fbs/fontandbitmapserver/sfbs/BITBMP.CPP
changeset 0 5d03bc08d59c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/fbs/fontandbitmapserver/sfbs/BITBMP.CPP	Tue Feb 02 01:47:50 2010 +0200
@@ -0,0 +1,3369 @@
+// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+//
+
+#include <f32file.h>
+#include <fbs.h>
+#include <bitmap.h>
+#include <graphicsaccelerator.h>
+#include <graphics/lookuptable.h>
+#include <graphics/blendingalgorithms.h>
+#include <graphics/bitmapuid.h>
+#include "UTILS.H"
+#include <s32mem.h>
+#include "ShiftedFileStore.h"
+#include "CompileAssert.h"
+#include "CompressionBookmark.h"
+#include "BitmapCompr.h"
+#include "palette.h"
+#include "fbsrasterizer.h"
+#include "bitmap.inl"
+#include "BitwiseBitmap.inl"
+#include "bitmapconst.h"
+
+#ifdef __ARMCC__
+#pragma arm
+#pragma O3
+#pragma Otime
+#endif
+
+const TInt KMaxPixelSize = KMaxTInt / 4; // Maximum pixel size to avoid some overflow problems
+const TUint KMaxByteSize = TUint(KMaxTInt / 2); // Maximum byte size to avoid other overflow problems
+enum
+    {
+    EFirstTime = 65536
+    };
+GLREF_C void Panic(TFbsPanic aPanic);
+
+#define COLOR_VALUE(ScanLinePtr, XPos) (*((ScanLinePtr) + ((XPos) >> 5)) & ( 1 << ((XPos) & 0x1F)))
+
+EXPORT_C void CBitwiseBitmap::operator delete(TAny *aThis)
+	{
+	if (((CBitwiseBitmap*)aThis)->iHeap)
+		((CBitwiseBitmap*)aThis)->iHeap->Free(aThis);
+	}
+
+EXPORT_C CBitwiseBitmap::CBitwiseBitmap(RHeap* aHeap,CChunkPile* aPile):
+	iUid(KCBitwiseBitmapUid),
+	iSettings(ENone),
+	iHeap(aHeap),
+	iPile(aPile),
+	iByteWidth(0),
+	iDataOffset(0),
+	iIsCompressedInRAM(EFalse)
+	{
+	//CBitwiseBitmap size can't be changed! If the bitmap is ROM based,
+	//then CBitwiseBitmap object is not created, but CBitwiseBitmap pointer is
+	//used to access ROM based bitmap data.
+	//The following line is a part of CFbsBitmap::DoLoad(...) source code:
+	//iRomPointer=(CBitwiseBitmap*)(((TUint8*)rompointer)+offset);
+	//We have to preserve data compatibility with already existing ROM bitmaps.
+	enum
+		{
+		KCBitwiseBitmapSize = 72
+		};
+	COMPILE_TIME_ASSERT(sizeof(CBitwiseBitmap) == KCBitwiseBitmapSize);
+#ifdef SYMBIAN_DEBUG_FBS_LOCKHEAP
+	Extra()->iLockCount = 0;
+	Extra()->iThreadId = TThreadId(KNullThreadId);
+#endif
+	Extra()->iTouchCount = 0;
+	Extra()->iSerialNumber = 0;
+	}
+
+EXPORT_C CBitwiseBitmap::~CBitwiseBitmap()
+	{
+	Reset();
+	}
+
+EXPORT_C void CBitwiseBitmap::Reset()
+	{
+	if (iDataOffset)
+		{
+		if(iUid.iUid==KCBitwiseBitmapHardwareUid.iUid)
+			{
+			RHardwareBitmap hwb(iDataOffset);	// iDataOffset = handle for hardware bitmap
+			hwb.Destroy();
+			}
+		else
+			if (iPile) iPile->Free(DataAddress());
+		}
+	iUid.iUid = KCBitwiseBitmapUid.iUid;
+	iDataOffset=0;
+	iSettings.SetDisplayModes(ENone);
+	iByteWidth=0;
+	iHeader=SEpocBitmapHeader();
+	iIsCompressedInRAM=EFalse;
+	}
+
+EXPORT_C TUid CBitwiseBitmap::Uid() const
+	{
+	return(iUid);
+	}
+
+EXPORT_C TInt CBitwiseBitmap::Construct(const TSize& aSize,TDisplayMode aDispMode,TUid aCreatorUid)
+	{
+	if (iHeap == NULL || iPile == NULL)
+		return KErrNoMemory;
+
+	if (aSize.iWidth > KMaxPixelSize || aSize.iHeight > KMaxPixelSize)
+		return KErrTooBig;
+
+	TUint8* data = NULL;
+	Reset();
+
+	iSettings.SetDisplayModes(aDispMode);
+	iByteWidth = ByteWidth(aSize.iWidth,aDispMode);
+
+	TInt64 hugeDataSize = TInt64(aSize.iHeight) * TInt64(iByteWidth);
+	if (I64HIGH(hugeDataSize) != 0 || I64LOW(hugeDataSize) > KMaxByteSize)
+		return KErrTooBig;
+
+	TInt dataSize = I64LOW(hugeDataSize);
+	iHeader.iBitmapSize = sizeof(SEpocBitmapHeader) + dataSize;
+	iHeader.iStructSize = sizeof(SEpocBitmapHeader);
+	iHeader.iSizeInPixels = aSize;
+	iHeader.iSizeInTwips = TSize(0,0);
+	iHeader.iBitsPerPixel = Bpp(aDispMode);
+	iHeader.iColor = IsColor(aDispMode);
+	iHeader.iPaletteEntries = 0;
+	iHeader.iCompression = ENoBitmapCompression;
+
+	if (aSize.iHeight && aSize.iWidth)
+		{
+		if(aCreatorUid!=KUidCFbsBitmapCreation)
+			{
+			RHardwareBitmap hwb;
+			TAcceleratedBitmapInfo info;
+			TInt ret = hwb.Create(aDispMode,aSize,aCreatorUid);
+			if(ret==KErrNone)
+				ret = hwb.GetInfo(info);
+			if(ret!=KErrNone)
+				{
+				Reset();
+				return ret;
+				}
+
+			iSettings.SetVolatileBitmap();
+			data = info.iAddress;
+			dataSize = info.iLinePitch*info.iSize.iHeight;
+			__ASSERT_DEBUG(info.iLinePitch >= iByteWidth, ::Panic(EFbsHardwareBitmapError));
+			iByteWidth = info.iLinePitch;
+
+			iDataOffset = hwb.iHandle;	// iDataOffset = handle for hardware bitmap
+			iUid.iUid = KCBitwiseBitmapHardwareUid.iUid;
+#ifdef SYMBIAN_DISABLE_HARDWARE_BITMAP_WHITEFILL
+			return KErrNone;
+#endif
+			}
+		else
+			{
+			data = iPile->Alloc(dataSize);
+			iDataOffset = data - iPile->ChunkBase();
+			}
+		if (!data)
+			{
+			iDataOffset=0;
+			Reset();
+			return(KErrNoMemory);	// no memory exit point
+			}
+		}
+
+	if (dataSize < KMaxLargeBitmapAlloc || aDispMode == EColor4K || iUid.iUid == KCBitwiseBitmapHardwareUid.iUid)
+		{
+		WhiteFill(data,dataSize,aDispMode);
+		}
+
+	return KErrNone;	// success exit point
+	}
+
+
+EXPORT_C TInt CBitwiseBitmap::ConstructExtended(const TSize& aSize, TDisplayMode aDispMode, TUid aType, TInt aDataSize)
+	{
+	if (iHeap == NULL || iPile == NULL)
+		return KErrNoMemory;
+	if (aSize.iWidth > KMaxPixelSize || aSize.iHeight > KMaxPixelSize)
+		return KErrTooBig;
+	if (aType.iUid == KCBitwiseBitmapUid.iUid || aType.iUid == KCBitwiseBitmapHardwareUid.iUid)
+		return KErrArgument; // make sure the extended bitmap type is not one of the standard types
+	if (aDataSize > KMaxByteSize)
+		return KErrTooBig;
+	Reset();
+	iUid = aType;
+	iSettings.SetDisplayModes(aDispMode);
+	iByteWidth = ByteWidth(aSize.iWidth, aDispMode);
+	iHeader.iBitmapSize = sizeof(SEpocBitmapHeader) + aDataSize;
+	iHeader.iStructSize = sizeof(SEpocBitmapHeader);
+	iHeader.iSizeInPixels = aSize;
+	iHeader.iSizeInTwips = TSize(0,0);
+	iHeader.iBitsPerPixel = Bpp(aDispMode);
+	iHeader.iColor = IsColor(aDispMode);
+	iHeader.iPaletteEntries = 0;
+	iHeader.iCompression = EProprietaryCompression;
+	TUint8* data = iPile->Alloc(aDataSize);
+	if (!data)
+		{
+		Reset();
+		return KErrNoMemory;
+		}
+	iDataOffset = data - iPile->ChunkBase();
+	return KErrNone;
+	}
+
+
+EXPORT_C void CBitwiseBitmap::ConstructL(RFs& aFs,const TDesC& aFilename,TInt32 aId,TUint aFileOffset)
+	{
+	//If aFileOffset != 0 then aFilename is a file with an embedded MBM file section at the end.
+	//The implementation uses the fact that mbm files are implemented as
+	//filestores and stream ID is actually the offset from the beginning of the filestore.
+	//If stream ID changes its meaning in the future -
+	//the method implementation has to be reviewed and changed too.
+	User::LeaveIfNull(iHeap);
+	User::LeaveIfNull(iPile);
+	TUint fileMode = EFileRead;
+	if(aFileOffset != 0) //This is a file with an embedded MBM file section at the end.
+		fileMode |= EFileShareReadersOnly;
+	CShiftedFileStore* filestore = CShiftedFileStore::OpenLC(aFs,aFilename,fileMode,aFileOffset);
+	TStreamId streamid = filestore->Root();
+	//TStreamId is the offset from the beggining of the file.
+	//Obviously, if the bitmap file section is at the middle of the physical file,
+	//we should add aFileOffset value to TStreamId value and use it.
+	TStreamId streamid2(streamid.Value() + aFileOffset);
+	RStoreReadStream readstream;
+	readstream.OpenLC(*filestore,streamid2);
+	TInt numbitmaps = readstream.ReadInt32L();
+	if (aId < 0 || aId >= numbitmaps)
+		User::Leave(KErrEof);
+
+	TStreamId bmpstreamid;
+	bmpstreamid.InternalizeL(readstream);
+	TStreamId bmpstreamid2(bmpstreamid.Value() + aFileOffset);
+	for (TInt count = 0; count < aId; count++)
+		{
+		bmpstreamid2.InternalizeL(readstream);
+		bmpstreamid2 = TStreamId(bmpstreamid2.Value() + aFileOffset);
+		}
+
+	CleanupStack::PopAndDestroy();
+	RStoreReadStream bmpstream;
+	bmpstream.OpenLC(*filestore,bmpstreamid2);
+	InternalizeL(bmpstream);
+	CleanupStack::PopAndDestroy(2);
+	}
+
+EXPORT_C void CBitwiseBitmap::ConstructL(RFile& aFile,TInt32 aId,TUint aFileOffset)
+	{
+	//If aFileOffset != 0 then aFilename is a file with an embedded MBM file section at the end.
+	//The implementation uses the fact that mbm files are implemented as
+	//filestores and stream ID is actually the offset from the beginning of the filestore.
+	//If stream ID changes its meaning in the future -
+	//the method implementation has to be reviewed and changed too.
+	User::LeaveIfNull(iHeap);
+	User::LeaveIfNull(iPile);
+
+	CShiftedFileStore* filestore = CShiftedFileStore::FromL(aFile,aFileOffset);
+	CleanupStack::PushL(filestore);
+	TStreamId streamid = filestore->Root();
+	//TStreamId is the offset from the beggining of the file.
+	//Obviously, if the bitmap file section is at the middle of the physical file,
+	//we should add aFileOffset value to TStreamId value and use it.
