Fix TRANSPARENCY_NONE composition for surfaces narrower than the context.
Improve performance of point sample scaling with 8-bit samples, by using fixed point code
Allow any non-zero value for the boolean attribute WFC_ELEMENT_SOURCE_FLIP
Simplify RemoveElement code
// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
//
#include <hal.h>
#include <e32math.h>
#include "TAlphaBlend.h"
const TInt KWidth = 10;//Used in alpha blending tests
const TInt KHeight = 3;//Used in alpha blending tests
const TInt KMaximumAttempts = 2; // Allow retries on some tests, due to spurious InfoPrints
TBool iExtraLogging1=EFalse; //Used to trigger logging at times the test fails
TBool iExtraLogging2=EFalse; //Used to trigger logging at times the test fails
CTAlphaBlending::CTAlphaBlending(CTestStep* aStep):
CTGraphicsBase(aStep),
iDevice(NULL),
iGc(NULL)
{
}
CTAlphaBlending::~CTAlphaBlending()
{
DeleteGraphicsContext();
DeleteScreenDevice();
}
void CTAlphaBlending::RunTestCaseL(TInt aCurTestCase)
{
((CTAlphaBlendingStep*)iStep)->SetTestStepID(KUnknownSYMTestCaseIDName);
switch(aCurTestCase)
{
case 1:
((CTAlphaBlendingStep*)iStep)->SetTestStepID(_L("GRAPHICS-BITGDI-0024"));
INFO_PRINTF1(_L("Alpha blending"));
TestAlphaBlendingL();
break;
case 2:
/**
@SYMTestCaseID GRAPHICS-BITGDI-0114
*/
((CTAlphaBlendingStep*)iStep)->SetTestStepID(_L("GRAPHICS-BITGDI-0114"));
INFO_PRINTF1(_L("Alpha blending 2"));
TestAlphaBlending2L();
break;
case 3:
((CTAlphaBlendingStep*)iStep)->SetTestStepID(_L("GRAPHICS-BITGDI-0085"));
INFO_PRINTF1(_L("Alpha blending Correctness test 16MU 16MA"));
TestAlphaBlendCorrect(EColor16MU, EColor16MU);
break;
case 4:
((CTAlphaBlendingStep*)iStep)->SetTestStepID(_L("GRAPHICS-BITGDI-0097"));
INFO_PRINTF1(_L("Alpha plot test"));
TestAlphaBlendingPlotL();
break;
case 5:
/**
@SYMTestCaseID GRAPHICS-BITGDI-0115
*/
((CTAlphaBlendingStep*)iStep)->SetTestStepID(_L("GRAPHICS-BITGDI-0115"));
INFO_PRINTF1(_L("Draw bitmap blending"));
DoDrawBitmapTestsL();
break;
case 6:
//DEF118268
((CTAlphaBlendingStep*)iStep)->SetTestStepID(_L("GRAPHICS-BITGDI-0085"));
INFO_PRINTF1(_L("Alpha blending Correctness test 16M 16MA"));
TestAlphaBlendCorrect(EColor16M, EColor16MA);
break;
case 7:
((CTAlphaBlendingStep*)iStep)->SetTestStepID(KNotATestSYMTestCaseIDName);
((CTAlphaBlendingStep*)iStep)->CloseTMSGraphicsStep();
TestComplete();
break;
}
((CTAlphaBlendingStep*)iStep)->RecordTestResultL();
}
TInt CTAlphaBlending::CreateScreenDevice(TDisplayMode aDisplayMode, CFbsBitGc::TGraphicsOrientation aOrientation)
{
DeleteGraphicsContext();
DeleteScreenDevice();
TRAPD(err, iDevice = CFbsScreenDevice::NewL(_L("scdv"), aDisplayMode));
if(err == KErrNotSupported)
{
return err;
}
TEST2(err, KErrNone);
err = iDevice->CreateContext((CGraphicsContext*&)iGc);
TEST2(err, KErrNone);
if (!iGc->SetOrientation(aOrientation))
{
return(KErrNotSupported);
}
iGc->SetUserDisplayMode(aDisplayMode);
iDevice->ChangeScreenDevice(NULL);
iDevice->SetAutoUpdate(EFalse);
return err;
}
void CTAlphaBlending::DeleteScreenDevice()
{
delete iDevice;
iDevice = NULL;
}
void CTAlphaBlending::DeleteGraphicsContext()
{
delete iGc;
iGc = NULL;
}
// returns the pixel colour from the provided bitmap in aarrggbb format
// if pixel is outside the bitmaps limits return top left pixel
TUint32 CTAlphaBlending::GetRawPixel(CFbsBitmap* aBitmap, TPoint aPos)
{
TBitmapUtil bmpUtil(aBitmap);
TUint32 value = 0;
ASSERT(aPos.iX>=0 && aPos.iY>=0);
ASSERT(aPos.iX<aBitmap->SizeInPixels().iWidth && aPos.iY<aBitmap->SizeInPixels().iHeight);
bmpUtil.Begin(aPos);
value = bmpUtil.GetPixel();
bmpUtil.End();
return value;
}
/**
@SYMTestCaseID GRAPHICS-BITGDI-0097
@SYMDEF DEF113229
@SYMTestCaseDesc CDrawThirtyTwoBppBitmapCommon::WriteRgb did not change the dest alpha value to 255 when
the dest alpha was >0 and <255 and the a soure pen had an alpha of 255
@SYMTestPriority Normal
@SYMTestStatus Implemented
@SYMTestActions Creates a bitmap, clears it to black (destination) 50% opaque then plots a series of points
with a 100% opaque pen on it. Tests the resultant alpha value.
