Minor updates.
/*------------------------------------------------------------------------
*
* OpenVG 1.1 Reference Implementation
* -----------------------------------
*
* Copyright (c) 2007 The Khronos Group Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and /or associated documentation files
* (the "Materials "), to deal in the Materials without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Materials,
* and to permit persons to whom the Materials are furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Materials.
*
* THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR
* THE USE OR OTHER DEALINGS IN THE MATERIALS.
*
*//**
* \file
* \brief Implementation of Color and Image functions.
* \note
*//*-------------------------------------------------------------------*/
#include "riImage.h"
#include "riRasterizer.h"
//==============================================================================================
namespace OpenVGRI
{
/*-------------------------------------------------------------------*//*!
* \brief Converts from numBits into a shifted mask
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
static unsigned int bitsToMask(unsigned int bits, unsigned int shift)
{
return ((1<<bits)-1) << shift;
}
/*-------------------------------------------------------------------*//*!
* \brief Converts from color (RIfloat) to an int with 1.0f mapped to the
* given maximum with round-to-nearest semantics.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
static unsigned int colorToInt(RIfloat c, int maxc)
{
return RI_INT_MIN(RI_INT_MAX((int)floor(c * (RIfloat)maxc + 0.5f), 0), maxc);
}
/*-------------------------------------------------------------------*//*!
* \brief Converts from int to color (RIfloat) with the given maximum
* mapped to 1.0f.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
static RI_INLINE RIfloat intToColor(unsigned int i, unsigned int maxi)
{
return (RIfloat)(i & maxi) / (RIfloat)maxi;
}
/*-------------------------------------------------------------------*//*!
* \brief Converts from packed integer in a given format to a Color.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Color::unpack(unsigned int inputData, const Color::Descriptor& inputDesc)
{
int rb = inputDesc.redBits;
int gb = inputDesc.greenBits;
int bb = inputDesc.blueBits;
int ab = inputDesc.alphaBits;
int lb = inputDesc.luminanceBits;
int rs = inputDesc.redShift;
int gs = inputDesc.greenShift;
int bs = inputDesc.blueShift;
int as = inputDesc.alphaShift;
int ls = inputDesc.luminanceShift;
m_format = inputDesc.internalFormat;
if(lb)
{ //luminance
r = g = b = intToColor(inputData >> ls, (1<<lb)-1);
a = 1.0f;
}
else
{ //rgba
r = rb ? intToColor(inputData >> rs, (1<<rb)-1) : (RIfloat)1.0f;
g = gb ? intToColor(inputData >> gs, (1<<gb)-1) : (RIfloat)1.0f;
b = bb ? intToColor(inputData >> bs, (1<<bb)-1) : (RIfloat)1.0f;
a = ab ? intToColor(inputData >> as, (1<<ab)-1) : (RIfloat)1.0f;
if(isPremultiplied())
{ //clamp premultiplied color to alpha to enforce consistency
r = RI_MIN(r, a);
g = RI_MIN(g, a);
b = RI_MIN(b, a);
}
}
assertConsistency();
}
/*-------------------------------------------------------------------*//*!
* \brief Converts from Color to a packed integer in a given format.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
unsigned int Color::pack(const Color::Descriptor& outputDesc) const
{
assertConsistency();
int rb = outputDesc.redBits;
int gb = outputDesc.greenBits;
int bb = outputDesc.blueBits;
int ab = outputDesc.alphaBits;
int lb = outputDesc.luminanceBits;
int rs = outputDesc.redShift;
int gs = outputDesc.greenShift;
int bs = outputDesc.blueShift;
int as = outputDesc.alphaShift;
int ls = outputDesc.luminanceShift;
if(lb)
{ //luminance
RI_ASSERT(isLuminance());
return colorToInt(r, (1<<lb)-1) << ls;
}
else
{ //rgb
RI_ASSERT(!isLuminance());
unsigned int cr = rb ? colorToInt(r, (1<<rb)-1) : 0;
unsigned int cg = gb ? colorToInt(g, (1<<gb)-1) : 0;
unsigned int cb = bb ? colorToInt(b, (1<<bb)-1) : 0;
unsigned int ca = ab ? colorToInt(a, (1<<ab)-1) : 0;
return (cr << rs) | (cg << gs) | (cb << bs) | (ca << as);
}
}
/*-------------------------------------------------------------------*//*!
* \brief Converts from the current internal format to another.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
static RIfloat gamma(RIfloat c)
{
if( c <= 0.00304f )
c *= 12.92f;
else
c = 1.0556f * (RIfloat)pow(c, 1.0f/2.4f) - 0.0556f;
return c;
}
static RIfloat invgamma(RIfloat c)
{
if( c <= 0.03928f )
c /= 12.92f;
else
c = (RIfloat)pow((c + 0.0556f)/1.0556f, 2.4f);
return c;
}
static RIfloat lRGBtoL(RIfloat r, RIfloat g, RIfloat b)
{
return 0.2126f*r + 0.7152f*g + 0.0722f*b;
}
void Color::convert(InternalFormat outputFormat)
{
assertConsistency();
if( m_format == outputFormat )
return;
if(isPremultiplied())
{ //unpremultiply
RIfloat ooa = (a != 0.0f) ? 1.0f / a : (RIfloat)0.0f;
r *= ooa;
g *= ooa;
b *= ooa;
}
//From Section 3.4.2 of OpenVG spec
//1: sRGB = gamma(lRGB)
//2: lRGB = invgamma(sRGB)
//3: lL = 0.2126 lR + 0.7152 lG + 0.0722 lB
//4: lRGB = lL
//5: sL = gamma(lL)
//6: lL = invgamma(sL)
//7: sRGB = sL
//Source/Dest lRGB sRGB lL sL
//lRGB - 1 3 3,5
//sRGB 2 - 2,3 2,3,5
//lL 4 4,1 - 5
//sL 7,2 7 6 -
const unsigned int shift = 3;
unsigned int conversion = (m_format & (NONLINEAR | LUMINANCE)) | ((outputFormat & (NONLINEAR | LUMINANCE)) << shift);
switch(conversion)
{
case lRGBA | (sRGBA << shift): r = gamma(r); g = gamma(g); b = gamma(b); break; //1
case lRGBA | (lLA << shift) : r = g = b = lRGBtoL(r, g, b); break; //3
case lRGBA | (sLA << shift) : r = g = b = gamma(lRGBtoL(r, g, b)); break; //3,5
case sRGBA | (lRGBA << shift): r = invgamma(r); g = invgamma(g); b = invgamma(b); break; //2
case sRGBA | (lLA << shift) : r = g = b = lRGBtoL(invgamma(r), invgamma(g), invgamma(b)); break; //2,3
case sRGBA | (sLA << shift) : r = g = b = gamma(lRGBtoL(invgamma(r), invgamma(g), invgamma(b))); break;//2,3,5
case lLA | (lRGBA << shift): break; //4
case lLA | (sRGBA << shift): r = g = b = gamma(r); break; //4,1
case lLA | (sLA << shift) : r = g = b = gamma(r); break; //5
case sLA | (lRGBA << shift): r = g = b = invgamma(r); break; //7,2
case sLA | (sRGBA << shift): break; //7
case sLA | (lLA << shift) : r = g = b = invgamma(r); break; //6
default: RI_ASSERT((m_format & (LUMINANCE | NONLINEAR)) == (outputFormat & (LUMINANCE | NONLINEAR))); break; //nop
}
if(outputFormat & PREMULTIPLIED)
{ //premultiply
r *= a;
g *= a;
b *= a;
}
m_format = outputFormat;
assertConsistency();
}
/*-------------------------------------------------------------------*//*!
* \brief Creates a pixel format descriptor out of VGImageFormat
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Color::Descriptor Color::formatToDescriptor(VGImageFormat format)
{
Descriptor desc;
memset(&desc, 0, sizeof(Descriptor));
RI_ASSERT(isValidImageFormat(format));
int baseFormat = (int)format & 15;
const int numBaseFormats = 15;
RI_ASSERT(baseFormat >= 0 && baseFormat < numBaseFormats);
int swizzleBits = ((int)format >> 6) & 3;
/* base formats
VG_sRGBX_8888 = 0,
VG_sRGBA_8888 = 1,
VG_sRGBA_8888_PRE = 2,
VG_sRGB_565 = 3,
VG_sRGBA_5551 = 4,
VG_sRGBA_4444 = 5,
VG_sL_8 = 6,
VG_lRGBX_8888 = 7,
VG_lRGBA_8888 = 8,
VG_lRGBA_8888_PRE = 9,
VG_lL_8 = 10,
VG_A_8 = 11,
VG_BW_1 = 12,
VG_A_1 = 13,
VG_A_4 = 14,
*/
static const int redBits[numBaseFormats] = {8, 8, 8, 5, 5, 4, 0, 8, 8, 8, 0, 0, 0, 0, 0};
static const int greenBits[numBaseFormats] = {8, 8, 8, 6, 5, 4, 0, 8, 8, 8, 0, 0, 0, 0, 0};
static const int blueBits[numBaseFormats] = {8, 8, 8, 5, 5, 4, 0, 8, 8, 8, 0, 0, 0, 0, 0};
static const int alphaBits[numBaseFormats] = {0, 8, 8, 0, 1, 4, 0, 0, 8, 8, 0, 8, 0, 1, 4};
static const int luminanceBits[numBaseFormats] = {0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 8, 0, 1, 0, 0};
static const int redShifts[4*numBaseFormats] = {24, 24, 24, 11, 11, 12, 0, 24, 24, 24, 0, 0, 0, 0, 0, //RGBA
16, 16, 16, 11, 10, 8, 0, 16, 16, 16, 0, 0, 0, 0, 0, //ARGB
8, 8, 8, 0, 1, 4, 0, 8, 8, 8, 0, 0, 0, 0, 0, //BGRA
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; //ABGR
static const int greenShifts[4*numBaseFormats] = {16, 16, 16, 5, 6, 8, 0, 16, 16, 16, 0, 0, 0, 0, 0, //RGBA
8, 8, 8, 5, 5, 4, 0, 8, 8, 8, 0, 0, 0, 0, 0, //ARGB
16, 16, 16, 5, 6, 8, 0, 16, 16, 16, 0, 0, 0, 0, 0, //BGRA
8, 8, 8, 5, 5, 4, 0, 8, 8, 8, 0, 0, 0, 0, 0};//ABGR
static const int blueShifts[4*numBaseFormats] = {8, 8, 8, 0, 1, 4, 0, 8, 8, 8, 0, 0, 0, 0, 0, //RGBA
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //ARGB
24, 24, 24, 11, 11, 12, 0, 24, 24, 24, 0, 0, 0, 0, 0, //BGRA
16, 16, 16, 11, 10, 8, 0, 16, 16, 16, 0, 0, 0, 0, 0};//ABGR
static const int alphaShifts[4*numBaseFormats] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //RGBA
0, 24, 24, 0, 15, 12, 0, 0, 24, 24, 0, 0, 0, 0, 0, //ARGB
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //BGRA
0, 24, 24, 0, 15, 12, 0, 0, 24, 24, 0, 0, 0, 0, 0};//ABGR
static const int bpps[numBaseFormats] = {32, 32, 32, 16, 16, 16, 8, 32, 32, 32, 8, 8, 1, 1, 4};
static const InternalFormat internalFormats[numBaseFormats] = {sRGBA, sRGBA, sRGBA_PRE, sRGBA, sRGBA, sRGBA, sLA, lRGBA, lRGBA, lRGBA_PRE, lLA, lRGBA, lLA, lRGBA, lRGBA};
desc.redBits = redBits[baseFormat];
desc.greenBits = greenBits[baseFormat];
desc.blueBits = blueBits[baseFormat];
desc.alphaBits = alphaBits[baseFormat];
desc.luminanceBits = luminanceBits[baseFormat];
desc.redShift = redShifts[swizzleBits * numBaseFormats + baseFormat];
desc.greenShift = greenShifts[swizzleBits * numBaseFormats + baseFormat];
desc.blueShift = blueShifts[swizzleBits * numBaseFormats + baseFormat];
desc.alphaShift = alphaShifts[swizzleBits * numBaseFormats + baseFormat];
desc.luminanceShift = 0; //always zero
desc.format = format;
desc.bitsPerPixel = bpps[baseFormat];
desc.internalFormat = internalFormats[baseFormat];
return desc;
}
/*-------------------------------------------------------------------*//*!
