egl/sfopenvg/riPath.cpp
branchEGL_MERGE
changeset 180 f767bd5f4cfc
parent 119 5f371025658c
child 181 c1509651cd2b
--- a/egl/sfopenvg/riPath.cpp	Fri Jul 16 18:54:03 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2580 +0,0 @@
-/*------------------------------------------------------------------------
- *
- * OpenVG 1.1 Reference Implementation
- * -----------------------------------
- *
- * Copyright (c) 2007 The Khronos Group Inc.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and /or associated documentation files
- * (the "Materials "), to deal in the Materials without restriction,
- * including without limitation the rights to use, copy, modify, merge,
- * publish, distribute, sublicense, and/or sell copies of the Materials,
- * and to permit persons to whom the Materials are furnished to do so,
- * subject to the following conditions: 
- *
- * The above copyright notice and this permission notice shall be included 
- * in all copies or substantial portions of the Materials. 
- *
- * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
- * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR
- * THE USE OR OTHER DEALINGS IN THE MATERIALS.
- *
- *//**
- * \file
- * \brief	Implementation of Path functions.
- * \note	
- *//*-------------------------------------------------------------------*/
-
-#include "riPath.h"
-
-using namespace OpenVGRI;
-//==============================================================================================
-
-
-//==============================================================================================
-
-namespace OpenVGRI
-{
-
-RIfloat inputFloat(VGfloat f);	//defined in riApi.cpp
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Form a reliable normalized average of the two unit input vectors.
-*           The average always lies to the given direction from the first
-*			vector.
-* \param	u0, u1 Unit input vectors.
-* \param	cw True if the average should be clockwise from u0, false if
-*              counterclockwise.
-* \return	Average of the two input vectors.
-* \note		
-*//*-------------------------------------------------------------------*/
-
-static const Vector2 unitAverage(const Vector2& u0, const Vector2& u1, bool cw)
-{
-	Vector2 u = 0.5f * (u0 + u1);
-	Vector2 n0 = perpendicularCCW(u0);
-
-	if( dot(u, u) > 0.25f )
-	{	//the average is long enough and thus reliable
-		if( dot(n0, u1) < 0.0f )
-			u = -u;	//choose the larger angle
-	}
-	else
-	{	// the average is too short, use the average of the normals to the vectors instead
-		Vector2 n1 = perpendicularCW(u1);
-		u = 0.5f * (n0 + n1);
-	}
-	if( cw )
-		u = -u;
-
-	return normalize(u);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Form a reliable normalized average of the two unit input vectors.
-*			The average lies on the side where the angle between the input
-*			vectors is less than 180 degrees.
-* \param	u0, u1 Unit input vectors.
-* \return	Average of the two input vectors.
-* \note		
-*//*-------------------------------------------------------------------*/
-
-static const Vector2 unitAverage(const Vector2& u0, const Vector2& u1)
-{
-	Vector2 u = 0.5f * (u0 + u1);
-
-	if( dot(u, u) < 0.25f )
-	{	// the average is unreliable, use the average of the normals to the vectors instead
-		Vector2 n0 = perpendicularCCW(u0);
-		Vector2 n1 = perpendicularCW(u1);
-		u = 0.5f * (n0 + n1);
-		if( dot(n1, u0) < 0.0f )
-			u = -u;
-	}
-
-	return normalize(u);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Interpolate the given unit tangent vectors to the given
-*			direction on a unit circle.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-static const Vector2 circularLerp(const Vector2& t0, const Vector2& t1, RIfloat ratio, bool cw)
-{
-	Vector2 u0 = t0, u1 = t1;
-	RIfloat l0 = 0.0f, l1 = 1.0f;
-	for(int i=0;i<18;i++)
-	{
-		Vector2 n = unitAverage(u0, u1, cw);
-		RIfloat l = 0.5f * (l0 + l1);
-		if( ratio < l )
-		{
-			u1 = n;
-			l1 = l;
-		}
-		else
-		{
-			u0 = n;
-			l0 = l;
-		}
-	}
-	return u0;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Interpolate the given unit tangent vectors on a unit circle.
-*			Smaller angle between the vectors is used.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-static const Vector2 circularLerp(const Vector2& t0, const Vector2& t1, RIfloat ratio)
-{
-	Vector2 u0 = t0, u1 = t1;
-	RIfloat l0 = 0.0f, l1 = 1.0f;
-	for(int i=0;i<18;i++)
-	{
-		Vector2 n = unitAverage(u0, u1);
-		RIfloat l = 0.5f * (l0 + l1);
-		if( ratio < l )
-		{
-			u1 = n;
-			l1 = l;
-		}
-		else
-		{
-			u0 = n;
-			l0 = l;
-		}
-	}
-	return u0;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Path constructor.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-Path::Path(VGint format, VGPathDatatype datatype, RIfloat scale, RIfloat bias, int segmentCapacityHint, int coordCapacityHint, VGbitfield caps) :
-	m_format(format),
-	m_datatype(datatype),
-	m_scale(scale),
-	m_bias(bias),
-	m_capabilities(caps),
-	m_referenceCount(0),
-	m_segments(),
-	m_data(),
-	m_vertices(),
-	m_segmentToVertex(),
-	m_userMinx(0.0f),
-	m_userMiny(0.0f),
-	m_userMaxx(0.0f),
-	m_userMaxy(0.0f)
-{
-	RI_ASSERT(format == VG_PATH_FORMAT_STANDARD);
-	RI_ASSERT(datatype >= VG_PATH_DATATYPE_S_8 && datatype <= VG_PATH_DATATYPE_F);
-	if(segmentCapacityHint > 0)
-		m_segments.reserve(RI_INT_MIN(segmentCapacityHint, 65536));
-	if(coordCapacityHint > 0)
-		m_data.reserve(RI_INT_MIN(coordCapacityHint, 65536) * getBytesPerCoordinate(datatype));
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Path destructor.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-Path::~Path()
-{
-	RI_ASSERT(m_referenceCount == 0);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Reads a coordinate and applies scale and bias.
-* \param	
-* \return	
-*//*-------------------------------------------------------------------*/
-
-RIfloat Path::getCoordinate(int i) const
-{
-	RI_ASSERT(i >= 0 && i < m_data.size() / getBytesPerCoordinate(m_datatype));
-	RI_ASSERT(m_scale != 0.0f);
-
-	const RIuint8* ptr = &m_data[0];
-	switch(m_datatype)
-	{
-	case VG_PATH_DATATYPE_S_8:
-		return (RIfloat)(((const RIint8*)ptr)[i]) * m_scale + m_bias;
-
-	case VG_PATH_DATATYPE_S_16:
-		return (RIfloat)(((const RIint16*)ptr)[i]) * m_scale + m_bias;
-
-	case VG_PATH_DATATYPE_S_32:
-		return (RIfloat)(((const RIint32*)ptr)[i]) * m_scale + m_bias;
-
-	default:
-		RI_ASSERT(m_datatype == VG_PATH_DATATYPE_F);
-		return (RIfloat)(((const RIfloat32*)ptr)[i]) * m_scale + m_bias;
-	}
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Writes a coordinate, subtracting bias and dividing out scale.
-* \param	
-* \return	
-* \note		If the coordinates do not fit into path datatype range, they
-*			will overflow silently.
-*//*-------------------------------------------------------------------*/
-
-void Path::setCoordinate(Array<RIuint8>& data, VGPathDatatype datatype, RIfloat scale, RIfloat bias, int i, RIfloat c)
-{
-	RI_ASSERT(i >= 0 && i < data.size()/getBytesPerCoordinate(datatype));
-	RI_ASSERT(scale != 0.0f);
-
-	c -= bias;
-	c /= scale;
-
-	RIuint8* ptr = &data[0];
-	switch(datatype)
-	{
-	case VG_PATH_DATATYPE_S_8:
-		((RIint8*)ptr)[i] = (RIint8)floor(c + 0.5f);	//add 0.5 for correct rounding
-		break;
-
-	case VG_PATH_DATATYPE_S_16:
-		((RIint16*)ptr)[i] = (RIint16)floor(c + 0.5f);	//add 0.5 for correct rounding
-		break;
-
-	case VG_PATH_DATATYPE_S_32:
-		((RIint32*)ptr)[i] = (RIint32)floor(c + 0.5f);	//add 0.5 for correct rounding
-		break;
-
-	default:
-		RI_ASSERT(datatype == VG_PATH_DATATYPE_F);
-		((RIfloat32*)ptr)[i] = (RIfloat32)c;
-		break;
-	}
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Given a datatype, returns the number of bytes per coordinate.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-int Path::getBytesPerCoordinate(VGPathDatatype datatype)
-{
-	if(datatype == VG_PATH_DATATYPE_S_8)
-		return 1;
-	if(datatype == VG_PATH_DATATYPE_S_16)
-		return 2;
-	RI_ASSERT(datatype == VG_PATH_DATATYPE_S_32 || datatype == VG_PATH_DATATYPE_F);
-	return 4;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Given a path segment type, returns the number of coordinates
-*			it uses.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-int Path::segmentToNumCoordinates(VGPathSegment segment)
-{
-	RI_ASSERT(((int)segment >> 1) >= 0 && ((int)segment >> 1) <= 12);
-	static const int coords[13] = {0,2,2,1,1,4,6,2,4,5,5,5,5};
-	return coords[(int)segment >> 1];
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Computes the number of coordinates a segment sequence uses.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-int Path::countNumCoordinates(const RIuint8* segments, int numSegments)
-{
-	RI_ASSERT(segments);
-	RI_ASSERT(numSegments >= 0);
-
-	int coordinates = 0;
-	for(int i=0;i<numSegments;i++)
-		coordinates += segmentToNumCoordinates(getPathSegment(segments[i]));
-	return coordinates;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Clears path segments and data, and resets capabilities.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-void Path::clear(VGbitfield capabilities)
-{
-	m_segments.clear();
-	m_data.clear();
-	m_capabilities = capabilities;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Appends user segments and data.
-* \param	
-* \return	
-* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::appendData(const RIuint8* segments, int numSegments, const RIuint8* data)
-{
-	RI_ASSERT(numSegments > 0);
-	RI_ASSERT(segments && data);
-	RI_ASSERT(m_referenceCount > 0);
-
-	//allocate new arrays
-	int oldSegmentsSize = m_segments.size();
-	int newSegmentsSize = oldSegmentsSize + numSegments;
-	Array<RIuint8> newSegments;
-	newSegments.resize(newSegmentsSize);	//throws bad_alloc
-
-	int newCoords = countNumCoordinates(segments, numSegments);
-	int bytesPerCoordinate = getBytesPerCoordinate(m_datatype);
-	int newDataSize = m_data.size() + newCoords * bytesPerCoordinate;
-	Array<RIuint8> newData;
-	newData.resize(newDataSize);	//throws bad_alloc
-	//if we get here, the memory allocations have succeeded
-
-	//copy old segments and append new ones
-	if(m_segments.size())
-		memcpy(&newSegments[0], &m_segments[0], m_segments.size());
-	memcpy(&newSegments[0] + m_segments.size(), segments, numSegments);
-
-	//copy old data and append new ones
-	if(newData.size())
-	{
-		if(m_data.size())
-			memcpy(&newData[0], &m_data[0], m_data.size());
-		if(m_datatype == VG_PATH_DATATYPE_F)
-		{
-			RIfloat32* d = (RIfloat32*)(&newData[0] + m_data.size());
-			const RIfloat32* s = (const RIfloat32*)data;
-			for(int i=0;i<newCoords;i++)
-				*d++ = (RIfloat32)inputFloat(*s++);
-		}
-		else
-		{
-			memcpy(&newData[0] + m_data.size(), data, newCoords * bytesPerCoordinate);
-		}
-	}
-
-	RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
-
-	//replace old arrays
-	m_segments.swap(newSegments);
-	m_data.swap(newData);
-
-	int c = 0;
-	for(int i=0;i<m_segments.size();i++)
-	{
-		VGPathSegment segment = getPathSegment(m_segments[i]);
-		int coords = segmentToNumCoordinates(segment);
-		c += coords;
-	}
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Appends a path.