@SYMTestExpectedResults Final alpha value should be 255
**/
void CTAlphaBlending::TestAlphaBlendingPlotL()
{
const TSize KRectSize(100,100);
const TRect KTargetRect(TPoint(0,0), KRectSize);
// create the target bitmap
CFbsBitmap* destBmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(destBmp);
User::LeaveIfError(destBmp->Create(KRectSize, EColor16MA));
destBmp->SetSizeInTwips(KRectSize);
// create bitmap device and graphics context
CFbsBitmapDevice* destBmpDevice = CFbsBitmapDevice::NewL(destBmp);
CleanupStack::PushL(destBmpDevice);
CFbsBitGc* destGc = NULL;
User::LeaveIfError(destBmpDevice->CreateContext(destGc));
CleanupStack::PushL(destGc);
destGc->SetPenStyle(CGraphicsContext::ENullPen);
destGc->SetBrushStyle(CGraphicsContext::ESolidBrush);
TDisplayMode screenMode = EColor16MA;
TInt err = CreateScreenDevice(screenMode);
if (err != KErrNone)
{
screenMode = EColor64K;
err = CreateScreenDevice(screenMode);
}
if(err==KErrNone)
{
const TInt KSqrMin=45;
const TInt KSqrMax=55;
iGc->SetUserDisplayMode(screenMode);
destGc->SetBrushColor(TRgb(0,0,0,127));
destGc->SetDrawMode(CGraphicsContext::EDrawModeWriteAlpha);
destGc->Clear(KTargetRect);
// copy over to screen dc for anyone watching
iGc->BitBlt(TPoint(0,0), destBmp, KTargetRect);
iDevice->Update();
// set the pen colour to white and plot some points
destGc->SetDrawMode(CGraphicsContext::EDrawModePEN);
destGc->SetPenStyle(CGraphicsContext::ESolidPen);
destGc->SetPenColor(TRgb(0,70,130,255));
for( TInt y=KSqrMin;y<=KSqrMax;y++)
{
for( TInt x=KSqrMin;x<=KSqrMax;x++)
{
destGc->Plot(TPoint(x,y));
}
}
// copy over to screen dc for anyone watching
iGc->BitBlt(TPoint(0,0), destBmp, KTargetRect);
iDevice->Update();
TUint32 actualValue=0;
// check the resulting values alpha values are 0xFF in the square we drew
for( TInt y=KSqrMin;y<=KSqrMax;y++)
{
for( TInt x=KSqrMin;x<=KSqrMax;x++)
{
actualValue = GetRawPixel(destBmp, TPoint(x,y));
if( (actualValue&0xFF000000) != 0xFF000000 )
{
TEST(EFalse);
INFO_PRINTF2(_L("TestAlphaBlendingPlotL() ***FAILED*** - expected alpha value 0xFF got %d "),((actualValue&0xFF000000)>>24));
}
}
}
}
CleanupStack::PopAndDestroy(3); //destGc,destBmpDevice,destBmp
}
/**
@SYMTestCaseID GRAPHICS-BITGDI-0024
@SYMDEF
@SYMTestCaseDesc
System, GT0173 System Libraries, BITGDI support required for semi-transparent windows
DEF039083 - Using BitBltMasked to do alpha-blending only works if your brush style is "null"
DEF039409 - Wrong part of Alpha Bitmap is used when there is a clipping region
DEF039669 - The UserDisplayMode is not honoured during the AlphaBlendBitmap function.
REQ3413 Second overload of CFbsBitGc's AlphaBlendBitmaps - "Supply a second overload of
CFbsBitGc's AlphaBlendBitmaps function, but with one of the source bitmaps being passed
as a CFbsBitGc object, so that the screen can be used as a source."
@SYMTestPriority High
@SYMTestStatus Implemented
@SYMTestActions
Tests alpha blending - for all display modes, some brush styles, user display modes,
different positions on the screen.
Shadow/fade mode is no more tested, because the existing BitBltMasked() and the new
AlphaBlendBitmaps() methods treat it a different way - see MAlphaBlend interface in
ScreenDriver component.
@SYMTestExpectedResults Test should perform graphics operations succesfully.
*/
void CTAlphaBlending::TestAlphaBlendingL()
{
TPoint originPt(0, 0);
TPoint destPt(0, 0);
TRect scrRc1(0, 0, KWidth, KHeight);
TPoint srcPt2(0, 0);
TPoint alphaPt(0, 0);
//
//If we compare CFbsBitGc::BitBltMasked() aguments with CFbsBitGc::AlphaBlending() arguments,
//we will see that AlphaBlending() has more arguments than BitBltMasked() -
//srcPt2, alphaPt. To make it possible - the comparison between these two methods,
//we have to change aAlphaPt and aSrcPt2 values accordingly with the changes of scrRc1 value.
