Minor updates.
/*------------------------------------------------------------------------
*
* OpenVG 1.1 Reference Implementation
* -----------------------------------
*
* Copyright (c) 2007 The Khronos Group Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and /or associated documentation files
* (the "Materials "), to deal in the Materials without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Materials,
* and to permit persons to whom the Materials are furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Materials.
*
* THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR
* THE USE OR OTHER DEALINGS IN THE MATERIALS.
*
*//**
* \file
* \brief Implementation of Paint and pixel pipe functionality.
* \note
*//*-------------------------------------------------------------------*/
#include "riPixelPipe.h"
//==============================================================================================
namespace OpenVGRI
{
/*-------------------------------------------------------------------*//*!
* \brief Paint constructor.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Paint::Paint() :
m_paintType(VG_PAINT_TYPE_COLOR),
m_paintColor(0,0,0,1,Color::sRGBA_PRE),
m_inputPaintColor(0,0,0,1,Color::sRGBA),
m_colorRampSpreadMode(VG_COLOR_RAMP_SPREAD_PAD),
m_colorRampStops(),
m_inputColorRampStops(),
m_colorRampPremultiplied(VG_TRUE),
m_inputLinearGradientPoint0(0,0),
m_inputLinearGradientPoint1(1,0),
m_inputRadialGradientCenter(0,0),
m_inputRadialGradientFocalPoint(0,0),
m_inputRadialGradientRadius(1.0f),
m_linearGradientPoint0(0,0),
m_linearGradientPoint1(1,0),
m_radialGradientCenter(0,0),
m_radialGradientFocalPoint(0,0),
m_radialGradientRadius(1.0f),
m_patternTilingMode(VG_TILE_FILL),
m_pattern(NULL),
m_referenceCount(0)
{
Paint::GradientStop gs;
gs.offset = 0.0f;
gs.color.set(0,0,0,1,Color::sRGBA);
m_colorRampStops.push_back(gs); //throws bad_alloc
gs.offset = 1.0f;
gs.color.set(1,1,1,1,Color::sRGBA);
m_colorRampStops.push_back(gs); //throws bad_alloc
}
/*-------------------------------------------------------------------*//*!
* \brief Paint destructor.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Paint::~Paint()
{
RI_ASSERT(m_referenceCount == 0);
if(m_pattern)
{
m_pattern->removeInUse();
if(!m_pattern->removeReference())
RI_DELETE(m_pattern);
}
}
/*-------------------------------------------------------------------*//*!
* \brief PixelPipe constructor.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
PixelPipe::PixelPipe() :
m_drawable(NULL),
m_image(NULL),
m_paint(NULL),
m_defaultPaint(),
m_blendMode(VG_BLEND_SRC_OVER),
m_imageMode(VG_DRAW_IMAGE_NORMAL),
m_imageQuality(VG_IMAGE_QUALITY_FASTER),
m_tileFillColor(0,0,0,0,Color::sRGBA),
m_colorTransform(false),
m_colorTransformValues(),
m_surfaceToPaintMatrix(),
m_surfaceToImageMatrix()
{
for(int i=0;i<8;i++)
m_colorTransformValues[i] = (i < 4) ? 1.0f : 0.0f;
}
/*-------------------------------------------------------------------*//*!
* \brief PixelPipe destructor.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
PixelPipe::~PixelPipe()
{
}
/*-------------------------------------------------------------------*//*!
* \brief Sets the rendering surface.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::setDrawable(Drawable* drawable)
{
RI_ASSERT(drawable);
m_drawable = drawable;
}
/*-------------------------------------------------------------------*//*!
* \brief Sets the blend mode.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::setBlendMode(VGBlendMode blendMode)
{
RI_ASSERT(blendMode >= VG_BLEND_SRC && blendMode <= VG_BLEND_ADDITIVE);
m_blendMode = blendMode;
}
/*-------------------------------------------------------------------*//*!
* \brief Sets the mask image. NULL disables masking.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::setMask(bool masking)
{
m_masking = masking;
}
/*-------------------------------------------------------------------*//*!