-* \param	
-* \return	
-* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::append(const Path* srcPath)
-{
-	RI_ASSERT(srcPath);
-	RI_ASSERT(m_referenceCount > 0 && srcPath->m_referenceCount > 0);
-
-	if(srcPath->m_segments.size())
-	{
-		//allocate new arrays
-		int newSegmentsSize = m_segments.size() + srcPath->m_segments.size();
-		Array<RIuint8> newSegments;
-		newSegments.resize(newSegmentsSize);	//throws bad_alloc
-
-		int newDataSize = m_data.size() + srcPath->getNumCoordinates() * getBytesPerCoordinate(m_datatype);
-		Array<RIuint8> newData;
-		newData.resize(newDataSize);	//throws bad_alloc
-		//if we get here, the memory allocations have succeeded
-
-		//copy old segments and append new ones
-		if(m_segments.size())
-			memcpy(&newSegments[0], &m_segments[0], m_segments.size());
-		if(srcPath->m_segments.size())
-			memcpy(&newSegments[0] + m_segments.size(), &srcPath->m_segments[0], srcPath->m_segments.size());
-
-		//copy old data and append new ones
-		if(m_data.size())
-			memcpy(&newData[0], &m_data[0], m_data.size());
-		for(int i=0;i<srcPath->getNumCoordinates();i++)
-			setCoordinate(newData, m_datatype, m_scale, m_bias, i + getNumCoordinates(), srcPath->getCoordinate(i));
-
-		RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
-
-		//replace old arrays
-		m_segments.swap(newSegments);
-		m_data.swap(newData);
-	}
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Modifies existing coordinate data.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-void Path::modifyCoords(int startIndex, int numSegments, const RIuint8* data)
-{
-	RI_ASSERT(numSegments > 0);
-	RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size());
-	RI_ASSERT(data);
-	RI_ASSERT(m_referenceCount > 0);
-
-	int startCoord = countNumCoordinates(&m_segments[0], startIndex);
-	int numCoords = countNumCoordinates(&m_segments[startIndex], numSegments);
-	if(!numCoords)
-		return;
-	int bytesPerCoordinate = getBytesPerCoordinate(m_datatype);
-	RIuint8* dst = &m_data[startCoord * bytesPerCoordinate];
-	if(m_datatype == VG_PATH_DATATYPE_F)
-	{
-		RIfloat32* d = (RIfloat32*)dst;
-		const RIfloat32* s = (const RIfloat32*)data;
-		for(int i=0;i<numCoords;i++)
-			*d++ = (RIfloat32)inputFloat(*s++);
-	}
-	else
-	{
-		memcpy(dst, data, numCoords*bytesPerCoordinate);
-	}
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Appends a transformed copy of the source path.
-* \param	
-* \return	
-* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::transform(const Path* srcPath, const Matrix3x3& matrix)
-{
-	RI_ASSERT(srcPath);
-	RI_ASSERT(m_referenceCount > 0 && srcPath->m_referenceCount > 0);
-	RI_ASSERT(matrix.isAffine());
-
-	if(!srcPath->m_segments.size())
-		return;
-
-	//count the number of resulting coordinates
-	int numSrcCoords = 0;
-	int numDstCoords = 0;
-	for(int i=0;i<srcPath->m_segments.size();i++)
-	{
-		VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
-		int coords = segmentToNumCoordinates(segment);
-		numSrcCoords += coords;
-		if(segment == VG_HLINE_TO || segment == VG_VLINE_TO)
-			coords = 2;	//convert hline and vline to lines
-		numDstCoords += coords;
-	}
-
-	//allocate new arrays
-	Array<RIuint8> newSegments;
-	newSegments.resize(m_segments.size() + srcPath->m_segments.size());	//throws bad_alloc
-	Array<RIuint8> newData;
-	newData.resize(m_data.size() + numDstCoords * getBytesPerCoordinate(m_datatype));	//throws bad_alloc
-	//if we get here, the memory allocations have succeeded
-
-	//copy old segments
-	if(m_segments.size())
-		memcpy(&newSegments[0], &m_segments[0], m_segments.size());
-
-	//copy old data
-	if(m_data.size())
-		memcpy(&newData[0], &m_data[0], m_data.size());
-
-	int srcCoord = 0;
-	int dstCoord = getNumCoordinates();
-	Vector2 s(0,0);		//the beginning of the current subpath
-	Vector2 o(0,0);		//the last point of the previous segment
-	for(int i=0;i<srcPath->m_segments.size();i++)
-	{
-		VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
-		VGPathAbsRel absRel = getPathAbsRel(srcPath->m_segments[i]);
-		int coords = segmentToNumCoordinates(segment);
-
-		switch(segment)
-		{
-		case VG_CLOSE_PATH:
-		{
-			RI_ASSERT(coords == 0);
-			o = s;
-			break;
-		}
-
-		case VG_MOVE_TO:
-		{
-			RI_ASSERT(coords == 2);
-			Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            Vector2 tc;
-
-			if (absRel == VG_ABSOLUTE)
-                tc = affineTransform(matrix, c);
-            else
-            {
-                tc = affineTangentTransform(matrix, c);
-				c += o;
-            }
-			
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
-			s = c;
-			o = c;
-			break;
-		}
-
-		case VG_LINE_TO:
-		{
-			RI_ASSERT(coords == 2);
-			Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            Vector2 tc;
-
-			if (absRel == VG_ABSOLUTE)
-                tc = affineTransform(matrix, c);
-            else
-            {
-                tc = affineTangentTransform(matrix, c);
-				c += o;
-            }
-
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
-			o = c;
-			break;
-		}
-
-		case VG_HLINE_TO:
-		{
-			RI_ASSERT(coords == 1);
-			Vector2 c(srcPath->getCoordinate(srcCoord+0), 0);
-            Vector2 tc;
-
-			if (absRel == VG_ABSOLUTE)
-            {
-                c.y = o.y;
-                tc = affineTransform(matrix, c);
-            }
-            else
-            {
-                tc = affineTangentTransform(matrix, c);
-				c += o;
-            }
-
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
-			o = c;
-			segment = VG_LINE_TO;
-			break;
-		}
-
-		case VG_VLINE_TO:
-		{
-			RI_ASSERT(coords == 1);
-			Vector2 c(0, srcPath->getCoordinate(srcCoord+0));
-            Vector2 tc;
-
-			if (absRel == VG_ABSOLUTE)
-            {
-                c.x = o.x;
-                tc = affineTransform(matrix, c);
-            }
-            else
-            {
-                tc = affineTangentTransform(matrix, c);
-				c += o;
-            }
-
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
-			o = c;
-			segment = VG_LINE_TO;
-			break;
-		}
-
-		case VG_QUAD_TO:
-		{
-			RI_ASSERT(coords == 4);
-			Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-			Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
-            Vector2 tc0, tc1;
-
-			if (absRel == VG_ABSOLUTE)
-            {
-                tc0 = affineTransform(matrix, c0);
-                tc1 = affineTransform(matrix, c1);
-            }
-            else
-            {
-                tc0 = affineTangentTransform(matrix, c0);
-                tc1 = affineTangentTransform(matrix, c1);
-                c1 += o;
-            }
-
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.x);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.y);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
-			o = c1;
-			break;
-		}
-
-		case VG_CUBIC_TO:
-		{
-			RI_ASSERT(coords == 6);
-			Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-			Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
-			Vector2 c2(srcPath->getCoordinate(srcCoord+4), srcPath->getCoordinate(srcCoord+5));
-            Vector2 tc0, tc1, tc2;
-
-			if (absRel == VG_ABSOLUTE)
-            {
-                tc0 = affineTransform(matrix, c0);
-                tc1 = affineTransform(matrix, c1);
-                tc2 = affineTransform(matrix, c2);
-            }
-            else
-            {
-                tc0 = affineTangentTransform(matrix, c0);
-                tc1 = affineTangentTransform(matrix, c1);
-                tc2 = affineTangentTransform(matrix, c2);
-                c2 += o;
-            }
-
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.x);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.y);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.x);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.y);
-			o = c2;
-			break;
-		}
-
-		case VG_SQUAD_TO:
-		{
-			RI_ASSERT(coords == 2);
-			Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            Vector2 tc1;
-
-			if (absRel == VG_ABSOLUTE)
-                tc1 = affineTransform(matrix, c1);
-            else
-            {
-                tc1 = affineTangentTransform(matrix, c1);
-                c1 += o;
-            }
-
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
-			o = c1;
-			break;
-		}
-
-		case VG_SCUBIC_TO:
-		{
-			RI_ASSERT(coords == 4);
-			Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-			Vector2 c2(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
-            Vector2 tc1, tc2;
-
-			if (absRel == VG_ABSOLUTE)
-            {
-                tc1 = affineTransform(matrix, c1);
-                tc2 = affineTransform(matrix, c2);
-            }
-            else
-            {
-                tc1 = affineTangentTransform(matrix, c1);
-                tc2 = affineTangentTransform(matrix, c2);
-                c2 += o;
-            }
-
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.x);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.y);
-			o = c2;
-			break;
-		}
-
-		default:
-		{
-			RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
-					  segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
-			RI_ASSERT(coords == 5);
-			RIfloat rh = srcPath->getCoordinate(srcCoord+0);
-			RIfloat rv = srcPath->getCoordinate(srcCoord+1);
-			RIfloat rot = srcPath->getCoordinate(srcCoord+2);
-			Vector2 c(srcPath->getCoordinate(srcCoord+3), srcPath->getCoordinate(srcCoord+4));
-
-			rot = RI_DEG_TO_RAD(rot);
-			Matrix3x3 u((RIfloat)cos(rot)*rh, -(RIfloat)sin(rot)*rv,  0,
-						(RIfloat)sin(rot)*rh,  (RIfloat)cos(rot)*rv,  0,
-						0,                   0,                   1);
-			u = matrix * u;
-			u[2].set(0,0,1);		//force affinity
-			//u maps from the unit circle to transformed ellipse
-
-			//compute new rh, rv and rot
-			Vector2	p(u[0][0], u[1][0]);
-			Vector2	q(u[1][1], -u[0][1]);
-			bool swapped = false;
-			if(dot(p,p) < dot(q,q))
-			{
-				RI_SWAP(p.x,q.x);
-				RI_SWAP(p.y,q.y);
-				swapped = true;
-			}
-			Vector2 h = (p+q) * 0.5f;
-			Vector2 hp = (p-q) * 0.5f;
-			RIfloat hlen = h.length();
-			RIfloat hplen = hp.length();
-			rh = hlen + hplen;
-			rv = hlen - hplen;
-			h = hplen * h + hlen * hp;
-			hlen = dot(h,h);
-			if(hlen == 0.0f)
-				rot = 0.0f;
-			else
-			{
-				h.normalize();
-				rot = (RIfloat)acos(h.x);
-				if(h.y < 0.0f)
-					rot = 2.0f*PI - rot;
-			}
-			if(swapped)
-				rot += PI*0.5f;
-
-            Vector2 tc;
-			if (absRel == VG_ABSOLUTE)
-                tc = affineTransform(matrix, c);
-            else
-            {
-                tc = affineTangentTransform(matrix, c);