//
//test 1 - the origin is moved
originPt = TPoint(97, 33);
DoAlphaBlendingTestsL(originPt, destPt, scrRc1, srcPt2, alphaPt);
#if !defined(__X86GCC__) //These test take too long to run in X86GCC
//test 2 - the origin is (0, 0)
originPt = TPoint(0, 0);
DoAlphaBlendingTestsL(originPt, destPt, scrRc1, srcPt2, alphaPt);
//test 3 - scrRect1 is not (0, 0, KWidth, KHeight)
scrRc1 = TRect(3, 1, KWidth, KHeight);
alphaPt = TPoint(3, 1);
DoAlphaBlendingTestsL(originPt, destPt, scrRc1, srcPt2, alphaPt);
//test 4 - restore scrRc1 and alphaPt, move the destination point
scrRc1 = TRect(0, 0, KWidth, KHeight);
alphaPt = TPoint(0, 0);
destPt = TPoint(13, 17);
iExtraLogging1=ETrue;
DoAlphaBlendingTestsL(originPt, destPt, scrRc1, srcPt2, alphaPt);
iExtraLogging1=EFalse;
#endif //__X86GCC__
}
void CTAlphaBlending::DoDrawBitmapTestsL()
{
TDisplayMode modes[] = {EColor16MA, EColor16MAP, EColor16MU, EColor16M, EColor256, EColor4K, EColor64K,
EGray256, EGray16, EGray4, EGray2, EColor16};
const TInt KNumTestDisplayModes=sizeof(modes)/sizeof(modes[0]);
for(TInt modeIndex=0;modeIndex<KNumTestDisplayModes;modeIndex++)
{
TDisplayMode screenMode=modes[modeIndex];
if (CreateScreenDevice(screenMode)!=KErrNone)
continue;
DoDrawBitmapTestL(screenMode);
}
}
void CTAlphaBlending::DoDrawBitmapTestL(TDisplayMode aTestDisplayMode)
{
iGc->Reset();
TBool alphaSupported=(aTestDisplayMode==EColor16MA || aTestDisplayMode==EColor16MAP);
TSize screenSize=iDevice->SizeInPixels();
//
const TInt KNumTestSrcSizes=4;
const TSize testSrcSizes[KNumTestSrcSizes]={TSize(2,2),TSize(20,10),TSize(200,5),TSize(55,555)};
for(TInt srcSizeIndex=0;srcSizeIndex<KNumTestSrcSizes;srcSizeIndex++)
{
TSize srcSize(testSrcSizes[srcSizeIndex]);
//
CFbsBitmap* srcBmp=new(ELeave) CFbsBitmap;
CleanupStack::PushL(srcBmp);
User::LeaveIfError(srcBmp->Create(srcSize,aTestDisplayMode));
CFbsBitmapDevice* srcDevice = CFbsBitmapDevice::NewL(srcBmp);
CleanupStack::PushL(srcDevice);
CFbsBitGc* srcGc=NULL;
User::LeaveIfError(srcDevice->CreateContext(srcGc));
CleanupStack::PushL(srcGc);
//
CFbsBitmap* srcAlpha=new(ELeave) CFbsBitmap;
CleanupStack::PushL(srcAlpha);
User::LeaveIfError(srcAlpha->Create(srcSize,aTestDisplayMode));
CFbsBitmapDevice* srcAlphaDevice = CFbsBitmapDevice::NewL(srcAlpha);
CleanupStack::PushL(srcAlphaDevice);
CFbsBitGc* srcAlphaGc=NULL;
User::LeaveIfError(srcAlphaDevice->CreateContext(srcAlphaGc));
CleanupStack::PushL(srcAlphaGc);
srcAlphaGc->SetDrawMode(CGraphicsContext::EDrawModeWriteAlpha);
//
CFbsBitmap* srcMask=new(ELeave) CFbsBitmap;
CleanupStack::PushL(srcMask);
User::LeaveIfError(srcMask->Create(srcSize,EGray256));
CFbsBitmapDevice* srcMaskDevice = CFbsBitmapDevice::NewL(srcMask);
CleanupStack::PushL(srcMaskDevice);
CFbsBitGc* srcMaskGc=NULL;
User::LeaveIfError(srcMaskDevice->CreateContext(srcMaskGc));
CleanupStack::PushL(srcMaskGc);
//
TInt maxX=srcSize.iWidth-1;
TInt maxY=srcSize.iHeight-1;
for(TInt yLoop=0;yLoop<srcSize.iHeight;yLoop++)
{
for(TInt xLoop=0;xLoop<srcSize.iWidth;xLoop++)
{
TPoint plotPos(xLoop,yLoop);
TRgb pen(xLoop*255/maxX,yLoop*255/maxY,(xLoop+yLoop)*128/(maxX+maxY));
srcGc->SetPenColor(pen);
srcGc->Plot(plotPos);
TInt alpha=(xLoop+yLoop)*255/(maxX+maxY);
pen.SetAlpha(alpha);
srcAlphaGc->SetBrushColor(pen);
srcAlphaGc->Clear(TRect(plotPos,TSize(1,1)));
srcMaskGc->SetPenColor(TRgb::Gray256(alpha));
srcMaskGc->Plot(plotPos);
}
}
const TInt KNumTestTargSizes=5;
const TSize testTargSizes[KNumTestTargSizes]={TSize(0,0), TSize(20,1),TSize(30,20),TSize(200,31),TSize(55,5)};
for(TInt targSizeIndex=0;targSizeIndex<KNumTestSrcSizes;targSizeIndex++)
{
TSize targSize(testTargSizes[targSizeIndex]);
if (targSizeIndex==0)
{
targSize=srcSize; // Special case with no scaling
if (targSize.iWidth>screenSize.iWidth)
targSize.iWidth=screenSize.iWidth;
TInt maxHeight=screenSize.iHeight/3;
if (targSize.iHeight>maxHeight)
targSize.iHeight=maxHeight;
}
//
CFbsBitmap* targBmp=new(ELeave) CFbsBitmap;
CleanupStack::PushL(targBmp);
