egl/sfopenvg/riMath.h
author Faisal Memon <faisal.memon@nokia.com>
Fri, 25 Jun 2010 17:49:58 +0100
branchEGL_MERGE
changeset 105 158b2308cc08
parent 57 2bf8a359aa2f
child 88 a5a3a8cb368e
permissions -rw-r--r--
Fix def files so that the implementation agnostic interface definition has no non-standards defined entry points, and change the eglrefimpl specific implementation to place its private entry points high up in the ordinal order space in the implementation region, not the standards based entrypoints region.

#ifndef __RIMATH_H
#define __RIMATH_H

/*------------------------------------------------------------------------
 *
 * OpenVG 1.1 Reference Implementation
 * -----------------------------------
 *
 * Copyright (c) 2007 The Khronos Group Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and /or associated documentation files
 * (the "Materials "), to deal in the Materials without restriction,
 * including without limitation the rights to use, copy, modify, merge,
 * publish, distribute, sublicense, and/or sell copies of the Materials,
 * and to permit persons to whom the Materials are furnished to do so,
 * subject to the following conditions: 
 *
 * The above copyright notice and this permission notice shall be included 
 * in all copies or substantial portions of the Materials. 
 *
 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR
 * THE USE OR OTHER DEALINGS IN THE MATERIALS.
 *
 *//**
 * \file
 * \brief	Math functions, Vector and Matrix classes.
 * \note	
 *//*-------------------------------------------------------------------*/

#ifndef __RIDEFS_H
#include "riDefs.h"
#endif

#include <math.h>

namespace OpenVGRI
{

/*-------------------------------------------------------------------*//*!
* \brief	
* \param	
* \return	
* \note		
*//*-------------------------------------------------------------------*/

RI_INLINE int		RI_ISNAN(float a)
{
	RIfloatInt p;
	p.f = a;
	unsigned int exponent = (p.i>>23) & 0xff;
	unsigned int mantissa = p.i & 0x7fffff;
	if(exponent == 255 && mantissa)
		return 1;
	return 0;
}

#if (RI_MANTISSA_BITS > 23)
#error RI_MANTISSA_BITS is greater than 23
#elif (RI_EXPONENT_BITS > 8)
#error RI_EXPONENT_BITS is greater than 8
#elif (RI_MANTISSA_BITS != 23) || (RI_EXPONENT_BITS != 8)

class RIfloat
{
public:
	RIfloat() : v(0.0f)						{ removeBits(); }
	RIfloat(float a) : v(a)					{ removeBits(); }
	RIfloat(double a) : v((float)a)			{ removeBits(); }
	RIfloat(int a) : v((float)a)			{ removeBits(); }
	RIfloat(unsigned int a) : v((float)a)	{ removeBits(); }
	RIfloat&	operator=(const RIfloat &a)	{ v = a.v; removeBits(); return *this; }
	RIfloat&	operator+=(const RIfloat &a){ v += a.v; removeBits(); return *this; }
	RIfloat&	operator-=(const RIfloat &a){ v -= a.v; removeBits(); return *this; }
	RIfloat&	operator*=(const RIfloat &a){ v *= a.v; removeBits(); return *this; }
	RIfloat&	operator/=(const RIfloat &a){ v /= a.v; removeBits(); return *this; }
	RIfloat		operator-() const			{ return -v; }
	operator float() const					{ return v; }
	operator double() const					{ return (double)v; }
	operator int() const					{ return (int)v; }

	friend RIfloat	operator+(const RIfloat &a, const RIfloat &b);
	friend RIfloat	operator+(float a, const RIfloat &b);
	friend RIfloat	operator+(const RIfloat &a, float b);
	friend RIfloat	operator-(const RIfloat &a, const RIfloat &b);
	friend RIfloat	operator-(float a, const RIfloat &b);
	friend RIfloat	operator-(const RIfloat &a, float b);
	friend RIfloat	operator*(const RIfloat &a, const RIfloat &b);
	friend RIfloat	operator*(float a, const RIfloat &b);
	friend RIfloat	operator*(const RIfloat &a, float b);
	friend RIfloat	operator/(const RIfloat &a, const RIfloat &b);
	friend RIfloat	operator/(float a, const RIfloat &b);
	friend RIfloat	operator/(const RIfloat &a, float b);