-                c += o;
-            }
-
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, rh);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, rv);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, RI_RAD_TO_DEG(rot));
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
-			setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
-			o = c;
-
-            //flip winding if the determinant is negative
-            if (matrix.det() < 0)
-            {
-                switch (segment)
-                {
-                case VG_SCCWARC_TO: segment = VG_SCWARC_TO;     break;
-                case VG_SCWARC_TO:  segment = VG_SCCWARC_TO;    break;
-                case VG_LCCWARC_TO: segment = VG_LCWARC_TO;     break;
-                case VG_LCWARC_TO:  segment = VG_LCCWARC_TO;    break;
-                default:                                        break;
-                }
-            }
-            break;
-		}
-		}
-
-		newSegments[m_segments.size() + i] = (RIuint8)(segment | absRel);
-		srcCoord += coords;
-	}
-	RI_ASSERT(srcCoord == numSrcCoords);
-	RI_ASSERT(dstCoord == getNumCoordinates() + numDstCoords);
-
-	RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
-
-	//replace old arrays
-	m_segments.swap(newSegments);
-	m_data.swap(newData);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Normalizes a path for interpolation.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-void Path::normalizeForInterpolation(const Path* srcPath)
-{
-	RI_ASSERT(srcPath);
-	RI_ASSERT(srcPath != this);
-	RI_ASSERT(srcPath->m_referenceCount > 0);
-
-	//count the number of resulting coordinates
-	int numSrcCoords = 0;
-	int numDstCoords = 0;
-	for(int i=0;i<srcPath->m_segments.size();i++)
-	{
-		VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
-		int coords = segmentToNumCoordinates(segment);
-		numSrcCoords += coords;
-		switch(segment)
-		{
-		case VG_CLOSE_PATH:
-		case VG_MOVE_TO:
-		case VG_LINE_TO:
-			break;
-
-		case VG_HLINE_TO:
-		case VG_VLINE_TO:
-			coords = 2;
-			break;
-
-		case VG_QUAD_TO:
-		case VG_CUBIC_TO:
-		case VG_SQUAD_TO:
-		case VG_SCUBIC_TO:
-			coords = 6;
-			break;
-
-		default:
-			RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
-					  segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
-			break;
-		}
-		numDstCoords += coords;
-	}
-
-	m_segments.resize(srcPath->m_segments.size());	//throws bad_alloc
-	m_data.resize(numDstCoords * getBytesPerCoordinate(VG_PATH_DATATYPE_F));	//throws bad_alloc
-
-	int srcCoord = 0;
-	int dstCoord = 0;
-	Vector2 s(0,0);		//the beginning of the current subpath
-	Vector2 o(0,0);		//the last point of the previous segment
-
-	// the last internal control point of the previous segment, if the
-	//segment was a (regular or smooth) quadratic or cubic
-	//Bezier, or else the last point of the previous segment
-	Vector2 p(0,0);		
-	for(int i=0;i<srcPath->m_segments.size();i++)
-	{
-		VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
-		VGPathAbsRel absRel = getPathAbsRel(srcPath->m_segments[i]);
-		int coords = segmentToNumCoordinates(segment);
-
-		switch(segment)
-		{
-		case VG_CLOSE_PATH:
-		{
-			RI_ASSERT(coords == 0);
-			p = s;
-			o = s;
-			break;
-		}
-
-		case VG_MOVE_TO:
-		{
-			RI_ASSERT(coords == 2);
-			Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-			if(absRel == VG_RELATIVE)
-				c += o;
-			setCoordinate(dstCoord++, c.x);
-			setCoordinate(dstCoord++, c.y);
-			s = c;
-			p = c;
-			o = c;
-			break;
-		}
-
-		case VG_LINE_TO:
-		{
-			RI_ASSERT(coords == 2);
-			Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-			if(absRel == VG_RELATIVE)
-				c += o;
-			setCoordinate(dstCoord++, c.x);
-			setCoordinate(dstCoord++, c.y);
-			p = c;
-			o = c;
-			break;
-		}
-
-		case VG_HLINE_TO:
-		{
-			RI_ASSERT(coords == 1);
-			Vector2 c(srcPath->getCoordinate(srcCoord+0), o.y);
-			if(absRel == VG_RELATIVE)
-				c.x += o.x;
-			setCoordinate(dstCoord++, c.x);
-			setCoordinate(dstCoord++, c.y);
-			p = c;
-			o = c;
-			segment = VG_LINE_TO;
-			break;
-		}
-
-		case VG_VLINE_TO:
-		{
-			RI_ASSERT(coords == 1);
-			Vector2 c(o.x, srcPath->getCoordinate(srcCoord+0));
-			if(absRel == VG_RELATIVE)
-				c.y += o.y;
-			setCoordinate(dstCoord++, c.x);
-			setCoordinate(dstCoord++, c.y);
-			p = c;
-			o = c;
-			segment = VG_LINE_TO;
-			break;
-		}
-
-		case VG_QUAD_TO:
-		{
-			RI_ASSERT(coords == 4);
-			Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-			Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
-			if(absRel == VG_RELATIVE)
-			{
-				c0 += o;
-				c1 += o;
-			}
-			Vector2 d0 = (1.0f/3.0f) * (o + 2.0f * c0);
-			Vector2 d1 = (1.0f/3.0f) * (c1 + 2.0f * c0);
-			setCoordinate(dstCoord++, d0.x);
-			setCoordinate(dstCoord++, d0.y);
-			setCoordinate(dstCoord++, d1.x);
-			setCoordinate(dstCoord++, d1.y);
-			setCoordinate(dstCoord++, c1.x);
-			setCoordinate(dstCoord++, c1.y);
-			p = c0;
-			o = c1;
-			segment = VG_CUBIC_TO;
-			break;
-		}
-
-		case VG_CUBIC_TO:
-		{
-			RI_ASSERT(coords == 6);
-			Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-			Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
-			Vector2 c2(srcPath->getCoordinate(srcCoord+4), srcPath->getCoordinate(srcCoord+5));
-			if(absRel == VG_RELATIVE)
-			{
-				c0 += o;
-				c1 += o;
-				c2 += o;
-			}
-			setCoordinate(dstCoord++, c0.x);
-			setCoordinate(dstCoord++, c0.y);
-			setCoordinate(dstCoord++, c1.x);
-			setCoordinate(dstCoord++, c1.y);
-			setCoordinate(dstCoord++, c2.x);
-			setCoordinate(dstCoord++, c2.y);
-			p = c1;
-			o = c2;
-			break;
-		}
-
-		case VG_SQUAD_TO:
-		{
-			RI_ASSERT(coords == 2);
-			Vector2 c0 = 2.0f * o - p;
-			Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-			if(absRel == VG_RELATIVE)
-				c1 += o;
-			Vector2 d0 = (1.0f/3.0f) * (o + 2.0f * c0);
-			Vector2 d1 = (1.0f/3.0f) * (c1 + 2.0f * c0);
-			setCoordinate(dstCoord++, d0.x);
-			setCoordinate(dstCoord++, d0.y);
-			setCoordinate(dstCoord++, d1.x);
-			setCoordinate(dstCoord++, d1.y);
-			setCoordinate(dstCoord++, c1.x);
-			setCoordinate(dstCoord++, c1.y);
-			p = c0;
-			o = c1;
-			segment = VG_CUBIC_TO;
-			break;
-		}
-
-		case VG_SCUBIC_TO:
-		{
-			RI_ASSERT(coords == 4);
-			Vector2 c0 = 2.0f * o - p;
-			Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-			Vector2 c2(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
-			if(absRel == VG_RELATIVE)
-			{
-				c1 += o;
-				c2 += o;
-			}
-			setCoordinate(dstCoord++, c0.x);
-			setCoordinate(dstCoord++, c0.y);
-			setCoordinate(dstCoord++, c1.x);
-			setCoordinate(dstCoord++, c1.y);
-			setCoordinate(dstCoord++, c2.x);
-			setCoordinate(dstCoord++, c2.y);
-			p = c1;
-			o = c2;
-			segment = VG_CUBIC_TO;
-			break;
-		}
-
-		default:
-		{
-			RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
-					  segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
-			RI_ASSERT(coords == 5);
-			RIfloat rh = srcPath->getCoordinate(srcCoord+0);
-			RIfloat rv = srcPath->getCoordinate(srcCoord+1);
-			RIfloat rot = srcPath->getCoordinate(srcCoord+2);
-			Vector2 c(srcPath->getCoordinate(srcCoord+3), srcPath->getCoordinate(srcCoord+4));
-			if(absRel == VG_RELATIVE)
-				c += o;
-			setCoordinate(dstCoord++, rh);
-			setCoordinate(dstCoord++, rv);
-			setCoordinate(dstCoord++, rot);
-			setCoordinate(dstCoord++, c.x);
-			setCoordinate(dstCoord++, c.y);
-			p = c;
-			o = c;
-			break;
-		}
-		}
-
-		m_segments[i] = (RIuint8)(segment | VG_ABSOLUTE);
-		srcCoord += coords;
-	}
-	RI_ASSERT(srcCoord == numSrcCoords);
-	RI_ASSERT(dstCoord == numDstCoords);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Appends a linearly interpolated copy of the two source paths.
-* \param	
-* \return	
-* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-bool Path::interpolate(const Path* startPath, const Path* endPath, RIfloat amount)
-{
-	RI_ASSERT(startPath && endPath);
-	RI_ASSERT(m_referenceCount > 0 && startPath->m_referenceCount > 0 && endPath->m_referenceCount > 0);
-
-	if(!startPath->m_segments.size() || startPath->m_segments.size() != endPath->m_segments.size())
-		return false;	//start and end paths are incompatible or zero length
-
-	Path start(VG_PATH_FORMAT_STANDARD, VG_PATH_DATATYPE_F, 1.0f, 0.0f, 0, 0, 0);
-	start.normalizeForInterpolation(startPath);	//throws bad_alloc
-
-	Path end(VG_PATH_FORMAT_STANDARD, VG_PATH_DATATYPE_F, 1.0f, 0.0f, 0, 0, 0);
-	end.normalizeForInterpolation(endPath);	//throws bad_alloc
-
-	//check that start and end paths are compatible
-	if(start.m_data.size() != end.m_data.size() || start.m_segments.size() != end.m_segments.size())
-		return false;	//start and end paths are incompatible
-
-	//allocate new arrays
-	Array<RIuint8> newSegments;
-	newSegments.resize(m_segments.size() + start.m_segments.size());	//throws bad_alloc
-	Array<RIuint8> newData;
-	newData.resize(m_data.size() + start.m_data.size() * getBytesPerCoordinate(m_datatype) / getBytesPerCoordinate(start.m_datatype));	//throws bad_alloc
-	//if we get here, the memory allocations have succeeded
-
-	//copy old segments
-	if(m_segments.size())
-		memcpy(&newSegments[0], &m_segments[0], m_segments.size());
-
-	//copy old data
-	if(m_data.size())
-		memcpy(&newData[0], &m_data[0], m_data.size());
-
-	//copy segments
-	for(int i=0;i<start.m_segments.size();i++)
-	{
-		VGPathSegment s = getPathSegment(start.m_segments[i]);
-		VGPathSegment e = getPathSegment(end.m_segments[i]);
-
-		if(s == VG_SCCWARC_TO || s == VG_SCWARC_TO || s == VG_LCCWARC_TO || s == VG_LCWARC_TO)
-		{
-			if(e != VG_SCCWARC_TO && e != VG_SCWARC_TO && e != VG_LCCWARC_TO && e != VG_LCWARC_TO)
-				return false;	//start and end paths are incompatible
-			if(amount < 0.5f)
-				newSegments[m_segments.size() + i] = start.m_segments[i];
-			else
-				newSegments[m_segments.size() + i] = end.m_segments[i];
-		}
-		else
-		{
-			if(s != e)
-				return false;	//start and end paths are incompatible
-			newSegments[m_segments.size() + i] = start.m_segments[i];
-		}
-	}
-
-	//interpolate data
-	int oldNumCoords = getNumCoordinates();
-	for(int i=0;i<start.getNumCoordinates();i++)
-		setCoordinate(newData, m_datatype, m_scale, m_bias, oldNumCoords + i, start.getCoordinate(i) * (1.0f - amount) + end.getCoordinate(i) * amount);
-
-	RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
-
-	//replace old arrays
-	m_segments.swap(newSegments);
-	m_data.swap(newData);
-
-	return true;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Tessellates a path for filling and appends resulting edges
-*			to a rasterizer.