+	TStreamId streamid2(streamid.Value() + aFileOffset);
+	RStoreReadStream readstream;
+	readstream.OpenLC(*filestore,streamid2);
+	TInt numbitmaps = readstream.ReadInt32L();
+	if (aId < 0 || aId >= numbitmaps)
+		User::Leave(KErrEof);
+	//Retrieving the streamid of the bitmap of that id from the file
+	TStreamId bmpstreamid;
+	bmpstreamid.InternalizeL(readstream);
+	TStreamId bmpstreamid2(bmpstreamid.Value() + aFileOffset);
+	for (TInt count = 0; count < aId; count++)
+		{
+		bmpstreamid2.InternalizeL(readstream);
+		bmpstreamid2 = TStreamId(bmpstreamid2.Value() + aFileOffset);
+		}
+	//Use the streamid found to initialize the bitmap raw data in the memory
+	CleanupStack::PopAndDestroy(&readstream);
+	RStoreReadStream bmpstream;
+	bmpstream.OpenLC(*filestore,bmpstreamid2);
+	InternalizeL(bmpstream);
+	CleanupStack::PopAndDestroy(2,filestore);
+	}
+
+
+EXPORT_C void CBitwiseBitmap::ConstructL(CShiftedFileStore* aFileStore,TStreamId aStreamId)
+	{
+	User::LeaveIfNull(iHeap);
+	User::LeaveIfNull(iPile);
+
+	RStoreReadStream bmpstream;
+	bmpstream.OpenLC(*aFileStore,aStreamId);
+	InternalizeL(bmpstream);
+	CleanupStack::PopAndDestroy();
+	}
+
+EXPORT_C TInt CBitwiseBitmap::CopyData(const CBitwiseBitmap& aSourceBitmap)
+	{
+	__ASSERT_DEBUG(iHeap && iPile, ::Panic(EFbsPanicBitmapDataCopy));
+	__ASSERT_DEBUG(!iIsCompressedInRAM, ::Panic(EFbsPanicBitmapDataCopy));
+	__ASSERT_DEBUG(iUid.iUid == KCBitwiseBitmapUid.iUid, ::Panic(EFbsPanicBitmapDataCopy));
+	if (aSourceBitmap.iUid.iUid != KCBitwiseBitmapUid.iUid)
+		return KErrNotSupported;
+	const TDisplayMode displayMode = aSourceBitmap.iSettings.CurrentDisplayMode();
+	__ASSERT_DEBUG(iSettings.CurrentDisplayMode() == displayMode, ::Panic(EFbsPanicBitmapDataCopy));
+	if (aSourceBitmap.iHeader.iSizeInPixels.iWidth > 0)
+		iHeader.iSizeInTwips.iWidth = (aSourceBitmap.iHeader.iSizeInTwips.iWidth * iHeader.iSizeInPixels.iWidth)
+			/ aSourceBitmap.iHeader.iSizeInPixels.iWidth;
+	if (aSourceBitmap.iHeader.iSizeInPixels.iHeight > 0)
+		iHeader.iSizeInTwips.iHeight = (aSourceBitmap.iHeader.iSizeInTwips.iHeight * iHeader.iSizeInPixels.iHeight)
+			/ aSourceBitmap.iHeader.iSizeInPixels.iHeight;
+	TUint32* destBase = DataAddress();
+	TUint32* srcBase = aSourceBitmap.DataAddress();
+	if (!destBase || !srcBase)
+		return KErrNone;
+	TInt minPixelHeight = Min(iHeader.iSizeInPixels.iHeight, aSourceBitmap.iHeader.iSizeInPixels.iHeight);
+	if (aSourceBitmap.iIsCompressedInRAM)
+		{
+		TUint8* dest = (TUint8*)destBase;
+		TInt minPixelWidth = Min(iHeader.iSizeInPixels.iWidth, aSourceBitmap.iHeader.iSizeInPixels.iWidth);
+		TPtr8 pDest(dest, iByteWidth, iByteWidth);
+		TPoint pt(0, 0);
+		TPoint ditherOffset(0, 0);
+		TLineScanningPosition scanPos(srcBase);
+		scanPos.iScanLineBuffer = HBufC8::New(aSourceBitmap.iByteWidth + 4);
+		if (!scanPos.iScanLineBuffer)
+			return KErrNoMemory;
+		for (TInt row = 0; row < minPixelHeight; ++row)
+			{
+			pDest.Set(dest, iByteWidth, iByteWidth);
+			pt.iY = row;
+			aSourceBitmap.GetScanLine(pDest, pt, minPixelWidth, EFalse, ditherOffset, displayMode, srcBase, scanPos);
+			dest += iByteWidth;
+			}
+		delete scanPos.iScanLineBuffer;
+		}
+	else
+		{
+		TUint8* dest = (TUint8*)destBase;
+		TUint8* src = (TUint8*)srcBase;
+		TInt minByteWidth = Min(iByteWidth, aSourceBitmap.iByteWidth);
+		for(TInt row = 0; row < minPixelHeight; ++row)
+			{
+			Mem::Copy(dest, src, minByteWidth);
+			dest += iByteWidth;
+			src += aSourceBitmap.iByteWidth;
+			}
+		}
+	if (iHeader.iSizeInPixels.iWidth > aSourceBitmap.iHeader.iSizeInPixels.iWidth)
+		{
+		TInt extraBits = (aSourceBitmap.iHeader.iSizeInPixels.iWidth * aSourceBitmap.iHeader.iBitsPerPixel) & 31;
+		if (extraBits > 0)
+			{
+			TUint32 mask = KMaxTUint32;
+			mask <<= extraBits;
+			TInt destWordWidth = iByteWidth >> 2;
+			TInt srcWordWidth = aSourceBitmap.iByteWidth >> 2;
+			TUint32* maskAddress = destBase + srcWordWidth - 1;
+			for (TInt row = 0; row < minPixelHeight; ++row)
+				{
+				*maskAddress |= mask;
+				maskAddress += destWordWidth;
+				}
+			}
+		}
+	return KErrNone;
+	}
+
+EXPORT_C void CBitwiseBitmap::ExternalizeL(RWriteStream& aStream,const CFbsBitmap& aHandleBitmap) const
+	{
+	ExternalizeRectangleL(aStream,iHeader.iSizeInPixels,aHandleBitmap);
+	}
+
+EXPORT_C void CBitwiseBitmap::ExternalizeRectangleL(RWriteStream& aStream,const TRect& aRect,const CFbsBitmap& aHandleBitmap) const
+	{
+	if (aRect.IsEmpty())
+		User::Leave(KErrArgument);
+	// the bitmap must have been already prepared for data access
+	if (aHandleBitmap.iUseCount == 0)
+		User::Leave(KErrArgument);
+
+	// If the bitmap is palette-compressed in RAM externalisation is currently not supported
+	// Externalisation of extended bitmaps is currently not supported either
+	if (iHeader.iCompression == EGenericPaletteCompression || iHeader.iCompression == EProprietaryCompression)
+		User::Leave(KErrNotSupported);
+	const TRect bitmapRect(iHeader.iSizeInPixels);
+	TRect sourceRect(aRect);
+	if (!sourceRect.Intersects(bitmapRect))
+		User::Leave(KErrTooBig);
+	sourceRect.Intersection(bitmapRect);
+
+	TDisplayMode displayMode = iSettings.CurrentDisplayMode();
+	const TInt scanLineByteLength = CBitwiseBitmap::ByteWidth(sourceRect.Width(),displayMode);
+	const TInt rectByteSize = sourceRect.Height() * scanLineByteLength;
+	TUint8* buffer = (TUint8*)User::AllocLC(scanLineByteLength);
+
+	TPtr8 scanline(buffer,scanLineByteLength,scanLineByteLength);
+	scanline.Fill(0xff);
+	const TPoint zeroPoint;
+	TInt compressedSize = 0;
+	TInt row;
+
+	for (row = sourceRect.iTl.iY; row < sourceRect.iBr.iY; row++)
+		{
+		GetScanLine(scanline,TPoint(sourceRect.iTl.iX,row),sourceRect.Width(),EFalse,zeroPoint,displayMode,aHandleBitmap.DataAddress());
+		compressedSize += SizeOfDataCompressed(buffer,scanLineByteLength);
+		}
+
+	TBool compress = EFalse;
+	if(compressedSize > 0)
+		{
+		compress = (displayMode == EColor4K) || (compressedSize < (rectByteSize >> 1) + (rectByteSize >> 2));
+		}
+
+	aStream.WriteInt32L(sizeof(SEpocBitmapHeader) + ((compress) ? compressedSize : rectByteSize));
+	aStream.WriteInt32L(iHeader.iStructSize);
+	aStream.WriteInt32L(sourceRect.Width());
+	aStream.WriteInt32L(sourceRect.Height());
+	aStream.WriteInt32L(HorizontalPixelsToTwips(sourceRect.Width()));
+	aStream.WriteInt32L(VerticalPixelsToTwips(sourceRect.Height()));
+	aStream.WriteInt32L(iHeader.iBitsPerPixel);
+	aStream.WriteUint32L(iHeader.iColor);
+	aStream.WriteInt32L(0);
+	aStream.WriteUint32L(compress ? CompressionType(iHeader.iBitsPerPixel, iHeader.iColor) : ENoBitmapCompression);
+
+	for (row = sourceRect.iTl.iY; row < sourceRect.iBr.iY; row++)
+		{
+		GetScanLine(scanline,TPoint(sourceRect.iTl.iX,row),sourceRect.Width(),EFalse,zeroPoint,displayMode,aHandleBitmap.DataAddress());
+
+		if (!compress)
+			aStream.WriteL(buffer,scanLineByteLength);
+		else
+			DoExternalizeDataCompressedL(aStream,buffer,scanLineByteLength);
+		}
+
+	CleanupStack::PopAndDestroy(); // buffer
+	}
+
+EXPORT_C void CBitwiseBitmap::InternalizeHeaderL(RReadStream& aStream,SEpocBitmapHeader& aHeader)
+	{
+	aHeader.iBitmapSize=aStream.ReadInt32L();
+	aHeader.iStructSize=aStream.ReadInt32L();
+	if (aHeader.iStructSize!=sizeof(SEpocBitmapHeader)) User::Leave(KErrCorrupt);
+	aHeader.iSizeInPixels.iWidth=aStream.ReadInt32L();
+	aHeader.iSizeInPixels.iHeight=aStream.ReadInt32L();
+	aHeader.iSizeInTwips.iWidth=aStream.ReadInt32L();
+	aHeader.iSizeInTwips.iHeight=aStream.ReadInt32L();
+	aHeader.iBitsPerPixel=aStream.ReadInt32L();
+	aHeader.iColor=(TInt)aStream.ReadUint32L();
+	aHeader.iPaletteEntries=aStream.ReadInt32L();
+	if (aHeader.iPaletteEntries != 0)
+		{
+		//Palettes are not supported.
+		User::Leave(KErrNotSupported);
+		}
+	aHeader.iCompression=(TBitmapfileCompression)aStream.ReadUint32L();
+	CheckHeaderIsValidL(aHeader);
+	}
+
+void CBitwiseBitmap::CheckHeaderIsValidL(const SEpocBitmapHeader& aHeader)	
+	{
+	//These fields are signed in the structure?
+	TInt bitmapSize = aHeader.iBitmapSize;
+	TInt imageHeightPix = aHeader.iSizeInPixels.iHeight;
+	TInt imageWidthPix = aHeader.iSizeInPixels.iWidth;
+	TInt bitsPerPixel = aHeader.iBitsPerPixel;
+	TInt compression = aHeader.iCompression;
+	TInt colour = aHeader.iColor;
+	TBool corruptFlag = EFalse;
+	
+	//Need to copy the values from the structure
+	TDisplayMode equivalentMode = CBitwiseBitmap::DisplayMode(aHeader.iBitsPerPixel,aHeader.iColor);
+	if (equivalentMode == ENone)
+		{
+		User::Leave(KErrNotSupported);	
+		}
+	if(aHeader.iColor < 0)
+		 {
+		 corruptFlag = ETrue;
+		 } 
+	 	//easieast way to check if compression type is appropriate is to ask the compressor 
+	if (compression && compression!= CBitwiseBitmap::CompressionType(bitsPerPixel,colour))
+		{
+		corruptFlag = ETrue;
+		}
+	//danger when using CBitwiseBitmap is they could panic for bad input...
+	if (imageHeightPix <= 0 || imageWidthPix <= 0 || bitsPerPixel <= 0)
+		{
+		corruptFlag = ETrue;
+		}
+	const TInt KMeg = 1024 * 1024;
+	//Test that scanline bytes calculation won't overflow.
+	TInt bytesPerPack;	// pixel size in memory
+	TInt bytesPerCompression;	// compressed unit data size
+    User::LeaveIfError(CompressedFormatInfo(equivalentMode, bytesPerPack, bytesPerCompression));
+	if (imageWidthPix > 2047 * KMeg / bytesPerPack)
+		{
+		corruptFlag = ETrue;
+		}
+	TInt uncompressedWidthBytes = CBitwiseBitmap::ByteWidth(imageWidthPix,equivalentMode);	//we know this won't overflow, now.
+	//use top set bit indexes of 32 bit integer values to estimate when W*H multiply will overflow
+	TInt exponentWidth = 0;
+	TInt exponentHeight = 0;
+	if (uncompressedWidthBytes & 0xffff0000)
+		{
+		exponentWidth += 16;
+		}
+	if (imageHeightPix & 0xffff0000)
+		{
+		exponentHeight += 16;
+		}
+	if (exponentWidth || exponentHeight)
+		{
+		if (uncompressedWidthBytes & 0xFF00FF00)
+			{
+			exponentWidth += 8;
+			}
+		if (imageHeightPix & 0xFF00FF00)
+			{
+			exponentHeight += 8;
+			}
+		if (uncompressedWidthBytes & 0xf0f0f0f0)
+			{
+			exponentWidth += 4;
+			}
+		if (imageHeightPix & 0xf0f0f0f0)
+			{
+			exponentHeight += 4;
+			}
+		if (uncompressedWidthBytes & 0xCCCCCCCC)
+			{
+			exponentWidth += 2;
+			}
+		if (imageHeightPix & 0xCCCCCCCC)
+			{
+				exponentHeight += 2;
+		}
+		if (uncompressedWidthBytes & 0xaaaaaaaa)
+			{
+			exponentWidth += 1;
+			}
+		if (imageHeightPix & 0xaaaaaaaa)
+			{
+			exponentHeight += 1;
+			}
+		TInt exponentTotal = exponentWidth + exponentHeight;
+		if (exponentTotal >= 31)
+			{
+			//The result would defuinitely exceed a signed int
+			corruptFlag = ETrue;
+			}
+		else if (exponentTotal == 30)
+			{
+			//as a bit test, both "next most significat bits" must be set to cause a carry-over,
+			//but that isn't so trivial to test.
+			if ((uncompressedWidthBytes >> 1) * imageHeightPix > 1024 * KMeg)
+				{
+				corruptFlag = ETrue;
+				}
+			}
+		}
+	if (compression)
+		{
+		/* estimate compressed file size limits
+		byte compression uses lead code 0..127 = repeat next byte n+1 times. -1..-128 = copy next -n bytes
+		16, 24, 32 use byte lead codes as above followed by words, triplets, or dwords
+		1,2,4,8,16 all encode any dword alignment buffer padding data as full data values.
+		32 doesn't have padding issue. 24 does not encode padding bytes.
+		12 bit compression uses 0..15 spare nibble to encode short runs. 0=unique. Can never make file bigger.*/
+		if (bitsPerPixel == 12)
+			{
+			//min file size is 1/16 of rect size
+			if (bitmapSize < sizeof(SEpocBitmapHeader) + ((uncompressedWidthBytes * imageHeightPix) / 16))
+				{
+				corruptFlag = ETrue;	
+				}
+			if (bitmapSize > sizeof(SEpocBitmapHeader) + uncompressedWidthBytes * imageHeightPix)
+				{
+				corruptFlag = ETrue;
+				}
+			}
+		else
+			{
+				TInt packedValsPerFile = (uncompressedWidthBytes / bytesPerPack) * imageHeightPix;
+				//for some of the compressors 0 means a run of 2, so max 127 means a run of 129
+				TInt estMinCompressedBlocksPerFile = (packedValsPerFile - 1) / 129 + 1;	
+				/* Absolute minimum is blocks of 128 repeats possibly spanning multiple scanlines
+				This can't be compressed by the current per-scanline compressor,
+				but is acceptable to the decompressor. */
+				if (bitmapSize < sizeof(SEpocBitmapHeader) + estMinCompressedBlocksPerFile * (bytesPerCompression + 1))
+					{
+					corruptFlag = ETrue;
+					}
+			/* Absolute maximum is to store every pixel as a seperate run of 1 byte.
+			The current compressor would never do this... but the file is legal! */
+				if (bitmapSize > sizeof(SEpocBitmapHeader) + packedValsPerFile * (bytesPerCompression + 1))
+					{
+					corruptFlag = ETrue;
+					}
+			}
+		}
+	else
+		{
+		if (bitmapSize != sizeof(SEpocBitmapHeader) + uncompressedWidthBytes * imageHeightPix)
+			{
+			corruptFlag = ETrue;
+			}
+		}
+	if(corruptFlag)
+		{
+		User::Leave(KErrCorrupt);
+		}
+			
+	}
+
+/**
+Internalizes the bit map contents from a stream.
+@param aStream The read stream containing the bit map.
+*/
+EXPORT_C void CBitwiseBitmap::InternalizeL(RReadStream& aStream)
+	{
+	if (iHeap==NULL || iPile==NULL)
+		User::Leave(KErrNoMemory);
+	Reset();
+	InternalizeHeaderL(aStream,iHeader);
+
+	TDisplayMode displayMode = DisplayMode(iHeader.iBitsPerPixel,iHeader.iColor);
+	if(displayMode == ENone)
+		{
+		Reset();
+		User::Leave(KErrCorrupt);
+		}
+
+	iSettings.SetDisplayModes(displayMode);
+
+	iByteWidth = ByteWidth(iHeader.iSizeInPixels.iWidth,iSettings.CurrentDisplayMode());
+
+	TUint8* data=NULL;
+	TInt bytesize = iByteWidth * iHeader.iSizeInPixels.iHeight;
+	if (bytesize > 0)
+		{
+		data = iPile->Alloc(bytesize);
+		iDataOffset = data - iPile->ChunkBase();
+		if (!data)
+			{
+			iDataOffset=0;
+			Reset();
+			User::LeaveNoMemory();
+			}
+		}
+	TRAPD(err,DoInternalizeL(aStream,iHeader.iBitmapSize-iHeader.iStructSize,DataAddress()));
+	if (err!=KErrNone)
+		{
+		Reset();
+		User::Leave(err);
+		}
+	}
+
+
+void CBitwiseBitmap::DoInternalizeL(RReadStream& aStream,TInt aSrceSize,TUint32* aBase)
+	{
+	if (iHeader.iCompression==ENoBitmapCompression)
+		aStream.ReadL((TUint8*)aBase,aSrceSize);
+	else if (iHeader.iCompression < ERLECompressionLast)
+		{
+		TBitmapfileCompression compression = iHeader.iCompression;
+		iHeader.iCompression = ENoBitmapCompression;
+		iHeader.iBitmapSize = iByteWidth*iHeader.iSizeInPixels.iHeight+sizeof(SEpocBitmapHeader);
+		DoInternalizeCompressedDataL(aStream,aSrceSize,aBase,compression);
+		}
+ 	else
+		CheckHeaderIsValidL(iHeader);
+	}
+
+EXPORT_C TDisplayMode CBitwiseBitmap::DisplayMode() const
+	{
+	return iSettings.CurrentDisplayMode();
+	}
+
+EXPORT_C TInt CBitwiseBitmap::HorizontalPixelsToTwips(TInt aPixels) const
+	{
+	if (iHeader.iSizeInPixels.iWidth==0)
+		return(0);
+	TInt twips;
+	twips = (aPixels*iHeader.iSizeInTwips.iWidth+(iHeader.iSizeInPixels.iWidth/2))/iHeader.iSizeInPixels.iWidth;
+	return(twips);
+	}
+
+EXPORT_C TInt CBitwiseBitmap::VerticalPixelsToTwips(TInt aPixels) const
+	{
+	if (iHeader.iSizeInPixels.iHeight==0)
+		return(0);
+	TInt twips;
+	twips = (aPixels*iHeader.iSizeInTwips.iHeight+(iHeader.iSizeInPixels.iHeight/2))/iHeader.iSizeInPixels.iHeight;
+	return (twips);
+	}
+
+EXPORT_C TSize CBitwiseBitmap::SizeInPixels() const
+	{
+	return(iHeader.iSizeInPixels);
+	}
+
+EXPORT_C TSize CBitwiseBitmap::SizeInTwips() const
+	{
+	return(iHeader.iSizeInTwips);
+	}
+
+EXPORT_C TInt CBitwiseBitmap::HorizontalTwipsToPixels(TInt aTwips) const
+	{
+	if (iHeader.iSizeInTwips.iWidth==0)
+		return(0);
+	TInt pixels;
+	pixels = (aTwips*iHeader.iSizeInPixels.iWidth+(iHeader.iSizeInTwips.iWidth/2))/iHeader.iSizeInTwips.iWidth;
+	return(pixels);
+	}
+
+EXPORT_C TInt CBitwiseBitmap::VerticalTwipsToPixels(TInt aTwips) const
+	{
+	if (iHeader.iSizeInTwips.iHeight==0)
+		return(0);
+	TInt pixels;
+	pixels = (aTwips*iHeader.iSizeInPixels.iHeight+(iHeader.iSizeInTwips.iHeight/2))/iHeader.iSizeInTwips.iHeight;
+	return(pixels);
+	}
+
+/**
+The method retrieves the red, green, blue (RGB) color value of the pixel with
+specified coordinates.
+Note: The method works for uncompressed bitmaps and extended bitmaps only.