* \brief Checks if the pixel format descriptor is valid (i.e. all the
* values are supported by the RI)
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
bool Color::isValidDescriptor(const Color::Descriptor& desc)
{
//A valid descriptor has 1, 2, 4, 8, 16, or 32 bits per pixel, and either luminance or rgba channels, but not both.
//Any of the rgba channels can be missing, and not all bits need to be used. Maximum channel bit depth is 8.
int rb = desc.redBits;
int gb = desc.greenBits;
int bb = desc.blueBits;
int ab = desc.alphaBits;
int lb = desc.luminanceBits;
int rs = desc.redShift;
int gs = desc.greenShift;
int bs = desc.blueShift;
int as = desc.alphaShift;
int ls = desc.luminanceShift;
int bpp = desc.bitsPerPixel;
int rgbaBits = rb + gb + bb + ab;
if(rb < 0 || rb > 8 || rs < 0 || rs + rb > bpp || !(rb || !rs))
return false; //invalid channel description
if(gb < 0 || gb > 8 || gs < 0 || gs + gb > bpp || !(gb || !gs))
return false; //invalid channel description
if(bb < 0 || bb > 8 || bs < 0 || bs + bb > bpp || !(bb || !bs))
return false; //invalid channel description
if(ab < 0 || ab > 8 || as < 0 || as + ab > bpp || !(ab || !as))
return false; //invalid channel description
if(lb < 0 || lb > 8 || ls < 0 || ls + lb > bpp || !(lb || !ls))
return false; //invalid channel description
if(rgbaBits && lb)
return false; //can't have both rgba and luminance
if(!rgbaBits && !lb)
return false; //must have either rgba or luminance
if(rgbaBits)
{ //rgba
if(rb+gb+bb == 0)
{ //alpha only
if(rs || gs || bs || as || ls)
return false; //wrong shifts (even alpha shift must be zero)
if((ab != 1 && ab != 2 && ab != 4 && ab != 8) || bpp != ab)
return false; //alpha size must be 1, 2, 4, or, 8, bpp must match
}
else
{ //rgba
if(rgbaBits > bpp)
return false; //bpp must be greater than or equal to the sum of rgba bits
if(!(bpp == 32 || bpp == 16 || bpp == 8))
return false; //only 1, 2, and 4 byte formats are supported for rgba
unsigned int rm = bitsToMask((unsigned int)rb, (unsigned int)rs);
unsigned int gm = bitsToMask((unsigned int)gb, (unsigned int)gs);
unsigned int bm = bitsToMask((unsigned int)bb, (unsigned int)bs);
unsigned int am = bitsToMask((unsigned int)ab, (unsigned int)as);
if((rm & gm) || (rm & bm) || (rm & am) || (gm & bm) || (gm & am) || (bm & am))
return false; //channels overlap
}
}
else
{ //luminance
if(rs || gs || bs || as || ls)
return false; //wrong shifts (even luminance shift must be zero)
if(!(lb == 1 || lb == 8) || bpp != lb)
return false; //luminance size must be either 1 or 8, bpp must match
}
if(desc.format != -1)
{
if(!isValidImageFormat(desc.format))
return false; //invalid image format
Descriptor d = formatToDescriptor(desc.format);
if(d.redBits != rb || d.greenBits != gb || d.blueBits != bb || d.alphaBits != ab || d.luminanceBits != lb ||
d.redShift != rs || d.greenShift != gs || d.blueShift != bs || d.alphaShift != as || d.luminanceShift != ls ||
d.bitsPerPixel != bpp)
return false; //if the descriptor has a VGImageFormat, it must match the bits, shifts, and bpp
}
if((unsigned int)desc.internalFormat & ~(Color::PREMULTIPLIED | Color::NONLINEAR | Color::LUMINANCE))
return false; //invalid internal format
return true;
}
//==============================================================================================
//==============================================================================================
/*-------------------------------------------------------------------*//*!
* \brief Constructs a blank image.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Image::Image(const Color::Descriptor& desc, int width, int height, VGbitfield allowedQuality) :
m_desc(desc),
m_width(width),
m_height(height),
m_allowedQuality(allowedQuality),
m_inUse(0),
m_stride(0),
m_data(NULL),
m_referenceCount(0),
m_ownsData(true),
m_parent(NULL),
m_storageOffsetX(0),
m_storageOffsetY(0),
m_mipmapsValid(false),
m_mipmaps()
{
RI_ASSERT(Color::isValidDescriptor(m_desc));
RI_ASSERT(width > 0 && height > 0);
m_stride = (m_width*m_desc.bitsPerPixel+7)/8;
m_data = RI_NEW_ARRAY(RIuint8, m_stride*m_height); //throws bad_alloc
memset(m_data, 0, m_stride*m_height); //clear image
}
/*-------------------------------------------------------------------*//*!
* \brief Constructs an image that uses an external array for its data
* storage.
* \param
* \return
* \note this is meant for internal use to make blitting easier
*//*-------------------------------------------------------------------*/
Image::Image(const Color::Descriptor& desc, int width, int height, int stride, RIuint8* data) :
m_desc(desc),
m_width(width),
m_height(height),
m_allowedQuality(0),
m_inUse(0),
m_stride(stride),
m_data(data),
m_referenceCount(0),
m_ownsData(false),
m_parent(NULL),
m_storageOffsetX(0),
m_storageOffsetY(0),
m_mipmapsValid(false),
m_mipmaps()
{
RI_ASSERT(Color::isValidDescriptor(m_desc));
RI_ASSERT(width > 0 && height > 0);
RI_ASSERT(data);
}
/*-------------------------------------------------------------------*//*!
* \brief Construcs a child image.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Image::Image(Image* parent, int x, int y, int width, int height) :
m_desc(Color::formatToDescriptor(VG_sRGBA_8888)), //dummy initialization, will be overwritten below (can't read from parent->m_desc before knowing the pointer is valid)
m_width(width),
m_height(height),
m_allowedQuality(0),
m_inUse(0),
m_stride(0),
m_data(NULL),
m_referenceCount(0),
m_ownsData(false),
m_parent(parent),
m_storageOffsetX(0),
m_storageOffsetY(0),
m_mipmapsValid(false),
m_mipmaps()
{
RI_ASSERT(parent);
RI_ASSERT(x >= 0 && y >= 0 && width > 0 && height > 0);
RI_ASSERT(RI_INT_ADDSATURATE(x,width) <= parent->m_width && RI_INT_ADDSATURATE(y,height) <= parent->m_height); //child image must be contained in parent
m_desc = parent->m_desc;
RI_ASSERT(Color::isValidDescriptor(m_desc));
m_allowedQuality = parent->m_allowedQuality;
m_stride = parent->m_stride;
m_data = parent->m_data;
m_storageOffsetX = parent->m_storageOffsetX + x;
m_storageOffsetY = parent->m_storageOffsetY + y;
//increase the reference and use count of the parent
addInUse();
parent->addInUse();
parent->addReference();
}
/*-------------------------------------------------------------------*//*!
* \brief Image destructor.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Image::~Image()
{
RI_ASSERT(m_referenceCount == 0);
if(m_parent)
{
//decrease the reference and use count of the parent
removeInUse();
m_parent->removeInUse();
if(!m_parent->removeReference())
RI_DELETE(m_parent);
}
RI_ASSERT(m_inUse == 0);
for(int i=0;i<m_mipmaps.size();i++)
{
if(!m_mipmaps[i]->removeReference())
RI_DELETE(m_mipmaps[i]);
else
{
RI_ASSERT(0); //there can't be any other references to the mipmap levels
}
}
m_mipmaps.clear();
if(m_ownsData)
{
RI_ASSERT(!m_parent); //can't have parent if owns the data
RI_DELETE_ARRAY(m_data); //delete image data if we own it
}
}
/*-------------------------------------------------------------------*//*!
* \brief Returns true if the two images share pixels.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
bool Image::overlaps(const Image* src) const
{
RI_ASSERT(src);
if(m_data != src->m_data)
return false; //images don't share data
//check if the image storage regions overlap
Rectangle r(m_storageOffsetX, m_storageOffsetY, m_width, m_height);
r.intersect(Rectangle(src->m_storageOffsetX, src->m_storageOffsetY, src->m_width, src->m_height));
if(!r.width || !r.height)
return false; //intersection is empty, images don't overlap
return true;
}
/*-------------------------------------------------------------------*//*!
* \brief Clears a rectangular portion of an image with the given clear color.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Image::clear(const Color& clearColor, int x, int y, int w, int h)
{
RI_ASSERT(m_data);
RI_ASSERT(m_referenceCount > 0);
//intersect clear region with image bounds
Rectangle r(0,0,m_width,m_height);
r.intersect(Rectangle(x,y,w,h));
if(!r.width || !r.height)
return; //intersection is empty or one of the rectangles is invalid
Color col = clearColor;
col.clamp();
col.convert(m_desc.internalFormat);
for(int j=r.y;j<r.y + r.height;j++)
{
for(int i=r.x;i<r.x + r.width;i++)
{
writePixel(i, j, col);
}
}
m_mipmapsValid = false;
}
/*-------------------------------------------------------------------*//*!