* \brief Sets the image to be drawn. NULL disables image drawing.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::setImage(Image* image, VGImageMode imageMode)
{
RI_ASSERT(imageMode == VG_DRAW_IMAGE_NORMAL || imageMode == VG_DRAW_IMAGE_MULTIPLY || imageMode == VG_DRAW_IMAGE_STENCIL);
m_image = image;
m_imageMode = imageMode;
}
/*-------------------------------------------------------------------*//*!
* \brief Sets the surface-to-paint matrix.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::setSurfaceToPaintMatrix(const Matrix3x3& surfaceToPaintMatrix)
{
m_surfaceToPaintMatrix = surfaceToPaintMatrix;
}
/*-------------------------------------------------------------------*//*!
* \brief Sets the surface-to-image matrix.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::setSurfaceToImageMatrix(const Matrix3x3& surfaceToImageMatrix)
{
m_surfaceToImageMatrix = surfaceToImageMatrix;
}
/*-------------------------------------------------------------------*//*!
* \brief Sets image quality.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::setImageQuality(VGImageQuality imageQuality)
{
RI_ASSERT(imageQuality == VG_IMAGE_QUALITY_NONANTIALIASED || imageQuality == VG_IMAGE_QUALITY_FASTER || imageQuality == VG_IMAGE_QUALITY_BETTER);
m_imageQuality = imageQuality;
}
/*-------------------------------------------------------------------*//*!
* \brief Sets fill color for VG_TILE_FILL tiling mode (pattern only).
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::setTileFillColor(const Color& c)
{
m_tileFillColor = c;
m_tileFillColor.clamp();
}
/*-------------------------------------------------------------------*//*!
* \brief Sets paint.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::setPaint(const Paint* paint)
{
m_paint = paint;
if(!m_paint)
m_paint = &m_defaultPaint;
if(m_paint->m_pattern)
m_tileFillColor.convert(m_paint->m_pattern->getDescriptor().internalFormat);
}
/*-------------------------------------------------------------------*//*!
* \brief Color transform.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::setColorTransform(bool enable, RIfloat values[8])
{
m_colorTransform = enable;
for(int i=0;i<4;i++)
{
m_colorTransformValues[i] = RI_CLAMP(values[i], -127.0f, 127.0f);
m_colorTransformValues[i+4] = RI_CLAMP(values[i+4], -1.0f, 1.0f);
}
}
/*-------------------------------------------------------------------*//*!
* \brief Computes the linear gradient function at (x,y).
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::linearGradient(RIfloat& g, RIfloat& rho, RIfloat x, RIfloat y) const
{
RI_ASSERT(m_paint);
Vector2 u = m_paint->m_linearGradientPoint1 - m_paint->m_linearGradientPoint0;
RIfloat usq = dot(u,u);
if( usq <= 0.0f )
{ //points are equal, gradient is always 1.0f
g = 1.0f;
rho = 0.0f;
return;
}
RIfloat oou = 1.0f / usq;
Vector2 p(x, y);
p = affineTransform(m_surfaceToPaintMatrix, p);
p -= m_paint->m_linearGradientPoint0;
RI_ASSERT(usq >= 0.0f);
g = dot(p, u) * oou;
RIfloat dgdx = oou * u.x * m_surfaceToPaintMatrix[0][0] + oou * u.y * m_surfaceToPaintMatrix[1][0];
RIfloat dgdy = oou * u.x * m_surfaceToPaintMatrix[0][1] + oou * u.y * m_surfaceToPaintMatrix[1][1];
rho = (RIfloat)sqrt(dgdx*dgdx + dgdy*dgdy);
RI_ASSERT(rho >= 0.0f);
}
/*-------------------------------------------------------------------*//*!
* \brief Computes the radial gradient function at (x,y).