+@internalComponent
+@released
+@pre aBase != NULL;
+@param aColor It will be initialized with the pixel color value on success, otherwise
+aColor value will be left unchanged.
+@param aPixel Pixel coordinates.
+@param aBase It points to the beginning of the bitmap data.
+*/
+EXPORT_C void CBitwiseBitmap::GetPixel(TRgb& aColor,const TPoint& aPixel,TUint32* aBase, CFbsRasterizer* aRasterizer) const
+	{
+	// This operation is not currently supported for compressed bitmaps.
+	if (iHeader.iCompression != ENoBitmapCompression && iHeader.iCompression != EProprietaryCompression)
+		{
+		__ASSERT_DEBUG(EFalse, ::Panic(EFbsBitmapInvalidCompression));
+		return;
+		}
+	if (!iDataOffset)
+		return;
+
+	TInt x=aPixel.iX,y=aPixel.iY;
+	if (x < -iHeader.iSizeInPixels.iWidth)
+		x %= iHeader.iSizeInPixels.iWidth;
+	if (y < -iHeader.iSizeInPixels.iHeight)
+		y %= iHeader.iSizeInPixels.iHeight;
+	if (x < 0)
+		x += iHeader.iSizeInPixels.iWidth;
+	if (y < 0)
+		y += iHeader.iSizeInPixels.iHeight;
+
+	if (iHeader.iCompression == EProprietaryCompression)
+		{
+		if (aRasterizer)
+			{
+			TUint32* slptr = const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(x,y), 1));
+			if (slptr)
+				{
+				aColor = GetRgbPixelEx(x, slptr);
+				}
+			else
+				{
+				// wrong rasterizer for this extended bitmap - return white pixel
+				aColor = KRgbWhite;
+				}
+			}
+		else
+			{
+			// no rasterizer - return white pixel
+			aColor = KRgbWhite;
+			}
+		}
+	else
+		{
+		aColor = GetRgbPixelEx(x,ScanLineAddress(aBase,y));
+		}
+	}
+
+EXPORT_C TInt CBitwiseBitmap::GetScanLinePtr(TUint32*& aSlptr, TInt& aLength,TPoint& aPixel,TUint32* aBase, TLineScanningPosition& aLineScanningPosition) const
+	{
+	if (!iDataOffset)
+		return KErrNone;
+	if (aPixel.iX >= iHeader.iSizeInPixels.iWidth || aPixel.iX < -iHeader.iSizeInPixels.iWidth)
+		aPixel.iX %= iHeader.iSizeInPixels.iWidth;
+	if (aPixel.iY >= iHeader.iSizeInPixels.iHeight || aPixel.iY < -iHeader.iSizeInPixels.iHeight)
+		aPixel.iY %= iHeader.iSizeInPixels.iHeight;
+	if (aPixel.iX < 0)
+		aPixel.iX += iHeader.iSizeInPixels.iWidth;
+	if (aPixel.iY < 0)
+		aPixel.iY += iHeader.iSizeInPixels.iHeight;
+	if (aPixel.iX + aLength > iHeader.iSizeInPixels.iWidth)
+		aLength = iHeader.iSizeInPixels.iWidth - aPixel.iX;
+	if (iHeader.iCompression != ENoBitmapCompression)
+		{
+		return DoGetScanLinePtr(aSlptr, aPixel,aLength,aBase,aLineScanningPosition);
+		}
+	else
+		{
+		aSlptr = ScanLineAddress(aBase,aPixel.iY);
+		}
+	return KErrNone;
+	}
+
+EXPORT_C TInt CBitwiseBitmap::GetScanLinePtr(TUint32*& aSlptr, TPoint& aPixel,TInt aLength,TUint32* aBase, TLineScanningPosition& aLineScanningPosition) const
+	{
+	return GetScanLinePtr(aSlptr, aLength,aPixel,aBase, aLineScanningPosition);
+	}
+
+TUint8 CBitwiseBitmap::GetGrayPixelEx(TInt aX,TUint32* aScanlinePtr) const
+	{
+	// returns pixel as EGray256 value (0 - 255)
+
+	if (iHeader.iColor)
+		return TUint8(GetRgbPixelEx(aX,aScanlinePtr)._Gray256());
+	else
+		{
+		if (!aScanlinePtr)
+			return 0;
+
+		if (aX >= iHeader.iSizeInPixels.iWidth)
+			aX %= iHeader.iSizeInPixels.iWidth;
+
+		switch (iHeader.iBitsPerPixel)
+			{
+			case 2:
+				{
+				TUint32 col = *(aScanlinePtr+(aX>>4));
+				col>>=((aX&0xf)<<1);
+				col&=3;
+				col |= (col << 6) | (col<<4) | (col<<2);
+				return TUint8(col);
+				}
+			case 4:
+				{
+				TUint32 col = *(aScanlinePtr+(aX>>3));
+				col >>= ((aX&7)<<2);
+				col &= 0xf;
+				return TUint8(col |= (col << 4));
+				}
+			case 1:
+				{
+				TUint32 col = *(aScanlinePtr+(aX>>5));
+				if (col&(1<<(aX&0x1f))) return 255 ;
+				return 0;
+				}
+			case 8:
+				return *(((TUint8*)aScanlinePtr) + aX);
+			default:
+				return 0;
+			 }
+
+		}
+	}
+
+TRgb CBitwiseBitmap::GetRgbPixelEx(TInt aX,TUint32* aScanlinePtr) const
+	{
+	// returns pixel as TRgb
+
+	if (iHeader.iColor)
+		{
+		if (!aScanlinePtr)
+			return KRgbBlack;
+
+		if (aX>=iHeader.iSizeInPixels.iWidth)
+			aX%=iHeader.iSizeInPixels.iWidth;
+
+		switch (iHeader.iBitsPerPixel)
+			{
+			case 32:
+				if (iSettings.CurrentDisplayMode() == EColor16MAP)
+					return TRgb::_Color16MAP(*(aScanlinePtr + aX));
+				else if (iSettings.CurrentDisplayMode() == EColor16MA)
+					return TRgb::_Color16MA(*(aScanlinePtr + aX));
+				//scanLineBytePointer format: BGR0 - 0RGB as INT32.
+				else
+					return TRgb::_Color16MU(*(aScanlinePtr + aX));
+			case 24:
+				{
+				TUint8* scanLineBytePointer = (TUint8*)aScanlinePtr + aX * 3;
+				TInt color16M = *scanLineBytePointer++;
+				color16M |= (*scanLineBytePointer++) << 8;
+				color16M |= (*scanLineBytePointer++) << 16;
+				return TRgb::_Color16M(color16M);
+				}
+			case 16:
+				return TRgb::_Color64K(*(((TUint16*)aScanlinePtr) + aX));
+			case 12:
+				return TRgb::_Color4K(*(((TUint16*)aScanlinePtr) + aX));
+			case 8:
+				return TRgb::Color256(*((TUint8*)aScanlinePtr + aX));
+			case 4:
+				{
+				TUint8 colorIndex = *((TUint8*)aScanlinePtr + (aX >> 1));
+				if (aX & 1)
+					colorIndex >>= 4;
+				return TRgb::Color16(colorIndex & 0xf);
+				}
+			default:
+				return KRgbBlack;
+			}
+		}
+	else
+		return TRgb::_Gray256(GetGrayPixelEx(aX,aScanlinePtr));
+	}
+
+void CBitwiseBitmap::GetRgbPixelExMany(TInt aX,TUint32* aScanlinePtr, TUint32* aDest,TInt aLength) const
+    {
+    __ASSERT_DEBUG(aScanlinePtr && aDest, User::Invariant());
+    __ASSERT_DEBUG(aX      >= 0, User::Invariant());
+    __ASSERT_DEBUG(aLength >= 0, User::Invariant());
+    __ASSERT_DEBUG(aX+aLength <= iHeader.iSizeInPixels.iWidth, User::Invariant());
+
+    union {
+        TUint8*  scanPtr8;
+        TUint16* scanPtr16;
+        TUint32* scanPtr32;
+    };
+    TUint32 color;
+    TUint32 rawData;
+    const TUint32 opaqueAlpha = 0xff000000;
+    TUint32 color16MA = 0;  // // cached map to color
+
+    if (aLength < 1)
+        {
+        return;
+        }
+
+    if (iHeader.iColor)
+        {
+        switch (iHeader.iBitsPerPixel)
+            {
+            case 4:
+                {
+                scanPtr8 = reinterpret_cast<TUint8*>(aScanlinePtr);
+                TUint32 color16 = EFirstTime; // map source color: 16 color mode
+                do
+                    {
+                    rawData = (aX & 1) ? (scanPtr8[aX >> 1] >> 4) : (scanPtr8[aX >> 1] &0x0F);
+                    if ((rawData != color16))
+                        { // first pixel or colour change
+                        color16MA = TRgb::Color16(rawData)._Color16MA();
+                        color16 = rawData;
+                        }
+                    *aDest++ = color16MA;
+                    aX++;
+                    }
+                    while (--aLength);
+                return;
+                }
+            case 8:
+                {
+                scanPtr8 = reinterpret_cast<TUint8*>(aScanlinePtr) + aX;
+                const TUint32* lookup = DynamicPalette::DefaultColor256Util()->iColorTable;
+                TUint32 color256 = EFirstTime; // map source color: 256 color
+                do
+                    {
+                    rawData = *scanPtr8++;
+                    if ((rawData != color256))
+                        { // colour change or first pixel
+                        color16MA = lookup[rawData];
+                        color256 = rawData;
+                        // translate between bgr & rgb
+                        color16MA = ((color16MA & 0x0000ff) << 16) | (color16MA & 0x00ff00) | ((color16MA & 0xff0000) >> 16) | opaqueAlpha;
+                        }
+                    *aDest++ = color16MA;
+                    }
+                    while (--aLength);
+                return;
+                }
+            case 12:
+                {
+                scanPtr16 = reinterpret_cast<TUint16*>(aScanlinePtr) + aX;
+                TUint32 color4K = EFirstTime; // map source color: 4K color black => 16M color black
+                do
+                    {
+                    rawData = *scanPtr16++;
+                    if ((rawData != color4K))
+                        { // colour change
+                        color16MA = TRgb::_Color4K(rawData)._Color16MA();
+                        color4K = rawData;
+                        }
+                    *aDest++ = color16MA;
+                    }
+                    while (--aLength);
+                return;
+                }
+            case 16:
+                {
+                scanPtr16 = reinterpret_cast<TUint16*>(aScanlinePtr) + aX;
+                const TUint16* lowAdd = Convert16to32bppLow();
+                const TUint32* highAdd = Convert16to32bppHigh();
+                TUint32 color64K = EFirstTime; // map source color: 64K color black => 16M color black
+                do
+                    {
+                    rawData = *scanPtr16++;
+                    if ((rawData != color64K))
+                        { // colour change
+                        color16MA = highAdd[rawData >> 8] | lowAdd[rawData & 0x00FF];
+                        color64K = rawData;
+                        }
+                    *aDest++ = color16MA;
+                    }
+                    while (--aLength);
+                return;
+                }
+            case 24:
+                {
+                scanPtr8 = reinterpret_cast<TUint8*>(aScanlinePtr) + aX*3;
+                do
+                    {
+                    if ((aLength < 4) || (3 & (TUint32)(scanPtr8)))
+                        {
+                        aLength--;
+                        color  =  *scanPtr8++;
+                        color |= (*scanPtr8++) << 8;
+                        color |= (*scanPtr8++) << 16;
+                        *aDest++ = color | opaqueAlpha;
+                        }
+                    else
+                        { // source is now TUint32 aligned - so read source as blocks of 3 TUint32's & write as 4
+                        TUint32 word1, word2, word3;
+                        TInt iter = (aLength / 4) - 1;
+                        aLength = aLength & 0x0003;
+                        do
+                            {
+                            word1 = *scanPtr32++; 
+                            *aDest++ = word1 | opaqueAlpha;
+                            word2 = *scanPtr32++; 
+                            color = (word1 >> 24) | ((word2 & 0xFFFF) << 8); 
+                            *aDest++ = color | opaqueAlpha;
+                            word3 = *scanPtr32++; 
+                            color = (word2 >> 16) | ((word3 & 0x00FF) << 16); 
+                            *aDest++ = color | opaqueAlpha;
+                            *aDest++ = (word3 >> 8) | opaqueAlpha;
+                            }
+                            while (iter--);
+                        }
+                    }
+                    while (aLength);
+                return;
+                }
+            case 32:
+                {
+                scanPtr32 = aScanlinePtr + aX;
+                if(iSettings.CurrentDisplayMode() == EColor16MAP)
+                    { // unrolled loop uses "Duff's Device"
+                    const TUint16* normTable = PtrTo16BitNormalisationTable();
+                    --aLength;
+                    TInt iter = aLength / 8;
+                    switch(aLength & 7) 
+                        {
+                        case 7:
+                            do {
+                                *aDest++ = PMA2NonPMAPixel(*scanPtr32++, normTable);
+                        case 6:
+                                *aDest++ = PMA2NonPMAPixel(*scanPtr32++, normTable);
+                        case 5:
+                                *aDest++ = PMA2NonPMAPixel(*scanPtr32++, normTable);
+                        case 4:
+                                *aDest++ = PMA2NonPMAPixel(*scanPtr32++, normTable);
+                        case 3:
+                                *aDest++ = PMA2NonPMAPixel(*scanPtr32++, normTable);
+                        case 2:
+                                *aDest++ = PMA2NonPMAPixel(*scanPtr32++, normTable);
+                        case 1:
+                                *aDest++ = PMA2NonPMAPixel(*scanPtr32++, normTable);
+                        case 0:
+                                *aDest++ = PMA2NonPMAPixel(*scanPtr32++, normTable);
+                            } while (iter-- > 0);
+                        }
+                    }
+                else if (iSettings.CurrentDisplayMode() == EColor16MU)
+                    { // unrolled loop uses "Duff's Device"
+                    --aLength;
+                    TInt iter = aLength / 8;
+                    switch(aLength & 7) 
+                        {
+                        case 7:
+                            do {
+                                *aDest++ = (*scanPtr32++) | opaqueAlpha;
+                        case 6:
+                                *aDest++ = (*scanPtr32++) | opaqueAlpha;
+                        case 5:
+                                *aDest++ = (*scanPtr32++) | opaqueAlpha;
+                        case 4:
+                                *aDest++ = (*scanPtr32++) | opaqueAlpha;
+                        case 3:
+                                *aDest++ = (*scanPtr32++) | opaqueAlpha;
+                        case 2:
+                                *aDest++ = (*scanPtr32++) | opaqueAlpha;
+                        case 1:
+                                *aDest++ = (*scanPtr32++) | opaqueAlpha;
+                        case 0:
+                                *aDest++ = (*scanPtr32++) | opaqueAlpha;
+                            } while (iter-- > 0);
+                        }
+                    }
+                else // EColor16MA
+                    {
+                    Mem::Move(aDest, scanPtr32, aLength * 4);
+                    }
+                return;
+                }
+            default:
+                return;
+            }
+        }
+    else
+        {
+        switch (iHeader.iBitsPerPixel)
+            {
+            case 1:
+                {
+                do
+                    {
+                    *aDest++ = TUint32(COLOR_VALUE(aScanlinePtr, aX) ? 0xFFFFFFFF : 0xFF000000);
+                    aX++;
+                    }
+                while (--aLength);
+                break;
+                }
+            case 8:
+                {
+                scanPtr8 = reinterpret_cast<TUint8*>(aScanlinePtr) + aX;
+                do
+                    {
+                    rawData = *scanPtr8++;
+                    color16MA = rawData | (rawData << 8) | (rawData << 16) | opaqueAlpha; 
+                    *aDest++ = color16MA;
+                    }
+                    while (--aLength);              
+                break;
+                }
+            default:
+                {
+                do
+                    {
+                    rawData = GetGrayPixelEx(aX++,aScanlinePtr);
+                    color16MA = rawData | (rawData << 8) | (rawData << 16) | opaqueAlpha; 
+                    *aDest++ = color16MA;
+                    }
+                    while (--aLength);              
+                }
+            }
+        }
+    }
+/**
+The method retrieves the RGB color values from the scanline, and converts them
+into the destination screen-mode pixel format. This method handles the special
+case when the destination mode is EColor16MAP (32bit with alpha values premultiplied
+with the color channels. Calls GetRgbPixelExMany for values not 32 bit, as there is no
+alpha information in these color modes. For color mode EColor16MU, no conversion is 
+performed (as alpha is assumed to be 1).
+@internalComponent
+@released
+@param aX	The x co-ordinate the scanline data needs to be retrieved from.
+@param aScanlinePtr	The scanline pointer, i.e. the source data.
+@param aDest	The pointer to the destination buffer. This is where the output is stored.
+@param aLength	The number of bytes to be copied. This value must be a multiple of 4.
