Add MMP files to build libOpenVG_sw.lib which uses LINKAS to redirect to libOpenVG.dll (and
the same for libEGL_sw.lib and libOpenVGU_sw.lib).
Only the libEGL_sw.lib redirection isn't activated - this can't happen until there is a merged
libEGL.dll which supports the OpenWF synchronisation and also implements the graphical support functions.
The overall aim is to eliminate the *_sw.dll implementations, at least as a compile-time way of choosing
a software-only implementation.The correct way to choose is to put the right set of libraries into a ROM
with suitable renaming, and in the emulator to use the "switching DLL" technique to pick the right set.
As the Symbian Foundation doesn't have any alternative implementations, we don't need the switching DLLs
and we can build directly to the correct name.
// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
//
#include "tdirectgdieglcontent_cube.h"
#include "tdisplaymode_mapping.h"
#include <fbs.h>
#include <graphics/sgimage_sw.h>
#include <graphics/fbsdefs.h>
// CONSTANTS
/** Camera parameters */
const TInt KCameraDistance = 100;
const TReal32 KFrustumLeft = -1.f; //left vertical clipping plane
const TReal32 KFrustumRight = 1.f; //right vertical clipping plane
const TReal32 KFrustumBottom = -1.f;//bottom horizontal clipping plane
const TReal32 KFrustumTop = 1.f; //top horizontal clipping plane
const TReal32 KFrustumNear = 3.f; //near depth clipping plane
const TReal32 KFrustumFar = 1000.f; //far depth clipping plane
/* Define vertice coordinates for the cube
Duplication of vertices needed for texturing every surface of the cube */
static const GLbyte KVertices[24 * 3] =
{
/* top */
-1, 1, 1,
1, 1, 1,
1, -1, 1,
-1, -1, 1,
/* front */
1, 1, 1,
1, 1, -1,
1, -1, -1,
1, -1, 1,
/* right */
-1, 1, 1,
-1, 1, -1,
1, 1, -1,
1, 1, 1,
/* left */
1, -1, 1,
1, -1, -1,
-1, -1, -1,
-1, -1, 1,
/* back */
-1, -1, 1,
-1, -1, -1,
-1, 1, -1,
-1, 1, 1,
/* bottom */
-1, 1, -1,
1, 1, -1,
1, -1, -1,
-1, -1, -1
};
/**
Indices for drawing the triangles.
The color of the triangle is determined by
the color of the last vertex of the triangle.
*/
static const GLubyte KTriangles[12 * 3] =
{
/* top */
1,0,3,
1,3,2,
/* front */
5,4,7,
5,7,6,
/* right */
9,8,11,
9,11,10,
/* left */
13,12,15,
13,15,14,
/* back */
17,16,19,
17,19,18,
/* bottom */
21,22,23,
21,23,20
};
/* Macro for changing the input texture coordinate values from
GLubyte [0,255] to GLbyte [-128,127]. See more info below. */
#define tex(u,v) (GLbyte)( (u) - 128 ) , (GLbyte)( (v) - 128 )
/* Input texture coordinates for each of the object vertices.
The coordinates are given in GLbyte [-128,127] format.
Since the texture picture coordinates are between values
[0,255] for both width and height, we have defined a macro
to change the input coordinates into a appropriate form.
It is easier to think the texture coordinates as corresponding
image pixel coordinates. This alone is not enough because
if texture coordinates are not given between values [0,1],
texture wrapping will occur. Therefore we need to
scale the texture coordinates with appropriate texture matrix,
which is defined in AppInit(). */
static const GLbyte KTexCoords[24 * 2] =
{
/* top */
tex(0,0),
tex(255,0),
tex(255,255),
tex(0,255),
/* front */
tex(0,255),
tex(127,255),
tex(127,127),
tex(0,127),
/* right */
tex(127,255),
tex(255,255),
tex(255,127),
tex(127,127),
/* left */
tex(0,127),
tex(127,127),
tex(127,0),
tex(0,0),
/* back */
tex(127,127),
tex(255,127),
tex(255,0),
tex(127,0),
/* bottom */
tex(255,255),
tex(255,0),
tex(0,0),
tex(0,255)
};
/**
Static constructor.
@param aPixelFormat Pixel format of pixmap buffer.
@param aSize Size of pixmap buffer.