* \brief Blits a source region to destination. Source and destination
* can overlap.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
static RIfloat ditherChannel(RIfloat c, int bits, RIfloat m)
{
RIfloat fc = c * (RIfloat)((1<<bits)-1);
RIfloat ic = (RIfloat)floor(fc);
if(fc - ic > m) ic += 1.0f;
return RI_MIN(ic / (RIfloat)((1<<bits)-1), 1.0f);
}
static void computeBlitRegion(int& sx, int& sy, int& dx, int& dy, int& w, int& h, int srcWidth, int srcHeight, int dstWidth, int dstHeight)
{
RI_ASSERT(w > 0 && h > 0);
sx = RI_INT_MIN(RI_INT_MAX(sx, (int)(RI_INT32_MIN>>2)), (int)(RI_INT32_MAX>>2));
sy = RI_INT_MIN(RI_INT_MAX(sy, (int)(RI_INT32_MIN>>2)), (int)(RI_INT32_MAX>>2));
dx = RI_INT_MIN(RI_INT_MAX(dx, (int)(RI_INT32_MIN>>2)), (int)(RI_INT32_MAX>>2));
dy = RI_INT_MIN(RI_INT_MAX(dy, (int)(RI_INT32_MIN>>2)), (int)(RI_INT32_MAX>>2));
w = RI_INT_MIN(w, (int)(RI_INT32_MAX>>2));
h = RI_INT_MIN(h, (int)(RI_INT32_MAX>>2));
int srcsx = sx, srcex = sx + w, dstsx = dx, dstex = dx + w;
if(srcsx < 0)
{
dstsx -= srcsx;
srcsx = 0;
}
if(srcex > srcWidth)
{
dstex -= srcex - srcWidth;
srcex = srcWidth;
}
if(dstsx < 0)
{
srcsx -= dstsx;
dstsx = 0;
}
if(dstex > dstWidth)
{
srcex -= dstex - dstWidth;
dstex = dstWidth;
}
RI_ASSERT(srcsx >= 0 && dstsx >= 0 && srcex <= srcWidth && dstex <= dstWidth);
w = srcex - srcsx;
RI_ASSERT(w == dstex - dstsx);
int srcsy = sy, srcey = sy + h, dstsy = dy, dstey = dy + h;
if(srcsy < 0)
{
dstsy -= srcsy;
srcsy = 0;
}
if(srcey > srcHeight)
{
dstey -= srcey - srcHeight;
srcey = srcHeight;
}
if(dstsy < 0)
{
srcsy -= dstsy;
dstsy = 0;
}
if(dstey > dstHeight)
{
srcey -= dstey - dstHeight;
dstey = dstHeight;
}
RI_ASSERT(srcsy >= 0 && dstsy >= 0 && srcey <= srcHeight && dstey <= dstHeight);
h = srcey - srcsy;
RI_ASSERT(h == dstey - dstsy);
sx = srcsx;
sy = srcsy;
dx = dstsx;
dy = dstsy;
}
void Image::blit(const Image& src, int sx, int sy, int dx, int dy, int w, int h, bool dither)
{
//img=>img: vgCopyImage
//img=>user: vgGetImageSubData
//user=>img: vgImageSubData
RI_ASSERT(src.m_data); //source exists
RI_ASSERT(m_data); //destination exists
RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
computeBlitRegion(sx, sy, dx, dy, w, h, src.m_width, src.m_height, m_width, m_height);
if(w <= 0 || h <= 0)
return; //zero area
Array<Color> tmp;
tmp.resize(w*h); //throws bad_alloc
//copy source region to tmp
for(int j=0;j<h;j++)
{
for(int i=0;i<w;i++)
{
Color c = src.readPixel(sx + i, sy + j);
c.convert(m_desc.internalFormat);
tmp[j*w+i] = c;
}
}
int rbits = m_desc.redBits, gbits = m_desc.greenBits, bbits = m_desc.blueBits, abits = m_desc.alphaBits;
if(m_desc.isLuminance())
{
rbits = gbits = bbits = m_desc.luminanceBits;
abits = 0;
}
//write tmp to destination region
for(int j=0;j<h;j++)
{
for(int i=0;i<w;i++)
{
Color col = tmp[j*w+i];
if(dither)
{
static const int matrix[16] = {
0, 8, 2, 10,
12, 4, 14, 6,
3, 11, 1, 9,
15, 7, 13, 5};
int x = i & 3;
int y = j & 3;
RIfloat m = matrix[y*4+x] / 16.0f;
if(rbits) col.r = ditherChannel(col.r, rbits, m);
if(gbits) col.g = ditherChannel(col.g, gbits, m);
if(bbits) col.b = ditherChannel(col.b, bbits, m);
if(abits) col.a = ditherChannel(col.a, abits, m);
}
writePixel(dx + i, dy + j, col);
}
}
m_mipmapsValid = false;
}
/*-------------------------------------------------------------------*//*!
* \brief Converts from multisampled format to display format.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Image::blit(const Surface* src, int sx, int sy, int dx, int dy, int w, int h)
{
//fb=>img: vgGetPixels
//fb=>user: vgReadPixels
RI_ASSERT(!src->isInUse(this));
computeBlitRegion(sx, sy, dx, dy, w, h, src->getWidth(), src->getHeight(), m_width, m_height);
if(w <= 0 || h <= 0)
return; //zero area
for(int y=0;y<h;y++)
{
for(int x=0;x<w;x++)
{
Color r = src->FSAAResolve(sx + x, sy + y);
r.convert(getDescriptor().internalFormat);
writePixel(dx + x, dy + y, r);
}
}
}
/*-------------------------------------------------------------------*//*!
* \brief Returns the color at pixel (x,y).
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Color Image::readPixel(int x, int y) const
{
RI_ASSERT(m_data);
RI_ASSERT(x >= 0 && x < m_width);
RI_ASSERT(y >= 0 && y < m_height);
RI_ASSERT(m_referenceCount > 0);
x += m_storageOffsetX;
y += m_storageOffsetY;
unsigned int p = 0;
RIuint8* scanline = m_data + y * m_stride;
switch(m_desc.bitsPerPixel)
{
case 32:
{
RIuint32* s = (((RIuint32*)scanline) + x);
p = (unsigned int)*s;
break;
}
case 16:
{
RIuint16* s = ((RIuint16*)scanline) + x;
p = (unsigned int)*s;
break;
}
case 8:
{
RIuint8* s = ((RIuint8*)scanline) + x;
p = (unsigned int)*s;
break;
}
case 4:
{
RIuint8* s = ((RIuint8*)scanline) + (x>>1);
p = (unsigned int)(*s >> ((x&1)<<2)) & 0xf;
break;
}
case 2:
{
RIuint8* s = ((RIuint8*)scanline) + (x>>2);
p = (unsigned int)(*s >> ((x&3)<<1)) & 0x3;
break;
}
default:
{
RI_ASSERT(m_desc.bitsPerPixel == 1);
RIuint8* s = ((RIuint8*)scanline) + (x>>3);
p = (unsigned int)(*s >> (x&7)) & 0x1;
break;
}
}
Color c;
c.unpack(p, m_desc);
return c;
}
/*-------------------------------------------------------------------*//*!
* \brief Writes the color to pixel (x,y). Internal color formats must
* match.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Image::writePixel(int x, int y, const Color& c)
{
RI_ASSERT(m_data);
RI_ASSERT(x >= 0 && x < m_width);
RI_ASSERT(y >= 0 && y < m_height);
RI_ASSERT(m_referenceCount > 0);
RI_ASSERT(c.getInternalFormat() == m_desc.internalFormat);
x += m_storageOffsetX;
y += m_storageOffsetY;
unsigned int p = c.pack(m_desc);
RIuint8* scanline = m_data + y * m_stride;
switch(m_desc.bitsPerPixel)
{
case 32:
{
RIuint32* s = ((RIuint32*)scanline) + x;
*s = (RIuint32)p;
break;
}
case 16:
{
RIuint16* s = ((RIuint16*)scanline) + x;
*s = (RIuint16)p;
break;
}
case 8:
{
RIuint8* s = ((RIuint8*)scanline) + x;
*s = (RIuint8)p;
break;
}
case 4:
{
RIuint8* s = ((RIuint8*)scanline) + (x>>1);
*s = (RIuint8)((p << ((x&1)<<2)) | ((unsigned int)*s & ~(0xf << ((x&1)<<2))));
break;
}
case 2:
{
RIuint8* s = ((RIuint8*)scanline) + (x>>2);
*s = (RIuint8)((p << ((x&3)<<1)) | ((unsigned int)*s & ~(0x3 << ((x&3)<<1))));
break;
}
default:
{
RI_ASSERT(m_desc.bitsPerPixel == 1);
RIuint8* s = ((RIuint8*)scanline) + (x>>3);
*s = (RIuint8)((p << (x&7)) | ((unsigned int)*s & ~(0x1 << (x&7))));
break;
}
}
m_mipmapsValid = false;
}
/*-------------------------------------------------------------------*//*!
* \brief Writes a filtered color to destination surface
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Image::writeFilteredPixel(int i, int j, const Color& color, VGbitfield channelMask)
{
//section 3.4.4: before color space conversion, premultiplied colors are
//clamped to alpha, and the color is converted to nonpremultiplied format
//section 11.2: how to deal with channel mask
//step 1
Color f = color;
f.clamp(); //vgColorMatrix and vgLookups can produce colors that exceed alpha or [0,1] range
//step 2: color space conversion
f.convert((Color::InternalFormat)(m_desc.internalFormat & (Color::NONLINEAR | Color::LUMINANCE)));
//step 3: read the destination color and convert it to nonpremultiplied
Color d = readPixel(i,j);
d.unpremultiply();
RI_ASSERT(d.getInternalFormat() == f.getInternalFormat());
//step 4: replace the destination channels specified by the channelMask (channelmask is ignored for luminance formats)
if(!m_desc.isLuminance())
{ //rgba format => use channelmask
if(channelMask & VG_RED)
d.r = f.r;
if(channelMask & VG_GREEN)
d.g = f.g;
if(channelMask & VG_BLUE)
d.b = f.b;
if(channelMask & VG_ALPHA)
d.a = f.a;
}
else d = f;
//step 5: if destination is premultiplied, convert to premultiplied format
if(m_desc.isPremultiplied())
d.premultiply();
//write the color to destination
writePixel(i,j,d);
}
/*-------------------------------------------------------------------*//*!