+*/
+void CBitwiseBitmap::GetRgbPixelExMany16MAP(TInt aX,TUint32* aScanlinePtr,TUint32* aDest,TInt aLength) const
+    {
+    __ASSERT_DEBUG(aScanlinePtr && aDest, User::Invariant());
+    __ASSERT_DEBUG(aX      >= 0, User::Invariant());
+    __ASSERT_DEBUG(aLength >= 0, User::Invariant());
+    __ASSERT_DEBUG(aX+aLength <= iHeader.iSizeInPixels.iWidth, User::Invariant());
+
+    TUint32* scanPtr32;
+
+    if ((iHeader.iColor) && (iHeader.iBitsPerPixel == 32))
+        {
+        scanPtr32 = aScanlinePtr + aX;
+        if (DisplayMode() == EColor16MAP)
+            {
+            Mem::Move(aDest, scanPtr32, aLength<<2);
+            }
+        else if(DisplayMode()==EColor16MA)
+            {
+            TUint32* ptrLimit = aDest + aLength;
+            const TInt32 zero = 0;
+            while (aDest < ptrLimit)
+                {
+                TUint32 value = *scanPtr32++;
+                TUint32 tA = value >> 24;
+                if (tA == 0)
+                    {
+                    *aDest++ = zero;
+                    }
+                else if (tA != 255) 
+                    {
+                    *aDest++ = NonPMA2PMAPixel(value);
+                    }
+                else
+                    {
+                    *aDest++ = value;
+                    }
+                }
+            }
+        else // DisplayMode() == EColor16MU
+            {
+            if (aLength--)
+                { // unrolled loop uses "Duff's Device"
+                const TUint32 alpha = 0xFF000000;   //set all the alpha to 0xff
+                TInt iter = aLength / 8;
+                switch(aLength & 7) 
+                    {
+                    case 7:
+                        do {
+                            *aDest++ = (*scanPtr32++) | alpha;
+                    case 6:
+                            *aDest++ = (*scanPtr32++) | alpha;
+                    case 5:
+                            *aDest++ = (*scanPtr32++) | alpha;
+                    case 4:
+                            *aDest++ = (*scanPtr32++) | alpha;
+                    case 3:
+                            *aDest++ = (*scanPtr32++) | alpha;
+                    case 2:
+                            *aDest++ = (*scanPtr32++) | alpha;
+                    case 1:
+                            *aDest++ = (*scanPtr32++) | alpha;
+                    case 0:
+                            *aDest++ = (*scanPtr32++) | alpha;
+                        } while (iter-- > 0);
+                    }
+                }
+            }
+        }
+    else
+        {
+        GetRgbPixelExMany(aX, aScanlinePtr, aDest, aLength);
+        }
+    }
+
+void CBitwiseBitmap::GetRgbPixelExMany16M(TInt aX,TUint32* aScanlinePtr, TUint8* aDest,TInt aLength) const
+    {
+    union {
+        TUint8*  scanPtr8;
+        TUint16* scanPtr16;
+        TUint32* scanPtr32;
+    };
+    union {
+        TUint8*  destPtr8;
+        TUint32* destPtr32;
+    };
+    destPtr8 = aDest;
+    TUint32 rawData;
+
+    if (!aScanlinePtr)
+        {
+        const TUint32 zero = 0; // conveniently KRgbBlack is 0 in EColor16M mode
+        while (aLength)
+            {
+            if ((aLength < 4) || (3 & (TUint32)(destPtr8)))
+                {
+                aLength--;
+                *destPtr8++ = zero;
+                *destPtr8++ = zero;
+                *destPtr8++ = zero;
+                }
+            else
+                { // dest is now TUint32 aligned - write 4 pixels into 3 TUint32s
+                aLength -= 4;
+                *destPtr32++ = zero;
+                *destPtr32++ = zero;
+                *destPtr32++ = zero;
+                }
+            }
+        return;
+        }
+
+    if (aX>=iHeader.iSizeInPixels.iWidth)
+        {
+        aX%=iHeader.iSizeInPixels.iWidth;
+        }
+
+    while (aLength)
+        {
+        // cached map to color
+        TUint32 color16M = 0;
+        TInt copyLength = iHeader.iSizeInPixels.iWidth - aX;
+        TUint32* scanPtr32 = aScanlinePtr + aX;
+        if (copyLength > aLength)
+            {
+            copyLength = aLength;
+            }
+        aLength -= copyLength;
+
+        if (iHeader.iColor)
+            {
+            switch(iHeader.iBitsPerPixel)
+                {
+                case 4:
+                    {
+                    scanPtr8 = reinterpret_cast<TUint8*>(aScanlinePtr);
+                    TUint32 color16 = EFirstTime; // map source color: 16 color mode
+                    do
+                        {
+                        rawData = (aX & 1) ? (scanPtr8[aX >> 1] >> 4) : (scanPtr8[aX >> 1] &0x0F);
+                        if ((rawData != color16))
+                            { // first pixel or colour change
+                            color16M = TRgb::Color16(rawData)._Color16M();
+                            color16 = rawData;
+                            }
+                        *destPtr8++ = TUint8(color16M);
+                        *destPtr8++ = TUint8(color16M >> 8);
+                        *destPtr8++ = TUint8(color16M >> 16);
+                        aX++;
+                        }
+                        while (--copyLength);
+                    break;
+                    }
+                case 8:
+                    {
+                    scanPtr8 = reinterpret_cast<TUint8*>(aScanlinePtr) + aX;
+                    const TUint32* lookup = DynamicPalette::DefaultColor256Util()->iColorTable;
+                    TUint32 color256 = EFirstTime; // map source color: 256 color
+                    do
+                        {
+                        rawData = *scanPtr8++;
+                        if ((rawData != color256))
+                            { // first pixel or colour change; so perform new mapping
+                            color16M = lookup[rawData];
+                            color256 = rawData;
+                            }
+                        // Note; byte order performs required bgr -> rgb conversion 
+                        *destPtr8++ = TUint8(color16M >> 16);
+                        *destPtr8++ = TUint8(color16M >> 8);
+                        *destPtr8++ = TUint8(color16M);
+                        }
+                        while (--copyLength);
+                    break;
+                    }
+                case 12:
+                    {
+                    scanPtr16 = reinterpret_cast<TUint16*>(aScanlinePtr) + aX;
+                    TUint32 color4K = EFirstTime; // map source color: 4K color black => 16M color black
+                    do
+                        {
+                        rawData = *scanPtr16++;
+                        if ((rawData != color4K))
+                            { // first pixel or colour change
+                            color16M = TRgb::_Color4K(rawData)._Color16M();
+                            color4K = rawData;
+                            }
+                        *destPtr8++ = TUint8(color16M);
+                        *destPtr8++ = TUint8(color16M >> 8);
+                        *destPtr8++ = TUint8(color16M >> 16);
+                        }
+                        while (--copyLength);
+                    break;
+                    }
+                case 16:
+                    {
+                    scanPtr16 = reinterpret_cast<TUint16*>(aScanlinePtr) + aX;
+                    const TUint16* lowAdd = Convert16to32bppLow();
+                    const TUint32* highAdd = Convert16to32bppHigh();
+                    TUint16 halfWord;
+                    TUint32 color64K = EFirstTime; // 64K color black => 16M color black
+                    color16M = 0;
+                    do
+                        {
+                        halfWord = *scanPtr16++;
+                        if ((halfWord != color64K))
+                            { // colour change
+                            color16M = highAdd[halfWord >> 8] | lowAdd[halfWord & 0x00FF];
+                            color64K = halfWord;
+                            }
+                        *destPtr8++ = TUint8(color16M);
+                        *destPtr8++ = TUint8(color16M >> 8);
+                        *destPtr8++ = TUint8(color16M >> 16);
+                        }
+                        while (--copyLength);
+                    break;
+                    }
+                case 24:
+                    {
+                    Mem::Copy(destPtr8, reinterpret_cast<TUint8*>(aScanlinePtr) + aX, copyLength * 3); // may not be aligned 
+                    destPtr8 += copyLength * 3;
+                    break;
+                    }
+                case 32:
+                    {
+                    scanPtr32 = aScanlinePtr + aX;
+                    if (iSettings.CurrentDisplayMode() == EColor16MAP)
+                        {
+                        const TUint16* normTable = PtrTo16BitNormalisationTable();
+                        do
+                            {
+                            // convert from EColor16MAP to EColor16MA first.
+                            color16M = PMA2NonPMAPixel(*scanPtr32++, normTable);
+                            *destPtr8++ = TUint8(color16M);
+                            *destPtr8++ = TUint8(color16M >> 8);
+                            *destPtr8++ = TUint8(color16M >> 16);
+                            }
+                            while (--copyLength);
+                        }
+                    else
+                        { // EColor16MA or EColor16MU, keep the RGB & throw away the top byte
+                        // scanLineBytePointer format: ARGB - 0RGB as INT32 or BGR0 - 0RGB as INT32.
+                        do
+                            {
+                            if ((copyLength < 4) || (3 & (TUint32)destPtr8))
+                                {
+                                color16M = *scanPtr32++;
+                                --copyLength;
+                                *destPtr8++ = TUint8(color16M);
+                                *destPtr8++ = TUint8(color16M >> 8);
+                                *destPtr8++ = TUint8(color16M >> 16);
+                                }
+                            else // dest is TUint32 aligned: copy 4 pixels into 3 TUint32's
+                                {
+                                color16M = (*scanPtr32++) & 0x00FFFFFF;
+                                rawData = (*scanPtr32++) & 0x00FFFFFF;
+                                copyLength -= 4;
+                                *destPtr32++ = color16M | (rawData << 24);
+                                color16M = (*scanPtr32++) & 0x00FFFFFF;
+                                *destPtr32++ = (color16M << 16) | (rawData >> 8);
+                                rawData = (*scanPtr32++) & 0x00FFFFFF;
+                                *destPtr32++ = (color16M >> 16) | (rawData << 8);
+                                }
+                            }
+                            while (copyLength);
+                        }
+                    break;
+                    }
+                default:
+                    break;
+                }
+            }
+        else
+            { // !iHeader.iColor
+            if (iHeader.iBitsPerPixel == 8)
+                {
+                scanPtr8 = reinterpret_cast<TUint8*>(aScanlinePtr) + aX;
+                do
+                    {
+                    rawData = *scanPtr8++;
+                    *destPtr8++ = (TUint8)rawData;
+                    *destPtr8++ = (TUint8)rawData;
+                    *destPtr8++ = (TUint8)rawData;
+                    }
+                    while (--copyLength);
+                }
+            else
+                {
+                do
+                    {
+                    rawData = GetGrayPixelEx(aX++,aScanlinePtr);
+                    *destPtr8++ = (TUint8)rawData;
+                    *destPtr8++ = (TUint8)rawData;
+                    *destPtr8++ = (TUint8)rawData;
+                    }
+                    while (--copyLength);
+                }
+            }
+        aX = 0; // second copy, if any, comes from start of line
+        }
+
+    return;
+    }
+
+void CBitwiseBitmap::GenerateLineFromCompressedEightBitData(TUint8* aDestBuffer, const TPoint& aPixel,TInt aLength, TUint32* aBase,TLineScanningPosition& aLineScanningPosition) const
+	{
+	const TInt bitmapWidth=iByteWidth;
+	const TInt pixelsPerByte=8/iHeader.iBitsPerPixel;
+	const TInt startPos=aPixel.iY*bitmapWidth+aPixel.iX/pixelsPerByte;
+	const TInt endPos=aPixel.iY*bitmapWidth+(aPixel.iX+aLength+pixelsPerByte-1)/pixelsPerByte;
+	const TInt byteLength=endPos-startPos;
+	TInt writes=byteLength;
+	TUint8* destPtr = ((TUint8*)aDestBuffer);
+	destPtr+=(aPixel.iX/pixelsPerByte);
+	if (aLineScanningPosition.iCursorPos>startPos)
+		{
+		aLineScanningPosition.iSrcDataPtr=(TUint8*)aBase;
+		aLineScanningPosition.iCursorPos=0;
+		}
+	TUint8* srcePtr = (TUint8*)aLineScanningPosition.iSrcDataPtr;
+	TInt8 count=*srcePtr;
+	TInt16 addition;
+	if (count<0)
+		addition=(TInt16) (-count);
+	else
+		addition=(TInt16) (count+1);
+	while (aLineScanningPosition.iCursorPos+addition<startPos)
+		{
+		aLineScanningPosition.iCursorPos+=addition;
+		if (count<0)
+			{
+			srcePtr+=(-count+1);
+			}
+		else
+			{
+			srcePtr+=2;  // Just skip over value
+			}
+		count = *srcePtr;
+		if (count<0)
+			addition=(TInt16) (-count);
+		else
+			addition=(TInt16) (count+1);
+		}
+	// Then scan the line
+	count=0;
+	while (aLineScanningPosition.iCursorPos+count<startPos+byteLength)
+		{
+		TBool negativeCount=EFalse;
+		count=*srcePtr;
+		if (count<0)
+			{
+			negativeCount=ETrue;
+			count=(TInt8) ((-count)-1);
+			}
+		TUint8 value = *(srcePtr+1);
+		TInt distanceToTheLineEnd=startPos+byteLength-aLineScanningPosition.iCursorPos;
+		if (count<distanceToTheLineEnd)
+			{
+			if (!negativeCount)
+				{
+				srcePtr+=2;
+				}
+			else
+				{
+				srcePtr+=1;
+				}
+			TInt countPlusOne = (TInt)count + 1;
+			TInt start = Max(0,startPos-aLineScanningPosition.iCursorPos);
+			if (countPlusOne > start)
+				{
+				TInt length = Min(countPlusOne-start,writes);
+				writes -= countPlusOne-start;
+				if (length > 0)
+					{
+					/*Mem::Fill and Mem::Copy used in order to increase the performance*/
+					if (!negativeCount)
+						{
+						Mem::Fill(destPtr,length,value);
+						}
+					else
+						{
+						Mem::Copy(destPtr,srcePtr+start,length);
+						}
+					destPtr += length;
+					}
+				}
+			if (negativeCount)
+				{
+				srcePtr += countPlusOne;
+				}
+			aLineScanningPosition.iCursorPos += countPlusOne;
+			count=0;
+			}
+			else
+			{
+			TInt correction=1;
+			if (aLineScanningPosition.iCursorPos<startPos)
+				{
+				correction=startPos-aLineScanningPosition.iCursorPos+1;
+				}
+			TInt length = Min(byteLength,writes);
+			writes -= length;
+			/*Mem::Fill and Mem::Copy used in order to increase the performance*/
+			if (!negativeCount)
+				{
+				Mem::Fill(destPtr,length,value);
+				}
+			else
+				{
+				Mem::Copy(destPtr,srcePtr+correction,length);
+				}
+			destPtr += length;
+			}
+		}
+	aLineScanningPosition.iSrcDataPtr=(TUint8*) srcePtr;
+	}
+
+void CBitwiseBitmap::GenerateLineFromCompressedTwelveBitData(TUint8* aDestBuffer, const TPoint& aPixel,TInt aLength, TUint32* aBase, TLineScanningPosition& aLineScanningPosition) const
+	{
+	const TInt bitmapWidth=iByteWidth>>1;
+	const TInt startPos=aPixel.iY*bitmapWidth+aPixel.iX;
+	TInt writes=aLength*2;
+	TUint16* destPtr = ((TUint16*)aDestBuffer);//+aPixel.iX;
+	destPtr+=aPixel.iX;
+
+	if(iPile)
+		{
+		::AdjustLineScanningPosition(aLineScanningPosition, aBase, bitmapWidth, startPos, iHeader.iBitmapSize - sizeof(SEpocBitmapHeader));
+		}
+	TUint16* srcePtr = (TUint16*)aLineScanningPosition.iSrcDataPtr;
+
+	// Fast find the correct position to start
+	TInt count=0;
+	if(::Abs(aLineScanningPosition.iCursorPos - startPos) > startPos)
+		{
+		srcePtr = (TUint16*)aBase;
+		aLineScanningPosition.iCursorPos = 0;
+		}
+	while (aLineScanningPosition.iCursorPos>startPos)
+		{
+		srcePtr--;
+		TUint16 value = *srcePtr;
+		count = value >> 12;
+		aLineScanningPosition.iCursorPos-=(count+1);
+		}
+	while (aLineScanningPosition.iCursorPos<startPos)
+		{
+		TUint16 value = *srcePtr++;
+		count = value >> 12;
+		aLineScanningPosition.iCursorPos+=count+1;
+		}
+	if (aLineScanningPosition.iCursorPos>startPos)
+		{
+		aLineScanningPosition.iCursorPos-=(count+1);
+		srcePtr--;
+		}
+
+	// Then scan the line
+	count=0;
+	while (aLineScanningPosition.iCursorPos+count<startPos+aLength)
+		{
+		TUint16 value = *srcePtr;
+		count = value >> 12;
+		value &= 0x0fff;
+		TInt distanceToTheLineEnd=startPos+aLength-aLineScanningPosition.iCursorPos;
+		if (count<distanceToTheLineEnd)
+			{
+			srcePtr++;
+			for (TInt ii=0 ; ii<=count ; ii++)
+				{
+				if (aLineScanningPosition.iCursorPos>=startPos)
+					{
+					if (writes>0)
+						*destPtr++ = value;
+					writes-=2;
+					}
+				aLineScanningPosition.iCursorPos++;
+
+				}
+			count=0;
+			}
+		else
+			{
+			for (TInt ii=0 ; ii<distanceToTheLineEnd ; ii++)
+				{
+				writes-=2;
+				*destPtr++ = value;
+				if (writes==0)
+					break;
+				}
+			}
+		}
+	aLineScanningPosition.iSrcDataPtr=(TUint8*) srcePtr;
+	}
+
+/**
+The method generates a line from compressed 16 bpp bitmap data.