-* \param	
-* \return	
-* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::fill(const Matrix3x3& pathToSurface, Rasterizer& rasterizer)
-{
-	RI_ASSERT(m_referenceCount > 0);
-	RI_ASSERT(pathToSurface.isAffine());
-
-	tessellate(pathToSurface, 0.0f);	//throws bad_alloc
-
-	try
-	{
-		Vector2 p0(0,0), p1(0,0);
-		for(int i=0;i<m_vertices.size();i++)
-		{
-			p1 = affineTransform(pathToSurface, m_vertices[i].userPosition);
-
-			if(!(m_vertices[i].flags & START_SEGMENT))
-			{	//in the middle of a segment
-				rasterizer.addEdge(p0, p1);	//throws bad_alloc
-			}
-
-			p0 = p1;
-		}
-	}
-	catch(std::bad_alloc)
-	{
-		rasterizer.clear();	//remove the unfinished path
-		throw;
-	}
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Smoothly interpolates between two StrokeVertices. Positions
-*			are interpolated linearly, while tangents are interpolated
-*			on a unit circle. Stroking is implemented so that overlapping
-*			geometry doesnt cancel itself when filled with nonzero rule.
-*			The resulting polygons are closed.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-void Path::interpolateStroke(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const StrokeVertex& v0, const StrokeVertex& v1, RIfloat strokeWidth) const
-{
-	Vector2 pccw = affineTransform(pathToSurface, v0.ccw);
-	Vector2 pcw = affineTransform(pathToSurface, v0.cw);
-	Vector2 p = affineTransform(pathToSurface, v0.p);
-	Vector2 endccw = affineTransform(pathToSurface, v1.ccw);
-	Vector2 endcw = affineTransform(pathToSurface, v1.cw);
-	Vector2 endp = affineTransform(pathToSurface, v1.p);
-
-	const RIfloat tessellationAngle = 5.0f;
-
-	RIfloat angle = RI_RAD_TO_DEG((RIfloat)acos(RI_CLAMP(dot(v0.t, v1.t), -1.0f, 1.0f))) / tessellationAngle;
-	int samples = RI_INT_MAX((int)ceil(angle), 1);
-
-	for(int j=0;j<samples-1;j++)
-	{
-		RIfloat t = (RIfloat)(j+1) / (RIfloat)samples;
-		Vector2 position = v0.p * (1.0f - t) + v1.p * t;
-		Vector2 tangent = circularLerp(v0.t, v1.t, t);
-		Vector2 normal = normalize(perpendicularCCW(tangent)) * strokeWidth * 0.5f;
-
-		Vector2 nccw = affineTransform(pathToSurface, position + normal);
-		Vector2 ncw = affineTransform(pathToSurface, position - normal);
-		Vector2 n = affineTransform(pathToSurface, position);
-
-        rasterizer.clear();
-		rasterizer.addEdge(p, pccw);	//throws bad_alloc
-		rasterizer.addEdge(pccw, nccw);	//throws bad_alloc
-		rasterizer.addEdge(nccw, n);	//throws bad_alloc
-		rasterizer.addEdge(n, ncw);     //throws bad_alloc
-		rasterizer.addEdge(ncw, pcw);	//throws bad_alloc
-		rasterizer.addEdge(pcw, p);	    //throws bad_alloc
-        rasterizer.fill();
-
-		pccw = nccw;
-		pcw = ncw;
-        p = n;
-	}
-
-	//connect the last segment to the end coordinates
-    rasterizer.clear();
-	rasterizer.addEdge(p, pccw);	    //throws bad_alloc
-	rasterizer.addEdge(pccw, endccw);	//throws bad_alloc
-	rasterizer.addEdge(endccw, endp);	//throws bad_alloc
-	rasterizer.addEdge(endp, endcw);	//throws bad_alloc
-	rasterizer.addEdge(endcw, pcw);     //throws bad_alloc
-	rasterizer.addEdge(pcw, p);         //throws bad_alloc
-    rasterizer.fill();
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Generate edges for stroke caps. Resulting polygons are closed.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-void Path::doCap(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const StrokeVertex& v, RIfloat strokeWidth, VGCapStyle capStyle) const
-{
-	Vector2 ccwt = affineTransform(pathToSurface, v.ccw);
-	Vector2 cwt = affineTransform(pathToSurface, v.cw);
-	Vector2 p = affineTransform(pathToSurface, v.p);
-
-    rasterizer.clear();
-	switch(capStyle)
-	{
-	case VG_CAP_BUTT:
-		break;
-
-	case VG_CAP_ROUND:
-	{
-        const RIfloat tessellationAngle = 5.0f;
-
-		RIfloat angle = 180.0f / tessellationAngle;
-
-		int samples = (int)ceil(angle);
-		RIfloat step = 1.0f / samples;
-		RIfloat t = step;
-		Vector2 u0 = normalize(v.ccw - v.p);
-		Vector2 u1 = normalize(v.cw - v.p);
-		Vector2 prev = ccwt;
-		rasterizer.addEdge(p, ccwt);	//throws bad_alloc
-		for(int j=1;j<samples;j++)
-		{
-			Vector2 next = v.p + circularLerp(u0, u1, t, true) * strokeWidth * 0.5f;
-			next = affineTransform(pathToSurface, next);
-
-			rasterizer.addEdge(prev, next);	//throws bad_alloc
-			prev = next;
-			t += step;
-		}
-		rasterizer.addEdge(prev, cwt);	//throws bad_alloc
-		rasterizer.addEdge(cwt, p);     //throws bad_alloc
-		break;
-	}
-
-	default:
-	{
-		RI_ASSERT(capStyle == VG_CAP_SQUARE);
-		Vector2 t = v.t;
-		t.normalize();
-		Vector2 ccws = affineTransform(pathToSurface, v.ccw + t * strokeWidth * 0.5f);
-		Vector2 cws = affineTransform(pathToSurface, v.cw + t * strokeWidth * 0.5f);
-		rasterizer.addEdge(p, ccwt);	//throws bad_alloc
-		rasterizer.addEdge(ccwt, ccws);	//throws bad_alloc
-		rasterizer.addEdge(ccws, cws);	//throws bad_alloc
-		rasterizer.addEdge(cws, cwt);	//throws bad_alloc
-		rasterizer.addEdge(cwt, p);     //throws bad_alloc
-		break;
-	}
-	}
-    rasterizer.fill();
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Generate edges for stroke joins. Resulting polygons are closed.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-void Path::doJoin(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const StrokeVertex& v0, const StrokeVertex& v1, RIfloat strokeWidth, VGJoinStyle joinStyle, RIfloat miterLimit) const
-{
-	Vector2 ccw0t = affineTransform(pathToSurface, v0.ccw);
-	Vector2 cw0t = affineTransform(pathToSurface, v0.cw);
-	Vector2 m0t = affineTransform(pathToSurface, v0.p);
-	Vector2 ccw1t = affineTransform(pathToSurface, v1.ccw);
-	Vector2 cw1t = affineTransform(pathToSurface, v1.cw);
-	Vector2 m1t = affineTransform(pathToSurface, v1.p);
-
-	Vector2 tccw = v1.ccw - v0.ccw;
-	Vector2 s, e, m, st, et;
-	bool cw;
-
-    rasterizer.clear();
-
-	if( dot(tccw, v0.t) > 0.0f )
-	{	//draw ccw miter (draw from point 0 to 1)
-		s = ccw0t;
-		e = ccw1t;
-		st = v0.t;
-		et = v1.t;
-		m = v0.ccw;
-		cw = false;
-		rasterizer.addEdge(m0t, ccw0t);	//throws bad_alloc
-		rasterizer.addEdge(ccw1t, m1t);	//throws bad_alloc
-		rasterizer.addEdge(m1t, m0t);	//throws bad_alloc
-	}
-	else
-	{	//draw cw miter (draw from point 1 to 0)
-		s = cw1t;
-		e = cw0t;
-		st = v1.t;
-		et = v0.t;
-		m = v0.cw;
-		cw = true;
-		rasterizer.addEdge(cw0t, m0t);	//throws bad_alloc
-		rasterizer.addEdge(m1t, cw1t);	//throws bad_alloc
-		rasterizer.addEdge(m0t, m1t);	//throws bad_alloc
-	}
-
-	switch(joinStyle)
-	{
-	case VG_JOIN_MITER:
-	{
-		RIfloat theta = (RIfloat)acos(RI_CLAMP(dot(v0.t, -v1.t), -1.0f, 1.0f));
-		RIfloat miterLengthPerStrokeWidth = 1.0f / (RIfloat)sin(theta*0.5f);
-		if( miterLengthPerStrokeWidth < miterLimit )
-		{	//miter
-			RIfloat l = (RIfloat)cos(theta*0.5f) * miterLengthPerStrokeWidth * (strokeWidth * 0.5f);
-			l = RI_MIN(l, RI_FLOAT_MAX);	//force finite
-			Vector2 c = m + v0.t * l;
-			c = affineTransform(pathToSurface, c);
-			rasterizer.addEdge(s, c);	//throws bad_alloc
-			rasterizer.addEdge(c, e);	//throws bad_alloc
-		}
-		else
-		{	//bevel
-			rasterizer.addEdge(s, e);	//throws bad_alloc
-		}
-		break;
-	}
-
-	case VG_JOIN_ROUND:
-	{
-		const RIfloat tessellationAngle = 5.0f;
-
-		Vector2 prev = s;
-		RIfloat angle = RI_RAD_TO_DEG((RIfloat)acos(RI_CLAMP(dot(st, et), -1.0f, 1.0f))) / tessellationAngle;
-		int samples = (int)ceil(angle);
-		if( samples )
-		{
-			RIfloat step = 1.0f / samples;
-			RIfloat t = step;
-			for(int j=1;j<samples;j++)
-			{
-				Vector2 position = v0.p * (1.0f - t) + v1.p * t;
-				Vector2 tangent = circularLerp(st, et, t, true);
-
-				Vector2 next = position + normalize(perpendicular(tangent, cw)) * strokeWidth * 0.5f;
-				next = affineTransform(pathToSurface, next);
-
-				rasterizer.addEdge(prev, next);	//throws bad_alloc
-				prev = next;
-				t += step;
-			}
-		}
-		rasterizer.addEdge(prev, e);	//throws bad_alloc
-		break;
-	}
-
-	default:
-		RI_ASSERT(joinStyle == VG_JOIN_BEVEL);
-		if(!cw)
-			rasterizer.addEdge(ccw0t, ccw1t);	//throws bad_alloc
-		else
-			rasterizer.addEdge(cw1t, cw0t);		//throws bad_alloc
-		break;
-	}
-    rasterizer.fill();
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Tessellate a path, apply stroking, dashing, caps and joins, and
-*			append resulting edges to a rasterizer.