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::radialGradient(RIfloat &g, RIfloat &rho, RIfloat x, RIfloat y) const
{
RI_ASSERT(m_paint);
if( m_paint->m_radialGradientRadius <= 0.0f )
{
g = 1.0f;
rho = 0.0f;
return;
}
RIfloat r = m_paint->m_radialGradientRadius;
Vector2 c = m_paint->m_radialGradientCenter;
Vector2 f = m_paint->m_radialGradientFocalPoint;
Vector2 gx(m_surfaceToPaintMatrix[0][0], m_surfaceToPaintMatrix[1][0]);
Vector2 gy(m_surfaceToPaintMatrix[0][1], m_surfaceToPaintMatrix[1][1]);
Vector2 fp = f - c;
//clamp the focal point inside the gradient circle
RIfloat fpLen = fp.length();
if( fpLen > 0.999f * r )
fp *= 0.999f * r / fpLen;
RIfloat D = -1.0f / (dot(fp,fp) - r*r);
Vector2 p(x, y);
p = affineTransform(m_surfaceToPaintMatrix, p) - c;
Vector2 d = p - fp;
RIfloat s = (RIfloat)sqrt(r*r*dot(d,d) - RI_SQR(p.x*fp.y - p.y*fp.x));
g = (dot(fp,d) + s) * D;
if(RI_ISNAN(g))
g = 0.0f;
RIfloat dgdx = D*dot(fp,gx) + (r*r*dot(d,gx) - (gx.x*fp.y - gx.y*fp.x)*(p.x*fp.y - p.y*fp.x)) * (D / s);
RIfloat dgdy = D*dot(fp,gy) + (r*r*dot(d,gy) - (gy.x*fp.y - gy.y*fp.x)*(p.x*fp.y - p.y*fp.x)) * (D / s);
rho = (RIfloat)sqrt(dgdx*dgdx + dgdy*dgdy);
if(RI_ISNAN(rho))
rho = 0.0f;
RI_ASSERT(rho >= 0.0f);
}
/*-------------------------------------------------------------------*//*!
* \brief Returns the average color within an offset range in the color ramp.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
static Color readStopColor(const Array<Paint::GradientStop>& colorRampStops, int i, VGboolean colorRampPremultiplied)
{
RI_ASSERT(i >= 0 && i < colorRampStops.size());
Color c = colorRampStops[i].color;
RI_ASSERT(c.getInternalFormat() == Color::sRGBA);
if(colorRampPremultiplied)
c.premultiply();
return c;
}
Color PixelPipe::integrateColorRamp(RIfloat gmin, RIfloat gmax) const
{
RI_ASSERT(gmin <= gmax);
RI_ASSERT(gmin >= 0.0f && gmin <= 1.0f);
RI_ASSERT(gmax >= 0.0f && gmax <= 1.0f);
RI_ASSERT(m_paint->m_colorRampStops.size() >= 2); //there are at least two stops
Color c(0,0,0,0,m_paint->m_colorRampPremultiplied ? Color::sRGBA_PRE : Color::sRGBA);
if(gmin == 1.0f || gmax == 0.0f)
return c;
int i=0;
for(;i<m_paint->m_colorRampStops.size()-1;i++)
{
if(gmin >= m_paint->m_colorRampStops[i].offset && gmin < m_paint->m_colorRampStops[i+1].offset)
{
RIfloat s = m_paint->m_colorRampStops[i].offset;
RIfloat e = m_paint->m_colorRampStops[i+1].offset;
RI_ASSERT(s < e);
RIfloat g = (gmin - s) / (e - s);
Color sc = readStopColor(m_paint->m_colorRampStops, i, m_paint->m_colorRampPremultiplied);
Color ec = readStopColor(m_paint->m_colorRampStops, i+1, m_paint->m_colorRampPremultiplied);
Color rc = (1.0f-g) * sc + g * ec;
//subtract the average color from the start of the stop to gmin
c -= 0.5f*(gmin - s)*(sc + rc);
break;
}
}
for(;i<m_paint->m_colorRampStops.size()-1;i++)
{
RIfloat s = m_paint->m_colorRampStops[i].offset;
RIfloat e = m_paint->m_colorRampStops[i+1].offset;
RI_ASSERT(s <= e);
Color sc = readStopColor(m_paint->m_colorRampStops, i, m_paint->m_colorRampPremultiplied);
Color ec = readStopColor(m_paint->m_colorRampStops, i+1, m_paint->m_colorRampPremultiplied);
//average of the stop
c += 0.5f*(e-s)*(sc + ec);
if(gmax >= m_paint->m_colorRampStops[i].offset && gmax < m_paint->m_colorRampStops[i+1].offset)
{
RIfloat g = (gmax - s) / (e - s);
Color rc = (1.0f-g) * sc + g * ec;
//subtract the average color from gmax to the end of the stop
c -= 0.5f*(e - gmax)*(rc + ec);
break;
}
}
return c;
}
/*-------------------------------------------------------------------*//*!