+@internalComponent
+@see TScanLineDecompressor
+*/
+void CBitwiseBitmap::GenerateLineFromCompressedSixteenBitData(TUint8* aDestBuffer,
+															  const TPoint& aPixel,
+															  TInt aLength,
+															  TUint32* aBase,
+															  TLineScanningPosition& aLineScanningPosition) const
+	{
+	TInt comprDataBytes = iHeader.iBitmapSize - sizeof(SEpocBitmapHeader);
+	TScanLineDecompressor<E2bpp, E2bpp> decompr(aBase, comprDataBytes, iPile!=NULL);
+	decompr(aDestBuffer, aPixel, aLineScanningPosition, iByteWidth, iByteWidth, aLength);
+	}
+
+/**
+The method generates a line from compressed 24 bpp bitmap data.
+@internalComponent
+@see TScanLineDecompressor
+*/
+void CBitwiseBitmap::GenerateLineFromCompressed24BitData(
+									 TUint8* aDestBuffer,
+									 const TPoint& aPixel,
+									 TInt aLength,
+									 TUint32* aBase,
+									 TLineScanningPosition& aLineScanningPosition) const
+	{
+	TInt comprDataBytes = iHeader.iBitmapSize - sizeof(SEpocBitmapHeader);
+	TScanLineDecompressor<E3bpp, E3bpp> decompr(aBase, comprDataBytes, iPile!=NULL);
+	decompr(aDestBuffer, aPixel, aLineScanningPosition, iByteWidth, iByteWidth, aLength);
+	}
+
+/**
+The method generates a line from compressed 24 bpp to 32 bpp bitmap data .
+@internalComponent
+@see TScanLineDecompressor
+*/
+void CBitwiseBitmap::GenerateLineFromCompressed32UBitData(
+									 TUint8* aDestBuffer,
+									 const TPoint& aPixel,
+									 TInt aLength,
+									 TUint32* aBase,
+									 TLineScanningPosition& aLineScanningPosition) const
+	{
+	TInt comprDataBytes = iHeader.iBitmapSize - sizeof(SEpocBitmapHeader);
+	TScanLineDecompressor<E3bpp, E4bpp> decompr(aBase, comprDataBytes, iPile!=NULL);
+
+	TUint32 theByteWidthSrc = iHeader.iSizeInPixels.iWidth * 3;
+	decompr(aDestBuffer, aPixel, aLineScanningPosition, theByteWidthSrc, iByteWidth, aLength);
+	}
+
+/**
+The method generates a line from compressed 32 bpp to 32 bpp bitmap data .
+@internalComponent
+@see TScanLineDecompressor
+*/
+void CBitwiseBitmap::GenerateLineFromCompressed32ABitData(
+ 									 TUint8* aDestBuffer,
+ 									 const TPoint& aPixel,
+ 									 TInt aLength,
+ 									 TUint32* aBase,
+ 									 TLineScanningPosition& aLineScanningPosition) const
+	{
+	TInt comprDataBytes = iHeader.iBitmapSize - sizeof(SEpocBitmapHeader);
+	TScanLineDecompressor<E4bpp, E4bpp> decompr(aBase, comprDataBytes, iPile!=NULL);
+
+	TUint32 theByteWidthSrc = iHeader.iSizeInPixels.iWidth * 4;
+	decompr(aDestBuffer, aPixel, aLineScanningPosition, theByteWidthSrc, iByteWidth, aLength);
+	}
+
+TInt CBitwiseBitmap::DoGetScanLinePtr(TUint32*& aSlptr, TPoint& aPixel,TInt aLength,TUint32* aBase, TLineScanningPosition& aLineScanningPosition) const
+	{
+	TUint8* buf=NULL;
+	HBufC8* hBuf=aLineScanningPosition.iScanLineBuffer;
+	if (!hBuf)
+		{
+		RFbsSession* session=RFbsSession::GetSession();
+		if (session)
+			{
+			hBuf=session->GetScanLineBuffer();
+			}
+		else
+			{
+			aSlptr=NULL;
+			return KErrSessionClosed;
+			}
+		aLineScanningPosition.iScanLineBuffer=hBuf;
+		}
+	__ASSERT_ALWAYS(hBuf && hBuf->Des().MaxLength() >= iByteWidth, User::Invariant());
+	buf = const_cast<TUint8*>(hBuf->Ptr());
+	switch(iHeader.iCompression)
+		{
+		case ETwelveBitRLECompression:
+			GenerateLineFromCompressedTwelveBitData(buf, aPixel,aLength, aBase, aLineScanningPosition);
+			break;
+		case EByteRLECompression:
+			GenerateLineFromCompressedEightBitData(buf, aPixel,aLength, aBase, aLineScanningPosition);
+			break;
+		case ESixteenBitRLECompression:
+			GenerateLineFromCompressedSixteenBitData(buf, aPixel,aLength, aBase, aLineScanningPosition);
+			break;
+		case ETwentyFourBitRLECompression:
+			GenerateLineFromCompressed24BitData(buf, aPixel, aLength, aBase, aLineScanningPosition);
+			break;
+		case EThirtyTwoUBitRLECompression:
+			GenerateLineFromCompressed32UBitData(buf, aPixel, aLength, aBase, aLineScanningPosition);
+			break;
+		case EThirtyTwoABitRLECompression:
+			GenerateLineFromCompressed32ABitData(buf, aPixel, aLength, aBase, aLineScanningPosition);
+			break;
+		case EGenericPaletteCompression:
+			GenerateLineFromPaletteCompressedData(buf, aPixel, aLength, aBase, aLineScanningPosition);
+			break;
+		case EProprietaryCompression:
+			if (aLineScanningPosition.iRasterizer)
+				{
+				aSlptr = const_cast<TUint32*>(aLineScanningPosition.iRasterizer->ScanLine(Extra()->iSerialNumber, aPixel, aLength));
+				if (aSlptr)
+					{
+					return KErrNone;
+					}
+				}
+			WhiteFill(buf, iByteWidth, iSettings.CurrentDisplayMode());
+			break;
+		default:
+			{
+			__ASSERT_DEBUG(EFalse, ::Panic(EFbsBitmapInvalidCompression));
+			return KErrNotSupported;
+			}
+		}
+	aSlptr = (TUint32*) buf;
+	return KErrNone;
+	}
+
+EXPORT_C void CBitwiseBitmap::GetScanLine(TDes8& aBuf,const TPoint& aPixel,TInt aLength,TBool aDither,const TPoint& aDitherOffset,TDisplayMode aDispMode,TUint32* aBase,TLineScanningPosition& aLineScanningPosition) const
+	{
+	if (!iDataOffset)
+		return;
+
+	TPoint pixel(aPixel);
+	TUint32* slptr=NULL;
+	GetScanLinePtr(slptr, aLength, pixel,aBase, aLineScanningPosition);
+	GetScanLine(slptr,aBuf,pixel,aLength,aDither,aDitherOffset,aDispMode);
+	}
+
+EXPORT_C void CBitwiseBitmap::GetScanLine(TUint32*& aScanLinePtr, TDes8& aDestBuf,const TPoint& aPixel,TInt aLength,TBool aDither,
+	const TPoint& aDitherOffset,TDisplayMode aDestinationDispMode) const
+	{
+	if (!iDataOffset)
+		return;
+	TDisplayMode currentDisplayMode = iSettings.CurrentDisplayMode();
+	if (!aScanLinePtr) // if scanline pointer is null,
+		{
+		WhiteFill((TUint8*)aDestBuf.Ptr(),aDestBuf.MaxLength(),currentDisplayMode);
+		return;
+		}
+	TUint8* ptr = (TUint8*)aDestBuf.Ptr();
+	// if dest pointer is not aligned
+	if (!(TUint32(ptr)&3) && aDestinationDispMode == currentDisplayMode)
+		{
+		if (iHeader.iBitsPerPixel < 8)
+			GetScanLineExBits(aDestBuf,aPixel.iX,aLength,aScanLinePtr);
+		else
+			GetScanLineExBytes(aDestBuf,aPixel.iX,aLength,aScanLinePtr);
+		return;
+		}
+	//read the scanline in destination display format.
+	switch (aDestinationDispMode)
+		{
+	case EGray2:
+		GetScanLineGray2(aDestBuf,aPixel,aLength,aDither,aDitherOffset,aScanLinePtr);
+		break;
+	case EGray4:
+		GetScanLineGray4(aDestBuf,aPixel,aLength,aDither,aDitherOffset,aScanLinePtr);
+		break;
+	case EGray16:
+		GetScanLineGray16(aDestBuf,aPixel,aLength,aScanLinePtr);
+		break;
+	case EGray256:
+		GetScanLineGray256(aDestBuf,aPixel,aLength,aScanLinePtr);
+		break;
+	case EColor16:
+		GetScanLineColor16(aDestBuf,aPixel,aLength,aScanLinePtr);
+		break;
+	case EColor256:
+		GetScanLineColor256(aDestBuf,aPixel,aLength,aScanLinePtr);
+		break;
+	case EColor4K:
+		GetScanLineColor4K(aDestBuf,aPixel,aLength,aScanLinePtr);
+		break;
+	case EColor64K:
+		GetScanLineColor64K(aDestBuf,aPixel,aLength,aScanLinePtr);
+		break;
+	case EColor16M:
+		GetScanLineColor16M(aDestBuf,aPixel,aLength,aScanLinePtr);
+		break;
+	case ERgb:
+		GetScanLineColorRgb(aDestBuf,aPixel,aLength,aScanLinePtr);
+		break;
+	case EColor16MU:
+		GetScanLineColor16MU(aDestBuf,aPixel,aLength,aScanLinePtr);
+		break;
+	case EColor16MA:
+		GetScanLineColor16MA(aDestBuf,aPixel,aLength,aScanLinePtr);
+		break;
+	case EColor16MAP:
+		GetScanLineColor16MAP(aDestBuf,aPixel,aLength,aScanLinePtr);
+		break;
+	default:
+		aDestBuf.SetLength(0);
+		break;
+		};
+	}
+
+EXPORT_C void CBitwiseBitmap::GetScanLine(TDes8& aBuf,const TPoint& aPixel,TInt aLength,TBool aDither,const TPoint& aDitherOffset,TDisplayMode aDispMode,TUint32* aBase) const
+	{
+	TLineScanningPosition pos(aBase);
+	TUint8* base = REINTERPRET_CAST(TUint8*,aBase);
+	const TCompressionBookMark* bookMarkPtr = NULL;
+
+	GetLineScanPos(pos, bookMarkPtr, base);
+	GetScanLine(aBuf,aPixel,aLength,aDither,aDitherOffset,aDispMode,aBase,pos);
+	UpdateBookMark(pos, const_cast<TCompressionBookMark*>(bookMarkPtr), base);
+	}
+
+/**
+Gets the bitmap’s vertical scanline starting at the specified x co-ordinate and using
+the specified dither offset.
+Note: The method works for uncompressed bitmaps only.
+@param aBuf The buffer in which the vertical scanline will be returned.
+@param aX The x co-ordinate of the vertical scanline to get.
+@param aDitherOffset The dither offset of the bitmap.
+@param aDispMode Format to be used to write the data to the buffer.
+@param aBase The bitmap's data start address.
+*/
+EXPORT_C void CBitwiseBitmap::GetVerticalScanLine(TDes8& aBuf,TInt aX,TBool aDither,
+												  const TPoint& aDitherOffset,
+												  TDisplayMode aDispMode,
+												  TUint32* aBase,
+												  CFbsRasterizer* aRasterizer) const
+	{
+	if (iHeader.iCompression != ENoBitmapCompression && iHeader.iCompression != EProprietaryCompression)
+		{
+		__ASSERT_DEBUG(EFalse, ::Panic(EFbsBitmapInvalidCompression));
+		return; //not supported for compressed bitmaps
+		}
+
+	if (!iDataOffset)
+		{
+		return;
+		}
+	AdjustXCoord(aX);
+	TInt height=iHeader.iSizeInPixels.iHeight;
+	TUint32* slptr=aBase;
+	TUint8* ptr = (TUint8*)aBuf.Ptr();
+	*ptr=0;
+	const TInt wordwidth=iByteWidth>>2;
+	TInt y = 0;
+
+	if (iHeader.iCompression == EProprietaryCompression)
+		{
+		if (aRasterizer)
+			{
+			slptr = const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,0), 1));
+			if (!slptr)
+				{
+				// wrong rasterizer for this extended bitmap - fill vertical scan line with white pixels
+				TInt bufLength = ByteWidth(height, aDispMode);
+				aBuf.SetLength(bufLength);
+				WhiteFill(ptr, bufLength, aDispMode);
+				return;
+				}
+			}
+		else
+			{
+			// no rasterizer - fill vertical scan line with white pixels
+			TInt bufLength = ByteWidth(height, aDispMode);
+			aBuf.SetLength(bufLength);
+			WhiteFill(ptr, bufLength, aDispMode);
+			return;
+			}
+		}
+
+	switch(aDispMode)
+		{
+		case EGray2:
+			{
+			TBool oddx=(aDitherOffset.iX&1);
+			TBool oddy=(aDitherOffset.iY&1);
+			height=Min(height,(TInt)((aBuf.MaxLength())<<3));
+			aBuf.SetLength((height+7)>>3);
+			TUint8 mask=1;
+			for(TInt count=0;count<height;count++)
+				{
+				if (!mask)
+					{
+					mask=1;
+					ptr++;
+					*ptr = 0;
+					}
+				if (HashTo1bpp(GetGrayPixelEx(aX,slptr),oddx,oddy))
+					*ptr|=mask;
+				oddx^=1;
+				mask<<=1;
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				}
+			 break;
+			}
+		case EGray4:
+			{
+			height=Min(height,(TInt)((aBuf.MaxLength())<<2));
+			aBuf.SetLength((height+3)>>2);
+			TInt shift=0;
+			TUint8 col=0;
+			if (iHeader.iBitsPerPixel==4 && aDither)
+				{
+				const TInt hasharray[4]={0,3,2,1};
+				TInt index=(aDitherOffset.iX&1)+((aDitherOffset.iY&1)<<1);
+				for(TInt count=0;count<height;count++,shift+=2)
+					{
+					if (shift==8)
+						{
+						shift=0;
+						ptr++;
+						*ptr=0;
+						}
+					col = TUint8(GetGrayPixelEx(aX,slptr) >> 4);
+					TInt value = col / 5;
+					col%=5;
+					if (col>2) col--;
+					if (hasharray[index]<TInt(col))
+						value++;
+					value<<=shift;
+					*ptr|=value;
+					index^=1;
+					slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+					}
+				}
+			else
+				{
+				for(TInt count=0;count<height;count++,shift+=2)
+					{
+					if (shift==8)
+						{
+						shift=0;
+						ptr++;
+						*ptr=0;
+						}
+					col = TUint8(GetGrayPixelEx(aX,slptr) >> 6);
+					col<<=shift;
+					*ptr|=col;
+					slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+					}
+				}
+			 break;
+			}
+		case EGray16:
+			{
+			height = Min(height,aBuf.MaxLength()<<1);
+			aBuf.SetLength((height+1)>>1);
+			TUint8* ptrLimit = ptr + aBuf.Length() - 1;
+			while (ptr < ptrLimit)
+				{
+				*ptr = TUint8(GetGrayPixelEx(aX,slptr) >> 4);
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				*ptr++ |= GetGrayPixelEx(aX,slptr) & 0xf0;
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				}
+			// Fill last byte.
+			// If height is odd, upper 4 bits are zeroed.
+			*ptr = TUint8(GetGrayPixelEx(aX,slptr) >> 4);
+			if (!(height & 1))
+				{
+				// Only fill upper 4 bits of last byte if height is even. 
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				*ptr++ = GetGrayPixelEx(aX,slptr) & 0xf0;
+				}
+			break;
+			}
+		case EColor16:
+			{
+			height=Min(height,aBuf.MaxLength()<<1);
+			aBuf.SetLength((height+1)>>1);
+			TUint8* ptrLimit = ptr + aBuf.Length() - 1;
+
+			while (ptr < ptrLimit)
+				{
+				*ptr = TUint8(GetRgbPixelEx(aX,slptr).Color16());
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				*ptr++ |= GetRgbPixelEx(aX,slptr).Color16() << 4;
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				}
+			// Fill last byte.