-* \param	
-* \return	
-* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::stroke(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const Array<RIfloat>& dashPattern, RIfloat dashPhase, bool dashPhaseReset, RIfloat strokeWidth, VGCapStyle capStyle, VGJoinStyle joinStyle, RIfloat miterLimit)
-{
-	RI_ASSERT(pathToSurface.isAffine());
-	RI_ASSERT(m_referenceCount > 0);
-	RI_ASSERT(strokeWidth >= 0.0f);
-	RI_ASSERT(miterLimit >= 1.0f);
-
-	tessellate(pathToSurface, strokeWidth);	//throws bad_alloc
-
-	if(!m_vertices.size())
-		return;
-
-	bool dashing = true;
-	int dashPatternSize = dashPattern.size();
-	if( dashPattern.size() & 1 )
-		dashPatternSize--;	//odd number of dash pattern entries, discard the last one
-	RIfloat dashPatternLength = 0.0f;
-	for(int i=0;i<dashPatternSize;i++)
-		dashPatternLength += RI_MAX(dashPattern[i], 0.0f);
-	if(!dashPatternSize || dashPatternLength == 0.0f )
-		dashing = false;
-	dashPatternLength = RI_MIN(dashPatternLength, RI_FLOAT_MAX);
-
-	//walk along the path
-	//stop at the next event which is either:
-	//-path vertex
-	//-dash stop
-	//for robustness, decisions based on geometry are done only once.
-	//inDash keeps track whether the last point was in dash or not
-
-	//loop vertex events
-	try
-	{
-		RIfloat nextDash = 0.0f;
-		int d = 0;
-		bool inDash = true;
-		StrokeVertex v0, v1, vs;
-		for(int i=0;i<m_vertices.size();i++)
-		{
-			//read the next vertex
-			Vertex& v = m_vertices[i];
-			v1.p = v.userPosition;
-			v1.t = v.userTangent;
-			RI_ASSERT(!isZero(v1.t));	//don't allow zero tangents
-			v1.ccw = v1.p + normalize(perpendicularCCW(v1.t)) * strokeWidth * 0.5f;
-			v1.cw = v1.p + normalize(perpendicularCW(v1.t)) * strokeWidth * 0.5f;
-			v1.pathLength = v.pathLength;
-			v1.flags = v.flags;
-			v1.inDash = dashing ? inDash : true;	//NOTE: for other than START_SEGMENT vertices inDash will be updated after dashing
-
-			//process the vertex event
-			if(v.flags & START_SEGMENT)
-			{
-				if(v.flags & START_SUBPATH)
-				{
-					if( dashing )
-					{	//initialize dashing by finding which dash or gap the first point of the path lies in
-						if(dashPhaseReset || i == 0)
-						{
-							d = 0;
-							inDash = true;
-							nextDash = v1.pathLength - RI_MOD(dashPhase, dashPatternLength);
-							for(;;)
-							{
-								RIfloat prevDash = nextDash;
-								nextDash = prevDash + RI_MAX(dashPattern[d], 0.0f);
-								if(nextDash >= v1.pathLength)
-									break;
-
-								if( d & 1 )
-									inDash = true;
-								else
-									inDash = false;
-								d = (d+1) % dashPatternSize;
-							}
-							v1.inDash = inDash;
-							//the first point of the path lies between prevDash and nextDash
-							//d in the index of the next dash stop
-							//inDash is true if the first point is in a dash
-						}
-					}
-					vs = v1;	//save the subpath start point
-				}
-				else
-				{
-					if( v.flags & IMPLICIT_CLOSE_SUBPATH )
-					{	//do caps for the start and end of the current subpath
-						if( v0.inDash )
-							doCap(pathToSurface, rasterizer, v0, strokeWidth, capStyle);	//end cap	//throws bad_alloc
-						if( vs.inDash )
-						{
-							StrokeVertex vi = vs;
-							vi.t = -vi.t;
-							RI_SWAP(vi.ccw.x, vi.cw.x);
-							RI_SWAP(vi.ccw.y, vi.cw.y);
-							doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);	//start cap	//throws bad_alloc
-						}
-					}
-					else
-					{	//join two segments
-						RI_ASSERT(v0.inDash == v1.inDash);
-						if( v0.inDash )
-							doJoin(pathToSurface, rasterizer, v0, v1, strokeWidth, joinStyle, miterLimit);	//throws bad_alloc
-					}
-				}
-			}
-			else
-			{	//in the middle of a segment
-				if( !(v.flags & IMPLICIT_CLOSE_SUBPATH) )
-				{	//normal segment, do stroking
-					if( dashing )
-					{
-						StrokeVertex prevDashVertex = v0;	//dashing of the segment starts from the previous vertex
-
-						if(nextDash + 10000.0f * dashPatternLength < v1.pathLength)
-							throw std::bad_alloc();		//too many dashes, throw bad_alloc
-
-						//loop dash events until the next vertex event
-						//zero length dashes are handled as a special case since if they hit the vertex,
-						//we want to include their starting point to this segment already in order to generate a join
-						int numDashStops = 0;
-						while(nextDash < v1.pathLength || (nextDash <= v1.pathLength && dashPattern[(d+1) % dashPatternSize] == 0.0f))
-						{
-							RIfloat edgeLength = v1.pathLength - v0.pathLength;
-							RIfloat ratio = 0.0f;
-							if(edgeLength > 0.0f)
-								ratio = (nextDash - v0.pathLength) / edgeLength;
-							StrokeVertex nextDashVertex;
-							nextDashVertex.p = v0.p * (1.0f - ratio) + v1.p * ratio;
-							nextDashVertex.t = circularLerp(v0.t, v1.t, ratio);
-							nextDashVertex.ccw = nextDashVertex.p + normalize(perpendicularCCW(nextDashVertex.t)) * strokeWidth * 0.5f;
-							nextDashVertex.cw = nextDashVertex.p + normalize(perpendicularCW(nextDashVertex.t)) * strokeWidth * 0.5f;
-
-							if( inDash )
-							{	//stroke from prevDashVertex -> nextDashVertex
-								if( numDashStops )
-								{	//prevDashVertex is not the start vertex of the segment, cap it (start vertex has already been joined or capped)
-									StrokeVertex vi = prevDashVertex;
-									vi.t = -vi.t;
-									RI_SWAP(vi.ccw.x, vi.cw.x);
-									RI_SWAP(vi.ccw.y, vi.cw.y);
-									doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);	//throws bad_alloc
-								}
-								interpolateStroke(pathToSurface, rasterizer, prevDashVertex, nextDashVertex, strokeWidth);	//throws bad_alloc
-								doCap(pathToSurface, rasterizer, nextDashVertex, strokeWidth, capStyle);	//end cap	//throws bad_alloc
-							}
-							prevDashVertex = nextDashVertex;
-
-							if( d & 1 )
-							{	//dash starts
-								RI_ASSERT(!inDash);
-								inDash = true;
-							}
-							else
-							{	//dash ends
-								RI_ASSERT(inDash);
-								inDash = false;
-							}
-							d = (d+1) % dashPatternSize;
-							nextDash += RI_MAX(dashPattern[d], 0.0f);
-							numDashStops++;
-						}
-						
-						if( inDash )
-						{	//stroke prevDashVertex -> v1
-							if( numDashStops )
-							{	//prevDashVertex is not the start vertex of the segment, cap it (start vertex has already been joined or capped)
-								StrokeVertex vi = prevDashVertex;
-								vi.t = -vi.t;
-								RI_SWAP(vi.ccw.x, vi.cw.x);
-								RI_SWAP(vi.ccw.y, vi.cw.y);
-								doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);	//throws bad_alloc
-							}
-							interpolateStroke(pathToSurface, rasterizer, prevDashVertex, v1, strokeWidth);	//throws bad_alloc
-							//no cap, leave path open
-						}
-
-						v1.inDash = inDash;	//update inDash status of the segment end point
-					}
-					else	//no dashing, just interpolate segment end points
-						interpolateStroke(pathToSurface, rasterizer, v0, v1, strokeWidth);	//throws bad_alloc
-				}
-			}
-
-			if((v.flags & END_SEGMENT) && (v.flags & CLOSE_SUBPATH))
-			{	//join start and end of the current subpath
-				if( v1.inDash && vs.inDash )
-					doJoin(pathToSurface, rasterizer, v1, vs, strokeWidth, joinStyle, miterLimit);	//throws bad_alloc
-				else
-				{	//both start and end are not in dash, cap them
-					if( v1.inDash )
-						doCap(pathToSurface, rasterizer, v1, strokeWidth, capStyle);	//end cap	//throws bad_alloc
-					if( vs.inDash )
-					{
-						StrokeVertex vi = vs;
-						vi.t = -vi.t;
-						RI_SWAP(vi.ccw.x, vi.cw.x);
-						RI_SWAP(vi.ccw.y, vi.cw.y);
-						doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);	//start cap	//throws bad_alloc
-					}
-				}
-			}
-
-			v0 = v1;
-		}
-	}
-	catch(std::bad_alloc)
-	{
-		rasterizer.clear();	//remove the unfinished path
-		throw;
-	}
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Tessellates a path, and returns a position and a tangent on the path
-*			given a distance along the path.
-* \param	
-* \return	
-* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::getPointAlong(int startIndex, int numSegments, RIfloat distance, Vector2& p, Vector2& t)
-{
-	RI_ASSERT(m_referenceCount > 0);
-	RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size() && numSegments > 0);
-
-	Matrix3x3 identity;
-	identity.identity();
-	tessellate(identity, 0.0f);	//throws bad_alloc
-
-	RI_ASSERT(startIndex >= 0 && startIndex < m_segmentToVertex.size());
-	RI_ASSERT(startIndex + numSegments >= 0 && startIndex + numSegments <= m_segmentToVertex.size());
-
-    // ignore move segments at the start of the path
-    while (numSegments && (m_segments[startIndex] & ~VG_RELATIVE) == VG_MOVE_TO)
-    {
-        startIndex++;
-        numSegments--;
-    }
-
-    // ignore move segments at the end of the path
-    while (numSegments && (m_segments[startIndex + numSegments - 1] & ~VG_RELATIVE) == VG_MOVE_TO)
-        numSegments--;
-
-    // empty path?