	friend bool		operator<(const RIfloat &a, const RIfloat &b);
	friend bool		operator<(float a, const RIfloat &b);
	friend bool		operator<(const RIfloat &a, float b);
	friend bool		operator>(const RIfloat &a, const RIfloat &b);
	friend bool		operator>(float a, const RIfloat &b);
	friend bool		operator>(const RIfloat &a, float b);
	friend bool		operator<=(const RIfloat &a, const RIfloat &b);
	friend bool		operator<=(float a, const RIfloat &b);
	friend bool		operator<=(const RIfloat &a, float b);
	friend bool		operator>=(const RIfloat &a, const RIfloat &b);
	friend bool		operator>=(float a, const RIfloat &b);
	friend bool		operator>=(const RIfloat &a, float b);
	friend bool		operator==(const RIfloat &a, const RIfloat &b);
	friend bool		operator==(float a, const RIfloat &b);
	friend bool		operator==(const RIfloat &a, float b);
	friend bool		operator!=(const RIfloat &a, const RIfloat &b);
	friend bool		operator!=(float a, const RIfloat &b);
	friend bool		operator!=(const RIfloat &a, float b);
private:
	void	removeBits()
	{
		RIfloatInt p;
		p.f = v;
		unsigned int exponent = (p.i>>23) & 0xff;
		if(exponent == 0 || exponent == 255)
			return;	//zero, denormal, infinite, or NaN

		p.i &= ~((1<<(23-RI_MANTISSA_BITS))-1);

#if (RI_EXPONENT_BITS != 8)
		if (exponent > 127 + (1 << (RI_EXPONENT_BITS-1)))
			exponent = 127 + (1 << (RI_EXPONENT_BITS-1));

		if (exponent < 127 + 1 - (1 << (RI_EXPONENT_BITS-1)))
			exponent = 127 + 1 - (1 << (RI_EXPONENT_BITS-1));

		p.i &= ~(0xff<<23);
		p.i |= exponent<<23;
#endif
		v = p.f;
	}

	float		v;
};

RI_INLINE RIfloat operator+(const RIfloat &a, const RIfloat &b)	{ return RIfloat(a.v+b.v); }
RI_INLINE RIfloat operator+(float a, const RIfloat &b)			{ return RIfloat(a+b.v); }
RI_INLINE RIfloat operator+(const RIfloat &a, float b)			{ return RIfloat(a.v+b); }
RI_INLINE RIfloat operator-(const RIfloat &a, const RIfloat &b)	{ return RIfloat(a.v-b.v); }
RI_INLINE RIfloat operator-(float a, const RIfloat &b)			{ return RIfloat(a-b.v); }
RI_INLINE RIfloat operator-(const RIfloat &a, float b)			{ return RIfloat(a.v-b); }
RI_INLINE RIfloat operator*(const RIfloat &a, const RIfloat &b)	{ return RIfloat(a.v*b.v); }
RI_INLINE RIfloat operator*(float a, const RIfloat &b)			{ return RIfloat(a*b.v); }
RI_INLINE RIfloat operator*(const RIfloat &a, float b)			{ return RIfloat(a.v*b); }
RI_INLINE RIfloat operator/(const RIfloat &a, const RIfloat &b)	{ return RIfloat(a.v/b.v); }
RI_INLINE RIfloat operator/(float a, const RIfloat &b)			{ return RIfloat(a/b.v); }
RI_INLINE RIfloat operator/(const RIfloat &a, float b)			{ return RIfloat(a.v/b); }

