
+				RI_ASSERT(subpathStarted);
+				RI_ASSERT(v.flags & END_SEGMENT);
+				RI_ASSERT(!(v.flags & START_SUBPATH));
+				RI_ASSERT(!(v.flags & START_SEGMENT));
+				RI_ASSERT(!(v.flags & CLOSE_SUBPATH));
+				RI_ASSERT(!(v.flags & IMPLICIT_CLOSE_SUBPATH));
+				subpathStarted = false;
+			}
+		}
+#endif	//RI_DEBUG
+	}
+	catch(std::bad_alloc)
+	{
+		m_vertices.clear();
+		throw;
+	}
+}
+
+//==============================================================================================
+
+}		//namespace OpenVGRI
+
+//==============================================================================================