User::LeaveIfError(targBmp->Create(targSize,aTestDisplayMode));
CFbsBitmapDevice* targBmpDevice = CFbsBitmapDevice::NewL(targBmp);
CleanupStack::PushL(targBmpDevice);
CFbsBitGc* targGc=NULL;
User::LeaveIfError(targBmpDevice->CreateContext(targGc));
CleanupStack::PushL(targGc);
//
CFbsBitmap* targMask=new(ELeave) CFbsBitmap;
CleanupStack::PushL(targMask);
User::LeaveIfError(targMask->Create(targSize,EGray256));
CFbsBitmapDevice* targMaskDevice = CFbsBitmapDevice::NewL(targMask);
CleanupStack::PushL(targMaskDevice);
CFbsBitGc* targMaskGc=NULL;
User::LeaveIfError(targMaskDevice->CreateContext(targMaskGc));
CleanupStack::PushL(targMaskGc);
//
TPoint drawPos;
TRect testRect1(targSize);
iGc->Clear();
// First we pre-stretch the source and mask bitmaps into temp bitmaps
targGc->DrawBitmap(TRect(targSize),srcBmp);
targMaskGc->DrawBitmap(TRect(targSize),srcMask);
// Then blend them onto the screen with a call to BitBltMasked
iGc->BitBltMasked(drawPos,targBmp,TRect(targSize),targMask,EFalse);
drawPos.iY+=targSize.iHeight;
TRect testRect2(drawPos,targSize);
// Next we combine the stretching and masking with one call to DrawBitmapMasked,
// this should give the same end result.
iGc->DrawBitmapMasked(testRect2,srcBmp,TRect(srcSize),srcMask,EFalse);
TRect testRect3;
if (alphaSupported)
{
// Finally if alpha blending supported we stretch and blend, again to achieve the exact same end result
// as the two previous calls. This was specificially done to catch DEF116427.
drawPos.iY+=targSize.iHeight;
testRect3=TRect(drawPos,targSize);
iGc->DrawBitmap(testRect3,srcAlpha);
}
//Use this just to check what we've put in the test bitmaps
/*
drawPos.iY+=targSize.iHeight+1;
iGc->BitBlt(drawPos,srcBmp);
drawPos.iY+=srcSize.iHeight+1;
iGc->BitBlt(drawPos,srcMask);
drawPos.iY+=srcSize.iHeight+1;
if (alphaSupported)
iGc->BitBlt(drawPos,srcAlpha);
*/
iDevice->Update();
TBool ret1=iDevice->RectCompare(testRect1,*iDevice,testRect2);
TBool ret2=alphaSupported?iDevice->RectCompare(testRect1,*iDevice,testRect3):ETrue;
if (!ret1 || !ret2)
{
INFO_PRINTF4(_L("DrawBitmapTest, ret1=%d, ret2=%d, Screen mode=%d"),ret1,ret2,aTestDisplayMode);
TEST(EFalse);
}
CleanupStack::PopAndDestroy(3,targMask);
CleanupStack::PopAndDestroy(3,targBmp);
}
CleanupStack::PopAndDestroy(3,srcMask);
CleanupStack::PopAndDestroy(3,srcAlpha);
CleanupStack::PopAndDestroy(3,srcBmp);
}
}
//Tests alpha blending - for all display modes, some brush styles, user display modes,
//different positions on the screen.
void CTAlphaBlending::DoAlphaBlendingTestsL(const TPoint& aOrigin,
const TPoint& aDestPt,
const TRect& aSrcRc1,
const TPoint& aScrPt2,
const TPoint& aAlphaPt)
{
TBuf<128> buf;
_LIT(KLog,"Origin=(%d,%d) DestPt=(%d,%d) SrcRect=(%d,%d,%d,%d) ScrPt=(%d,%d) AlphaPt=(%d,%d)");
buf.Format(KLog,aOrigin.iX,aOrigin.iY,aDestPt.iX,aDestPt.iY,aSrcRc1.iTl.iX,aSrcRc1.iTl.iY
,aSrcRc1.iBr.iX,aSrcRc1.iBr.iY,aScrPt2.iX,aScrPt2.iY,aAlphaPt.iX,aAlphaPt.iY);
INFO_PRINTF1(buf);
TDisplayMode mode[] = {EColor16MA, EColor16MAP, EColor16MU, EColor16M, EColor256, EColor4K, EColor64K,
EGray256, EGray16, EGray4, EGray2, EColor16};
CFbsBitmap* screenBmp = NULL;
CFbsBitmap* srcBmp = NULL;
CFbsBitmap* alphaBmp = NULL;
CGraphicsContext::TBrushStyle brushStyle[] = {CGraphicsContext::ENullBrush, CGraphicsContext::ESolidBrush};
for(TInt i=0;i<TInt(sizeof(mode)/sizeof(mode[0]));i++)
{
for(TInt orientation=0;orientation<=CFbsBitGc::EGraphicsOrientationRotated270;orientation++)
{
if (CreateScreenDevice(mode[i],(CFbsBitGc::TGraphicsOrientation)orientation) != KErrNone)
{
continue;
}
iExtraLogging2=(iExtraLogging1 && mode[i]==11);
INFO_PRINTF3(_L("Mode=%d, Orientation=%d"), mode[i], orientation);
CreateAlphaBlendingBitmapsLC(screenBmp, srcBmp, alphaBmp, mode[i]);
for(TInt j=0;j<TInt(sizeof(brushStyle)/sizeof(brushStyle[0]));j++)
{
if(mode[i] == EGray4 && brushStyle[j] == CGraphicsContext::ESolidBrush)
{
//When the display mode is EGray4 - Flicker-free blitting is not enabled.