RI_INLINE bool operator<(const RIfloat &a, const RIfloat &b)	{ return a.v < b.v ? true : false; }
RI_INLINE bool operator<(float a, const RIfloat &b)				{ return a < b.v ? true : false; }
RI_INLINE bool operator<(const RIfloat &a, float b)				{ return a.v < b ? true : false; }
RI_INLINE bool operator>(const RIfloat &a, const RIfloat &b)	{ return a.v > b.v ? true : false; }
RI_INLINE bool operator>(float a, const RIfloat &b)				{ return a > b.v ? true : false; }
RI_INLINE bool operator>(const RIfloat &a, float b)				{ return a.v > b ? true : false; }
RI_INLINE bool operator<=(const RIfloat &a, const RIfloat &b)	{ return a.v <= b.v ? true : false; }
RI_INLINE bool operator<=(float a, const RIfloat &b)			{ return a <= b.v ? true : false; }
RI_INLINE bool operator<=(const RIfloat &a, float b)			{ return a.v <= b ? true : false; }
RI_INLINE bool operator>=(const RIfloat &a, const RIfloat &b)	{ return a.v >= b.v ? true : false; }
RI_INLINE bool operator>=(float a, const RIfloat &b)			{ return a >= b.v ? true : false; }
RI_INLINE bool operator>=(const RIfloat &a, float b)			{ return a.v >= b ? true : false; }
RI_INLINE bool operator==(const RIfloat &a, const RIfloat &b)	{ return a.v == b.v ? true : false; }
RI_INLINE bool operator==(float a, const RIfloat &b)			{ return a == b.v ? true : false; }
RI_INLINE bool operator==(const RIfloat &a, float b)			{ return a.v == b ? true : false; }
RI_INLINE bool operator!=(const RIfloat &a, const RIfloat &b)	{ return a.v != b.v ? true : false; }
RI_INLINE bool operator!=(float a, const RIfloat &b)			{ return a != b.v ? true : false; }
RI_INLINE bool operator!=(const RIfloat &a, float b)			{ return a.v != b ? true : false; }

#else
typedef float RIfloat;
#endif

#define	PI						3.141592654f

RI_INLINE RIfloat	RI_MAX(RIfloat a, RIfloat b)				{ return (a > b) ? a : b; }
RI_INLINE RIfloat	RI_MIN(RIfloat a, RIfloat b)				{ return (a < b) ? a : b; }
RI_INLINE RIfloat	RI_CLAMP(RIfloat a, RIfloat l, RIfloat h)	{ if(RI_ISNAN(a)) return l; RI_ASSERT(l <= h); return (a < l) ? l : (a > h) ? h : a; }
RI_INLINE void		RI_SWAP(RIfloat &a, RIfloat &b)				{ RIfloat tmp = a; a = b; b = tmp; }
RI_INLINE RIfloat	RI_ABS(RIfloat a)							{ return (a < 0.0f) ? -a : a; }
RI_INLINE RIfloat	RI_SQR(RIfloat a)							{ return a * a; }
RI_INLINE RIfloat	RI_DEG_TO_RAD(RIfloat a)					{ return a * PI / 180.0f; }
RI_INLINE RIfloat	RI_RAD_TO_DEG(RIfloat a)					{ return a * 180.0f/ PI; }
RI_INLINE RIfloat	RI_MOD(RIfloat a, RIfloat b)				{ if(RI_ISNAN(a) || RI_ISNAN(b)) return 0.0f; RI_ASSERT(b >= 0.0f); if(b == 0.0f) return 0.0f; RIfloat f = (RIfloat)fmod(a, b); if(f < 0.0f) f += b; RI_ASSERT(f >= 0.0f && f <= b); return f; }

RI_INLINE int		RI_INT_MAX(int a, int b)			{ return (a > b) ? a : b; }
RI_INLINE int		RI_INT_MIN(int a, int b)			{ return (a < b) ? a : b; }
RI_INLINE void		RI_INT_SWAP(int &a, int &b)			{ int tmp = a; a = b; b = tmp; }
RI_INLINE int		RI_INT_MOD(int a, int b)			{ RI_ASSERT(b >= 0); if(!b) return 0; int i = a % b; if(i < 0) i += b; RI_ASSERT(i >= 0 && i < b); return i; }
RI_INLINE int		RI_INT_ADDSATURATE(int a, int b)	{ RI_ASSERT(b >= 0); int r = a + b; return (r >= a) ? r : RI_INT32_MAX; }

class Matrix3x3;
class Vector2;
class Vector3;