-    if (!m_vertices.size() || !numSegments)
-    {
-		p.set(0,0);
-		t.set(1,0);
-		return;
-    }
-
-	int startVertex = m_segmentToVertex[startIndex].start;
-	int endVertex = m_segmentToVertex[startIndex + numSegments - 1].end;
-
-	if(startVertex == -1)
-		startVertex = 0;
-
-    // zero length?
-    if (startVertex >= endVertex)
-    {
-		p = m_vertices[startVertex].userPosition;
-		t.set(1,0);
-		return;
-    }
-
-	RI_ASSERT(startVertex >= 0 && startVertex < m_vertices.size());
-	RI_ASSERT(endVertex >= 0 && endVertex < m_vertices.size());
-
-	distance += m_vertices[startVertex].pathLength;	//map distance to the range of the whole path
-
-	if(distance <= m_vertices[startVertex].pathLength)
-	{	//return the first point of the path
-		p = m_vertices[startVertex].userPosition;
-		t = m_vertices[startVertex].userTangent;
-		return;
-	}
-
-	if(distance >= m_vertices[endVertex].pathLength)
-	{	//return the last point of the path
-		p = m_vertices[endVertex].userPosition;
-		t = m_vertices[endVertex].userTangent;
-		return;
-	}
-
-	//search for the segment containing the distance
-	for(int s=startIndex;s<startIndex+numSegments;s++)
-	{
-		int start = m_segmentToVertex[s].start;
-		int end = m_segmentToVertex[s].end;
-		if(start < 0)
-			start = 0;
-		if(end < 0)
-			end = 0;
-		RI_ASSERT(start >= 0 && start < m_vertices.size());
-		RI_ASSERT(end >= 0 && end < m_vertices.size());
-
-		if(distance >= m_vertices[start].pathLength && distance < m_vertices[end].pathLength)
-		{	//segment contains the queried distance
-			for(int i=start;i<end;i++)
-			{
-				const Vertex& v0 = m_vertices[i];
-				const Vertex& v1 = m_vertices[i+1];
-				if(distance >= v0.pathLength && distance < v1.pathLength)
-				{	//segment found, interpolate linearly between its end points
-					RIfloat edgeLength = v1.pathLength - v0.pathLength;
-					RI_ASSERT(edgeLength > 0.0f);
-					RIfloat r = (distance - v0.pathLength) / edgeLength;
-					p = (1.0f - r) * v0.userPosition + r * v1.userPosition;
-					t = (1.0f - r) * v0.userTangent + r * v1.userTangent;
-					return;
-				}
-			}
-		}
-	}
-
-	RI_ASSERT(0);	//point not found (should never get here)
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Tessellates a path, and computes its length.
-* \param	
-* \return	
-* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-RIfloat Path::getPathLength(int startIndex, int numSegments)
-{
-	RI_ASSERT(m_referenceCount > 0);
-	RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size() && numSegments > 0);
-
-	Matrix3x3 identity;
-	identity.identity();
-	tessellate(identity, 0.0f);	//throws bad_alloc
-
-	RI_ASSERT(startIndex >= 0 && startIndex < m_segmentToVertex.size());
-	RI_ASSERT(startIndex + numSegments >= 0 && startIndex + numSegments <= m_segmentToVertex.size());
-
-	int startVertex = m_segmentToVertex[startIndex].start;
-	int endVertex = m_segmentToVertex[startIndex + numSegments - 1].end;
-
-	if(!m_vertices.size())
-		return 0.0f;
-
-	RIfloat startPathLength = 0.0f;
-	if(startVertex >= 0)
-	{
-		RI_ASSERT(startVertex >= 0 && startVertex < m_vertices.size());
-		startPathLength = m_vertices[startVertex].pathLength;
-	}
-	RIfloat endPathLength = 0.0f;
-	if(endVertex >= 0)
-	{
-		RI_ASSERT(endVertex >= 0 && endVertex < m_vertices.size());
-		endPathLength = m_vertices[endVertex].pathLength;
-	}
-
-	return endPathLength - startPathLength;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Tessellates a path, and computes its bounding box in user space.
-* \param	
-* \return	
-* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::getPathBounds(RIfloat& minx, RIfloat& miny, RIfloat& maxx, RIfloat& maxy)
-{
-	RI_ASSERT(m_referenceCount > 0);
-
-	Matrix3x3 identity;
-	identity.identity();
-	tessellate(identity, 0.0f);	//throws bad_alloc
-
-	if(m_vertices.size())
-	{
-		minx = m_userMinx;
-		miny = m_userMiny;
-		maxx = m_userMaxx;
-		maxy = m_userMaxy;
-	}
-	else
-	{
-		minx = miny = 0;
-		maxx = maxy = -1;
-	}
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Tessellates a path, and computes its bounding box in surface space.
-* \param	
-* \return	
-* \note		if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::getPathTransformedBounds(const Matrix3x3& pathToSurface, RIfloat& minx, RIfloat& miny, RIfloat& maxx, RIfloat& maxy)
-{
-	RI_ASSERT(m_referenceCount > 0);
-	RI_ASSERT(pathToSurface.isAffine());
-
-	Matrix3x3 identity;
-	identity.identity();
-	tessellate(identity, 0.0f);	//throws bad_alloc
-
-	if(m_vertices.size())
-	{
-		Vector3 p0(m_userMinx, m_userMiny, 1.0f);
-		Vector3 p1(m_userMinx, m_userMaxy, 1.0f);
-		Vector3 p2(m_userMaxx, m_userMaxy, 1.0f);
-		Vector3 p3(m_userMaxx, m_userMiny, 1.0f);
-		p0 = pathToSurface * p0;
-		p1 = pathToSurface * p1;
-		p2 = pathToSurface * p2;
-		p3 = pathToSurface * p3;
-
-		minx = RI_MIN(RI_MIN(RI_MIN(p0.x, p1.x), p2.x), p3.x);
-		miny = RI_MIN(RI_MIN(RI_MIN(p0.y, p1.y), p2.y), p3.y);
-		maxx = RI_MAX(RI_MAX(RI_MAX(p0.x, p1.x), p2.x), p3.x);
-		maxy = RI_MAX(RI_MAX(RI_MAX(p0.y, p1.y), p2.y), p3.y);
-	}
-	else
-	{
-		minx = miny = 0;
-		maxx = maxy = -1;
-	}
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Adds a vertex to a tessellated path.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-void Path::addVertex(const Vector2& p, const Vector2& t, RIfloat pathLength, unsigned int flags)
-{
-	RI_ASSERT(!isZero(t));
-
-	Vertex v;
-	v.pathLength = pathLength;
-	v.userPosition = p;
-	v.userTangent = t;
-	v.flags = flags;
-	m_vertices.push_back(v);	//throws bad_alloc
-    m_numTessVertices++;
-
-	m_userMinx = RI_MIN(m_userMinx, v.userPosition.x);
-	m_userMiny = RI_MIN(m_userMiny, v.userPosition.y);
-	m_userMaxx = RI_MAX(m_userMaxx, v.userPosition.x);
-	m_userMaxy = RI_MAX(m_userMaxy, v.userPosition.y);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Adds an edge to a tessellated path.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-void Path::addEdge(const Vector2& p0, const Vector2& p1, const Vector2& t0, const Vector2& t1, unsigned int startFlags, unsigned int endFlags)
-{
-	Vertex v;
-	RIfloat pathLength = 0.0f;
-
-	RI_ASSERT(!isZero(t0) && !isZero(t1));
-
-	//segment midpoints are shared between edges
-	if(!m_numTessVertices)
-	{
-		if(m_vertices.size() > 0)
-			pathLength = m_vertices[m_vertices.size()-1].pathLength;
-
-		addVertex(p0, t0, pathLength, startFlags);	//throws bad_alloc
-	}
-
-	//other than implicit close paths (caused by a MOVE_TO) add to path length
-	if( !(endFlags & IMPLICIT_CLOSE_SUBPATH) )
-	{
-		//NOTE: with extremely large coordinates the floating point path length is infinite
-		RIfloat l = (p1 - p0).length();
-		pathLength = m_vertices[m_vertices.size()-1].pathLength + l;
-		pathLength = RI_MIN(pathLength, RI_FLOAT_MAX);
-	}
-
-	addVertex(p1, t1, pathLength, endFlags);	//throws bad_alloc
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Tessellates a close-path segment.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-void Path::addEndPath(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, bool subpathHasGeometry, unsigned int flags)
-{
-	RI_UNREF(pathToSurface);
-    m_numTessVertices = 0;
-	if(!subpathHasGeometry)
-	{	//single vertex
-		Vector2 t(1.0f,0.0f);
-		addEdge(p0, p1, t, t, START_SEGMENT | START_SUBPATH, END_SEGMENT | END_SUBPATH);	//throws bad_alloc
-        m_numTessVertices = 0;
-		addEdge(p0, p1, -t, -t, IMPLICIT_CLOSE_SUBPATH | START_SEGMENT, IMPLICIT_CLOSE_SUBPATH | END_SEGMENT);	//throws bad_alloc
-		return;
-	}
-	//the subpath contains segment commands that have generated geometry
-
-	//add a close path segment to the start point of the subpath
-	RI_ASSERT(m_vertices.size() > 0);
-	m_vertices[m_vertices.size()-1].flags |= END_SUBPATH;
-
-	Vector2 t = normalize(p1 - p0);
-	if(isZero(t))
-		t = m_vertices[m_vertices.size()-1].userTangent;	//if the segment is zero-length, use the tangent of the last segment end point so that proper join will be generated
-	RI_ASSERT(!isZero(t));
-
-	addEdge(p0, p1, t, t, flags | START_SEGMENT, flags | END_SEGMENT);	//throws bad_alloc
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Tessellates a line-to segment.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-bool Path::addLineTo(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, bool subpathHasGeometry)
-{
-	RI_UNREF(pathToSurface);
-	if(p0 == p1)
-		return false;	//discard zero-length segments
-
-	//compute end point tangents
-	Vector2 t = normalize(p1 - p0);
-	RI_ASSERT(!isZero(t));
-
-    m_numTessVertices = 0;
-	unsigned int startFlags = START_SEGMENT;
-	if(!subpathHasGeometry)
-		startFlags |= START_SUBPATH;
-	addEdge(p0, p1, t, t, startFlags, END_SEGMENT);	//throws bad_alloc
-	return true;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Tessellates a quad-to segment.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-bool Path::addQuadTo(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, const Vector2& p2, bool subpathHasGeometry, float strokeWidth)
-{
-	RI_UNREF(pathToSurface);
-	RI_UNREF(strokeWidth);
-	if(p0 == p1 && p0 == p2)
-	{
-		RI_ASSERT(p1 == p2);