//The screen will be filled with 0xFF color, which is not the same color used by
//the test - 0x00. And BitBltMasked and AlphaBlendBitmaps will produce different results.
continue;
}
iGc->SetOrigin(aOrigin);
iGc->SetBrushStyle(brushStyle[j]);
TDisplayMode userDisplayMode[] = {EColor16MA, EColor16MAP, EColor16MU, EColor16M, EColor256,
EColor4K, EColor64K, EGray256,
EGray16, EGray4, EGray2, EColor16};
for(TInt l=0;l<TInt(sizeof(userDisplayMode)/sizeof(userDisplayMode[0]));l++)
{
iGc->SetUserDisplayMode(userDisplayMode[l]);
TSize scrDevSize = iDevice->SizeInPixels();
TRect clipRc[] = {TRect(0, 0, scrDevSize.iWidth, scrDevSize.iHeight),
TRect(0, 1, scrDevSize.iWidth, scrDevSize.iHeight), // Tests Y clipping only
TRect(5, 0, scrDevSize.iWidth, scrDevSize.iHeight), // Tests X clipping only
TRect(5, 1, scrDevSize.iWidth, scrDevSize.iHeight),
TRect(3, 0, 14, 23)};//14 and 23 values are not accidental!
//Sometimes the method is called with aDestPt(13, 17).
for(TInt k=0;k<TInt(sizeof(clipRc)/sizeof(clipRc[0]));k++)
{
if (iExtraLogging2)
{
_LIT(KLog," BrushStyle=%d UserDisplayMode=%d ClipRect=(%d,%d,%d,%d)");
INFO_PRINTF7(KLog,j,l,clipRc[k].iTl.iX,clipRc[k].iTl.iY,clipRc[k].iBr.iX,clipRc[k].iBr.iY);
}
iGc->Clear();
iGc->SetClippingRect(clipRc[k]);
DoAlphaBlendingTestL(screenBmp, srcBmp, alphaBmp, aDestPt, aSrcRc1, aScrPt2, aAlphaPt);
iGc->CancelClippingRect();
}
}//end of - for(TInt l=0;l<TInt(sizeof(userDisplayMode)/sizeof(userDisplayMode[0]));l++)
iGc->SetOrientation(CFbsBitGc::EGraphicsOrientationNormal);
}
DestroyAlphaBlendingBitmaps(screenBmp, srcBmp, alphaBmp);
}//end of - for(TInt j=0;j<TInt(sizeof(brushStyle)/sizeof(brushStyle[0]));j++)
}//end of - for(TInt i=0;i<TInt(sizeof(mode)/sizeof(mode[0]));i++)
}
//The method compares results of two alpha blending methods:
//iGc->BitBltMasked() and iGc->AlphaBlendBitmaps().
//To make that possible, aScreenBmp is copied to the screen before the call of
//iGc->BitBltMasked().
void CTAlphaBlending::DoAlphaBlendingTestL(CFbsBitmap* aScreenBmp,
const CFbsBitmap* aSrcBmp,
const CFbsBitmap* aAlphaBmp,
const TPoint& aDestPt,
const TRect& aSrcRc1,
const TPoint& aSrcPt2,
const TPoint& aAlphaPt)
{
_LIT(KScreenBmpFile, "C:\\BMP_DATA.DAT");
iGc->SetShadowMode(EFalse);
TInt i;
TInt res = -1;
TSize scrDevSize = iDevice->SizeInPixels();
TInt allocatedSize = scrDevSize.iWidth * scrDevSize.iHeight * 2;
TRect screenBmpRc;
//The screen alpha blended data after calling of BitBltMasked() - will be filled after the call
TUint8* screenBmpDestData1 = new (ELeave) TUint8[allocatedSize];
CleanupStack::PushL(screenBmpDestData1);
//The screen alpha blended data after calling of AlphaBlendingBitmaps() - will be filled after the call
TUint8* screenBmpDestData2 = new (ELeave) TUint8[allocatedSize];
CleanupStack::PushL(screenBmpDestData2);
// Allow an effective restart of the test, since sometimes there are spurious
// InfoPrints that affect the comparisons.