* \brief Reads the pixel (x,y) and converts it into an alpha mask value.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
RIfloat Image::readMaskPixel(int x, int y) const
{
RI_ASSERT(m_data);
RI_ASSERT(x >= 0 && x < m_width);
RI_ASSERT(y >= 0 && y < m_height);
RI_ASSERT(m_referenceCount > 0);
Color c = readPixel(x,y);
if(m_desc.isLuminance())
{
return c.r;
}
else
{ //rgba
if(m_desc.alphaBits)
return c.a;
return c.r;
}
}
/*-------------------------------------------------------------------*//*!
* \brief Writes the alpha mask to pixel (x,y).
* \param
* \return
* \note Overwrites color.
*//*-------------------------------------------------------------------*/
void Image::writeMaskPixel(int x, int y, RIfloat m)
{
RI_ASSERT(m_data);
RI_ASSERT(x >= 0 && x < m_width);
RI_ASSERT(y >= 0 && y < m_height);
RI_ASSERT(m_referenceCount > 0);
//if luminance or no alpha, red channel will be used, otherwise alpha channel will be used
writePixel(x, y, Color(m,m,m,m,m_desc.internalFormat));
}
/*-------------------------------------------------------------------*//*!
* \brief Reads a texel (u,v) at the given mipmap level. Tiling modes and
* color space conversion are applied. Outputs color in premultiplied
* format.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Color Image::readTexel(int u, int v, int level, VGTilingMode tilingMode, const Color& tileFillColor) const
{
const Image* image = this;
if( level > 0 )
{
RI_ASSERT(level <= m_mipmaps.size());
image = m_mipmaps[level-1];
}
RI_ASSERT(image);
Color p;
if(tilingMode == VG_TILE_FILL)
{
if(u < 0 || v < 0 || u >= image->m_width || v >= image->m_height)
p = tileFillColor;
else
p = image->readPixel(u, v);
}
else if(tilingMode == VG_TILE_PAD)
{
u = RI_INT_MIN(RI_INT_MAX(u,0),image->m_width-1);
v = RI_INT_MIN(RI_INT_MAX(v,0),image->m_height-1);
p = image->readPixel(u, v);
}
else if(tilingMode == VG_TILE_REPEAT)
{
u = RI_INT_MOD(u, image->m_width);
v = RI_INT_MOD(v, image->m_height);
p = image->readPixel(u, v);
}
else
{
RI_ASSERT(tilingMode == VG_TILE_REFLECT);
u = RI_INT_MOD(u, image->m_width*2);
v = RI_INT_MOD(v, image->m_height*2);
if( u >= image->m_width ) u = image->m_width*2-1 - u;
if( v >= image->m_height ) v = image->m_height*2-1 - v;
p = image->readPixel(u, v);
}
p.premultiply(); //interpolate in premultiplied format
return p;
}
/*-------------------------------------------------------------------*//*!
* \brief Maps point (x,y) to an image and returns a filtered,
* premultiplied color value.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Color Image::resample(RIfloat x, RIfloat y, const Matrix3x3& surfaceToImage, VGImageQuality quality, VGTilingMode tilingMode, const Color& tileFillColor) //throws bad_alloc
{
RI_ASSERT(m_referenceCount > 0);
VGbitfield aq = getAllowedQuality();
aq &= (VGbitfield)quality;
Vector3 uvw(x,y,1.0f);
uvw = surfaceToImage * uvw;
RIfloat oow = 1.0f / uvw.z;
uvw *= oow;
if(aq & VG_IMAGE_QUALITY_BETTER)
{ //EWA on mipmaps
makeMipMaps(); //throws bad_alloc
Color::InternalFormat procFormat = (Color::InternalFormat)(m_desc.internalFormat | Color::PREMULTIPLIED);
RIfloat m_pixelFilterRadius = 1.25f;
RIfloat m_resamplingFilterRadius = 1.25f;
RIfloat Ux = (surfaceToImage[0][0] - uvw.x * surfaceToImage[2][0]) * oow * m_pixelFilterRadius;
RIfloat Vx = (surfaceToImage[1][0] - uvw.y * surfaceToImage[2][0]) * oow * m_pixelFilterRadius;
RIfloat Uy = (surfaceToImage[0][1] - uvw.x * surfaceToImage[2][1]) * oow * m_pixelFilterRadius;
RIfloat Vy = (surfaceToImage[1][1] - uvw.y * surfaceToImage[2][1]) * oow * m_pixelFilterRadius;
RIfloat U0 = uvw.x;
RIfloat V0 = uvw.y;
//calculate mip level
int level = 0;
RIfloat axis1sq = Ux*Ux + Vx*Vx;
RIfloat axis2sq = Uy*Uy + Vy*Vy;
RIfloat minorAxissq = RI_MIN(axis1sq,axis2sq);
while(minorAxissq > 9.0f && level < m_mipmaps.size()) //half the minor axis must be at least three texels
{
level++;
minorAxissq *= 0.25f;
}
RIfloat sx = 1.0f;
RIfloat sy = 1.0f;
if(level > 0)
{
sx = (RIfloat)m_mipmaps[level-1]->m_width / (RIfloat)m_width;
sy = (RIfloat)m_mipmaps[level-1]->m_height / (RIfloat)m_height;
}
Ux *= sx;
Vx *= sx;
U0 *= sx;
Uy *= sy;
Vy *= sy;
V0 *= sy;
//clamp filter size so that filtering doesn't take excessive amount of time (clamping results in aliasing)
RIfloat lim = 100.0f;
axis1sq = Ux*Ux + Vx*Vx;
axis2sq = Uy*Uy + Vy*Vy;
if( axis1sq > lim*lim )
{
RIfloat s = lim / (RIfloat)sqrt(axis1sq);
Ux *= s;
Vx *= s;
}
if( axis2sq > lim*lim )
{
RIfloat s = lim / (RIfloat)sqrt(axis2sq);
Uy *= s;
Vy *= s;
}
//form elliptic filter by combining texel and pixel filters
RIfloat A = Vx*Vx + Vy*Vy + 1.0f;
RIfloat B = -2.0f*(Ux*Vx + Uy*Vy);
RIfloat C = Ux*Ux + Uy*Uy + 1.0f;
//scale by the user-defined size of the kernel
A *= m_resamplingFilterRadius;
B *= m_resamplingFilterRadius;
C *= m_resamplingFilterRadius;
//calculate bounding box in texture space
RIfloat usize = (RIfloat)sqrt(C);
RIfloat vsize = (RIfloat)sqrt(A);
int u1 = (int)floor(U0 - usize + 0.5f);
int u2 = (int)floor(U0 + usize + 0.5f);
int v1 = (int)floor(V0 - vsize + 0.5f);
int v2 = (int)floor(V0 + vsize + 0.5f);
if( u1 == u2 || v1 == v2 )
return Color(0,0,0,0,procFormat);
//scale the filter so that Q = 1 at the cutoff radius
RIfloat F = A*C - 0.25f * B*B;
if( F <= 0.0f )
return Color(0,0,0,0,procFormat); //invalid filter shape due to numerical inaccuracies => return black
RIfloat ooF = 1.0f / F;
A *= ooF;
B *= ooF;
C *= ooF;
//evaluate filter by using forward differences to calculate Q = A*U^2 + B*U*V + C*V^2
Color color(0,0,0,0,procFormat);
RIfloat sumweight = 0.0f;
RIfloat DDQ = 2.0f * A;
RIfloat U = (RIfloat)u1 - U0 + 0.5f;
for(int v=v1;v<v2;v++)
{
RIfloat V = (RIfloat)v - V0 + 0.5f;
RIfloat DQ = A*(2.0f*U+1.0f) + B*V;
RIfloat Q = (C*V+B*U)*V + A*U*U;
for(int u=u1;u<u2;u++)
{
if( Q >= 0.0f && Q < 1.0f )
{ //Q = r^2, fit gaussian to the range [0,1]
RIfloat weight = (RIfloat)exp(-0.5f * 10.0f * Q); //gaussian at radius 10 equals 0.0067
color += weight * readTexel(u, v, level, tilingMode, tileFillColor);
sumweight += weight;
}
Q += DQ;
DQ += DDQ;
}
}
if( sumweight == 0.0f )
return Color(0,0,0,0,procFormat);
RI_ASSERT(sumweight > 0.0f);
sumweight = 1.0f / sumweight;
return color * sumweight;
}
else if(aq & VG_IMAGE_QUALITY_FASTER)
{ //bilinear
uvw.x -= 0.5f;
uvw.y -= 0.5f;
int u = (int)floor(uvw.x);
int v = (int)floor(uvw.y);
Color c00 = readTexel(u,v, 0, tilingMode, tileFillColor);
Color c10 = readTexel(u+1,v, 0, tilingMode, tileFillColor);
Color c01 = readTexel(u,v+1, 0, tilingMode, tileFillColor);
Color c11 = readTexel(u+1,v+1, 0, tilingMode, tileFillColor);
RIfloat fu = uvw.x - (RIfloat)u;
RIfloat fv = uvw.y - (RIfloat)v;
Color c0 = c00 * (1.0f - fu) + c10 * fu;
Color c1 = c01 * (1.0f - fu) + c11 * fu;
return c0 * (1.0f - fv) + c1 * fv;
}
else
{ //point sampling
return readTexel((int)floor(uvw.x), (int)floor(uvw.y), 0, tilingMode, tileFillColor);
}
}
/*-------------------------------------------------------------------*//*!
* \brief Generates mip maps for an image.
* \param
* \return
* \note Downsampling is done in the input color space. We use a box
* filter for downsampling.