-		return false;	//discard zero-length segments
-	}
-
-	//compute end point tangents
-
-	Vector2 incomingTangent = normalize(p1 - p0);
-	Vector2 outgoingTangent = normalize(p2 - p1);
-	if(p0 == p1)
-		incomingTangent = normalize(p2 - p0);
-	if(p1 == p2)
-		outgoingTangent = normalize(p2 - p0);
-	RI_ASSERT(!isZero(incomingTangent) && !isZero(outgoingTangent));
-
-    m_numTessVertices = 0;
-	unsigned int startFlags = START_SEGMENT;
-	if(!subpathHasGeometry)
-		startFlags |= START_SUBPATH;
-
-	const int segments = RI_NUM_TESSELLATED_SEGMENTS;
-	Vector2 pp = p0;
-	Vector2 tp = incomingTangent;
-	unsigned int prevFlags = startFlags;
-	for(int i=1;i<segments;i++)
-	{
-		RIfloat t = (RIfloat)i / (RIfloat)segments;
-		RIfloat u = 1.0f-t;
-		Vector2 pn = u*u * p0 + 2.0f*t*u * p1 + t*t * p2;
-		Vector2 tn = (-1.0f+t) * p0 + (1.0f-2.0f*t) * p1 + t * p2;
-		tn = normalize(tn);
-		if(isZero(tn))
-			tn = tp;
-
-		addEdge(pp, pn, tp, tn, prevFlags, 0);	//throws bad_alloc
-
-		pp = pn;
-		tp = tn;
-		prevFlags = 0;
-	}
-	addEdge(pp, p2, tp, outgoingTangent, prevFlags, END_SEGMENT);	//throws bad_alloc
-	return true;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Tessellates a cubic-to segment.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-bool Path::addCubicTo(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, const Vector2& p2, const Vector2& p3, bool subpathHasGeometry, float strokeWidth)
-{
-	RI_UNREF(pathToSurface);
-	RI_UNREF(strokeWidth);
-
-	if(p0 == p1 && p0 == p2 && p0 == p3)
-	{
-		RI_ASSERT(p1 == p2 && p1 == p3 && p2 == p3);
-		return false;	//discard zero-length segments
-	}
-
-	//compute end point tangents
-	Vector2 incomingTangent = normalize(p1 - p0);
-	Vector2 outgoingTangent = normalize(p3 - p2);
-	if(p0 == p1)
-	{
-		incomingTangent = normalize(p2 - p0);
-		if(p1 == p2)
-			incomingTangent = normalize(p3 - p0);
-	}
-	if(p2 == p3)
-	{
-		outgoingTangent = normalize(p3 - p1);
-		if(p1 == p2)
-			outgoingTangent = normalize(p3 - p0);
-	}
-	RI_ASSERT(!isZero(incomingTangent) && !isZero(outgoingTangent));
-
-    m_numTessVertices = 0;
-	unsigned int startFlags = START_SEGMENT;
-	if(!subpathHasGeometry)
-		startFlags |= START_SUBPATH;
-
-	const int segments = RI_NUM_TESSELLATED_SEGMENTS;
-	Vector2 pp = p0;
-	Vector2 tp = incomingTangent;
-	unsigned int prevFlags = startFlags;
-	for(int i=1;i<segments;i++)
-	{
-		RIfloat t = (RIfloat)i / (RIfloat)segments;
-		Vector2 pn = (1.0f - 3.0f*t + 3.0f*t*t - t*t*t) * p0 + (3.0f*t - 6.0f*t*t + 3.0f*t*t*t) * p1 + (3.0f*t*t - 3.0f*t*t*t) * p2 + t*t*t * p3;
-		Vector2 tn = (-3.0f + 6.0f*t - 3.0f*t*t) * p0 + (3.0f - 12.0f*t + 9.0f*t*t) * p1 + (6.0f*t - 9.0f*t*t) * p2 + 3.0f*t*t * p3;
-
-		tn = normalize(tn);
-		if(isZero(tn))
-			tn = tp;
-
-		addEdge(pp, pn, tp, tn, prevFlags, 0);	//throws bad_alloc
-
-		pp = pn;
-		tp = tn;
-		prevFlags = 0;
-	}
-	addEdge(pp, p3, tp, outgoingTangent, prevFlags, END_SEGMENT);	//throws bad_alloc
-	return true;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Finds an ellipse center and transformation from the unit circle to
-*			that ellipse.
-* \param	rh Length of the horizontal axis
-*			rv Length of the vertical axis
-*			rot Rotation angle
-*			p0,p1 User space end points of the arc
-*			c0,c1 (Return value) Unit circle space center points of the two ellipses
-*			u0,u1 (Return value) Unit circle space end points of the arc
-*			unitCircleToEllipse (Return value) A matrix mapping from unit circle space to user space
-* \return	true if ellipse exists, false if doesn't
-* \note		
-*//*-------------------------------------------------------------------*/
-
-static bool findEllipses(RIfloat rh, RIfloat rv, RIfloat rot, const Vector2& p0, const Vector2& p1, VGPathSegment segment, Vector2& c0, Vector2& c1, Vector2& u0, Vector2& u1, Matrix3x3& unitCircleToEllipse, bool& cw)
-{
-	rh = RI_ABS(rh);
-	rv = RI_ABS(rv);
-	if(rh == 0.0f || rv == 0.0f || p0 == p1)
-		return false;	//degenerate ellipse
-
-	rot = RI_DEG_TO_RAD(rot);
-	unitCircleToEllipse.set((RIfloat)cos(rot)*rh, -(RIfloat)sin(rot)*rv,  0,
-							(RIfloat)sin(rot)*rh,  (RIfloat)cos(rot)*rv,  0,
-							0,                   0,                   1);
-	Matrix3x3 ellipseToUnitCircle = invert(unitCircleToEllipse);
-	//force affinity
-	ellipseToUnitCircle[2][0] = 0.0f;
-	ellipseToUnitCircle[2][1] = 0.0f;
-	ellipseToUnitCircle[2][2] = 1.0f;
-
-	// Transform p0 and p1 into unit space
-	u0 = affineTransform(ellipseToUnitCircle, p0);
-	u1 = affineTransform(ellipseToUnitCircle, p1);
-
-	Vector2 m = 0.5f * (u0 + u1);
-	Vector2 d = u0 - u1;
-
-	RIfloat lsq = (RIfloat)dot(d,d);
-	if(lsq <= 0.0f)
-		return false;	//the points are coincident
-
-	RIfloat disc = (1.0f / lsq) - 0.25f;
-	if(disc < 0.0f)
-	{	//the points are too far apart for a solution to exist, scale the axes so that there is a solution
-		RIfloat l = (RIfloat)sqrt(lsq);
-		rh *= 0.5f * l;
-		rv *= 0.5f * l;
-
-		//redo the computation with scaled axes
-		unitCircleToEllipse.set((RIfloat)cos(rot)*rh, -(RIfloat)sin(rot)*rv,  0,
-								(RIfloat)sin(rot)*rh,  (RIfloat)cos(rot)*rv,  0,
-								0,                   0,                   1);
-		ellipseToUnitCircle = invert(unitCircleToEllipse);
-		//force affinity
-		ellipseToUnitCircle[2][0] = 0.0f;
-		ellipseToUnitCircle[2][1] = 0.0f;
-		ellipseToUnitCircle[2][2] = 1.0f;
-
-		// Transform p0 and p1 into unit space
-		u0 = affineTransform(ellipseToUnitCircle, p0);
-		u1 = affineTransform(ellipseToUnitCircle, p1);
-
-		// Solve for intersecting unit circles
-		d = u0 - u1;
-		m = 0.5f * (u0 + u1);
-
-		lsq = dot(d,d);
-		if(lsq <= 0.0f)
-			return false;	//the points are coincident
-
-		disc = RI_MAX(0.0f, 1.0f / lsq - 0.25f);
-	}
-
-	if(u0 == u1)
-		return false;
-
-	Vector2 sd = d * (RIfloat)sqrt(disc);
-	Vector2 sp = perpendicularCW(sd);
-	c0 = m + sp;
-	c1 = m - sp;
-
-	//choose the center point and direction
-	Vector2 cp = c0;
-	if(segment == VG_SCWARC_TO || segment == VG_LCCWARC_TO)
-		cp = c1;
-	cw = false;
-	if(segment == VG_SCWARC_TO || segment == VG_LCWARC_TO)
-		cw = true;
-
-	//move the unit circle origin to the chosen center point
-	u0 -= cp;
-	u1 -= cp;
-
-	if(u0 == u1 || isZero(u0) || isZero(u1))
-		return false;
-
-	//transform back to the original coordinate space
-	cp = affineTransform(unitCircleToEllipse, cp);
-	unitCircleToEllipse[0][2] = cp.x;
-	unitCircleToEllipse[1][2] = cp.y;
-	return true;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Tessellates an arc-to segment.
-* \param	
-* \return	
-* \note		
-*//*-------------------------------------------------------------------*/
-
-bool Path::addArcTo(const Matrix3x3& pathToSurface, const Vector2& p0, RIfloat rh, RIfloat rv, RIfloat rot, const Vector2& p1, const Vector2& p1r, VGPathSegment segment, bool subpathHasGeometry, float strokeWidth)
-{
-	RI_UNREF(pathToSurface);
-	RI_UNREF(strokeWidth);
-	if(p0 == p1)
-		return false;	//discard zero-length segments
-
-	Vector2 c0, c1, u0, u1;
-	Matrix3x3 unitCircleToEllipse;
-	bool cw;
-
-    m_numTessVertices = 0;
-	unsigned int startFlags = START_SEGMENT;
-	if(!subpathHasGeometry)
-		startFlags |= START_SUBPATH;
-
-	if(!findEllipses(rh, rv, rot, Vector2(), p1r, segment, c0, c1, u0, u1, unitCircleToEllipse, cw))
-	{	//ellipses don't exist, add line instead
-		Vector2 t = normalize(p1r);
-		RI_ASSERT(!isZero(t));
-		addEdge(p0, p1, t, t, startFlags, END_SEGMENT);	//throws bad_alloc
-		return true;
-	}
-
-	//compute end point tangents
-	Vector2 incomingTangent = perpendicular(u0, cw);
-	incomingTangent = affineTangentTransform(unitCircleToEllipse, incomingTangent);
-	incomingTangent = normalize(incomingTangent);
-	Vector2 outgoingTangent = perpendicular(u1, cw);
-	outgoingTangent = affineTangentTransform(unitCircleToEllipse, outgoingTangent);
-	outgoingTangent = normalize(outgoingTangent);
-	RI_ASSERT(!isZero(incomingTangent) && !isZero(outgoingTangent));
-
-	const int segments = RI_NUM_TESSELLATED_SEGMENTS;
-	Vector2 pp = p0;
-	Vector2 tp = incomingTangent;
-	unsigned int prevFlags = startFlags;
-	for(int i=1;i<segments;i++)
-	{
-		RIfloat t = (RIfloat)i / (RIfloat)segments;
-		Vector2 pn = circularLerp(u0, u1, t, cw);
-		Vector2 tn = perpendicular(pn, cw);
-		tn = affineTangentTransform(unitCircleToEllipse, tn);
-		pn = affineTransform(unitCircleToEllipse, pn) + p0;
-		tn = normalize(tn);
-		if(isZero(tn))
-			tn = tp;
-
-		addEdge(pp, pn, tp, tn, prevFlags, 0);	//throws bad_alloc
-
-		pp = pn;
-		tp = tn;
-		prevFlags = 0;
-	}
-	addEdge(pp, p1, tp, outgoingTangent, prevFlags, END_SEGMENT);	//throws bad_alloc
-	return true;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief	Tessellates a path.
-* \param	
-* \return	
-* \note		tessellation output format: A list of vertices describing the
-*			path tessellated into line segments and relevant aspects of the
-*			input data. Each path segment has a start vertex, a number of
-*			internal vertices (possibly zero), and an end vertex. The start
-*			and end of segments and subpaths have been flagged, as well as
-*			implicit and explicit close subpath segments.