for (TInt attempt = 0; res && (attempt < KMaximumAttempts); attempt++)
{
//Fill the blocks with some default value
Mem::Fill(screenBmpDestData1, allocatedSize, 0xCA);
Mem::Fill(screenBmpDestData2, allocatedSize, 0xCA);
//Check screen bitmap size
TSize screenBmpSize = aScreenBmp->SizeInPixels();
if ((screenBmpSize.iWidth != KWidth) || (screenBmpSize.iHeight != KHeight))
{
_LIT(KScreenErr,"DoAlphaBlendingTestL test: w:%d!=%d || h:%d!=%d");
INFO_PRINTF5(KScreenErr, screenBmpSize.iWidth, KWidth, screenBmpSize.iHeight, KHeight);
TEST(EFalse);
}
// Alpha blending using CFbsBitGc::BitBltMasked //
if (iExtraLogging2)
{
_LIT(KLog1," CFbsBitGc::BitBltMasked test");
INFO_PRINTF1(KLog1);
}
//Screen bitmap rectangle
screenBmpRc.SetRect(aDestPt, TSize(aSrcRc1.Width(), aSrcRc1.Height()));
//Save screen bitmap
TInt saveAttempts = 5;
TInt err = aScreenBmp->Save(KScreenBmpFile);
while ((err != KErrNone) && saveAttempts--)
{
// Retry the save
_LIT(KSaveRetry,"DoAlphaBlendingTestL: Bitmap save failed, retrying.");
INFO_PRINTF1(KSaveRetry);
User::After(10000);
err = aScreenBmp->Save(KScreenBmpFile);
}
User::LeaveIfError(err);
User::LeaveIfError(aScreenBmp->Resize(TSize(aSrcRc1.Width(), aSrcRc1.Height())));
//Draw screen bitmap
iGc->Clear();
iGc->SetDrawMode(CGraphicsContext::EDrawModeWriteAlpha);
iGc->DrawBitmap(screenBmpRc, aScreenBmp);
iDevice->Update();
//Do BitBltMasked()
iGc->BitBltMasked(aDestPt, aSrcBmp, aSrcRc1, aAlphaBmp, EFalse);
iDevice->Update();
//Get screen data and write the data to screenBmpDestData1.
for(i=0;i<scrDevSize.iHeight;i++)
{
TPtr8 p(screenBmpDestData1 + i * scrDevSize.iWidth * 2, scrDevSize.iWidth * 2, scrDevSize.iWidth * 2);
iDevice->GetScanLine(p, TPoint(0, i), scrDevSize.iWidth, EColor64K);
}
// Alpha blending using explicit form of CFbsBitGc::AlphaBlendBitmaps //
if (iExtraLogging2)
{
_LIT(KLog2," CFbsBitGc::AlphaBlendBitmaps explicit test");
INFO_PRINTF1(KLog2);
}
//Clear screen
iGc->Clear();
iDevice->Update();
//Load screen bitmap
User::LeaveIfError(aScreenBmp->Load(KScreenBmpFile));
//Do AlphaBlendBitmaps()
User::LeaveIfError(iGc->AlphaBlendBitmaps(aDestPt, aSrcBmp, aScreenBmp, aSrcRc1,
aSrcPt2, aAlphaBmp, aAlphaPt));
iDevice->Update();
//Get screen data and write the data to screenBmpDestData2.
for(i=0;i<scrDevSize.iHeight;i++)
{
TPtr8 p(screenBmpDestData2 + i * scrDevSize.iWidth * 2, scrDevSize.iWidth * 2, scrDevSize.iWidth * 2);
iDevice->GetScanLine(p, TPoint(0, i), scrDevSize.iWidth, EColor64K);
}
//Compare screen bitmaps //
res = Mem::Compare(screenBmpDestData1, allocatedSize, screenBmpDestData2, allocatedSize);
// colour comparison tolerance between RGB565 components.
const TInt KColourComparisonTolerance = 2;
if (res)
{
TBool testPassed = ETrue;
// strict byte-for-byte comparison of the pixel maps could have failed because blending algorithms may
// differ slightly, but actual resulting colours may be close enough
for (int byteNumber = 0; byteNumber < allocatedSize; byteNumber+=2)
{
// find any RGB565 value that doesn't match and examine each component
if ( *(TUint16*)(screenBmpDestData1 + byteNumber) != *(TUint16*)(screenBmpDestData2 + byteNumber))
{
TUint16 Rgb1 = *(TUint16*)(screenBmpDestData1 + byteNumber);
TUint16 Rgb2 = *(TUint16*)(screenBmpDestData2 + byteNumber);
TInt16 Red1 = (Rgb1 & 0xF800) >> 11;
TInt16 Red2 = (Rgb2 & 0xF800) >> 11;
TInt16 DiffRed = Abs(Red1 - Red2);
TInt16 Green1 = (Rgb1 & 0x07E0) >> 5;
TInt16 Green2 = (Rgb2 & 0x07E0) >> 5;
TInt16 DiffGreen = Abs(Green1 - Green2);
TInt16 Blue1 = (Rgb1 & 0x001F);
TInt16 Blue2 = (Rgb2 & 0x001F);
TInt16 DiffBlue = Abs(Blue1 - Blue2);
// is any difference is outside the tolerance break out signaling test failure
if (DiffRed > KColourComparisonTolerance ||
DiffGreen > KColourComparisonTolerance ||
DiffBlue > KColourComparisonTolerance)
{
testPassed = EFalse;
break;
}
}
}
if (testPassed)
{
res = 0;
}
}
if (res && (attempt < KMaximumAttempts - 1))
{
INFO_PRINTF1(_L("Memory comparison 1 failed, retrying"));
// Skip to next attempt
continue;
}
TEST(res == 0);
// Alpha blending using implicit form of CFbsBitGc::AlphaBlendBitmaps //
if (iExtraLogging2)
{
_LIT(KLog3," CFbsBitGc::AlphaBlendBitmaps implicit test");
INFO_PRINTF1(KLog3);
}
//Clear screen
iGc->Clear();
iDevice->Update();
//Draw screen bitmap (it's already loaded)
User::LeaveIfError(aScreenBmp->Resize(TSize(aSrcRc1.Width(), aSrcRc1.Height())));
iGc->SetDrawMode(CGraphicsContext::EDrawModeWriteAlpha);
iGc->DrawBitmap(screenBmpRc, aScreenBmp);
iDevice->Update();
//Do AlphaBlendBitmaps()
User::LeaveIfError(iGc->AlphaBlendBitmaps(aDestPt, aSrcBmp, aSrcRc1, aAlphaBmp, aSrcRc1.iTl));
iDevice->Update();
//Get screen data and write the data to screenBmpDestData2.