* \brief Maps a gradient function value to a color.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
Color PixelPipe::colorRamp(RIfloat gradient, RIfloat rho) const
{
RI_ASSERT(m_paint);
RI_ASSERT(rho >= 0.0f);
Color c(0,0,0,0,m_paint->m_colorRampPremultiplied ? Color::sRGBA_PRE : Color::sRGBA);
Color avg;
if(rho == 0.0f)
{ //filter size is zero or gradient is degenerate
switch(m_paint->m_colorRampSpreadMode)
{
case VG_COLOR_RAMP_SPREAD_PAD:
gradient = RI_CLAMP(gradient, 0.0f, 1.0f);
break;
case VG_COLOR_RAMP_SPREAD_REFLECT:
{
RIfloat g = RI_MOD(gradient, 2.0f);
gradient = (g < 1.0f) ? g : 2.0f - g;
break;
}
default:
RI_ASSERT(m_paint->m_colorRampSpreadMode == VG_COLOR_RAMP_SPREAD_REPEAT);
gradient = gradient - (RIfloat)floor(gradient);
break;
}
RI_ASSERT(gradient >= 0.0f && gradient <= 1.0f);
for(int i=0;i<m_paint->m_colorRampStops.size()-1;i++)
{
if(gradient >= m_paint->m_colorRampStops[i].offset && gradient < m_paint->m_colorRampStops[i+1].offset)
{
RIfloat s = m_paint->m_colorRampStops[i].offset;
RIfloat e = m_paint->m_colorRampStops[i+1].offset;
RI_ASSERT(s < e);
RIfloat g = RI_CLAMP((gradient - s) / (e - s), 0.0f, 1.0f); //clamp needed due to numerical inaccuracies
Color sc = readStopColor(m_paint->m_colorRampStops, i, m_paint->m_colorRampPremultiplied);
Color ec = readStopColor(m_paint->m_colorRampStops, i+1, m_paint->m_colorRampPremultiplied);
return (1.0f-g) * sc + g * ec; //return interpolated value
}
}
return readStopColor(m_paint->m_colorRampStops, m_paint->m_colorRampStops.size()-1, m_paint->m_colorRampPremultiplied);
}
RIfloat gmin = gradient - rho*0.5f; //filter starting from the gradient point (if starts earlier, radial gradient center will be an average of the first and the last stop, which doesn't look good)
RIfloat gmax = gradient + rho*0.5f;
switch(m_paint->m_colorRampSpreadMode)
{
case VG_COLOR_RAMP_SPREAD_PAD:
{
if(gmin < 0.0f)
c += (RI_MIN(gmax, 0.0f) - gmin) * readStopColor(m_paint->m_colorRampStops, 0, m_paint->m_colorRampPremultiplied);
if(gmax > 1.0f)
c += (gmax - RI_MAX(gmin, 1.0f)) * readStopColor(m_paint->m_colorRampStops, m_paint->m_colorRampStops.size()-1, m_paint->m_colorRampPremultiplied);
gmin = RI_CLAMP(gmin, 0.0f, 1.0f);
gmax = RI_CLAMP(gmax, 0.0f, 1.0f);
c += integrateColorRamp(gmin, gmax);
c *= 1.0f/rho;
c.clamp(); //clamp needed due to numerical inaccuracies
return c;
}
case VG_COLOR_RAMP_SPREAD_REFLECT:
{
avg = integrateColorRamp(0.0f, 1.0f);
RIfloat gmini = (RIfloat)floor(gmin);
RIfloat gmaxi = (RIfloat)floor(gmax);
c = (gmaxi + 1.0f - gmini) * avg; //full ramps
//subtract beginning
if(((int)gmini) & 1)