-*//*-------------------------------------------------------------------*/
-
-void Path::tessellate(const Matrix3x3& pathToSurface, float strokeWidth)
-{
-	m_vertices.clear();
-
-	m_userMinx = RI_FLOAT_MAX;
-	m_userMiny = RI_FLOAT_MAX;
-	m_userMaxx = -RI_FLOAT_MAX;
-	m_userMaxy = -RI_FLOAT_MAX;
-
-	try
-	{
-		m_segmentToVertex.resize(m_segments.size());
-
-		int coordIndex = 0;
-		Vector2 s(0,0);		//the beginning of the current subpath
-		Vector2 o(0,0);		//the last point of the previous segment
-		Vector2 p(0,0);		//the last internal control point of the previous segment, if the segment was a (regular or smooth) quadratic or cubic Bezier, or else the last point of the previous segment
-
-		//tessellate the path segments
-		coordIndex = 0;
-		s.set(0,0);
-		o.set(0,0);
-		p.set(0,0);
-		bool subpathHasGeometry = false;
-		VGPathSegment prevSegment = VG_MOVE_TO;
-		for(int i=0;i<m_segments.size();i++)
-		{
-			VGPathSegment segment = getPathSegment(m_segments[i]);
-			VGPathAbsRel absRel = getPathAbsRel(m_segments[i]);
-			int coords = segmentToNumCoordinates(segment);
-			m_segmentToVertex[i].start = m_vertices.size();
-
-			switch(segment)
-			{
-			case VG_CLOSE_PATH:
-			{
-				RI_ASSERT(coords == 0);
-				addEndPath(pathToSurface, o, s, subpathHasGeometry, CLOSE_SUBPATH);
-				p = s;
-				o = s;
-				subpathHasGeometry = false;
-				break;
-			}
-
-			case VG_MOVE_TO:
-			{
-				RI_ASSERT(coords == 2);
-				Vector2 c(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
-				if(absRel == VG_RELATIVE)
-					c += o;
-				if(prevSegment != VG_MOVE_TO && prevSegment != VG_CLOSE_PATH)
-					addEndPath(pathToSurface, o, s, subpathHasGeometry, IMPLICIT_CLOSE_SUBPATH);
-				s = c;
-				p = c;
-				o = c;
-				subpathHasGeometry = false;
-				break;
-			}
-
-			case VG_LINE_TO:
-			{
-				RI_ASSERT(coords == 2);
-				Vector2 c(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
-				if(absRel == VG_RELATIVE)
-					c += o;
-				if(addLineTo(pathToSurface, o, c, subpathHasGeometry))
-					subpathHasGeometry = true;
-				p = c;
-				o = c;
-				break;
-			}
-
-			case VG_HLINE_TO:
-			{
-				RI_ASSERT(coords == 1);
-				Vector2 c(getCoordinate(coordIndex+0), o.y);
-				if(absRel == VG_RELATIVE)
-					c.x += o.x;
-				if(addLineTo(pathToSurface, o, c, subpathHasGeometry))
-					subpathHasGeometry = true;
-				p = c;
-				o = c;
-				break;
-			}
-
-			case VG_VLINE_TO:
-			{
-				RI_ASSERT(coords == 1);
-				Vector2 c(o.x, getCoordinate(coordIndex+0));
-				if(absRel == VG_RELATIVE)
-					c.y += o.y;
-				if(addLineTo(pathToSurface, o, c, subpathHasGeometry))
-					subpathHasGeometry = true;
-				p = c;
-				o = c;
-				break;
-			}
-
-			case VG_QUAD_TO:
-			{
-				RI_ASSERT(coords == 4);
-				Vector2 c0(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
-				Vector2 c1(getCoordinate(coordIndex+2), getCoordinate(coordIndex+3));
-				if(absRel == VG_RELATIVE)
-				{
-					c0 += o;
-					c1 += o;
-				}
-				if(addQuadTo(pathToSurface, o, c0, c1, subpathHasGeometry, strokeWidth))
-					subpathHasGeometry = true;
-				p = c0;
-				o = c1;
-				break;
-			}
-
-			case VG_SQUAD_TO:
-			{
-				RI_ASSERT(coords == 2);
-				Vector2 c0 = 2.0f * o - p;
-				Vector2 c1(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
-				if(absRel == VG_RELATIVE)
-					c1 += o;
-				if(addQuadTo(pathToSurface, o, c0, c1, subpathHasGeometry, strokeWidth))
-					subpathHasGeometry = true;
-				p = c0;
-				o = c1;
-				break;
-			}
-
-			case VG_CUBIC_TO:
-			{
-				RI_ASSERT(coords == 6);
-				Vector2 c0(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
-				Vector2 c1(getCoordinate(coordIndex+2), getCoordinate(coordIndex+3));
-				Vector2 c2(getCoordinate(coordIndex+4), getCoordinate(coordIndex+5));
-				if(absRel == VG_RELATIVE)
-				{
-					c0 += o;
-					c1 += o;
-					c2 += o;
-				}
-				if(addCubicTo(pathToSurface, o, c0, c1, c2, subpathHasGeometry, strokeWidth))
-					subpathHasGeometry = true;
-				p = c1;
-				o = c2;
-				break;
-			}
-
-			case VG_SCUBIC_TO:
-			{
-				RI_ASSERT(coords == 4);
-				Vector2 c0 = 2.0f * o - p;
-				Vector2 c1(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
-				Vector2 c2(getCoordinate(coordIndex+2), getCoordinate(coordIndex+3));
-				if(absRel == VG_RELATIVE)
-				{
-					c1 += o;
-					c2 += o;
-				}
-				if(addCubicTo(pathToSurface, o, c0, c1, c2, subpathHasGeometry, strokeWidth))
-					subpathHasGeometry = true;
-				p = c1;
-				o = c2;
-				break;
-			}
-
-			default:
-			{
-				RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
-						  segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
-				RI_ASSERT(coords == 5);
-				RIfloat rh = getCoordinate(coordIndex+0);
-				RIfloat rv = getCoordinate(coordIndex+1);
-				RIfloat rot = getCoordinate(coordIndex+2);
-				Vector2 c(getCoordinate(coordIndex+3), getCoordinate(coordIndex+4));
-
-                Vector2 cr = c;
-				if(absRel == VG_ABSOLUTE)
-                    cr -= o;
-                else
-					c += o;
-
-				if(addArcTo(pathToSurface, o, rh, rv, rot, c, cr, segment, subpathHasGeometry, strokeWidth))
-					subpathHasGeometry = true;
-				p = c;
-				o = c;
-				break;
-			}
-			}
-
-			if(m_vertices.size() > m_segmentToVertex[i].start)
-			{	//segment produced vertices
-				m_segmentToVertex[i].end = m_vertices.size() - 1;
-			}
-			else
-			{	//segment didn't produce vertices (zero-length segment). Ignore it.
-				m_segmentToVertex[i].start = m_segmentToVertex[i].end = m_vertices.size()-1;
-			}
-			prevSegment = segment;
-			coordIndex += coords;
-		}
-
-		//add an implicit MOVE_TO to the end to close the last subpath.
-		//if the subpath contained only zero-length segments, this produces the necessary geometry to get it stroked
-		// and included in path bounds. The geometry won't be included in the pointAlongPath query.
-		if(prevSegment != VG_MOVE_TO && prevSegment != VG_CLOSE_PATH)
-			addEndPath(pathToSurface, o, s, subpathHasGeometry, IMPLICIT_CLOSE_SUBPATH);
-
-		//check that the flags are correct
-#ifdef RI_DEBUG
-		int prev = -1;
-		bool subpathStarted = false;
-		bool segmentStarted = false;
-		for(int i=0;i<m_vertices.size();i++)
-		{
-			Vertex& v = m_vertices[i];
-
-			if(v.flags & START_SUBPATH)
-			{
-				RI_ASSERT(!subpathStarted);
-				RI_ASSERT(v.flags & START_SEGMENT);
-				RI_ASSERT(!(v.flags & END_SUBPATH));
-				RI_ASSERT(!(v.flags & END_SEGMENT));
-				RI_ASSERT(!(v.flags & CLOSE_SUBPATH));
-				RI_ASSERT(!(v.flags & IMPLICIT_CLOSE_SUBPATH));
-				subpathStarted = true;
-			}
-			
-			if(v.flags & START_SEGMENT)
-			{
-				RI_ASSERT(subpathStarted || (v.flags & CLOSE_SUBPATH) || (v.flags & IMPLICIT_CLOSE_SUBPATH));
-				RI_ASSERT(!segmentStarted);
-				RI_ASSERT(!(v.flags & END_SUBPATH));
-				RI_ASSERT(!(v.flags & END_SEGMENT));
-				segmentStarted = true;
-			}
-			
-			if( v.flags & CLOSE_SUBPATH )
-			{
-				RI_ASSERT(segmentStarted);
-				RI_ASSERT(!subpathStarted);
-				RI_ASSERT((v.flags & START_SEGMENT) || (v.flags & END_SEGMENT));
-				RI_ASSERT(!(v.flags & IMPLICIT_CLOSE_SUBPATH));
-				RI_ASSERT(!(v.flags & START_SUBPATH));
-				RI_ASSERT(!(v.flags & END_SUBPATH));
-			}
-			if( v.flags & IMPLICIT_CLOSE_SUBPATH )
-			{
-				RI_ASSERT(segmentStarted);
-				RI_ASSERT(!subpathStarted);
-				RI_ASSERT((v.flags & START_SEGMENT) || (v.flags & END_SEGMENT));
-				RI_ASSERT(!(v.flags & CLOSE_SUBPATH));
-				RI_ASSERT(!(v.flags & START_SUBPATH));
-				RI_ASSERT(!(v.flags & END_SUBPATH));
-			}
-			
-			if( prev >= 0 )
-			{
-				RI_ASSERT(segmentStarted);
-				RI_ASSERT(subpathStarted || ((m_vertices[prev].flags & CLOSE_SUBPATH) && (m_vertices[i].flags & CLOSE_SUBPATH)) ||
-						  ((m_vertices[prev].flags & IMPLICIT_CLOSE_SUBPATH) && (m_vertices[i].flags & IMPLICIT_CLOSE_SUBPATH)));
-			}
-
-			prev = i;
-			if(v.flags & END_SEGMENT)
-			{
-				RI_ASSERT(subpathStarted || (v.flags & CLOSE_SUBPATH) || (v.flags & IMPLICIT_CLOSE_SUBPATH));
-				RI_ASSERT(segmentStarted);
-				RI_ASSERT(!(v.flags & START_SUBPATH));
-				RI_ASSERT(!(v.flags & START_SEGMENT));
-				segmentStarted = false;
-				prev = -1;
-			}
-			
-			if(v.flags & END_SUBPATH)
-			{
-				RI_ASSERT(subpathStarted);
-				RI_ASSERT(v.flags & END_SEGMENT);
-				RI_ASSERT(!(v.flags & START_SUBPATH));
-				RI_ASSERT(!(v.flags & START_SEGMENT));
-				RI_ASSERT(!(v.flags & CLOSE_SUBPATH));
-				RI_ASSERT(!(v.flags & IMPLICIT_CLOSE_SUBPATH));
-				subpathStarted = false;
-			}
-		}
-#endif	//RI_DEBUG
-	}
-	catch(std::bad_alloc)
-	{
-		m_vertices.clear();
-		throw;
-	}
-}
-
-//==============================================================================================
-
-}		//namespace OpenVGRI
-
-//==============================================================================================