//==============================================================================================

//MatrixRxC, R = number of rows, C = number of columns
//indexing: matrix[row][column]
//Matrix3x3 inline functions cannot be inside the class because Vector3 is not defined yet when Matrix3x3 is defined

class Matrix3x3
{
public:
	RI_INLINE					Matrix3x3		();						//initialized to identity
	RI_INLINE					Matrix3x3		( const Matrix3x3& m );
	RI_INLINE					Matrix3x3		( RIfloat m00, RIfloat m01, RIfloat m02, RIfloat m10, RIfloat m11, RIfloat m12, RIfloat m20, RIfloat m21, RIfloat m22 );
	RI_INLINE					~Matrix3x3		();
	RI_INLINE Matrix3x3&		operator=		( const Matrix3x3& m );
	RI_INLINE Vector3&			operator[]		( int i );				//returns a row vector
	RI_INLINE const Vector3&	operator[]		( int i ) const;
	RI_INLINE void				set				( RIfloat m00, RIfloat m01, RIfloat m02, RIfloat m10, RIfloat m11, RIfloat m12, RIfloat m20, RIfloat m21, RIfloat m22 );
	RI_INLINE const Vector3		getRow			( int i ) const;
	RI_INLINE const Vector3		getColumn		( int i ) const;
	RI_INLINE void				setRow			( int i, const Vector3& v );
	RI_INLINE void				setColumn		( int i, const Vector3& v );
	RI_INLINE void				operator*=		( const Matrix3x3& m );
	RI_INLINE void				operator*=		( RIfloat f );
	RI_INLINE void				operator+=		( const Matrix3x3& m );
	RI_INLINE void				operator-=		( const Matrix3x3& m );
	RI_INLINE const Matrix3x3	operator-		() const;
	RI_INLINE void				identity		();
	RI_INLINE void				transpose		();
	bool						invert			();	//if the matrix is singular, returns false and leaves it unmodified
	RI_INLINE RIfloat				det				() const;
	RI_INLINE bool				isAffine		() const;

private:
	RIfloat						matrix[3][3];
};

//==============================================================================================

class Vector2
{
public:
	RI_INLINE					Vector2			() : x(0.0f), y(0.0f)					{}
	RI_INLINE					Vector2			( const Vector2& v ) : x(v.x), y(v.y)	{}
	RI_INLINE					Vector2			( RIfloat fx, RIfloat fy ) : x(fx), y(fy)	{}
	RI_INLINE					~Vector2		()								{}
	RI_INLINE Vector2&			operator=		( const Vector2& v )			{ x = v.x; y = v.y; return *this; }
	RI_INLINE RIfloat&			operator[]		( int i )						{ RI_ASSERT(i>=0&&i<2); return (&x)[i]; }
	RI_INLINE const RIfloat&	operator[]		( int i ) const					{ RI_ASSERT(i>=0&&i<2); return (&x)[i]; }
	RI_INLINE void				set				( RIfloat fx, RIfloat fy )			{ x = fx; y = fy; }
	RI_INLINE void				operator*=		( RIfloat f )						{ x *= f; y *= f; }
	RI_INLINE void				operator+=		( const Vector2& v )			{ x += v.x; y += v.y; }
	RI_INLINE void				operator-=		( const Vector2& v )			{ x -= v.x; y -= v.y; }
	RI_INLINE const Vector2		operator-		() const						{ return Vector2(-x,-y); }
	//if the vector is zero, returns false and leaves it unmodified
	RI_INLINE bool				normalize		()								{ double l = (double)x*(double)x+(double)y*(double)y; if( l == 0.0 ) return false; l = 1.0 / sqrt(l); x = (RIfloat)((double)x * l); y = (RIfloat)((double)y * l); return true; }
	RI_INLINE RIfloat			length			() const						{ return (RIfloat)sqrt((double)x*(double)x+(double)y*(double)y); }
	RI_INLINE void				scale			( const Vector2& v )			{ x *= v.x; y *= v.y; }	//component-wise scale
	RI_INLINE void				negate			()								{ x = -x; y = -y; }