c -= integrateColorRamp(RI_CLAMP(1.0f - (gmin - gmini), 0.0f, 1.0f), 1.0f);
else
c -= integrateColorRamp(0.0f, RI_CLAMP(gmin - gmini, 0.0f, 1.0f));
//subtract end
if(((int)gmaxi) & 1)
c -= integrateColorRamp(0.0f, RI_CLAMP(1.0f - (gmax - gmaxi), 0.0f, 1.0f));
else
c -= integrateColorRamp(RI_CLAMP(gmax - gmaxi, 0.0f, 1.0f), 1.0f);
break;
}
default:
{
RI_ASSERT(m_paint->m_colorRampSpreadMode == VG_COLOR_RAMP_SPREAD_REPEAT);
avg = integrateColorRamp(0.0f, 1.0f);
RIfloat gmini = (RIfloat)floor(gmin);
RIfloat gmaxi = (RIfloat)floor(gmax);
c = (gmaxi + 1.0f - gmini) * avg; //full ramps
c -= integrateColorRamp(0.0f, RI_CLAMP(gmin - gmini, 0.0f, 1.0f)); //subtract beginning
c -= integrateColorRamp(RI_CLAMP(gmax - gmaxi, 0.0f, 1.0f), 1.0f); //subtract end
break;
}
}
//divide color by the length of the range
c *= 1.0f / rho;
c.clamp(); //clamp needed due to numerical inaccuracies
//hide aliasing by fading to the average color
const RIfloat fadeStart = 0.5f;
const RIfloat fadeMultiplier = 2.0f; //the larger, the earlier fade to average is done
if(rho < fadeStart)
return c;
RIfloat ratio = RI_MIN((rho - fadeStart) * fadeMultiplier, 1.0f);
return ratio * avg + (1.0f - ratio) * c;
}
/*-------------------------------------------------------------------*//*!
* \brief Computes blend.
* \param
* \return
* \note premultiplied blending formulas
//src
a = asrc
r = rsrc
//src over
a = asrc + adst * (1-asrc)
r = rsrc + rdst * (1-asrc)
//dst over
a = asrc * (1-adst) + adst
r = rsrc * (1-adst) + adst
//src in
a = asrc * adst
r = rsrc * adst
//dst in
a = adst * asrc
r = rdst * asrc
//multiply
a = asrc + adst * (1-asrc)
r = rsrc * (1-adst) + rdst * (1-asrc) + rsrc * rdst
//screen
a = asrc + adst * (1-asrc)
r = rsrc + rdst - rsrc * rdst
//darken
a = asrc + adst * (1-asrc)
r = MIN(rsrc + rdst * (1-asrc), rdst + rsrc * (1-adst))
//lighten
a = asrc + adst * (1-asrc)
r = MAX(rsrc + rdst * (1-asrc), rdst + rsrc * (1-adst))
//additive
a = MIN(asrc+adst,1)
r = rsrc + rdst
*//*-------------------------------------------------------------------*/
Color PixelPipe::blend(const Color& s, RIfloat ar, RIfloat ag, RIfloat ab, const Color& d, VGBlendMode blendMode) const
{
//apply blending in the premultiplied format
Color r(0,0,0,0,d.getInternalFormat());
RI_ASSERT(s.a >= 0.0f && s.a <= 1.0f);
RI_ASSERT(s.r >= 0.0f && s.r <= s.a && s.r <= ar);
RI_ASSERT(s.g >= 0.0f && s.g <= s.a && s.g <= ag);
RI_ASSERT(s.b >= 0.0f && s.b <= s.a && s.b <= ab);
RI_ASSERT(d.a >= 0.0f && d.a <= 1.0f);
RI_ASSERT(d.r >= 0.0f && d.r <= d.a);
RI_ASSERT(d.g >= 0.0f && d.g <= d.a);
RI_ASSERT(d.b >= 0.0f && d.b <= d.a);
switch(blendMode)