+			// If height is odd, upper 4 bits are zeroed.
+			*ptr = TUint8(GetRgbPixelEx(aX,slptr).Color16());
+			if (!(height & 1))
+				{
+				// Only fill upper 4 bits of last byte if height is even. 
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				*ptr++ = GetRgbPixelEx(aX,slptr).Color16() << 4;
+				}
+			break;
+			}
+		case EGray256:
+			{
+			height = Min(height,aBuf.MaxLength());
+			aBuf.SetLength(height);
+			TUint8* ptrLimit = ptr + height;
+			while (ptr < ptrLimit)
+				{
+				*ptr++ = GetGrayPixelEx(aX,slptr);
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				}
+			break;
+			}
+		case EColor256:
+			{
+			height = Min(height,aBuf.MaxLength());
+			aBuf.SetLength(height);
+			TUint8* ptrLimit = ptr + height;
+
+			while (ptr < ptrLimit)
+				{
+				*ptr++ = TUint8(GetRgbPixelEx(aX,slptr).Color256());
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				}
+			break;
+			}
+		case EColor4K:
+			{
+			height = Min(height,aBuf.MaxLength() >> 1);
+			aBuf.SetLength(height << 1);
+			TUint16* dwordPtr = (TUint16*)ptr;
+			TUint16* ptrLimit = dwordPtr + height;
+
+			while (dwordPtr < ptrLimit)
+				{
+				*dwordPtr++ = TUint16(GetRgbPixelEx(aX,slptr)._Color4K());
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				}
+			break;
+			}
+		case EColor64K:
+			{
+			height = Min(height,aBuf.MaxLength() >> 1);
+			aBuf.SetLength(height << 1);
+			TUint16* dwordPtr = (TUint16*)ptr;
+			TUint16* ptrLimit = dwordPtr + height;
+
+			while (dwordPtr < ptrLimit)
+				{
+				*dwordPtr++ = TUint16(GetRgbPixelEx(aX,slptr)._Color64K());
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				}
+			break;
+			}
+		case EColor16M:
+			{
+			height = Min(height,aBuf.MaxLength() / 3);
+			aBuf.SetLength(height * 3);
+			const TUint8* ptrLimit = ptr + (height * 3);
+
+			while (ptr < ptrLimit)
+				{
+				const TInt color16M = GetRgbPixelEx(aX,slptr)._Color16M();
+				*ptr++ = TUint8(color16M);
+				*ptr++ = TUint8(color16M >> 8);
+				*ptr++ = TUint8(color16M >> 16);
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				}
+			break;
+			}
+		case ERgb:
+		case EColor16MU:
+		case EColor16MA:
+		case EColor16MAP:
+			{
+			height = Min(height,aBuf.MaxLength() >> 2);
+			aBuf.SetLength(height << 2);
+			TUint32* pixelPtr = (TUint32*)ptr;
+			TUint32* pixelPtrLimit = pixelPtr + height;
+
+			if (aDispMode == EColor16MAP && iSettings.CurrentDisplayMode() == EColor16MA)
+				while (pixelPtr < pixelPtrLimit)
+				{
+				*pixelPtr++ = NonPMA2PMAPixel(*(slptr + aX));
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				}
+			else if (aDispMode == EColor16MAP && iSettings.CurrentDisplayMode() == EColor16MAP)
+				while (pixelPtr < pixelPtrLimit)
+				{
+				*pixelPtr++ = *(slptr + aX);
+				slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+				}
+			else if (aDispMode == EColor16MU)
+				while (pixelPtr < pixelPtrLimit)
+					{
+					*pixelPtr++ = GetRgbPixelEx(aX, slptr).Internal() | 0xFF000000;
+					slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+					}
+			else
+				while (pixelPtr < pixelPtrLimit)
+					{
+					*pixelPtr++ = GetRgbPixelEx(aX, slptr).Internal();
+					slptr = aRasterizer ? const_cast<TUint32*>(aRasterizer->ScanLine(Extra()->iSerialNumber, TPoint(aX,++y), 1)) : slptr + wordwidth;
+					}
+			break;
+			}
+		default:
+			aBuf.SetLength(0);
+		}
+	}
+
+EXPORT_C void CBitwiseBitmap::StretchScanLine(TDes8& aBuf,const TPoint& aPixel,TInt aClipStrchX,TInt aClipStrchLen,TInt aStretchLength,TInt aOrgX,TInt aOrgLen,const TPoint& aDitherOffset,TDisplayMode aDispMode,TUint32* aBase) const
+	{
+	TLineScanningPosition pos(aBase);
+	StretchScanLine(aBuf,aPixel,aClipStrchX,aClipStrchLen,aStretchLength,aOrgX,aOrgLen,aDitherOffset,aDispMode,aBase,pos);
+	}
+
+EXPORT_C void CBitwiseBitmap::StretchScanLine(TDes8& aBuf,const TPoint& aPixel,TInt aClipStrchX,TInt aClipStrchLen,TInt aStretchLength,TInt aOrgX,TInt aOrgLen,const TPoint& aDitherOffset,TDisplayMode aDispMode,TUint32* aBase, TLineScanningPosition& aLineScanningPosition) const
+	{
+	if (!iDataOffset)
+		return;
+	TInt x=aPixel.iX,y=aPixel.iY;
+	if (x>=iHeader.iSizeInPixels.iWidth || x<-iHeader.iSizeInPixels.iWidth)
+		x%=iHeader.iSizeInPixels.iWidth;
+	if (y>=iHeader.iSizeInPixels.iHeight || y<-iHeader.iSizeInPixels.iHeight)
+		y%=iHeader.iSizeInPixels.iHeight;
+	if (x<0) x+=iHeader.iSizeInPixels.iWidth;
+	if (y<0) y+=iHeader.iSizeInPixels.iHeight;
+	if (aStretchLength<aOrgLen)
+		DoCompressScanLine(aBuf,x,y,aClipStrchX,aClipStrchLen,aStretchLength,aOrgX,aOrgLen,aDitherOffset,aDispMode,aBase,aLineScanningPosition);
+	else
+		DoStretchScanLine(aBuf,x,y,aClipStrchX,aClipStrchLen,aStretchLength,aOrgX,aOrgLen,aDitherOffset,aDispMode,aBase,aLineScanningPosition);
+	}
+
+EXPORT_C TUint32* CBitwiseBitmap::ScanLineAddress(TUint32* aBase,TUint aY) const
+	{
+	if (aY == 0 || iDataOffset == 0)
+		return aBase;
+
+	if (aY >= TUint(iHeader.iSizeInPixels.iHeight))
+		aY %= iHeader.iSizeInPixels.iHeight;
+
+	return aBase + (aY * (DataStride() >> 2));
+	}
+
+TUint32* CBitwiseBitmap::DataAddress() const
+	{
+	if (iDataOffset==0) return(NULL);
+
+	if(iUid.iUid==KCBitwiseBitmapHardwareUid.iUid)   // RHardwareBitmap
+		{
+		RHardwareBitmap hwb(iDataOffset);	// iDataOffset = handle for hardware bitmap
+		TAcceleratedBitmapInfo info;
+		const TInt ret = hwb.GetInfo(info);
+		return ret!=KErrNone ? NULL : (reinterpret_cast<TUint32*>(info.iAddress));
+		}
+
+	if (iHeap == NULL)
+		return(reinterpret_cast<TUint32*>((TUint8*)this+iDataOffset));
+	return(reinterpret_cast<TUint32*>(iPile->ChunkBase()+iDataOffset));
+	}
+
+EXPORT_C TInt CBitwiseBitmap::DataStride() const
+	{
+	return iByteWidth;
+	}
+
+TUint32 CBitwiseBitmap::HashTo2bpp(TUint32 aGray256,TInt aDitherIndex) const
+	{
+	static const TUint hasharray[4]={0,3,2,1};
+	TInt gray16 = aGray256 >> 4;
+	TInt gray4 = gray16 + 1;
+	gray4 += gray4 << 1;
+	gray4 >>= 4;
+	gray16 %= 5;
+	if (gray16 > 2)
+		gray16--;
+	if (hasharray[aDitherIndex] < TUint(gray16))
+		gray4++;
+	return gray4;
+	}
+
+TUint32 CBitwiseBitmap::HashTo1bpp(TUint32 aGray256,TBool aOddX,TBool aOddY) const
+	{
+	TUint32 aGray4 = aGray256 >> 6;
+	switch(aGray4)
+		{
+		case 3:
+			return 1;
+		case 2:
+			{
+			if (aOddX && aOddY)
+				return 0;
+			else
+				return 1;
+			}
+		case 1:
+			{
+			if ((aOddX && aOddY) || (!aOddX && !aOddY))
+				return 1;
+			}
+			//coverity [fallthrough]
+		default:
+			return 0;
+		}
+	}
+
+/**
+Tests whether or not the bitmap is monochrome.
+Monochrome bitmaps have a display-mode of 1 bit-per-pixel.
+Note: The method works for uncompressed bitmaps only.
+@param aBase Bitmap's data base address
+@return True if the bitmap is monochrome; false otherwise.
+*/
+EXPORT_C TBool CBitwiseBitmap::IsMonochrome(TUint32* aBase) const
+	{
+	if (IsCompressed())
+		{
+		__ASSERT_DEBUG(EFalse, ::Panic(EFbsBitmapInvalidCompression));
+		return EFalse;  // Not currently supported for compressed bitmaps
+		}
+
+	if (!iDataOffset)
+		{
+		return(EFalse);
+		}
+	TInt bitwidth=iHeader.iBitsPerPixel*iHeader.iSizeInPixels.iWidth;
+	if(iHeader.iBitsPerPixel == 12)
+		{//EColor4K mode - 1 pixel occupies 16 bits, most significant 4 bits are not used.
+		bitwidth=16*iHeader.iSizeInPixels.iWidth;
+		}
+	TInt wordwidth=bitwidth>>5;
+	TInt endshift=32-(bitwidth&0x1f);
+	TInt endmask=0;
+	if (endshift<32) endmask=0xffffffff>>endshift;
+	TUint32* bitptr=aBase;
+	//In a loop from first to last scanline:
+	//Check each pixel - is it monochrome or not (pixel color must be BLACK or WHITE).
+	//Get next scanline.
+	TUint32* endbitptr=bitptr+wordwidth;
+	for(TInt row=0;row<iHeader.iSizeInPixels.iHeight;row++)
+		{
+		if(iHeader.iBitsPerPixel == 24)
+			{//1 word contains 1 pixel and 8 bits from the next pixel.
+			for(TInt x=0;x<iHeader.iSizeInPixels.iWidth;x++)
+				{
+				TUint8* scanLine = reinterpret_cast <TUint8*> (bitptr) + x * 3;
+				TUint color16M = *scanLine++;
+				color16M |= (*scanLine++) << 8;
+				color16M |= (*scanLine++) << 16;
+				if (IsWordMonochrome(color16M)==EFalse)
+					return(EFalse);
+				}
+			}
+		else
+			{
+			TUint32* tmpbitptr=bitptr;
+			while(tmpbitptr<endbitptr)
+				if (IsWordMonochrome(*tmpbitptr++)==EFalse)
+					return(EFalse);
+			if (endmask)
+				if (IsWordMonochrome(*endbitptr&endmask)==EFalse)
+					return(EFalse);
+			}
+		bitptr+=wordwidth;
+		endbitptr+=wordwidth;
+		}
+	return(ETrue);
+	}
+
+TBool CBitwiseBitmap::IsWordMonochrome(TUint32 aWord) const
+	{
+	TDisplayMode displayMode = iSettings.CurrentDisplayMode();
+	switch(displayMode)
+		{
+		case EGray2:
+			return ETrue;
+		case EGray4:
+			{
+			TUint32 lowerbits=aWord&0x55555555;
+			TUint32 upperbits=(aWord>>1)&0x55555555;
+			if (lowerbits^upperbits)
+				return EFalse;
+			return ETrue;
+			}
+		case EGray16:
+		case EColor16:
+			{
+			if (aWord==0xffffffff || aWord==0)
+				return ETrue;
+			for(TInt count=0;count<8;count++)
+				{
+				TUint32 nibble=aWord&0xf;
+				if ((nibble>0) && (nibble<0xf))
+					return EFalse;
+				aWord>>=4;
+				}
+			return ETrue;
+			}
+		case EGray256:
+		case EColor256:
+			{
+			TUint8* bytePtr = (TUint8*)&aWord;
+			TUint8* bytePtrLimit = bytePtr + 4;
+			while (bytePtr < bytePtrLimit)
+				{
+				if (*bytePtr && (*bytePtr != 0xff))
+					return EFalse;
+				bytePtr++;
+				}
+			return ETrue;
+			}
+		case EColor4K:
+			{
+			aWord &= 0x0fff0fff;
+			TUint16 color4K = (TUint16)aWord;
+			if (color4K && (color4K != 0xfff))
+				return EFalse;
+			color4K = (TUint16)(aWord >> 16);
+			if (color4K && (color4K != 0xfff))
+				return EFalse;
+			return ETrue;
+			}
+		case EColor64K:
+			{
+			TUint16 color64K = (TUint16)aWord;
+			if (color64K && (color64K != 0xffff))
+				return EFalse;
+			color64K = (TUint16)(aWord >> 16);
+			if (color64K && (color64K != 0xffff))
+				return EFalse;
+			return ETrue;
+			}
+		case EColor16M:
+		case EColor16MU:
+		case EColor16MA:
+		case EColor16MAP:
+			{
+			aWord &= 0xffffff;
+			if (aWord && (aWord != 0x00ffffff))
+				return EFalse;
+			return ETrue;
+			}
+		default:
+			return EFalse;
+		}
+	}
+
+EXPORT_C TBool CBitwiseBitmap::IsLargeBitmap() const
+	{
+	if(iUid.iUid==KCBitwiseBitmapHardwareUid.iUid)
+		return EFalse; // RHardwareBitmap
+
+	if (iHeap==NULL) return(EFalse); // rom bitmap
+
+	// Consider all RAM bitmaps large, so that legacy applications always
+	// call LockHeap()/UnlockHeap() around DataAddress(), which allows
+	// better handling of hardware acceleration caches, if present.
+	// Note that, since the large bitmap threshold has always been in the
+	// documentation, it is not guaranteed that legacy applications call
+	// this function to determine whether a bitmap is large or not.
+	return ETrue;
+	}
+
+EXPORT_C TInt CBitwiseBitmap::HardwareBitmapHandle() const
+	{
+	if(iUid.iUid!=KCBitwiseBitmapHardwareUid.iUid)
+		return 0;
+	return iDataOffset; // Really the handle
+	}
+
+/**
+Set a flag to indicate that this bitmap has to be compressed in the FBServer background thread
+@return KErrNone if possible to compress, KErrAlreadyExists if already compressed
+*/
+EXPORT_C TInt CBitwiseBitmap::CheckBackgroundCompressData()
+	{
+	switch (iHeader.iBitsPerPixel)
+		{
+	case 1:
+	case 2:
+	case 4:
+	case 8:
+	case 12:
+	case 16:
+	case 24:
+	case 32:
+		break;
+	default:
+		return KErrNotSupported;
+		}
+	// Return if the bitmap is already compressed.
+	if (iHeader.iCompression != ENoBitmapCompression)
+		return KErrAlreadyExists;
+
+	// See if it's possible to allocate memory.
+	if (iHeap == NULL || iPile == NULL)
+		return KErrNoMemory;
+
+	return KErrNone;
+	}
+
+
+
+/**
+Compress a bitmap if possible.
+If the bitmap is already compressed, or if compression yields no decrease in size, do nothing,
+but return success (KErrNone).
+@return KErrNone if successful, otherwise a system wide error code.
+*/
+EXPORT_C TInt CBitwiseBitmap::CompressData()
+	{
+	switch (iHeader.iBitsPerPixel)
+		{
+	case 1:
+	case 2:
+	case 4:
+	case 8:
+	case 12:
+	case 16:
+	case 24:
+	case 32:
+		break;
+	default:
+		return KErrNone;
+		}
+	// Return if the bitmap is already compressed.
+	if (iHeader.iCompression != ENoBitmapCompression)
+		return KErrNone;
+
+	// Find out if compression is possible and return if not.
+	TUint8* data = (TUint8*)DataAddress();
+	TInt data_bytes = iHeader.iBitmapSize - iHeader.iStructSize;
+
+	//Update the padding bitmap data to speedup the RLE Compression
+	UpdatePaddingData((TUint32*)data);
+
+	TInt compressed_data_bytes = (SizeOfDataCompressed((TUint8*)data,data_bytes) + 3) / 4 * 4;
+
+	if (!data || !data_bytes)
+		return KErrNone;
+
+	//  	 if (compressed_data_bytes >= data_bytes)
+	//  It now attempts to check whether compression is worth while.  (speed vs space saving)
+	__ASSERT_DEBUG(KCompressionThreshold >=0 && KCompressionThreshold <= 256, ::Panic(EFbsInvalidCompressionThreshold));
+	if (compressed_data_bytes >= (data_bytes * KCompressionThreshold) >> 8)
+		return KErrNone;
+
+	// See if it's possible to allocate memory.