*/
CGLCube* CGLCube::NewL(TUidPixelFormat aPixelFormat, const TSize& aSize)
{
CGLCube* self = NewLC(aPixelFormat, aSize);
CleanupStack::Pop(self);
return self;
}
CGLCube* CGLCube::NewLC(TUidPixelFormat aPixelFormat, const TSize& aSize)
{
CGLCube* self = new(ELeave) CGLCube();
CleanupStack::PushL(self);
self->ConstructL(aPixelFormat, aSize);
return self;
}
/**
1st phase constructor
*/
CGLCube::CGLCube()
{
}
/**
2nd phase constructor
@param aPixelFormat Pixel format of pixmap buffer.
@param aSize Size of pixmap buffer.
*/
void CGLCube::ConstructL(TUidPixelFormat aPixelFormat, const TSize& aSize)
{
// init graphic environment
User::LeaveIfError(SgDriver::Open());
FbsStartup();
User::LeaveIfError(RFbsSession::Connect());
InitEglL(aPixelFormat, aSize);
}
/**
Destructor
*/
CGLCube::~CGLCube()
{
// deinit gfx environment
DeInitEgl();
SgDriver::Close();
RFbsSession::Disconnect();
}
/**
Egl environment initialisation for pixmap surface rendering.
@param aPixelFormat Pixel format of pixmap buffer.
@param aSize Size of pixmap buffer.
*/
void CGLCube::InitEglL(TUidPixelFormat aPixelFormat, const TSize& aSize)
{
// Get the display for drawing graphics
iEglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
if(iEglDisplay == NULL)
{
_LIT(KGetDisplayFailed, "eglGetDisplay failed");
User::Panic(KGetDisplayFailed, 0);
}
// Initialize display
if(eglInitialize(iEglDisplay, NULL, NULL) == EGL_FALSE)
{
_LIT(KInitializeFailed, "eglInitialize failed");
User::Panic(KInitializeFailed, 0);
}
// switch api to GLES
eglBindAPI(EGL_OPENGL_ES_API);
iImageInfo.iSizeInPixels = aSize;
iImageInfo.iPixelFormat = aPixelFormat;
iImageInfo.iCpuAccess = ESgCpuAccessNone;
iImageInfo.iUsage = ESgUsageOpenGlesTarget|ESgUsageDirectGdiSource;
iImageInfo.iShareable = ETrue;
iImageInfo.iScreenId = KSgScreenIdMain;
for(TInt i=0; i<KEglContentBuffers; i++)
{
User::LeaveIfError(iImages[i].Create(iImageInfo, NULL, 0));
EGLint numOfConfigs = 0;
// Define properties for the wanted EGLSurface
const EGLint attribList[] =
{
EGL_MATCH_NATIVE_PIXMAP, (EGLint)&iImages[i],
EGL_SURFACE_TYPE, EGL_PIXMAP_BIT,
EGL_RENDERABLE_TYPE, EGL_OPENGL_ES_BIT,
EGL_NONE
};
// Choose an EGLConfig that best matches to the properties in attribList
if(eglChooseConfig(iEglDisplay, attribList, &iConfig, 1, &numOfConfigs) == EGL_FALSE)
{
_LIT(KChooseConfigFailed, "eglChooseConfig failed");
User::Panic(KChooseConfigFailed, 0);
}
const EGLint ppixmapAttribs[] = { EGL_NONE };
iEglSurfaces[i] = eglCreatePixmapSurface(iEglDisplay, iConfig, &iImages[i], ppixmapAttribs);
if(iEglSurfaces[i] == NULL)
{
_LIT(KCreatePixmapSurfaceFailed, "eglCreatePixmapSurface failed");
User::Panic(KCreatePixmapSurfaceFailed, 0);
}
}
iEglContext = eglCreateContext(iEglDisplay, iConfig, EGL_NO_CONTEXT, NULL);
if(iEglContext == NULL)
{
_LIT(KCreateContextFailed, "eglCreateContext failed");
User::Panic(KCreateContextFailed, 0);
}
if(eglMakeCurrent(iEglDisplay, iEglSurfaces[iCurrentImage], iEglSurfaces[iCurrentImage], iEglContext) == EGL_FALSE)
{
_LIT(KMakeCurrentFailed, "eglMakeCurrent failed");
User::Panic(KMakeCurrentFailed, 0);
}
// Prepare texture map (shaded chessboard)
GLubyte* texData = new(ELeave) GLubyte[64*64*4];
for(TInt i=0; i<64; i++)
{
for(TInt j=0; j<64; j++)
{
if((i&8)^(j&8)) // switch 'white' and 'black' fields
{
texData[i*64*4+j*4+0] = i*4; // r
texData[i*64*4+j*4+1] = j*4; // g
texData[i*64*4+j*4+2] = (i+j)*2; // b
}
else
{
texData[i*64*4+j*4+0] = 255-i*4; // r
texData[i*64*4+j*4+1] = 255-j*4; // g
texData[i*64*4+j*4+2] = 255-(i+j)*2; // b
}
texData[i*64*4+j*4+3] = 255; // alpha
}
}
// Generate texture
glEnable(GL_TEXTURE_2D);
glGenTextures(1, &iTexId);
glBindTexture(GL_TEXTURE_2D, iTexId);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 64, 64, 0, GL_RGBA, GL_UNSIGNED_BYTE, texData);
delete [] texData;
}
/**
Egl environment destroying.