{
case VG_BLEND_SRC:
r = s;
break;
case VG_BLEND_SRC_OVER:
r.r = s.r + d.r * (1.0f - ar);
r.g = s.g + d.g * (1.0f - ag);
r.b = s.b + d.b * (1.0f - ab);
r.a = s.a + d.a * (1.0f - s.a);
break;
case VG_BLEND_DST_OVER:
r.r = s.r * (1.0f - d.a) + d.r;
r.g = s.g * (1.0f - d.a) + d.g;
r.b = s.b * (1.0f - d.a) + d.b;
r.a = s.a * (1.0f - d.a) + d.a;
break;
case VG_BLEND_SRC_IN:
r.r = s.r * d.a;
r.g = s.g * d.a;
r.b = s.b * d.a;
r.a = s.a * d.a;
break;
case VG_BLEND_DST_IN:
r.r = d.r * ar;
r.g = d.g * ag;
r.b = d.b * ab;
r.a = d.a * s.a;
break;
case VG_BLEND_MULTIPLY:
r.r = s.r * (1.0f - d.a + d.r) + d.r * (1.0f - ar);
r.g = s.g * (1.0f - d.a + d.g) + d.g * (1.0f - ag);
r.b = s.b * (1.0f - d.a + d.b) + d.b * (1.0f - ab);
r.a = s.a + d.a * (1.0f - s.a);
break;
case VG_BLEND_SCREEN:
r.r = s.r + d.r * (1.0f - s.r);
r.g = s.g + d.g * (1.0f - s.g);
r.b = s.b + d.b * (1.0f - s.b);
r.a = s.a + d.a * (1.0f - s.a);
break;
case VG_BLEND_DARKEN:
r.r = RI_MIN(s.r + d.r * (1.0f - ar), d.r + s.r * (1.0f - d.a));
r.g = RI_MIN(s.g + d.g * (1.0f - ag), d.g + s.g * (1.0f - d.a));
r.b = RI_MIN(s.b + d.b * (1.0f - ab), d.b + s.b * (1.0f - d.a));
r.a = s.a + d.a * (1.0f - s.a);
break;
case VG_BLEND_LIGHTEN:
r.r = RI_MAX(s.r + d.r * (1.0f - ar), d.r + s.r * (1.0f - d.a));
r.g = RI_MAX(s.g + d.g * (1.0f - ag), d.g + s.g * (1.0f - d.a));
r.b = RI_MAX(s.b + d.b * (1.0f - ab), d.b + s.b * (1.0f - d.a));
//although the statement below is equivalent to r.a = s.a + d.a * (1.0f - s.a)
//in practice there can be a very slight difference because
//of the max operation in the blending formula that may cause color to exceed alpha.
//Because of this, we compute the result both ways and return the maximum.
r.a = RI_MAX(s.a + d.a * (1.0f - s.a), d.a + s.a * (1.0f - d.a));
break;
default:
RI_ASSERT(blendMode == VG_BLEND_ADDITIVE);
r.r = RI_MIN(s.r + d.r, 1.0f);
r.g = RI_MIN(s.g + d.g, 1.0f);
r.b = RI_MIN(s.b + d.b, 1.0f);
r.a = RI_MIN(s.a + d.a, 1.0f);
break;
}
return r;
}
/*-------------------------------------------------------------------*//*!
* \brief Applies color transform.
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::colorTransform(Color& c) const
{
if(m_colorTransform)
{
c.unpremultiply();
c.luminanceToRGB();
c.r = c.r * m_colorTransformValues[0] + m_colorTransformValues[4];
c.g = c.g * m_colorTransformValues[1] + m_colorTransformValues[5];
c.b = c.b * m_colorTransformValues[2] + m_colorTransformValues[6];
c.a = c.a * m_colorTransformValues[3] + m_colorTransformValues[7];
c.clamp();
c.premultiply();
}
}
/*-------------------------------------------------------------------*//*!