*//*-------------------------------------------------------------------*/
void Image::makeMipMaps()
{
RI_ASSERT(m_data);
RI_ASSERT(m_referenceCount > 0);
if(m_mipmapsValid)
return;
//delete existing mipmaps
for(int i=0;i<m_mipmaps.size();i++)
{
if(!m_mipmaps[i]->removeReference())
RI_DELETE(m_mipmaps[i]);
else
{
RI_ASSERT(0); //there can't be any other references to the mipmap levels
}
}
m_mipmaps.clear();
try
{
Color::InternalFormat procFormat = m_desc.internalFormat;
procFormat = (Color::InternalFormat)(procFormat | Color::PREMULTIPLIED); //premultiplied
//generate mipmaps until width and height are one
Image* prev = this;
while( prev->m_width > 1 || prev->m_height > 1 )
{
int nextw = (int)ceil(prev->m_width*0.5f);
int nexth = (int)ceil(prev->m_height*0.5f);
RI_ASSERT(nextw >= 1 && nexth >= 1);
RI_ASSERT(nextw < prev->m_width || nexth < prev->m_height);
m_mipmaps.resize(m_mipmaps.size()+1); //throws bad_alloc
m_mipmaps[m_mipmaps.size()-1] = NULL;
Image* next = RI_NEW(Image, (m_desc, nextw, nexth, m_allowedQuality)); //throws bad_alloc
next->addReference();
for(int j=0;j<next->m_height;j++)
{
for(int i=0;i<next->m_width;i++)
{
RIfloat u0 = (RIfloat)i / (RIfloat)next->m_width;
RIfloat u1 = (RIfloat)(i+1) / (RIfloat)next->m_width;
RIfloat v0 = (RIfloat)j / (RIfloat)next->m_height;
RIfloat v1 = (RIfloat)(j+1) / (RIfloat)next->m_height;
u0 *= prev->m_width;
u1 *= prev->m_width;
v0 *= prev->m_height;
v1 *= prev->m_height;
int su = (int)floor(u0);
int eu = (int)ceil(u1);
int sv = (int)floor(v0);
int ev = (int)ceil(v1);
Color c(0,0,0,0,procFormat);
int samples = 0;
for(int y=sv;y<ev;y++)
{
for(int x=su;x<eu;x++)
{
Color p = prev->readPixel(x, y);
p.convert(procFormat);
c += p;
samples++;
}
}
c *= (1.0f/samples);
c.convert(m_desc.internalFormat);
next->writePixel(i,j,c);
}
}
m_mipmaps[m_mipmaps.size()-1] = next;
prev = next;
}
RI_ASSERT(prev->m_width == 1 && prev->m_height == 1);
m_mipmapsValid = true;
}
catch(std::bad_alloc)
{
//delete existing mipmaps
for(int i=0;i<m_mipmaps.size();i++)
{
if(m_mipmaps[i])
{
if(!m_mipmaps[i]->removeReference())
RI_DELETE(m_mipmaps[i]);
else
{
RI_ASSERT(0); //there can't be any other references to the mipmap levels
}
}
}
m_mipmaps.clear();
m_mipmapsValid = false;
throw;
}
}
/*-------------------------------------------------------------------*//*!
* \brief Applies color matrix filter.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Image::colorMatrix(const Image& src, const RIfloat* matrix, bool filterFormatLinear, bool filterFormatPremultiplied, VGbitfield channelMask)
{
RI_ASSERT(src.m_data); //source exists
RI_ASSERT(m_data); //destination exists
RI_ASSERT(matrix);
RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
int w = RI_INT_MIN(m_width, src.m_width);
int h = RI_INT_MIN(m_height, src.m_height);
RI_ASSERT(w > 0 && h > 0);
Color::InternalFormat srcFormat = src.m_desc.internalFormat;
Color::InternalFormat procFormat = (Color::InternalFormat)(srcFormat & ~Color::LUMINANCE); //process in RGB, not luminance
if(filterFormatLinear)
procFormat = (Color::InternalFormat)(procFormat & ~Color::NONLINEAR);
else
procFormat = (Color::InternalFormat)(procFormat | Color::NONLINEAR);
if(filterFormatPremultiplied)
procFormat = (Color::InternalFormat)(procFormat | Color::PREMULTIPLIED);
else
procFormat = (Color::InternalFormat)(procFormat & ~Color::PREMULTIPLIED);
for(int j=0;j<h;j++)
{
for(int i=0;i<w;i++)
{
Color s = src.readPixel(i,j); //convert to RGBA [0,1]
s.convert(procFormat);
Color d(0,0,0,0,procFormat);
d.r = matrix[0+4*0] * s.r + matrix[0+4*1] * s.g + matrix[0+4*2] * s.b + matrix[0+4*3] * s.a + matrix[0+4*4];
d.g = matrix[1+4*0] * s.r + matrix[1+4*1] * s.g + matrix[1+4*2] * s.b + matrix[1+4*3] * s.a + matrix[1+4*4];
d.b = matrix[2+4*0] * s.r + matrix[2+4*1] * s.g + matrix[2+4*2] * s.b + matrix[2+4*3] * s.a + matrix[2+4*4];
d.a = matrix[3+4*0] * s.r + matrix[3+4*1] * s.g + matrix[3+4*2] * s.b + matrix[3+4*3] * s.a + matrix[3+4*4];
writeFilteredPixel(i, j, d, channelMask);
}
}
}
/*-------------------------------------------------------------------*//*!
* \brief Reads a pixel from image with tiling mode applied.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
static Color readTiledPixel(int x, int y, int w, int h, VGTilingMode tilingMode, const Array<Color>& image, const Color& edge)
{
Color s;
if(x < 0 || x >= w || y < 0 || y >= h)
{ //apply tiling mode
switch(tilingMode)
{
case VG_TILE_FILL:
s = edge;
break;
case VG_TILE_PAD:
x = RI_INT_MIN(RI_INT_MAX(x, 0), w-1);
y = RI_INT_MIN(RI_INT_MAX(y, 0), h-1);
RI_ASSERT(x >= 0 && x < w && y >= 0 && y < h);
s = image[y*w+x];
break;
case VG_TILE_REPEAT:
x = RI_INT_MOD(x, w);
y = RI_INT_MOD(y, h);
RI_ASSERT(x >= 0 && x < w && y >= 0 && y < h);
s = image[y*w+x];
break;
default:
RI_ASSERT(tilingMode == VG_TILE_REFLECT);
x = RI_INT_MOD(x, w*2);
y = RI_INT_MOD(y, h*2);
if(x >= w) x = w*2-1-x;
if(y >= h) y = h*2-1-y;
RI_ASSERT(x >= 0 && x < w && y >= 0 && y < h);
s = image[y*w+x];
break;
}
}
else
{
RI_ASSERT(x >= 0 && x < w && y >= 0 && y < h);
s = image[y*w+x];
}
return s;
}
/*-------------------------------------------------------------------*//*!
* \brief Returns processing format for filtering.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
static Color::InternalFormat getProcessingFormat(Color::InternalFormat srcFormat, bool filterFormatLinear, bool filterFormatPremultiplied)
{
Color::InternalFormat procFormat = (Color::InternalFormat)(srcFormat & ~Color::LUMINANCE); //process in RGB, not luminance
if(filterFormatLinear)
procFormat = (Color::InternalFormat)(procFormat & ~Color::NONLINEAR);
else
procFormat = (Color::InternalFormat)(procFormat | Color::NONLINEAR);
if(filterFormatPremultiplied)
procFormat = (Color::InternalFormat)(procFormat | Color::PREMULTIPLIED);
else
procFormat = (Color::InternalFormat)(procFormat & ~Color::PREMULTIPLIED);
return procFormat;
}
/*-------------------------------------------------------------------*//*!
* \brief Applies convolution filter.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Image::convolve(const Image& src, int kernelWidth, int kernelHeight, int shiftX, int shiftY, const RIint16* kernel, RIfloat scale, RIfloat bias, VGTilingMode tilingMode, const Color& edgeFillColor, bool filterFormatLinear, bool filterFormatPremultiplied, VGbitfield channelMask)
{
RI_ASSERT(src.m_data); //source exists
RI_ASSERT(m_data); //destination exists
RI_ASSERT(kernel && kernelWidth > 0 && kernelHeight > 0);
RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
//the area to be written is an intersection of source and destination image areas.
//lower-left corners of the images are aligned.
int w = RI_INT_MIN(m_width, src.m_width);
int h = RI_INT_MIN(m_height, src.m_height);
RI_ASSERT(w > 0 && h > 0);
Color::InternalFormat procFormat = getProcessingFormat(src.m_desc.internalFormat, filterFormatLinear, filterFormatPremultiplied);
Color edge = edgeFillColor;
edge.clamp();
edge.convert(procFormat);
Array<Color> tmp;
tmp.resize(src.m_width*src.m_height); //throws bad_alloc
//copy source region to tmp and do conversion
for(int j=0;j<src.m_height;j++)
{
for(int i=0;i<src.m_width;i++)
{
Color s = src.readPixel(i, j);
s.convert(procFormat);
tmp[j*src.m_width+i] = s;
}
}
for(int j=0;j<h;j++)
{
for(int i=0;i<w;i++)
{
Color sum(0,0,0,0,procFormat);
for(int kj=0;kj<kernelHeight;kj++)
{
for(int ki=0;ki<kernelWidth;ki++)
{
int x = i+ki-shiftX;
int y = j+kj-shiftY;
Color s = readTiledPixel(x, y, src.m_width, src.m_height, tilingMode, tmp, edge);
int kx = kernelWidth-ki-1;
int ky = kernelHeight-kj-1;
RI_ASSERT(kx >= 0 && kx < kernelWidth && ky >= 0 && ky < kernelHeight);
sum += (RIfloat)kernel[kx*kernelHeight+ky] * s;
}
}
sum *= scale;
sum.r += bias;
sum.g += bias;
sum.b += bias;
sum.a += bias;
writeFilteredPixel(i, j, sum, channelMask);
}
}
}
/*-------------------------------------------------------------------*//*!
* \brief Applies separable convolution filter.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Image::separableConvolve(const Image& src, int kernelWidth, int kernelHeight, int shiftX, int shiftY, const RIint16* kernelX, const RIint16* kernelY, RIfloat scale, RIfloat bias, VGTilingMode tilingMode, const Color& edgeFillColor, bool filterFormatLinear, bool filterFormatPremultiplied, VGbitfield channelMask)
{
RI_ASSERT(src.m_data); //source exists
RI_ASSERT(m_data); //destination exists
RI_ASSERT(kernelX && kernelY && kernelWidth > 0 && kernelHeight > 0);
RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
//the area to be written is an intersection of source and destination image areas.