	RIfloat						x,y;
};

//==============================================================================================

class Vector3
{
public:
	RI_INLINE					Vector3			() : x(0.0f), y(0.0f), z(0.0f)							{}
	RI_INLINE					Vector3			( const Vector3& v ) : x(v.x), y(v.y), z(v.z)			{}
	RI_INLINE					Vector3			( RIfloat fx, RIfloat fy, RIfloat fz ) : x(fx), y(fy), z(fz)	{}
	RI_INLINE					~Vector3		()								{}
	RI_INLINE Vector3&			operator=		( const Vector3& v )			{ x = v.x; y = v.y; z = v.z; return *this; }
	RI_INLINE RIfloat&			operator[]		( int i )						{ RI_ASSERT(i>=0&&i<3); return (&x)[i]; }
	RI_INLINE const RIfloat&	operator[]		( int i ) const					{ RI_ASSERT(i>=0&&i<3); return (&x)[i]; }
	RI_INLINE void				set				( RIfloat fx, RIfloat fy, RIfloat fz ){ x = fx; y = fy; z = fz; }
	RI_INLINE void				operator*=		( RIfloat f )						{ x *= f; y *= f; z *= f; }
	RI_INLINE void				operator+=		( const Vector3& v )			{ x += v.x; y += v.y; z += v.z; }
	RI_INLINE void				operator-=		( const Vector3& v )			{ x -= v.x; y -= v.y; z -= v.z; }
	RI_INLINE const Vector3		operator-		() const						{ return Vector3(-x,-y,-z); }
	//if the vector is zero, returns false and leaves it unmodified
	RI_INLINE bool				normalize		()								{ double l = (double)x*(double)x+(double)y*(double)y+(double)z*(double)z; if( l == 0.0 ) return false; l = 1.0 / sqrt(l); x = (RIfloat)((double)x * l); y = (RIfloat)((double)y * l); z = (RIfloat)((double)z * l); return true; }
	RI_INLINE RIfloat			length			() const						{ return (RIfloat)sqrt((double)x*(double)x+(double)y*(double)y+(double)z*(double)z); }
	RI_INLINE void				scale			( const Vector3& v )			{ x *= v.x; y *= v.y; z *= v.z; }	//component-wise scale
	RI_INLINE void				negate			()								{ x = -x; y = -y; z = -z; }

	RIfloat						x,y,z;
};

//==============================================================================================