* \brief Applies paint, image drawing, masking and blending at pixel (x,y).
* \param
* \return
* \note
*//*-------------------------------------------------------------------*/
void PixelPipe::pixelPipe(int x, int y, RIfloat coverage, unsigned int sampleMask) const
{
RI_ASSERT(m_drawable);
RI_ASSERT(sampleMask);
RI_ASSERT(coverage > 0.0f);
Color::InternalFormat dstFormat = (Color::InternalFormat)(m_drawable->getDescriptor().internalFormat | Color::PREMULTIPLIED);
//evaluate paint
RI_ASSERT(m_paint);
Color s;
switch(m_paint->m_paintType)
{
case VG_PAINT_TYPE_COLOR:
s = m_paint->m_paintColor;
break;
case VG_PAINT_TYPE_LINEAR_GRADIENT:
{
RIfloat g, rho;
linearGradient(g, rho, x+0.5f, y+0.5f);
s = colorRamp(g, rho);
RI_ASSERT((s.getInternalFormat() == Color::sRGBA && !m_paint->m_colorRampPremultiplied) || (s.getInternalFormat() == Color::sRGBA_PRE && m_paint->m_colorRampPremultiplied));
s.premultiply();
break;
}
case VG_PAINT_TYPE_RADIAL_GRADIENT:
{
RIfloat g, rho;
radialGradient(g, rho, x+0.5f, y+0.5f);
s = colorRamp(g, rho);
RI_ASSERT((s.getInternalFormat() == Color::sRGBA && !m_paint->m_colorRampPremultiplied) || (s.getInternalFormat() == Color::sRGBA_PRE && m_paint->m_colorRampPremultiplied));
s.premultiply();
break;
}
default:
RI_ASSERT(m_paint->m_paintType == VG_PAINT_TYPE_PATTERN);
if(m_paint->m_pattern)
s = m_paint->m_pattern->resample(x+0.5f, y+0.5f, m_surfaceToPaintMatrix, m_imageQuality, m_paint->m_patternTilingMode, m_tileFillColor);
else
s = m_paint->m_paintColor;
break;
}
s.assertConsistency();
//apply image (vgDrawImage only)
//1. paint: convert paint to dst space
//2. image: convert image to dst space
//3. paint MULTIPLY image: convert paint to image number of channels, multiply with image, and convert to dst
//4. paint STENCIL image: convert paint to dst, convert image to dst number of channels, multiply
//color transform:
//paint => transform paint color
//image normal => transform image color
//image multiply => transform paint*image color
//image stencil => transform paint color
RIfloat ar = 0.0f, ag = 0.0f, ab = 0.0f;
if(m_image)
{
Color im = m_image->resample(x+0.5f, y+0.5f, m_surfaceToImageMatrix, m_imageQuality, VG_TILE_PAD, Color(0,0,0,0,m_image->getDescriptor().internalFormat));
im.assertConsistency();
switch(m_imageMode)
{
case VG_DRAW_IMAGE_NORMAL:
s = im;
colorTransform(s);
ar = s.a;
ag = s.a;
ab = s.a;
s.convert(dstFormat); //convert image color to destination color space
break;
case VG_DRAW_IMAGE_MULTIPLY:
//the result will be in image color space, except when paint is RGB and image is L the result will be RGB.
//paint == RGB && image == RGB: RGB*RGB
//paint == RGB && image == L : RGB*LLL
//paint == L && image == RGB: LLL*RGB
//paint == L && image == L : L*L
RI_ASSERT(m_surfaceToPaintMatrix.isAffine());
if(!s.isLuminance() && im.isLuminance())
im.convert((Color::InternalFormat)(im.getInternalFormat() & ~Color::LUMINANCE));
im.r *= s.r;
im.g *= s.g;
im.b *= s.b;
im.a *= s.a;
s = im; //use image color space
colorTransform(s);
ar = s.a;
ag = s.a;
ab = s.a;
s.convert(dstFormat); //convert resulting color to destination color space
break;
default:
//the result will be in paint color space.