//lower-left corners of the images are aligned.
int w = RI_INT_MIN(m_width, src.m_width);
int h = RI_INT_MIN(m_height, src.m_height);
RI_ASSERT(w > 0 && h > 0);
Color::InternalFormat procFormat = getProcessingFormat(src.m_desc.internalFormat, filterFormatLinear, filterFormatPremultiplied);
Color edge = edgeFillColor;
edge.clamp();
edge.convert(procFormat);
Array<Color> tmp;
tmp.resize(src.m_width*src.m_height); //throws bad_alloc
//copy source region to tmp and do conversion
for(int j=0;j<src.m_height;j++)
{
for(int i=0;i<src.m_width;i++)
{
Color s = src.readPixel(i, j);
s.convert(procFormat);
tmp[j*src.m_width+i] = s;
}
}
Array<Color> tmp2;
tmp2.resize(w*src.m_height); //throws bad_alloc
for(int j=0;j<src.m_height;j++)
{
for(int i=0;i<w;i++)
{
Color sum(0,0,0,0,procFormat);
for(int ki=0;ki<kernelWidth;ki++)
{
int x = i+ki-shiftX;
Color s = readTiledPixel(x, j, src.m_width, src.m_height, tilingMode, tmp, edge);
int kx = kernelWidth-ki-1;
RI_ASSERT(kx >= 0 && kx < kernelWidth);
sum += (RIfloat)kernelX[kx] * s;
}
tmp2[j*w+i] = sum;
}
}
if(tilingMode == VG_TILE_FILL)
{ //convolve the edge color
Color sum(0,0,0,0,procFormat);
for(int ki=0;ki<kernelWidth;ki++)
{
sum += (RIfloat)kernelX[ki] * edge;
}
edge = sum;
}
for(int j=0;j<h;j++)
{
for(int i=0;i<w;i++)
{
Color sum(0,0,0,0,procFormat);
for(int kj=0;kj<kernelHeight;kj++)
{
int y = j+kj-shiftY;
Color s = readTiledPixel(i, y, w, src.m_height, tilingMode, tmp2, edge);
int ky = kernelHeight-kj-1;
RI_ASSERT(ky >= 0 && ky < kernelHeight);
sum += (RIfloat)kernelY[ky] * s;
}
sum *= scale;
sum.r += bias;
sum.g += bias;
sum.b += bias;
sum.a += bias;
writeFilteredPixel(i, j, sum, channelMask);
}
}
}
/*-------------------------------------------------------------------*//*!
* \brief Applies Gaussian blur filter.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Image::gaussianBlur(const Image& src, RIfloat stdDeviationX, RIfloat stdDeviationY, VGTilingMode tilingMode, const Color& edgeFillColor, bool filterFormatLinear, bool filterFormatPremultiplied, VGbitfield channelMask)
{
RI_ASSERT(src.m_data); //source exists
RI_ASSERT(m_data); //destination exists
RI_ASSERT(stdDeviationX > 0.0f && stdDeviationY > 0.0f);
RI_ASSERT(stdDeviationX <= RI_MAX_GAUSSIAN_STD_DEVIATION && stdDeviationY <= RI_MAX_GAUSSIAN_STD_DEVIATION);
RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
//the area to be written is an intersection of source and destination image areas.
//lower-left corners of the images are aligned.
int w = RI_INT_MIN(m_width, src.m_width);
int h = RI_INT_MIN(m_height, src.m_height);
RI_ASSERT(w > 0 && h > 0);
Color::InternalFormat procFormat = getProcessingFormat(src.m_desc.internalFormat, filterFormatLinear, filterFormatPremultiplied);
Color edge = edgeFillColor;
edge.clamp();
edge.convert(procFormat);
Array<Color> tmp;
tmp.resize(src.m_width*src.m_height); //throws bad_alloc
//copy source region to tmp and do conversion
for(int j=0;j<src.m_height;j++)
{
for(int i=0;i<src.m_width;i++)
{
Color s = src.readPixel(i, j);
s.convert(procFormat);
tmp[j*src.m_width+i] = s;
}
}
RIfloat expScaleX = -1.0f / (2.0f*stdDeviationX*stdDeviationX);
RIfloat expScaleY = -1.0f / (2.0f*stdDeviationY*stdDeviationY);
int kernelWidth = (int)(stdDeviationX * 4.0f + 1.0f);
int kernelHeight = (int)(stdDeviationY * 4.0f + 1.0f);
//make a separable kernel
Array<RIfloat> kernelX;
kernelX.resize(kernelWidth*2+1);
int shiftX = kernelWidth;
RIfloat scaleX = 0.0f;
for(int i=0;i<kernelX.size();i++)
{
int x = i-shiftX;
kernelX[i] = (RIfloat)exp((RIfloat)x*(RIfloat)x * expScaleX);
scaleX += kernelX[i];
}
scaleX = 1.0f / scaleX; //NOTE: using the mathematical definition of the scaling term doesn't work since we cut the filter support early for performance
Array<RIfloat> kernelY;
kernelY.resize(kernelHeight*2+1);
int shiftY = kernelHeight;
RIfloat scaleY = 0.0f;
for(int i=0;i<kernelY.size();i++)
{
int y = i-shiftY;
kernelY[i] = (RIfloat)exp((RIfloat)y*(RIfloat)y * expScaleY);
scaleY += kernelY[i];
}
scaleY = 1.0f / scaleY; //NOTE: using the mathematical definition of the scaling term doesn't work since we cut the filter support early for performance
Array<Color> tmp2;
tmp2.resize(w*src.m_height); //throws bad_alloc
//horizontal pass
for(int j=0;j<src.m_height;j++)
{
for(int i=0;i<w;i++)
{
Color sum(0,0,0,0,procFormat);
for(int ki=0;ki<kernelX.size();ki++)
{
int x = i+ki-shiftX;
sum += kernelX[ki] * readTiledPixel(x, j, src.m_width, src.m_height, tilingMode, tmp, edge);
}
tmp2[j*w+i] = sum * scaleX;
}
}
//vertical pass
for(int j=0;j<h;j++)
{
for(int i=0;i<w;i++)
{
Color sum(0,0,0,0,procFormat);
for(int kj=0;kj<kernelY.size();kj++)
{
int y = j+kj-shiftY;
sum += kernelY[kj] * readTiledPixel(i, y, w, src.m_height, tilingMode, tmp2, edge);
}
writeFilteredPixel(i, j, sum * scaleY, channelMask);
}
}
}
/*-------------------------------------------------------------------*//*!
* \brief Returns lookup table format for lookup filters.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
static Color::InternalFormat getLUTFormat(bool outputLinear, bool outputPremultiplied)
{
Color::InternalFormat lutFormat = Color::lRGBA;
if(outputLinear && outputPremultiplied)
lutFormat = Color::lRGBA_PRE;
else if(!outputLinear && !outputPremultiplied)
lutFormat = Color::sRGBA;
else if(!outputLinear && outputPremultiplied)
lutFormat = Color::sRGBA_PRE;
return lutFormat;
}
/*-------------------------------------------------------------------*//*!
* \brief Applies multi-channel lookup table filter.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Image::lookup(const Image& src, const RIuint8 * redLUT, const RIuint8 * greenLUT, const RIuint8 * blueLUT, const RIuint8 * alphaLUT, bool outputLinear, bool outputPremultiplied, bool filterFormatLinear, bool filterFormatPremultiplied, VGbitfield channelMask)
{
RI_ASSERT(src.m_data); //source exists
RI_ASSERT(m_data); //destination exists
RI_ASSERT(redLUT && greenLUT && blueLUT && alphaLUT);
RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
//the area to be written is an intersection of source and destination image areas.
//lower-left corners of the images are aligned.
int w = RI_INT_MIN(m_width, src.m_width);
int h = RI_INT_MIN(m_height, src.m_height);
RI_ASSERT(w > 0 && h > 0);
Color::InternalFormat procFormat = getProcessingFormat(src.m_desc.internalFormat, filterFormatLinear, filterFormatPremultiplied);
Color::InternalFormat lutFormat = getLUTFormat(outputLinear, outputPremultiplied);
for(int j=0;j<h;j++)
{
for(int i=0;i<w;i++)
{
Color s = src.readPixel(i,j); //convert to RGBA [0,1]
s.convert(procFormat);
Color d(0,0,0,0,lutFormat);
d.r = intToColor( redLUT[colorToInt(s.r, 255)], 255);
d.g = intToColor(greenLUT[colorToInt(s.g, 255)], 255);
d.b = intToColor( blueLUT[colorToInt(s.b, 255)], 255);
d.a = intToColor(alphaLUT[colorToInt(s.a, 255)], 255);
writeFilteredPixel(i, j, d, channelMask);
}
}
}
/*-------------------------------------------------------------------*//*!
* \brief Applies single channel lookup table filter.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Image::lookupSingle(const Image& src, const RIuint32 * lookupTable, VGImageChannel sourceChannel, bool outputLinear, bool outputPremultiplied, bool filterFormatLinear, bool filterFormatPremultiplied, VGbitfield channelMask)
{
RI_ASSERT(src.m_data); //source exists
RI_ASSERT(m_data); //destination exists
RI_ASSERT(lookupTable);
RI_ASSERT(m_referenceCount > 0 && src.m_referenceCount > 0);
//the area to be written is an intersection of source and destination image areas.
//lower-left corners of the images are aligned.