+	if (iHeap == NULL || iPile == NULL)
+		return KErrNoMemory;
+
+	// Create a buffer to receive the compressed data.
+	TUint8* compressed_data = NULL;
+	TInt allocSize = compressed_data_bytes;
+	TBool bookMark = EFalse;
+	if (allocSize > KCompressionBookMarkThreshold)
+		{
+		allocSize += sizeof(TCompressionBookMark) + 4;
+		bookMark = ETrue;
+		}
+	compressed_data = iPile->Alloc(allocSize);
+	if (!compressed_data)
+		return KErrNoMemory;
+	if (bookMark)
+		{
+		TCompressionBookMark emptyBookmark;
+		*((TCompressionBookMark*)(compressed_data + compressed_data_bytes + 4)) = emptyBookmark;
+		}
+	iDataOffset = compressed_data - iPile->ChunkBase();
+	iHeader.iBitmapSize = sizeof(SEpocBitmapHeader) + compressed_data_bytes;
+	iHeader.iCompression = CompressionType(iHeader.iBitsPerPixel, iHeader.iColor);
+
+	// Compress the data into a stream over the new buffer.
+	TPtr8 output_ptr(compressed_data,compressed_data_bytes);
+	RDesWriteStream output_stream(output_ptr);
+	// This function cannot leave - but trap it anyway till I am fully satisfied about that.
+	TRAP_IGNORE(DoExternalizeDataCompressedL(output_stream,data,data_bytes));
+	output_stream.Close();
+
+	iIsCompressedInRAM = ETrue;
+	// Free the old data.
+	iPile->Free(data);
+
+	return KErrNone;
+	}
+
+/**
+Compress a bitmap if possible.
+If the bitmap is already compressed, or if compression yields no decrease in size, do nothing,
+but return success (KErrNone).
+@publishedAll
+@param aScheme The type of bitmap file compression.
+@return KErrNone if successful, otherwise a system wide error code.
+*/
+EXPORT_C TInt CBitwiseBitmap::CompressData(TBitmapfileCompressionScheme aScheme)
+	{
+	TInt err=KErrNone;
+	if (aScheme==ERLECompression)
+		err=CompressData();
+	else if (aScheme==EPaletteCompression)
+		err=PaletteCompress();
+	else if (aScheme==EPaletteCompressionWithRLEFallback)
+		{
+		err=PaletteCompress();
+		if (err==KErrNotSupported)
+			err=CompressData();
+		}
+
+	return err;
+	}
+
+EXPORT_C TBool CBitwiseBitmap::IsCompressedInRAM() const
+	{
+	return iIsCompressedInRAM;
+	}
+
+/**
+Check for a bitmap if it is compressed in some manner.
+@return ETrue if successful Or EFalse if unsuccessful
+@internalComponent
+*/
+EXPORT_C TBool CBitwiseBitmap::IsCompressed() const
+	{
+	return ( iHeader.iCompression != ENoBitmapCompression );
+	}
+
+EXPORT_C void CBitwiseBitmap::SetCompressionBookmark(TLineScanningPosition& aLineScanningPosition, TUint32* aBase, const CFbsBitmap* /*aFbsBitmap*/)
+	{
+	if (iPile == NULL) return; //Rom bitmap
+	if (!iIsCompressedInRAM || (iHeader.iCompression == EGenericPaletteCompression))
+		{
+		return;
+		}
+
+	TInt compressed_data_bytes=iHeader.iBitmapSize-sizeof(SEpocBitmapHeader);
+	if (compressed_data_bytes>KCompressionBookMarkThreshold)
+		{
+		TUint8* compressed_data=(TUint8*) aBase;
+		TInt alignedSize=(compressed_data_bytes+3)/4*4;
+		compressed_data+=alignedSize+4;
+		TCompressionBookMark* bookMark=(TCompressionBookMark*) (compressed_data);
+		if (!bookMark->IsCheckSumOk())
+			return;
+		bookMark->iCursorPos=aLineScanningPosition.iCursorPos;
+		bookMark->iSrcDataOffset=aLineScanningPosition.iSrcDataPtr-((TUint8*)aBase);
+		bookMark->CalculateCheckSum();
+		}
+	}
+/**
+Optimises the bitmap data for Run Length Encoding by changing unused
+pixel data.
+This function calculates number of padding pixels per scanline and
+replaces their color with the color of the scanline's final pixel.
+*/
+void CBitwiseBitmap::UpdatePaddingData(TUint32* aData)
+	{
+	TInt stride=DataStride();
+	//Do the process only for 8bpp and 16bpp.
+	switch (iHeader.iBitsPerPixel)
+		{
+	case 8:
+		{
+		const TInt nPadding = stride - iHeader.iSizeInPixels.iWidth;
+		if(nPadding!=1 && nPadding!=2 && nPadding!=3)
+			return;
+		TUint8* srcePtr = reinterpret_cast<TUint8*>(aData);
+		//Find the last byte value in each scanline and assign in padding bytes
+		TUint8* lastPixelPtr = srcePtr + iHeader.iSizeInPixels.iWidth - 1;
+		for(TInt row=0; row<iHeader.iSizeInPixels.iHeight; row++)
+			{
+			TUint8 pixel = *lastPixelPtr;
+			TUint8* padPtr = lastPixelPtr + 1;
+			switch(nPadding)
+				{
+			case 3: *padPtr++ = pixel;
+			case 2: *padPtr++ = pixel;
+			case 1: *padPtr++ = pixel;
+				}
+			lastPixelPtr += stride;
+			}
+		break;
+		}
+	case 16:
+		{
+		TUint16* srcePtr = reinterpret_cast<TUint16*>(aData);
+		stride>>=1;
+		const TInt nPadding = stride - iHeader.iSizeInPixels.iWidth;
+		if(nPadding!=1)
+			return;
+		//Find the last byte value in each scanline and assign in padding bytes
+		TUint16* lastPixelPtr = srcePtr + iHeader.iSizeInPixels.iWidth - 1;
+		for(TInt row=0; row<iHeader.iSizeInPixels.iHeight; row++)
+			{
+			TUint16 pixel = *lastPixelPtr;
+			TUint16* padPtr = lastPixelPtr + 1;
+			*padPtr++ = pixel;
+			lastPixelPtr += stride;
+			}
+		break;
+		}
+	default:
+		return;
+		}
+	}
+
+void CBitwiseBitmap::WhiteFill(TUint8* aData,TInt aDataSize,TDisplayMode aDispMode)
+	{
+	if(aData)
+		{
+		if (aDispMode != EColor4K)
+			Mem::Fill(aData,aDataSize,0xff);
+		else
+			{
+			TUint16* pixelPtr = (TUint16*)aData;
+			TUint16* pixelPtrLimit = pixelPtr + (aDataSize / 2);
+			while (pixelPtr < pixelPtrLimit)
+				*pixelPtr++ = 0x0fff;
+			}		
+		}
+	}
+
+TInt CBitwiseBitmap::ByteWidth(TInt aPixelWidth,TDisplayMode aDispMode)
+	{
+	TInt wordWidth = 0;
+
+	switch (aDispMode)
+		{
+	case EGray2:
+		wordWidth = (aPixelWidth + 31) / 32;
+		break;
+	case EGray4:
+		wordWidth = (aPixelWidth + 15) / 16;
+		break;
+	case EGray16:
+	case EColor16:
+		wordWidth = (aPixelWidth + 7) / 8;
+		break;
+	case EGray256:
+	case EColor256:
+		wordWidth = (aPixelWidth + 3) / 4;
+		break;
+	case EColor4K:
+	case EColor64K:
+		wordWidth = (aPixelWidth + 1) / 2;
+		break;
+	case EColor16M:
+		wordWidth = (((aPixelWidth * 3) + 11) / 12) * 3;
+		break;
+	case EColor16MU:
+	case ERgb:
+	case EColor16MA:
+	case EColor16MAP:
+		wordWidth = aPixelWidth;
+		break;
+	default:
+		::Panic(EFbsBitmapInvalidMode);
+		}
+
+	return wordWidth * 4;
+	}
+
+TInt CBitwiseBitmap::Bpp(TDisplayMode aDispMode)
+	{
+	switch (aDispMode)
+		{
+	case EGray2:
+		return 1;
+	case EGray4:
+		return 2;
+	case EGray16:
+	case EColor16:
+		return 4;
+	case EGray256:
+	case EColor256:
+		return 8;
+	case EColor4K:
+		return 12;
+	case EColor64K:
+		return 16;
+	case EColor16M:
+		return 24;
+	case EColor16MU:
+	case EColor16MA:
+	case EColor16MAP:
+		return 32;
+	default:
+		::Panic(EFbsBitmapInvalidMode);
+		}
+
+	return 0;
+	}
+
+TInt CBitwiseBitmap::CompressedFormatInfo(TDisplayMode aDispMode, TInt& aBytesPerPack, TInt& aBytesPerCompressed)
+	{
+	switch (aDispMode)
+		{
+		case EGray2:
+		case EGray4:
+		case EGray16:
+		case EColor16:
+		case EGray256:
+		case EColor256:
+			aBytesPerPack = 1;
+			aBytesPerCompressed = 1;
+			break;
+		case EColor4K:
+		case EColor64K:
+			aBytesPerPack = 2;
+			aBytesPerCompressed = 2;
+			break;
+		case EColor16M:
+			aBytesPerPack = 3;
+			aBytesPerCompressed = 3;
+			break;
+		case EColor16MU:
+			aBytesPerPack = 4;
+			aBytesPerCompressed = 3;		 		  //when compressed, 16MU is stored as 16M 
+			break;
+		case EColor16MA:
+		case EColor16MAP:
+			aBytesPerPack = 4;
+			aBytesPerCompressed = 4;
+			break;
+		default:
+			__ASSERT_DEBUG(0, ::Panic(EFbsBitmapInvalidMode));
+			return KErrNotSupported;
+		}
+
+	return KErrNone;
+	}
+TInt CBitwiseBitmap::IsColor(TDisplayMode aDispMode)
+	{
+	switch (aDispMode)
+		{
+	case EGray2:
+	case EGray4:
+	case EGray16:
+	case EGray256:
+		return SEpocBitmapHeader::ENoColor;
+	case EColor16:
+	case EColor256:
+	case EColor4K:
+	case EColor64K:
+	case EColor16M:
+	case EColor16MU:
+		return SEpocBitmapHeader::EColor;
+	case EColor16MA:
+		return SEpocBitmapHeader::EColorAlpha;
+	case EColor16MAP:
+		return SEpocBitmapHeader::EColorAlphaPM;
+	default:
+		::Panic(EFbsBitmapInvalidMode);
+		}
+
+	return SEpocBitmapHeader::EColorUndefined;
+	}
+
+TDisplayMode CBitwiseBitmap::DisplayMode(TInt aBpp, TInt aColor)
+	{
+	if (aColor)
+		{
+		switch (aBpp)
+			{
+		case 4:
+			return EColor16;
+		case 8:
+			return EColor256;
+		case 12:
+			return EColor4K;
+		case 16:
+			return EColor64K;
+		case 24:
+			return EColor16M;
+		case 32:
+			if(aColor == SEpocBitmapHeader::EColor)
+				return EColor16MU;
+			else if(aColor == SEpocBitmapHeader::EColorAlphaPM)
+				return EColor16MAP;
+			else if(aColor == SEpocBitmapHeader::EColorAlpha)
+				return EColor16MA;
+			else
+				return ENone;
+		default:
+			return ENone;
+			}
+		}
+	else
+		{
+		switch (aBpp)
+			{
+		case 1:
+			return EGray2;
+		case 2:
+			return EGray4;
+		case 4:
+			return EGray16;
+		case 8:
+			return EGray256;
+		default:
+			return ENone;
+			}
+		}
+	}
+
+TBitmapfileCompression CBitwiseBitmap::CompressionType(TInt aBpp, TInt aColor)
+	{
+	switch (aBpp)
+		{
+	case 1:
+	case 2:
+	case 4:
+	case 8:
+		return EByteRLECompression;
+	case 12:
+		return ETwelveBitRLECompression;
+	case 16:
+		return ESixteenBitRLECompression;
+	case 24:
+		return ETwentyFourBitRLECompression;
+	case 32:
+		__ASSERT_DEBUG((aColor==SEpocBitmapHeader::EColor) ||
+				(aColor==SEpocBitmapHeader::EColorAlpha) ||
+				aColor==SEpocBitmapHeader::EColorAlphaPM,
+				::Panic(EFbsBitmapInvalidCompression));
+		if(aColor == SEpocBitmapHeader::EColor)
+			{
+			return EThirtyTwoUBitRLECompression;
+			}
+		else
+			{
+			return EThirtyTwoABitRLECompression;
+			}
+	default:
+		return ENoBitmapCompression;
+		}
+	}
+
+/**
+@internalComponent
+@return The display mode used to create the bitmap.
+*/
+TDisplayMode CBitwiseBitmap::InitialDisplayMode() const
+	{
+	return iSettings.InitialDisplayMode();
+	}
+
+/**
+The method changes current display mode of the bitmap.
+Requested display mode can't be greater (bpp value) than the initial display mode.
+CBitwiseBitmap instances are shared between the client and server side and
+SetDisplayMode() can be called only from the client side, because its functionality depends
+on the RFbsSession instance.
+The method can't leave because of out of memory condition or something else - no
+additional memory is allocated or "L" methods called.
+The bitmap content is preserved when converting it to the requested display mode,
+but there may be some loss of a quality.
+@internalComponent
+@param aDisplayMode Requested display mode.
+@param aDataAddress Bitmap data address.
+@return KErrArgument If the requested mode is invalid, or greater (bpp value) than the
+initial display mode.
+@return KErrNotSupported  If the bitmap is compressed, or it is a ROM bitmap,
+an extended bitmap or a hardware bitmap.
+@return KErrNone If the method call is successfull.
+*/
+TInt CBitwiseBitmap::SetDisplayMode(TDisplayMode aDisplayMode, TUint32* aDataAddress)
+	{
+	TDisplayMode curDisplayMode = iSettings.CurrentDisplayMode();
+	//If requested mode is the same as current mode - do nothing.
+	if(curDisplayMode == aDisplayMode)
+		{
+		return KErrNone;
+		}
+	//Argument and bitmap state check.
+	TInt err = DisplayModeArgCheck(aDisplayMode, aDataAddress);
+	if(err != KErrNone)
+		{
+		return err;
+		}
+	//data pointers and scan line width calculation.
+	TInt scanLineWidthNew = CBitwiseBitmap::ByteWidth(iHeader.iSizeInPixels.iWidth, aDisplayMode);
+	TInt scanLineWidthInitial = CBitwiseBitmap::ByteWidth(iHeader.iSizeInPixels.iWidth, iSettings.InitialDisplayMode());
+	TInt bmpSizeInitial = scanLineWidthInitial * iHeader.iSizeInPixels.iHeight;
+	TUint8* baseAddr = reinterpret_cast <TUint8*> (aDataAddress);
+	TUint8* dataAddrNew = baseAddr;
+	TInt yStart = 0;
+	TInt yInc = 1;
+	TInt yEnd = iHeader.iSizeInPixels.iHeight;
+	//If requested display mode has more bits per pixel than current display mode - we have
+	//to start copying operation from the end of the bitmap, otherwise we will overwrite the
+	//bitmap data.
+	if(aDisplayMode > curDisplayMode)
+		{
+		dataAddrNew += bmpSizeInitial - scanLineWidthNew;
+		scanLineWidthNew = -scanLineWidthNew;
+		yStart = yEnd - 1;
+		yInc = -1;
+		yEnd = -1;
+		}
+	//Change the display mode
+	ChangeDisplayMode(aDisplayMode, scanLineWidthNew, dataAddrNew, aDataAddress, yStart, yInc, yEnd);
+	//Move the data to the aDataAddress.
+	if(aDisplayMode > curDisplayMode)
+		{
+		TInt bmpSizeNew = -scanLineWidthNew * iHeader.iSizeInPixels.iHeight;
+		Mem::Move(baseAddr, baseAddr + bmpSizeInitial - bmpSizeNew, bmpSizeNew);
+		}
+	//Update the bitmap properties
+	UpdateBitmapProperties(aDisplayMode);
+	return KErrNone;
+	}
+
+/**
+The method is caled from CBitwiseBitmap::SetDisplayMode() and
+checks the aDisplayMode argument and bitmap internal state.
+Requested display mode can't be greater (bpp value) than the initial display mode.
+Note: The method must be called only from CBitwiseBitmap::SetDisplayMode method.
+@internalComponent
+@param aDisplayMode Requested display mode.
+@param aDataAddress Bitmap data address.
+@return KErrArgument If the requested mode is invalid, or greater (bpp value)
+than the initial mode.
+@return KErrNotSupported If the bitmap is compressed, or it is a ROM bitmap,
+an extended bitmap or a hardware bitmap.