//dst == RGB && image == RGB: RGB*RGB
//dst == RGB && image == L : RGB*LLL
//dst == L && image == RGB: L*(0.2126 R + 0.7152 G + 0.0722 B)
//dst == L && image == L : L*L
RI_ASSERT(m_imageMode == VG_DRAW_IMAGE_STENCIL);
if(dstFormat & Color::LUMINANCE && !im.isLuminance())
{
im.r = im.g = im.b = RI_MIN(0.2126f*im.r + 0.7152f*im.g + 0.0722f*im.b, im.a);
}
RI_ASSERT(m_surfaceToPaintMatrix.isAffine());
//s and im are both in premultiplied format. Each image channel acts as an alpha channel.
colorTransform(s);
s.convert(dstFormat); //convert paint color to destination space already here, since convert cannot deal with per channel alphas used in this mode.
//compute per channel alphas
ar = s.a * im.r;
ag = s.a * im.g;
ab = s.a * im.b;
//premultiply each channel by per channel alphas from the image
s.r *= im.r;
s.g *= im.g;
s.b *= im.b;
s.a *= im.a;
//in nonpremultiplied form the result is
// s.rgb = paint.a * paint.rgb * image.a * image.rgb
// s.a = paint.a * image.a
// argb = paint.a * image.a * image.rgb
break;
}
}
else
{ //paint only
colorTransform(s);
ar = s.a;
ag = s.a;
ab = s.a;
s.convert(dstFormat); //convert paint color to destination color space
}
RI_ASSERT(s.getInternalFormat() == Color::lRGBA_PRE || s.getInternalFormat() == Color::sRGBA_PRE || s.getInternalFormat() == Color::lLA_PRE || s.getInternalFormat() == Color::sLA_PRE);
s.assertConsistency();
Surface* colorBuffer = m_drawable->getColorBuffer();
Surface* maskBuffer = m_drawable->getMaskBuffer();
RI_ASSERT(colorBuffer);
if(m_drawable->getNumSamples() == 1)
{ //coverage-based antialiasing
RIfloat cov = coverage;
if(m_masking && maskBuffer)
{
cov *= maskBuffer->readMaskCoverage(x, y);
if(cov == 0.0f)
return;
}
//read destination color
Color d = colorBuffer->readSample(x, y, 0);
d.premultiply();
RI_ASSERT(dstFormat == Color::lRGBA_PRE || dstFormat == Color::sRGBA_PRE || dstFormat == Color::lLA_PRE || dstFormat == Color::sLA_PRE);
//blend
Color r = blend(s, ar, ag, ab, d, m_blendMode);
//apply antialiasing in linear color space
Color::InternalFormat aaFormat = (dstFormat & Color::LUMINANCE) ? Color::lLA_PRE : Color::lRGBA_PRE;
r.convert(aaFormat);
d.convert(aaFormat);
r = r * cov + d * (1.0f - cov);
//write result to the destination surface
r.convert(colorBuffer->getDescriptor().internalFormat);
colorBuffer->writeSample(x, y, 0, r);
}
else
{ //multisampling FSAA
if(m_masking && maskBuffer)
{
sampleMask &= maskBuffer->readMaskMSAA(x, y);
if(!sampleMask)
return;
}
{
for(int i=0;i<m_drawable->getNumSamples();i++)
{
if(sampleMask & (1<<i)) //1-bit coverage
{
//read destination color
Color d = colorBuffer->readSample(x, y, i);
d.premultiply();
RI_ASSERT(dstFormat == Color::lRGBA_PRE || dstFormat == Color::sRGBA_PRE || dstFormat == Color::lLA_PRE || dstFormat == Color::sLA_PRE);
//blend
Color r = blend(s, ar, ag, ab, d, m_blendMode);
//write result to the destination surface
r.convert(colorBuffer->getDescriptor().internalFormat);
colorBuffer->writeSample(x, y, i, r);
}
}
}
}
}
//=======================================================================
} //namespace OpenVGRI