int w = RI_INT_MIN(m_width, src.m_width);
int h = RI_INT_MIN(m_height, src.m_height);
RI_ASSERT(w > 0 && h > 0);
if(src.m_desc.isLuminance())
sourceChannel = VG_RED;
else if(src.m_desc.redBits + src.m_desc.greenBits + src.m_desc.blueBits == 0)
{
RI_ASSERT(src.m_desc.alphaBits);
sourceChannel = VG_ALPHA;
}
Color::InternalFormat procFormat = getProcessingFormat(src.m_desc.internalFormat, filterFormatLinear, filterFormatPremultiplied);
Color::InternalFormat lutFormat = getLUTFormat(outputLinear, outputPremultiplied);
for(int j=0;j<h;j++)
{
for(int i=0;i<w;i++)
{
Color s = src.readPixel(i,j); //convert to RGBA [0,1]
s.convert(procFormat);
int e;
switch(sourceChannel)
{
case VG_RED:
e = colorToInt(s.r, 255);
break;
case VG_GREEN:
e = colorToInt(s.g, 255);
break;
case VG_BLUE:
e = colorToInt(s.b, 255);
break;
default:
RI_ASSERT(sourceChannel == VG_ALPHA);
e = colorToInt(s.a, 255);
break;
}
RIuint32 l = ((const RIuint32*)lookupTable)[e];
Color d(0,0,0,0,lutFormat);
d.r = intToColor((l>>24), 255);
d.g = intToColor((l>>16), 255);
d.b = intToColor((l>> 8), 255);
d.a = intToColor((l ), 255);
writeFilteredPixel(i, j, d, channelMask);
}
}
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Surface::Surface(const Color::Descriptor& desc, int width, int height, int numSamples) :
m_width(width),
m_height(height),
m_numSamples(numSamples),
m_referenceCount(0),
m_image(NULL)
{
RI_ASSERT(width > 0 && height > 0 && numSamples > 0 && numSamples <= 32);
m_image = RI_NEW(Image, (desc, width*numSamples, height, 0)); //throws bad_alloc
m_image->addReference();
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Surface::Surface(Image* image) :
m_width(0),
m_height(0),
m_numSamples(1),
m_referenceCount(0),
m_image(image)
{
RI_ASSERT(image);
m_width = image->getWidth();
m_height = image->getHeight();
m_image->addReference();
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Surface::Surface(const Color::Descriptor& desc, int width, int height, int stride, RIuint8* data) :
m_width(width),
m_height(height),
m_numSamples(1),
m_referenceCount(0),
m_image(NULL)
{
RI_ASSERT(width > 0 && height > 0);
m_image = RI_NEW(Image, (desc, width, height, stride, data)); //throws bad_alloc
m_image->addReference();
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Surface::~Surface()
{
RI_ASSERT(m_referenceCount == 0);
if(!m_image->removeReference())
RI_DELETE(m_image);
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Surface::clear(const Color& clearColor, int x, int y, int w, int h)
{
Rectangle rect;
rect.x = 0;
rect.y = 0;
rect.width = getWidth();
rect.height = getHeight();
Array<Rectangle> scissors;
scissors.push_back(rect);
clear(clearColor, x, y, w, h, scissors);
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Surface::clear(const Color& clearColor, int x, int y, int w, int h, const Array<Rectangle>& scissors)
{
RI_ASSERT(w > 0 && h > 0);
//intersect clear region with image bounds
Rectangle r(0,0,getWidth(),getHeight());
r.intersect(Rectangle(x,y,w,h));
if(!r.width || !r.height)
return; //intersection is empty or one of the rectangles is invalid
Array<ScissorEdge> scissorEdges;
for(int i=0;i<scissors.size();i++)
{
if(scissors[i].width > 0 && scissors[i].height > 0)
{
ScissorEdge e;
e.miny = scissors[i].y;
e.maxy = RI_INT_ADDSATURATE(scissors[i].y, scissors[i].height);
e.x = scissors[i].x;
e.direction = 1;
scissorEdges.push_back(e); //throws bad_alloc
e.x = RI_INT_ADDSATURATE(scissors[i].x, scissors[i].width);
e.direction = -1;
scissorEdges.push_back(e); //throws bad_alloc
}
}
if(!scissorEdges.size())
return; //there are no scissor rectangles => nothing is visible
//sort scissor edges by edge x
scissorEdges.sort();
//clear the image
Color col = clearColor;
col.clamp();
col.convert(m_image->getDescriptor().internalFormat);
Array<ScissorEdge> scissorAet;
for(int j=r.y;j<r.y + r.height;j++)
{
//gather scissor edges intersecting this scanline
scissorAet.clear();
for(int e=0;e<scissorEdges.size();e++)
{
const ScissorEdge& se = scissorEdges[e];
if(j >= se.miny && j < se.maxy)
scissorAet.push_back(scissorEdges[e]); //throws bad_alloc
}
if(!scissorAet.size())
continue; //scissoring is on, but there are no scissor rectangles on this scanline
//clear a scanline
int scissorWinding = 0;
int scissorIndex = 0;
for(int i=r.x;i<r.x + r.width;i++)
{
while(scissorIndex < scissorAet.size() && scissorAet[scissorIndex].x <= i)
scissorWinding += scissorAet[scissorIndex++].direction;
RI_ASSERT(scissorWinding >= 0);
if(scissorWinding)
{
for(int s=0;s<m_numSamples;s++)
writeSample(i, j, s, col);
}
}
}
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Surface::blit(const Image& src, int sx, int sy, int dx, int dy, int w, int h)
{
Rectangle rect;
rect.x = 0;
rect.y = 0;
rect.width = getWidth();
rect.height = getHeight();
Array<Rectangle> scissors;
scissors.push_back(rect);
blit(src, sx, sy, dx, dy, w, h, scissors);
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note no overlap is possible. Single sample to single or multisample (replicate)
*//*-------------------------------------------------------------------*/
void Surface::blit(const Image& src, int sx, int sy, int dx, int dy, int w, int h, const Array<Rectangle>& scissors)
{
//img=>fb: vgSetPixels
//user=>fb: vgWritePixels
computeBlitRegion(sx, sy, dx, dy, w, h, src.getWidth(), src.getHeight(), getWidth(), getHeight());
if(w <= 0 || h <= 0)
return; //zero area
Array<ScissorEdge> scissorEdges;
for(int i=0;i<scissors.size();i++)
{
if(scissors[i].width > 0 && scissors[i].height > 0)
{
ScissorEdge e;
e.miny = scissors[i].y;
e.maxy = RI_INT_ADDSATURATE(scissors[i].y, scissors[i].height);
e.x = scissors[i].x;
e.direction = 1;
scissorEdges.push_back(e); //throws bad_alloc
e.x = RI_INT_ADDSATURATE(scissors[i].x, scissors[i].width);
e.direction = -1;
scissorEdges.push_back(e); //throws bad_alloc
}
}
if(!scissorEdges.size())
return; //there are no scissor rectangles => nothing is visible
//sort scissor edges by edge x
scissorEdges.sort();
Array<ScissorEdge> scissorAet;
for(int j=0;j<h;j++)
{
//gather scissor edges intersecting this scanline
scissorAet.clear();
for(int e=0;e<scissorEdges.size();e++)
{
const ScissorEdge& se = scissorEdges[e];
if(dy + j >= se.miny && dy + j < se.maxy)
scissorAet.push_back(scissorEdges[e]); //throws bad_alloc
}
if(!scissorAet.size())
continue; //scissoring is on, but there are no scissor rectangles on this scanline
//blit a scanline
int scissorWinding = 0;
int scissorIndex = 0;
for(int i=0;i<w;i++)
{
while(scissorIndex < scissorAet.size() && scissorAet[scissorIndex].x <= dx + i)
scissorWinding += scissorAet[scissorIndex++].direction;
RI_ASSERT(scissorWinding >= 0);
if(scissorWinding)
{
Color c = src.readPixel(sx + i, sy + j);
c.convert(getDescriptor().internalFormat);
for(int s=0;s<m_numSamples;s++)
writeSample(dx + i, dy + j, s, c);
}
}
}
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Surface::blit(const Surface* src, int sx, int sy, int dx, int dy, int w, int h)
{
Rectangle rect;
rect.x = 0;
rect.y = 0;
rect.width = getWidth();
rect.height = getHeight();
Array<Rectangle> scissors;
scissors.push_back(rect);
blit(src, sx, sy, dx, dy, w, h, scissors);
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Surface::blit(const Surface* src, int sx, int sy, int dx, int dy, int w, int h, const Array<Rectangle>& scissors)
{
RI_ASSERT(m_numSamples == src->m_numSamples);
//fb=>fb: vgCopyPixels
computeBlitRegion(sx, sy, dx, dy, w, h, src->getWidth(), src->getHeight(), getWidth(), getHeight());
if(w <= 0 || h <= 0)
return; //zero area
Array<ScissorEdge> scissorEdges;
for(int i=0;i<scissors.size();i++)
{
if(scissors[i].width > 0 && scissors[i].height > 0)
{
ScissorEdge e;
e.miny = scissors[i].y;
e.maxy = RI_INT_ADDSATURATE(scissors[i].y, scissors[i].height);
e.x = scissors[i].x;
e.direction = 1;
scissorEdges.push_back(e); //throws bad_alloc
e.x = RI_INT_ADDSATURATE(scissors[i].x, scissors[i].width);
e.direction = -1;
scissorEdges.push_back(e); //throws bad_alloc
}
}
if(!scissorEdges.size())
return; //there are no scissor rectangles => nothing is visible
//sort scissor edges by edge x
scissorEdges.sort();
Array<Color> tmp;
tmp.resize(w*m_numSamples*h); //throws bad_alloc
//copy source region to tmp
for(int j=0;j<h;j++)
{
for(int i=0;i<w;i++)
{
int numSamples = m_numSamples;
for(int s=0;s<numSamples;s++)
{
Color c = src->m_image->readPixel((sx + i)*m_numSamples+s, sy + j);
c.convert(m_image->getDescriptor().internalFormat);
tmp[(j*w+i)*m_numSamples+s] = c;
}
}
}
Array<ScissorEdge> scissorAet;
for(int j=0;j<h;j++)
{
//gather scissor edges intersecting this scanline
scissorAet.clear();
for(int e=0;e<scissorEdges.size();e++)
{
const ScissorEdge& se = scissorEdges[e];
if(dy + j >= se.miny && dy + j < se.maxy)
scissorAet.push_back(scissorEdges[e]); //throws bad_alloc
}
if(!scissorAet.size())
continue; //scissoring is on, but there are no scissor rectangles on this scanline
//blit a scanline
int scissorWinding = 0;
int scissorIndex = 0;
for(int i=0;i<w;i++)
{
while(scissorIndex < scissorAet.size() && scissorAet[scissorIndex].x <= dx + i)
scissorWinding += scissorAet[scissorIndex++].direction;
RI_ASSERT(scissorWinding >= 0);
if(scissorWinding)
{
int numSamples = m_numSamples;
for(int s=0;s<numSamples;s++)
{
m_image->writePixel((dx + i)*m_numSamples+s, dy + j, tmp[(j*w+i)*m_numSamples+s]);
}
}
}
}
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Surface::mask(const Image* src, VGMaskOperation operation, int x, int y, int w, int h)
{
RI_ASSERT(w > 0 && h > 0);
if(operation == VG_CLEAR_MASK || operation == VG_FILL_MASK)
{
//intersect clear region with image bounds
Rectangle r(0,0,getWidth(),getHeight());
r.intersect(Rectangle(x,y,w,h));
if(!r.width || !r.height)
return; //intersection is empty or one of the rectangles is invalid
if(m_numSamples == 1)
{
RIfloat m = 0.0f;
if(operation == VG_FILL_MASK)
m = 1.0f;
for(int j=r.y;j<r.y + r.height;j++)
{
for(int i=r.x;i<r.x + r.width;i++)
{
writeMaskCoverage(i, j, m);
}
}
}
else
{
unsigned int m = 0;
if(operation == VG_FILL_MASK)
m = (1<<m_numSamples)-1;
for(int j=r.y;j<r.y + r.height;j++)
{
for(int i=r.x;i<r.x + r.width;i++)
{
writeMaskMSAA(i, j, m);
}
}
}
}
else
{
RI_ASSERT(src);
int sx = 0, sy = 0, dx = x, dy = y;
computeBlitRegion(sx, sy, dx, dy, w, h, src->getWidth(), src->getHeight(), getWidth(), getHeight());
if(w <= 0 || h <= 0)
return; //zero area
if(m_numSamples == 1)
{
for(int j=0;j<h;j++)
{
for(int i=0;i<w;i++)
{
RIfloat amask = src->readMaskPixel(sx + i, sy + j);
if(operation == VG_SET_MASK)
writeMaskCoverage(dx + i, dy + j, amask);
else
{
RIfloat aprev = readMaskCoverage(dx + i, dy + j);
RIfloat anew = 0.0f;
switch(operation)
{
case VG_UNION_MASK: anew = 1.0f - (1.0f - amask)*(1.0f - aprev); break;
case VG_INTERSECT_MASK: anew = amask * aprev; break;
default: anew = aprev * (1.0f - amask); RI_ASSERT(operation == VG_SUBTRACT_MASK); break;
}
writeMaskCoverage(dx + i, dy + j, anew);
}
}
}
}
else
{
for(int j=0;j<h;j++)
{
for(int i=0;i<w;i++)
{
RIfloat fmask = src->readMaskPixel(sx + i, sy + j);
//TODO implement dithering?