+@return KErrNone If the method call is successfull.
+@see CBitwiseBitmap::SetDisplayMode.
+*/
+TInt CBitwiseBitmap::DisplayModeArgCheck(TDisplayMode aDisplayMode, TUint32* aDataAddress) const
+	{
+	if(!aDataAddress || iHeader.iSizeInPixels.iWidth == 0 || iHeader.iSizeInPixels.iHeight == 0)
+		{
+		return KErrGeneral;
+		}
+	TBool romAddr = EFalse;
+	User::IsRomAddress(romAddr, aDataAddress);
+	if(romAddr ||									//ROM bitmap
+	   (iUid.iUid != KCBitwiseBitmapUid.iUid) ||	//RHardwareBitmap or extended bitmap
+	   IsCompressed()								//Compressed
+	  )
+		{
+		return KErrNotSupported;
+		}
+	if(aDisplayMode == ENone || aDisplayMode == ERgb)
+		{
+		return KErrArgument;
+		}
+	if (iSettings.InitialDisplayMode()==EColor16 && aDisplayMode==EGray256)
+		{
+		return KErrArgument;
+		}
+	// The order of the display mode in the TDisplayMode
+	// ENone,EGray2,EGray4,EGray16,EGray256,EColor16,EColor256,EColor64K,EColor16M,ERgb,EColor4K,EColor16MU
+
+	//special case where initial mode is EColor4K & to be set to EColor64K & EColor16M which has lower enum
+	if (iSettings.InitialDisplayMode()==EColor4K )
+		{
+		if (aDisplayMode==EColor64K || aDisplayMode==EColor16M)
+			return KErrArgument;
+		}
+
+	if(aDisplayMode == EColor16MAP)
+		{
+		TDisplayMode mode = iSettings.InitialDisplayMode();
+		if((mode == EColor16MA)||(mode == EColor16MU)||(mode == EColor16MAP))
+			{
+			return KErrNone;
+			}
+		else{
+			return KErrArgument;
+			}
+		}
+	if(iSettings.InitialDisplayMode() == EColor16MAP)
+		{
+		return KErrNone;
+		}
+	if(aDisplayMode > iSettings.InitialDisplayMode())
+		{
+		if (iSettings.InitialDisplayMode()>=EColor64K && aDisplayMode == EColor4K)
+			{
+			return KErrNone;
+			}
+	        if (iSettings.InitialDisplayMode()==EColor16MU &&
+	        	(Bpp(aDisplayMode) == 32))
+			{
+			return KErrNone;
+			}
+		return KErrArgument;
+		}
+
+	return KErrNone;
+	}
+
+/**
+The method changes current display mode of the bitmap converting bitmap scan lines
+color and writting the resulting scan line to the same memory occupied by the bitmap.
+No additional memory is allocated.
+Note: The method must be called only from CBitwiseBitmap::SetDisplayMode method.
+@internalComponent
+@param aNewDisplayMode Requested display mode.
+@param aScanLineWidthNew Scan line width - with the new display mode. It could be negative
+if the new display mode is with less bits per pixel than the existing display mode.
+@param aDataAddrNew New bitmap data - Points to the place where the copying has to start to.
+@param aDataAddress Bitmap data address.
+@param aYStart First scan line number.
+@param aYInc Scan line increment value.
+@param aYEnd Last scan line number.
+@see CBitwiseBitmap::SetDisplayMode.
+*/
+void CBitwiseBitmap::ChangeDisplayMode( TDisplayMode aNewDisplayMode,
+										TInt aScanLineWidthNew,
+										TUint8* aDataAddrNew,
+										TUint32* aDataAddress,
+										TInt aYStart,
+										TInt aYInc,
+										TInt aYEnd)
+	{
+	const TInt KScanLineBufSizeInPixels = 256;//temporary scan line buffer size - in pixels
+	const TInt KRgbBytes = 4;
+	const TInt KScanLineBufSizeInBytes = KScanLineBufSizeInPixels * KRgbBytes;
+	TUint8 scanLineData[KScanLineBufSizeInBytes];
+	static const TInt KScanLinePixels[] =  //The rounded number of pixels - the closest number that
+		{							//could fill scanLineData buffer - depending on current display mode
+		0,												//ENone - INVALID mode
+		KScanLineBufSizeInBytes * 8,					//EGray2
+		KScanLineBufSizeInBytes * 4,					//EGray4
+		KScanLineBufSizeInBytes * 2,					//EGray16
+		KScanLineBufSizeInBytes * 1,					//EGray256
+		KScanLineBufSizeInBytes * 2,					//EColor16
+		KScanLineBufSizeInBytes * 1,					//EColor256
+		KScanLineBufSizeInPixels * KRgbBytes / 2,		//EColor64K
+		KScanLineBufSizeInPixels,						//EColor16M
+		0,												//ERgb - INVALID mode
+		KScanLineBufSizeInPixels * KRgbBytes / 2,		//EColor4K - the same as EColor64K
+		KScanLineBufSizeInPixels * KRgbBytes / 4,		//EColor16MU
+		KScanLineBufSizeInPixels * KRgbBytes / 4,		//EColor16MA
+		KScanLineBufSizeInPixels * KRgbBytes / 4		//EColor16MAP
+		};
+	__ASSERT_DEBUG(aNewDisplayMode < TInt(sizeof(KScanLinePixels) / sizeof(KScanLinePixels[0])), ::Panic(EFbsBitmapInvalidMode3));
+	//
+	TPtr8 ptr(scanLineData, sizeof(scanLineData), sizeof(scanLineData));
+	TDes8& scanLineDes = ptr;
+	TLineScanningPosition lineScanningPosition(aDataAddress);
+	TPoint startPixel(0, 0);
+	TPoint ditherOffset(0, 0);
+	//For each line:
+	//1. Get a scan line in requested display mode
+	//2. Copy the scan line to the destination buffer, pointed by dataAddrNew
+	TUint8* dataAddrNew = aDataAddrNew;
+	for(TInt i=aYStart;i!=aYEnd;i+=aYInc)
+		{
+		startPixel.iX = 0;
+		startPixel.iY = i;
+		TUint8* scanLineDataAddr = dataAddrNew;
+		TInt scanLinePixelsLeft = iHeader.iSizeInPixels.iWidth;
+		while(scanLinePixelsLeft > 0)
+			{
+			TInt pixelsCnt = KScanLinePixels[aNewDisplayMode];	//how many pixels we can get at a time - the maximum
+			TInt bytesCnt = KScanLineBufSizeInBytes;			//how many bytes the pixels are - the maximum
+			if(pixelsCnt > scanLinePixelsLeft)	//in that case the "while" loop will be executed for the last time
+				{
+				pixelsCnt = scanLinePixelsLeft;
+				bytesCnt = CBitwiseBitmap::ByteWidth(pixelsCnt, aNewDisplayMode);
+				}
+			__ASSERT_DEBUG(pixelsCnt > 0, ::Panic(EFbsBitmapInvalidMode2));//I want to be sure - if someone adds an additional display mode - ChangeDisplayMode() source has been updated too!
+			GetScanLine(scanLineDes, startPixel, pixelsCnt, EFalse,	  //Get the scan line data
+						ditherOffset, aNewDisplayMode, aDataAddress, lineScanningPosition);
+			Mem::Copy(scanLineDataAddr, scanLineData, bytesCnt);//copy the data to its new address
+			scanLineDataAddr += bytesCnt;//increment the address
+			scanLinePixelsLeft -= pixelsCnt;//decrement the count of pixels left
+			startPixel.iX += pixelsCnt;//increment the X coordinate
+			}//end of - while(scanLineLengthLeft > 0)
+		dataAddrNew += aScanLineWidthNew;
+		}//end of - for(TInt i=aYStart;i!=aYEnd;i+=aYInc)
+	}
+
+/**
+The method updates CBitwiseBitmap data members regarding to the new display mode.
+Note: The method must be called only from CBitwiseBitmap::SetDisplayMode method.
+@internalComponent
+@param aNewDisplayMode The new display mode.
+@see CBitwiseBitmap::SetDisplayMode.
+*/
+void CBitwiseBitmap::UpdateBitmapProperties(TDisplayMode aNewDisplayMode)
+	{
+	iSettings.SetCurrentDisplayMode(aNewDisplayMode);
+	iByteWidth = CBitwiseBitmap::ByteWidth(iHeader.iSizeInPixels.iWidth, aNewDisplayMode);
+	iHeader.iBitsPerPixel = CBitwiseBitmap::Bpp(aNewDisplayMode);
+	iHeader.iColor = CBitwiseBitmap::IsColor(aNewDisplayMode);
+	}
+
+/**
+The method swaps the bitmap width and height.
+For example: if the bitmap size is (40, 20), the new bitmap size will be (20, 40).
+Bitmap content is not preserved.
+@internalComponent
+@param aDataAddress Bitmap data address.
+@return KErrNone The call was successfull.
+@return KErrAccessDenied ROM bitmap size can't be swapped.
+@return KErrNotSupported Hardware or extended bitmap size can't be swapped.
+*/
+TInt CBitwiseBitmap::SwapWidthAndHeight(TUint32* aDataAddress)
+	{
+	if (iUid.iUid != KCBitwiseBitmapUid.iUid)	// RHardwareBitmap or extended bitmap
+		{
+		return KErrNotSupported;
+		}
+
+	TBool romAddr = EFalse;
+	User::IsRomAddress(romAddr, aDataAddress);
+	if (romAddr)								//ROM bitmap
+		{
+		return KErrAccessDenied;
+		}
+
+    //Check the new bitmap size - it should not exeed the size of the allocated memory
+    TInt newWidthInBytes = CBitwiseBitmap::ByteWidth(iHeader.iSizeInPixels.iHeight, iSettings.CurrentDisplayMode());
+	TInt64 hugeDataSize = TInt64(iHeader.iSizeInPixels.iWidth) * TInt64(newWidthInBytes);
+    __ASSERT_ALWAYS(I64HIGH(hugeDataSize) == 0 &&
+                    I64LOW(hugeDataSize) <= TUint(iHeader.iBitmapSize - iHeader.iStructSize),
+                    ::Panic(EFbsBitmapSwappingImpossible));
+
+	//Initialize the data members with the new values
+	iByteWidth = CBitwiseBitmap::ByteWidth(iHeader.iSizeInPixels.iHeight, iSettings.CurrentDisplayMode());
+	TInt temp = iHeader.iSizeInPixels.iWidth;
+	iHeader.iSizeInPixels.iWidth = iHeader.iSizeInPixels.iHeight;
+	iHeader.iSizeInPixels.iHeight = temp;
+	temp = iHeader.iSizeInTwips.iWidth;
+	iHeader.iSizeInTwips.iWidth = iHeader.iSizeInTwips.iHeight;
+	iHeader.iSizeInTwips.iHeight = temp;
+	return KErrNone;
+	}
+
+/**
+Compile time check is performed on the class size - the class size must be
+the same as the size of TDisplayMode type. If the class size is not the same
+as  TDisplayMode type size - BC will be broken.
+Note: CBitwiseBitmap::iSettings data member must be aligned on 16 bits boundary
+because CBitwiseBitmap instances can be a part of the ROM image.
+@internalComponent
+@param aDisplayMode The display mode.
+*/
+CBitwiseBitmap::TSettings::TSettings(TDisplayMode aDisplayMode):
+	iData(0)
+	{
+	//"CBitwiseBitmap::iSettings" data mamber - bit format:
+	// MSB                                              LSB
+	// 16         			:           8             :            8
+	// Flags                  Initial display mode      Current display mode
+	//
+	//CBitwiseBitmap - TSettings member has been put in place of previous iDispMode
+	//class member. So, TSettings data member has to occupy the same space as
+	//not existing anymore iDispMode member.
+	COMPILE_TIME_ASSERT(sizeof(TSettings) == sizeof(TDisplayMode));
+	//We can't have TDisplayMode enum value greater than 255 because we encode it
+	//int 8 bits of iData data member.
+	COMPILE_TIME_ASSERT(EColorLast < 256);
+	SetDisplayModes(aDisplayMode);
+	}
+
+/**
+The method initializes both - current display mode and initial display mode parts of iData
+with aDisplayMode parameter.
+@internalComponent
+@param aDisplayMode The display mode used for current display mode and initial display mode
+parts of iData initialization
+*/
+void CBitwiseBitmap::TSettings::SetDisplayModes(TDisplayMode aDisplayMode)
+	{
+	iData &= 0xFFFF0000;
+	iData |= TUint16(aDisplayMode << 8);
+	iData |= TUint8(aDisplayMode);
+	}
+
+/**
+The method initializes current display mode part of iData with aDisplayMode parameter.
+@internalComponent
+@param aDisplayMode The display mode used for current display mode part of iData initialization.
+*/
+void CBitwiseBitmap::TSettings::SetCurrentDisplayMode(TDisplayMode aDisplayMode)
+	{
+	iData &= 0xFFFFFF00;
+	iData |= TUint8(aDisplayMode);
+	}
+
+/**
+The method returns current display mode.
+@internalComponent
+Note: Current display mode can never be greater (bpp value) than initial display mode.
+@return Current display mode.
+*/
+TDisplayMode CBitwiseBitmap::TSettings::CurrentDisplayMode() const
+	{
+	return TDisplayMode(iData & 0x000000FF);
+	}
+
+/**
+The method returns initial display mode.
+@internalComponent
+@return The initial display mode.
+*/
+TDisplayMode CBitwiseBitmap::TSettings::InitialDisplayMode() const
+	{
+	return TDisplayMode((iData & 0x0000FF00) >> 8);
+	}
+
+/**
+The method adjusts specified X coordinate if it is negative or outside the bitmap.
+@internalComponent
+@param  aX - a reference to x coordinate - the value might be changed after the method call.
+*/
+void CBitwiseBitmap::AdjustXCoord(TInt& aX) const
+	{
+	if (aX>=iHeader.iSizeInPixels.iWidth || aX<-iHeader.iSizeInPixels.iWidth)
+		aX%=iHeader.iSizeInPixels.iWidth;
+	if (aX<0)
+		aX+=iHeader.iSizeInPixels.iWidth;
+	}
+
+/**
+If the bitmap is compressed in RAM, the method will find its compresssion bookmark,
+which is located at the end of the bitmap data and will reinitialize aLineScanPos
+parameter.
+@internalComponent
+@param aLineScanPos Line scaning position. It is used by scan line decompression methods.
+@param aComprBookMark If the bitmap is compressed in RAM, aComprBookMark will be initialized
+to point to its compression bookmark data. The compression bookmark data will be used for
+aLineScanPos initialization.
+@param  aBase It points to the beginning of the bitmap data.
+*/
+void CBitwiseBitmap::GetLineScanPos(TLineScanningPosition& aLineScanPos,
+									const TCompressionBookMark*& aComprBookMark,
+									const TUint8* aBase) const
+	{
+	if (iIsCompressedInRAM && (iHeader.iCompression != EGenericPaletteCompression) && (iHeap != NULL))
+		{
+		TInt compressed_data_bytes = iHeader.iBitmapSize - sizeof(SEpocBitmapHeader);
+		if(compressed_data_bytes > KCompressionBookMarkThreshold)
+			{
+			if(aBase)
+				{
+				TInt alignedSize = (compressed_data_bytes + 3) / 4 * 4;
+				const TUint8* data = aBase + alignedSize + 4;
+				aComprBookMark = reinterpret_cast <const TCompressionBookMark*> (data);
+				if (aComprBookMark->IsCheckSumOk())
+					{
+					aLineScanPos.iSrcDataPtr = const_cast <TUint8*> (aBase) + aComprBookMark->iSrcDataOffset;
+					aLineScanPos.iCursorPos = aComprBookMark->iCursorPos;
+					}
+				}
+			}
+		}
+	}
+
+/**
+If the bitmap is compressed in RAM, the method will update its compresssion bookmark data,
+which is located at the end of the bitmap data.
+@internalComponent
+@param aLineScanPos Line scaning position.
+@param aComprBookMark If the bitmap is compressed in RAM, aComprBookMark points to its
+compression bookmark data.
+@param  aBase It points to the beginning of the bitmap data.
+*/
+void CBitwiseBitmap::UpdateBookMark(const TLineScanningPosition& aLineScanPos,
+									TCompressionBookMark* aComprBookMark,
+									const TUint8* aBase) const
+	{
+	if (aComprBookMark)
+		{
+		if (aComprBookMark->IsCheckSumOk())
+			{
+			aComprBookMark->iSrcDataOffset=aLineScanPos.iSrcDataPtr-aBase;
+			aComprBookMark->iCursorPos=aLineScanPos.iCursorPos;
+			aComprBookMark->CalculateCheckSum();
+			}
+		}
+	}
+
+/**
+The header is exposed by CFbsBitmap so this doesn't break encapsulation.
+Specifically added to allow CBitmapObject to see compression information.
+@return Address of iHeader.
+*/
+EXPORT_C SEpocBitmapHeader CBitwiseBitmap::Header() const
+	{
+	return iHeader ;
+	}