*/
void CGLCube::DeInitEgl()
{
glDeleteTextures(1, &iTexId);
eglMakeCurrent(iEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
eglDestroyContext(iEglDisplay, iEglContext);
for(TInt i=0; i<KEglContentBuffers; i++)
{
eglDestroySurface(iEglDisplay, iEglSurfaces[i]);
iImages[i].Close();
}
eglTerminate(iEglDisplay);
eglReleaseThread();
}
/**
Render frame of spinning cube.
@param aFrame Number of frame to render.
*/
void CGLCube::Render(TInt aFrame)
{
if(eglMakeCurrent(iEglDisplay, iEglSurfaces[iCurrentImage], iEglSurfaces[iCurrentImage], iEglContext) == EGL_FALSE)
{
_LIT(KMakeCurrentFailed, "eglMakeCurrent failed");
User::Panic(KMakeCurrentFailed, 0);
}
// Set the screen background color.
glClearColor(0.f, 0.f, 0.f, 1.f);
// Enable back face culling, texturing, and normalization.
glEnable(GL_CULL_FACE);
glEnable(GL_TEXTURE_2D);
glEnable(GL_NORMALIZE);
// Initialize viewport and projection.
glViewport(0, 0, iImageInfo.iSizeInPixels.iWidth, iImageInfo.iSizeInPixels.iHeight);
// Calculate the view frustrum
GLfloat aspectRatio = (GLfloat)(iImageInfo.iSizeInPixels.iWidth) / (GLfloat)(iImageInfo.iSizeInPixels.iHeight);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustumf(KFrustumLeft * aspectRatio, KFrustumRight * aspectRatio,
KFrustumBottom, KFrustumTop,
KFrustumNear, KFrustumFar);
/* Initialize appropriate texture matrix. First we have to translate the
input texture coordinate values to be within a range of [0,255]. Hence
we translate the x- and y-coordinate values by 128. Recall that the
values in nokTexCoords are between [-128,127], now they are in a range
of [0,255]. After that we scale the values by 1/255 to make the values
to be in range [0,1]. */
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glScalef(1.0f/255.0f, 1.0f/255.0f, 1.0f);
glTranslatef(128.0f, 128.0f, 0.0f);
// Remember to change the matrix mode to modelview.
glMatrixMode(GL_MODELVIEW);
// Enable vertex and texture arrays.
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
// Set array pointers.
glVertexPointer(3, GL_BYTE, 0, KVertices);
glTexCoordPointer(2, GL_BYTE, 0, KTexCoords);
// Set the initial shading mode
glShadeModel(GL_FLAT);
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_DONT_CARE);
glClear(GL_COLOR_BUFFER_BIT);
// Animate and draw box
glLoadIdentity();
glTranslatex(0 , 0 , -KCameraDistance << 16);
glRotatex(aFrame << 18, 1 << 16, 0 , 0 );
glRotatex(aFrame << 17, 0 , 1 << 16, 0 );
glRotatex(aFrame << 16, 0 , 0 , 1 << 16);
glScalex(20 << 16, 20 << 16, 20 << 16);
glBindTexture(GL_TEXTURE_2D, iTexId);
glDrawElements(GL_TRIANGLES, 12 * 3, GL_UNSIGNED_BYTE, KTriangles);
iLastImage = iCurrentImage;
}
/**
Get image id of current frame. Current image to render is switch to next.
@param aId Reference to drawable id class to store image id.
*/
void CGLCube::GetImage(TSgDrawableId& aId)
{
// finish rendering
glFinish();
aId = iImages[iLastImage].Id();
// switch to next buffer to prevent overdraw of image by asynchronous rendering
if(iLastImage == iCurrentImage)
{
iCurrentImage = (iCurrentImage+1)%KEglContentBuffers;
}
}