for(i=0;i<scrDevSize.iHeight;i++)
{
TPtr8 p(screenBmpDestData2 + i * scrDevSize.iWidth * 2, scrDevSize.iWidth * 2, scrDevSize.iWidth * 2);
iDevice->GetScanLine(p, TPoint(0, i), scrDevSize.iWidth, EColor64K);
}
//Compare screen bitmaps //
if (iExtraLogging2)
{
_LIT(KLog4," Compare Screen Bitmaps");
INFO_PRINTF1(KLog4);
}
res = Mem::Compare(screenBmpDestData1, allocatedSize, screenBmpDestData2, allocatedSize);
if (res && (attempt < KMaximumAttempts - 1))
{
INFO_PRINTF1(_L("Memory comparison 2 failed, retrying"));
}
// Reload the screen bitmap as it was before:
User::LeaveIfError(aScreenBmp->Load(KScreenBmpFile));
}
TEST(res == 0);
//Destroy the allocated memory blocks
CleanupStack::PopAndDestroy(2);//screenBmpDestData1 & screenBmpDestData2
}
void CTAlphaBlending::CreateAlphaBlendingBitmapsLC(CFbsBitmap*& aScreenBmp,
CFbsBitmap*& aSrcBmp,
CFbsBitmap*& aAlphaBmp,
TDisplayMode aMode)
{
TInt i;
TSize size(KWidth, KHeight);
//The screen data
TUint8 screenBmpSrcData[KHeight][KWidth * 3 + 2] = // "+ 2" - every row is aligned to a 32 bit boundary
{//0 1 2 3 4 5 6 7 8 9
{0x00, 0x00, 0x00, 0x20, 0x21, 0x22, 0x30, 0x31, 0x32, 0x40, 0x41, 0x42, 0x50, 0x51, 0x51, 0x60, 0x61, 0x62, 0x70, 0x71, 0x72, 0x80, 0x81, 0x82, 0x90, 0x91, 0x92, 0xA0, 0xA1, 0xA2, 0x00, 0x00},
{0x19, 0x18, 0x17, 0x29, 0x28, 0x27, 0x39, 0x38, 0x37, 0x49, 0x48, 0x47, 0x59, 0x58, 0x57, 0x69, 0x68, 0x67, 0x79, 0x78, 0x77, 0x89, 0x88, 0x87, 0x99, 0x98, 0x97, 0xA9, 0xA8, 0xA7, 0x00, 0x00},
{0x1F, 0x1E, 0x1D, 0x2F, 0x2E, 0x2D, 0x3F, 0x3E, 0x3D, 0x4F, 0x4E, 0x4D, 0x5F, 0x5E, 0x5D, 0x6F, 0x6E, 0x6D, 0x7F, 0x7E, 0x7D, 0x8F, 0x8E, 0x8D, 0x9F, 0x9E, 0x9D, 0xAF, 0xAE, 0xAD, 0x00, 0x00}
};
//The source bitmap data
TUint8 srcBmpData[KHeight][KWidth * 3 + 2] = // "+ 2" - every row is aligned to a 32 bit boundary
{//0 1 2 3 4 5 6 7 8 9
{0x32, 0x67, 0xA2, 0x11, 0x34, 0x67, 0xC5, 0xA3, 0x91, 0x01, 0xB3, 0xA8, 0xF3, 0x3F, 0x1E, 0x88, 0x11, 0x12, 0xAE, 0xEE, 0x9A, 0x56, 0x12, 0x81, 0xB4, 0xCA, 0x91, 0xFF, 0x1A, 0x2A, 0x00, 0x00},
{0x02, 0xB1, 0xE2, 0xAA, 0xBB, 0x13, 0x22, 0xA8, 0xC3, 0x75, 0x8D, 0xFF, 0xA4, 0xAB, 0x00, 0xC5, 0xA6, 0x22, 0xBB, 0x09, 0xC1, 0x97, 0x25, 0xC6, 0xBB, 0xBB, 0xBB, 0xBB, 0xBB, 0xBB, 0x00, 0x00},
{0x32, 0x50, 0x76, 0x27, 0xCC, 0x45, 0x81, 0xE5, 0xE9, 0xB7, 0xCD, 0x11, 0x32, 0xB1, 0x23, 0xFF, 0x71, 0x11, 0xCC, 0xAA, 0xF2, 0x98, 0x13, 0x8C, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0x00, 0x00}
};
//The alpha bitmap data
TUint8 alphaBmpData[KHeight][KWidth + 2] = // "+ 2" - every row is aligned to a 32 bit boundary
{//0 1 2 3 4 5 6 7 8 9
{0x68, 0x68, 0x68, 0xAC, 0xD9, 0xB2, 0x8F, 0x11, 0xA0, 0xC1, 0x00, 0x00},
{0x71, 0x5A, 0xF6, 0xEE, 0xF9, 0xE5, 0x06, 0x4C, 0xBB, 0x7B, 0x00, 0x00},
{0x9F, 0x99, 0x45, 0x17, 0xA8, 0xF5, 0xFF, 0xD2, 0x22, 0x1D, 0x00, 0x00}
};
if(aMode == EColor16MU)
{
TInt buffer_size = KWidth * 4 ;
TUint8* buffer = new(ELeave) TUint8[buffer_size];
TPtr8 source_ptr(buffer, buffer_size, buffer_size);
//Screen bitmap
aScreenBmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(aScreenBmp);
User::LeaveIfError(aScreenBmp->Create(size, aMode));
for(i=0; i<KHeight; i++)
{