//Vector2 global functions
RI_INLINE bool			operator==	( const Vector2& v1, const Vector2& v2 )	{ return (v1.x == v2.x) && (v1.y == v2.y); }
RI_INLINE bool			operator!=	( const Vector2& v1, const Vector2& v2 )	{ return (v1.x != v2.x) || (v1.y != v2.y); }
RI_INLINE bool			isEqual		( const Vector2& v1, const Vector2& v2, RIfloat epsilon )	{ return RI_SQR(v2.x-v1.x) + RI_SQR(v2.y-v1.y) <= epsilon*epsilon; }
RI_INLINE bool			isZero		( const Vector2& v )						{ return (v.x == 0.0f) && (v.y == 0.0f); }
RI_INLINE const Vector2	operator*	( RIfloat f, const Vector2& v )				{ return Vector2(v.x*f,v.y*f); }
RI_INLINE const Vector2	operator*	( const Vector2& v, RIfloat f )				{ return Vector2(v.x*f,v.y*f); }
RI_INLINE const Vector2	operator+	( const Vector2& v1, const Vector2& v2 )	{ return Vector2(v1.x+v2.x, v1.y+v2.y); }
RI_INLINE const Vector2	operator-	( const Vector2& v1, const Vector2& v2 )	{ return Vector2(v1.x-v2.x, v1.y-v2.y); }
RI_INLINE RIfloat		dot			( const Vector2& v1, const Vector2& v2 )	{ return v1.x*v2.x+v1.y*v2.y; }
//if v is a zero vector, returns a zero vector
RI_INLINE const Vector2	normalize	( const Vector2& v )						{ double l = (double)v.x*(double)v.x+(double)v.y*(double)v.y; if( l != 0.0 ) l = 1.0 / sqrt(l); return Vector2((RIfloat)((double)v.x * l), (RIfloat)((double)v.y * l)); }
//if onThis is a zero vector, returns a zero vector
RI_INLINE const Vector2	project		( const Vector2& v, const Vector2& onThis ) { RIfloat l = dot(onThis,onThis); if( l != 0.0f ) l = dot(v, onThis)/l; return onThis * l; }
RI_INLINE const Vector2	lerp		( const Vector2& v1, const Vector2& v2, RIfloat ratio )	{ return v1 + ratio * (v2 - v1); }
RI_INLINE const Vector2	scale		( const Vector2& v1, const Vector2& v2 )	{ return Vector2(v1.x*v2.x, v1.y*v2.y); }
//matrix * column vector. The input vector2 is implicitly expanded to (x,y,1)
RI_INLINE const Vector2 affineTransform( const Matrix3x3& m, const Vector2& v )	{ RI_ASSERT(m.isAffine()); return Vector2(v.x * m[0][0] + v.y * m[0][1] + m[0][2], v.x * m[1][0] + v.y * m[1][1] + m[1][2]); }
//matrix * column vector. The input vector2 is implicitly expanded to (x,y,0)
RI_INLINE const Vector2 affineTangentTransform(const Matrix3x3& m, const Vector2& v)	{ RI_ASSERT(m.isAffine()); return Vector2(v.x * m[0][0] + v.y * m[0][1], v.x * m[1][0] + v.y * m[1][1]); }
RI_INLINE const Vector2 perpendicularCW(const Vector2& v)						{ return Vector2(v.y, -v.x); }
RI_INLINE const Vector2 perpendicularCCW(const Vector2& v)						{ return Vector2(-v.y, v.x); }
RI_INLINE const Vector2 perpendicular(const Vector2& v, bool cw)				{ if(cw) return Vector2(v.y, -v.x); return Vector2(-v.y, v.x); }

//==============================================================================================

//Vector3 global functions
RI_INLINE bool			operator==	( const Vector3& v1, const Vector3& v2 )	{ return (v1.x == v2.x) && (v1.y == v2.y) && (v1.z == v2.z); }
RI_INLINE bool			operator!=	( const Vector3& v1, const Vector3& v2 )	{ return (v1.x != v2.x) || (v1.y != v2.y) || (v1.z != v2.z); }
RI_INLINE bool			isEqual		( const Vector3& v1, const Vector3& v2, RIfloat epsilon )	{ return RI_SQR(v2.x-v1.x) + RI_SQR(v2.y-v1.y) + RI_SQR(v2.z-v1.z) <= epsilon*epsilon; }
RI_INLINE const Vector3	operator*	( RIfloat f, const Vector3& v )				{ return Vector3(v.x*f,v.y*f,v.z*f); }
RI_INLINE const Vector3	operator*	( const Vector3& v, RIfloat f )				{ return Vector3(v.x*f,v.y*f,v.z*f); }
RI_INLINE const Vector3	operator+	( const Vector3& v1, const Vector3& v2 )	{ return Vector3(v1.x+v2.x, v1.y+v2.y, v1.z+v2.z); }
RI_INLINE const Vector3	operator-	( const Vector3& v1, const Vector3& v2 )	{ return Vector3(v1.x-v2.x, v1.y-v2.y, v1.z-v2.z); }
RI_INLINE RIfloat		dot			( const Vector3& v1, const Vector3& v2 )	{ return v1.x*v2.x+v1.y*v2.y+v1.z*v2.z; }
RI_INLINE const Vector3	cross		( const Vector3& v1, const Vector3& v2 )	{ return Vector3( v1.y*v2.z-v1.z*v2.y, v1.z*v2.x-v1.x*v2.z, v1.x*v2.y-v1.y*v2.x ); }
//if v is a zero vector, returns a zero vector
RI_INLINE const Vector3	normalize	( const Vector3& v )						{ double l = (double)v.x*(double)v.x+(double)v.y*(double)v.y+(double)v.z*(double)v.z; if( l != 0.0 ) l = 1.0 / sqrt(l); return Vector3((RIfloat)((double)v.x * l), (RIfloat)((double)v.y * l), (RIfloat)((double)v.z * l)); }
RI_INLINE const Vector3	lerp		( const Vector3& v1, const Vector3& v2, RIfloat ratio )	{ return v1 + ratio * (v2 - v1); }
RI_INLINE const Vector3	scale		( const Vector3& v1, const Vector3& v2 )	{ return Vector3(v1.x*v2.x, v1.y*v2.y, v1.z*v2.z); }