unsigned int amask = fmask > 0.5f ? (1<<m_numSamples)-1 : 0;
if(operation == VG_SET_MASK)
writeMaskMSAA(dx + i, dy + j, amask);
else
{
unsigned int aprev = readMaskMSAA(dx + i, dy + j);
unsigned int anew = 0;
switch(operation)
{
case VG_UNION_MASK: anew = amask | aprev; break;
case VG_INTERSECT_MASK: anew = amask & aprev; break;
default: anew = ~amask & aprev; RI_ASSERT(operation == VG_SUBTRACT_MASK); break;
}
writeMaskMSAA(dx + i, dy + j, anew);
}
}
}
}
}
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Surface::mask(const Surface* src, VGMaskOperation operation, int x, int y, int w, int h)
{
RI_ASSERT(w > 0 && h > 0);
if(operation == VG_CLEAR_MASK || operation == VG_FILL_MASK)
{
//intersect clear region with image bounds
Rectangle r(0,0,getWidth(),getHeight());
r.intersect(Rectangle(x,y,w,h));
if(!r.width || !r.height)
return; //intersection is empty or one of the rectangles is invalid
if(m_numSamples == 1)
{
RIfloat m = 0.0f;
if(operation == VG_FILL_MASK)
m = 1.0f;
for(int j=r.y;j<r.y + r.height;j++)
{
for(int i=r.x;i<r.x + r.width;i++)
{
writeMaskCoverage(i, j, m);
}
}
}
else
{
unsigned int m = 0;
if(operation == VG_FILL_MASK)
m = (1<<m_numSamples)-1;
for(int j=r.y;j<r.y + r.height;j++)
{
for(int i=r.x;i<r.x + r.width;i++)
{
writeMaskMSAA(i, j, m);
}
}
}
}
else
{
RI_ASSERT(src);
RI_ASSERT(m_numSamples == src->m_numSamples);
int sx = 0, sy = 0, dx = x, dy = y;
computeBlitRegion(sx, sy, dx, dy, w, h, src->getWidth(), src->getHeight(), getWidth(), getHeight());
if(w <= 0 || h <= 0)
return; //zero area
if(m_numSamples == 1)
{
for(int j=0;j<h;j++)
{
for(int i=0;i<w;i++)
{
RIfloat amask = src->readMaskCoverage(sx + i, sy + j);
if(operation == VG_SET_MASK)
writeMaskCoverage(dx + i, dy + j, amask);
else
{
RIfloat aprev = readMaskCoverage(dx + i, dy + j);
RIfloat anew = 0.0f;
switch(operation)
{
case VG_UNION_MASK: anew = 1.0f - (1.0f - amask)*(1.0f - aprev); break;
case VG_INTERSECT_MASK: anew = amask * aprev; break;
default: anew = aprev * (1.0f - amask); RI_ASSERT(operation == VG_SUBTRACT_MASK); break;
}
writeMaskCoverage(dx + i, dy + j, anew);
}
}
}
}
else
{
for(int j=0;j<h;j++)
{
for(int i=0;i<w;i++)
{
unsigned int amask = src->readMaskMSAA(sx + i, sy + j);
if(operation == VG_SET_MASK)
writeMaskMSAA(dx + i, dy + j, amask);
else
{
unsigned int aprev = readMaskMSAA(dx + i, dy + j);
unsigned int anew = 0;
switch(operation)
{
case VG_UNION_MASK: anew = amask | aprev; break;
case VG_INTERSECT_MASK: anew = amask & aprev; break;
default: anew = ~amask & aprev; RI_ASSERT(operation == VG_SUBTRACT_MASK); break;
}
writeMaskMSAA(dx + i, dy + j, anew);
}
}
}
}
}
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
RIfloat Surface::readMaskCoverage(int x, int y) const
{
RI_ASSERT(x >= 0 && x < m_width && y >= 0 && y < m_height);
RI_ASSERT(m_numSamples == 1);
return m_image->readMaskPixel(x, y);
}
void Surface::writeMaskCoverage(int x, int y, RIfloat m)
{
RI_ASSERT(x >= 0 && x < m_width && y >= 0 && y < m_height);
RI_ASSERT(m_numSamples == 1);
m_image->writeMaskPixel(x, y, m); //TODO support other than alpha formats but don't write to color channels?
}
unsigned int Surface::readMaskMSAA(int x, int y) const
{
RI_ASSERT(x >= 0 && x < m_width && y >= 0 && y < m_height);
RI_ASSERT(m_numSamples > 1);
unsigned int m = 0;
for(int i=0;i<m_numSamples;i++)
{
if(m_image->readMaskPixel(x*m_numSamples+i, y) > 0.5f) //TODO is this the right formula for converting alpha to bit mask? does it matter?
m |= 1<<i;
}
return m;
}
void Surface::writeMaskMSAA(int x, int y, unsigned int m)
{
RI_ASSERT(x >= 0 && x < m_width && y >= 0 && y < m_height);
RI_ASSERT(m_numSamples > 1);
for(int i=0;i<m_numSamples;i++)
{
RIfloat a = 0.0f;
if(m & (1<<i))
a = 1.0f;
m_image->writeMaskPixel(x*m_numSamples+i, y, a); //TODO support other than alpha formats but don't write to color channels?
}
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Color Surface::FSAAResolve(int x, int y) const
{
if(m_numSamples == 1)
return readSample(x, y, 0);
Color::InternalFormat aaFormat = getDescriptor().isLuminance() ? Color::lLA_PRE : Color::lRGBA_PRE; //antialias in linear color space
Color r(0.0f, 0.0f, 0.0f, 0.0f, aaFormat);
for(int i=0;i<m_numSamples;i++)
{
Color d = readSample(x, y, i);
d.convert(aaFormat);
r += d;
}
r *= 1.0f/m_numSamples;
return r;
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Drawable::Drawable(const Color::Descriptor& desc, int width, int height, int numSamples, int maskBits) :
m_referenceCount(0),
m_color(NULL),
m_mask(NULL)
{
RI_ASSERT(width > 0 && height > 0 && numSamples > 0 && numSamples <= 32);
RI_ASSERT(maskBits == 0 || maskBits == 1 || maskBits == 4 || maskBits == 8);
m_color = RI_NEW(Surface, (desc, width, height, numSamples)); //throws bad_alloc
m_color->addReference();
if(maskBits)
{
VGImageFormat mf = VG_A_1;
if(maskBits == 4)
mf = VG_A_4;
else if(maskBits == 8)
mf = VG_A_8;
m_mask = RI_NEW(Surface, (Color::formatToDescriptor(mf), width, height, numSamples));
m_mask->addReference();
m_mask->clear(Color(1,1,1,1,Color::sRGBA), 0, 0, width, height);
}
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Drawable::Drawable(Image* image, int maskBits) :
m_referenceCount(0),
m_color(NULL),
m_mask(NULL)
{
RI_ASSERT(maskBits == 0 || maskBits == 1 || maskBits == 4 || maskBits == 8);
RI_ASSERT(image);
m_color = RI_NEW(Surface, (image));
m_color->addReference();
if(maskBits)
{
VGImageFormat mf = VG_A_1;
if(maskBits == 4)
mf = VG_A_4;
else if(maskBits == 8)
mf = VG_A_8;
m_mask = RI_NEW(Surface, (Color::formatToDescriptor(mf), image->getWidth(), image->getHeight(), 1));
m_mask->addReference();
m_mask->clear(Color(1,1,1,1,Color::sRGBA), 0, 0, image->getWidth(), image->getHeight());
}
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Drawable::Drawable(const Color::Descriptor& desc, int width, int height, int stride, RIuint8* data, int maskBits) :
m_referenceCount(0),
m_color(NULL),
m_mask(NULL)
{
RI_ASSERT(width > 0 && height > 0);
RI_ASSERT(maskBits == 0 || maskBits == 1 || maskBits == 4 || maskBits == 8);
m_color = RI_NEW(Surface, (desc, width, height, stride, data)); //throws bad_alloc
m_color->addReference();
if(maskBits)
{
VGImageFormat mf = VG_A_1;
if(maskBits == 4)
mf = VG_A_4;
else if(maskBits == 8)
mf = VG_A_8;
m_mask = RI_NEW(Surface, (Color::formatToDescriptor(mf), width, height, 1));
m_mask->addReference();
m_mask->clear(Color(1,1,1,1,Color::sRGBA), 0, 0, width, height);
}
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Drawable::~Drawable()
{
RI_ASSERT(m_referenceCount == 0);
if(!m_color->removeReference())
RI_DELETE(m_color);
if(m_mask)
if(!m_mask->removeReference())
RI_DELETE(m_mask);
}
/*-------------------------------------------------------------------*//*!
* \brief
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void Drawable::resize(int newWidth, int newHeight)
{
Surface* oldcolor = m_color;
Surface* oldmask = m_mask;
int oldWidth = m_color->getWidth();
int oldHeight = m_color->getHeight();
//TODO check that image is not a proxy
m_color = RI_NEW(Surface, (m_color->getDescriptor(), newWidth, newHeight, m_color->getNumSamples()));
m_color->addReference();
if(m_mask)
{
m_mask = RI_NEW(Surface, (m_mask->getDescriptor(), newWidth, newHeight, m_mask->getNumSamples()));
m_mask->addReference();
}
int wmin = RI_INT_MIN(newWidth,oldWidth);
int hmin = RI_INT_MIN(newHeight,oldHeight);
m_color->clear(Color(0.0f, 0.0f, 0.0f, 0.0f, getDescriptor().internalFormat), 0, 0, m_color->getWidth(), m_color->getHeight());
m_color->blit(oldcolor, 0, 0, 0, 0, wmin, hmin);
if(m_mask)
{
m_mask->clear(Color(1.0f, 1.0f, 1.0f, 1.0f, getDescriptor().internalFormat), 0, 0, m_mask->getWidth(), m_mask->getHeight());
m_mask->blit(oldmask, 0, 0, 0, 0, wmin, hmin);
}
if(!oldcolor->removeReference())
RI_DELETE(oldcolor);
if(oldmask)
if(!oldmask->removeReference())
RI_DELETE(oldmask);
}
//==============================================================================================
} //namespace OpenVGRI
//==============================================================================================