//==============================================================================================

//matrix * column vector
RI_INLINE const Vector3	operator*	( const Matrix3x3& m, const Vector3& v)		{ return Vector3( v.x*m[0][0]+v.y*m[0][1]+v.z*m[0][2], v.x*m[1][0]+v.y*m[1][1]+v.z*m[1][2], v.x*m[2][0]+v.y*m[2][1]+v.z*m[2][2] ); }

//==============================================================================================

//Matrix3x3 global functions
RI_INLINE bool				operator==	( const Matrix3x3& m1, const Matrix3x3& m2 )	{ for(int i=0;i<3;i++) for(int j=0;j<3;j++) if( m1[i][j] != m2[i][j] ) return false; return true; }
RI_INLINE bool				operator!=	( const Matrix3x3& m1, const Matrix3x3& m2 )	{ return !(m1 == m2); }
RI_INLINE const Matrix3x3	operator*	( const Matrix3x3& m1, const Matrix3x3& m2 )	{ Matrix3x3 t; for(int i=0;i<3;i++) for(int j=0;j<3;j++) t[i][j] = m1[i][0] * m2[0][j] + m1[i][1] * m2[1][j] + m1[i][2] * m2[2][j]; return t; }
RI_INLINE const Matrix3x3	operator*	( RIfloat f, const Matrix3x3& m )					{ Matrix3x3 t(m); t *= f; return t; }
RI_INLINE const Matrix3x3	operator*	( const Matrix3x3& m, RIfloat f )					{ Matrix3x3 t(m); t *= f; return t; }
RI_INLINE const Matrix3x3	operator+	( const Matrix3x3& m1, const Matrix3x3& m2 )	{ Matrix3x3 t(m1); t += m2; return t; }
RI_INLINE const Matrix3x3	operator-	( const Matrix3x3& m1, const Matrix3x3& m2 )	{ Matrix3x3 t(m1); t -= m2; return t; }
RI_INLINE const Matrix3x3	transpose	( const Matrix3x3& m )							{ Matrix3x3 t(m); t.transpose(); return t; }
// if the matrix is singular, returns it unmodified
RI_INLINE const Matrix3x3	invert		( const Matrix3x3& m )							{ Matrix3x3 t(m); t.invert(); return t; }

//==============================================================================================

//Matrix3x3 inline functions (cannot be inside the class because Vector3 is not defined yet when Matrix3x3 is defined)
RI_INLINE					Matrix3x3::Matrix3x3	()									{ identity(); }
RI_INLINE					Matrix3x3::Matrix3x3	( const Matrix3x3& m )				{ *this = m; }
RI_INLINE					Matrix3x3::Matrix3x3	( RIfloat m00, RIfloat m01, RIfloat m02, RIfloat m10, RIfloat m11, RIfloat m12, RIfloat m20, RIfloat m21, RIfloat m22 )	{ set(m00,m01,m02,m10,m11,m12,m20,m21,m22); }
RI_INLINE					Matrix3x3::~Matrix3x3	()									{}
RI_INLINE Matrix3x3&		Matrix3x3::operator=	( const Matrix3x3& m )				{ for(int i=0;i<3;i++) for(int j=0;j<3;j++) matrix[i][j] = m.matrix[i][j]; return *this; }
RI_INLINE Vector3&			Matrix3x3::operator[]	( int i )							{ RI_ASSERT(i>=0&&i<3); return (Vector3&)matrix[i][0]; }
RI_INLINE const Vector3&	Matrix3x3::operator[]	( int i ) const						{ RI_ASSERT(i>=0&&i<3); return (const Vector3&)matrix[i][0]; }
RI_INLINE void				Matrix3x3::set			( RIfloat m00, RIfloat m01, RIfloat m02, RIfloat m10, RIfloat m11, RIfloat m12, RIfloat m20, RIfloat m21, RIfloat m22 ) { matrix[0][0] = m00; matrix[0][1] = m01; matrix[0][2] = m02; matrix[1][0] = m10; matrix[1][1] = m11; matrix[1][2] = m12; matrix[2][0] = m20; matrix[2][1] = m21; matrix[2][2] = m22; }
RI_INLINE const Vector3		Matrix3x3::getRow		( int i ) const						{ RI_ASSERT(i>=0&&i<3); return Vector3(matrix[i][0], matrix[i][1], matrix[i][2]); }
RI_INLINE const Vector3		Matrix3x3::getColumn	( int i ) const						{ RI_ASSERT(i>=0&&i<3); return Vector3(matrix[0][i], matrix[1][i], matrix[2][i]); }
RI_INLINE void				Matrix3x3::setRow		( int i, const Vector3& v )			{ RI_ASSERT(i>=0&&i<3); matrix[i][0] = v.x; matrix[i][1] = v.y; matrix[i][2] = v.z; }
RI_INLINE void				Matrix3x3::setColumn	( int i, const Vector3& v )			{ RI_ASSERT(i>=0&&i<3); matrix[0][i] = v.x; matrix[1][i] = v.y; matrix[2][i] = v.z; }
RI_INLINE void				Matrix3x3::operator*=	( const Matrix3x3& m )				{ *this = *this * m; }
RI_INLINE void				Matrix3x3::operator*=	( RIfloat f )							{ for(int i=0;i<3;i++) for(int j=0;j<3;j++) matrix[i][j] *= f; }
RI_INLINE void				Matrix3x3::operator+=	( const Matrix3x3& m )				{ for(int i=0;i<3;i++) for(int j=0;j<3;j++) matrix[i][j] += m.matrix[i][j]; }
RI_INLINE void				Matrix3x3::operator-=	( const Matrix3x3& m )				{ for(int i=0;i<3;i++) for(int j=0;j<3;j++) matrix[i][j] -= m.matrix[i][j]; }
RI_INLINE const Matrix3x3	Matrix3x3::operator-	() const							{ return Matrix3x3( -matrix[0][0],-matrix[0][1],-matrix[0][2], -matrix[1][0],-matrix[1][1],-matrix[1][2], -matrix[2][0],-matrix[2][1],-matrix[2][2]); }
RI_INLINE void				Matrix3x3::identity		()									{ for(int i=0;i<3;i++) for(int j=0;j<3;j++) matrix[i][j] = (i == j) ? 1.0f : 0.0f; }
RI_INLINE void				Matrix3x3::transpose	()									{ RI_SWAP(matrix[1][0], matrix[0][1]); RI_SWAP(matrix[2][0], matrix[0][2]); RI_SWAP(matrix[2][1], matrix[1][2]); }
RI_INLINE RIfloat			Matrix3x3::det			() const							{ return matrix[0][0] * (matrix[1][1]*matrix[2][2] - matrix[2][1]*matrix[1][2]) + matrix[0][1] * (matrix[2][0]*matrix[1][2] - matrix[1][0]*matrix[2][2]) + matrix[0][2] * (matrix[1][0]*matrix[2][1] - matrix[2][0]*matrix[1][1]); }
RI_INLINE bool				Matrix3x3::isAffine		() const							{ if(matrix[2][0] == 0.0f && matrix[2][1] == 0.0f && matrix[2][2] == 1.0f) return true; return false; }

//==============================================================================================

}	//namespace OpenVGRI

#endif /* __RIMATH_H */