TUint8* bufCur = buffer;
TUint8* bufSrcCur = screenBmpSrcData[i];
TUint8* bufSrcEnd = bufSrcCur + KWidth * 3;
while(bufSrcCur < bufSrcEnd)
{
*bufCur++ = *bufSrcCur++;
*bufCur++ = *bufSrcCur++;
*bufCur++ = *bufSrcCur++;
*bufCur++ = 0xff;
}
aScreenBmp->SetScanLine(source_ptr, i);
}
//Source bitmap
aSrcBmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(aSrcBmp);
User::LeaveIfError(aSrcBmp->Create(size, aMode));
for(i=0; i<KHeight; i++)
{
TUint8* bufCur = buffer;
TUint8* bufSrcCur = srcBmpData[i];
TUint8* bufSrcEnd = bufSrcCur + KWidth * 3;
while(bufSrcCur < bufSrcEnd)
{
*bufCur++ = *bufSrcCur++;
*bufCur++ = *bufSrcCur++;
*bufCur++ = *bufSrcCur++;
*bufCur++ = 0xff;
}
aSrcBmp->SetScanLine(source_ptr, i);
}
//Alpha bitmap
aAlphaBmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(aAlphaBmp);
User::LeaveIfError(aAlphaBmp->Create(size, EGray256));
for(i=0;i<KHeight;i++)
{
TPtr8 p(alphaBmpData[i], KWidth * 3, KWidth * 3);
aAlphaBmp->SetScanLine(p, i);
}
delete [] buffer;
}
else
{
//Screen bitmap
aScreenBmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(aScreenBmp);
User::LeaveIfError(aScreenBmp->Create(size, aMode));
for(i=0;i<KHeight;i++)
{
TPtr8 p(screenBmpSrcData[i], KWidth * 3, KWidth * 3);
aScreenBmp->SetScanLine(p, i);
}
//Source bitmap
aSrcBmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(aSrcBmp);
User::LeaveIfError(aSrcBmp->Create(size, aMode));
for(i=0;i<KHeight;i++)
{
TPtr8 p(srcBmpData[i], KWidth * 3, KWidth * 3);
aSrcBmp->SetScanLine(p, i);
}
//Alpha bitmap
aAlphaBmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(aAlphaBmp);
User::LeaveIfError(aAlphaBmp->Create(size, EGray256));
for(i=0;i<KHeight;i++)
{
TPtr8 p(alphaBmpData[i], KWidth * 3, KWidth * 3);
aAlphaBmp->SetScanLine(p, i);
}
}
}
void CTAlphaBlending::DestroyAlphaBlendingBitmaps(CFbsBitmap*& aScreenBmp,
CFbsBitmap*& aSrcBmp,
CFbsBitmap*& aAlphaBmp)
{
CleanupStack::PopAndDestroy(aAlphaBmp);
aAlphaBmp = NULL;
CleanupStack::PopAndDestroy(aSrcBmp);
aSrcBmp = NULL;
CleanupStack::PopAndDestroy(aScreenBmp);
aScreenBmp = NULL;
}
//The test doesn't check anything. It is for debugging only.
void CTAlphaBlending::TestAlphaBlending2L()
{
static const TDisplayMode modeList[] = {
EColor64K, EColor256, EColor16MAP, EColor16MA, EColor16MU, EColor4K
};
const TInt KNumTestDisplayModes=sizeof(modeList)/sizeof(modeList[0]);
for(TInt orientation=0;orientation<=CFbsBitGc::EGraphicsOrientationRotated270;orientation++)
{
CFbsBitmap* srcBmp = NULL;
CFbsBitmap* alphaBmp = NULL;
TInt err = KErrNotSupported;
// Try several modes
for (TInt modeIndex = 0; (err != KErrNone) && modeIndex < KNumTestDisplayModes; modeIndex++)
{
err = CreateScreenDevice(modeList[modeIndex],(CFbsBitGc::TGraphicsOrientation)orientation);
}
if (err == KErrNotSupported)
{
// Orientation not supported, try next one
continue;
}
TInt j;
//The source bitmap data
TUint8 srcBmpData[100];
for(j=0;j<100;j++)
{
srcBmpData[j] = 0xAA;
}
//The alpha bitmap data
TUint8 alphaBmpData[20];
for(j=0;j<20;j++)
{
alphaBmpData[j] = TUint8(j);
}
//Source bitmap
srcBmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(srcBmp);
User::LeaveIfError(srcBmp->Create(TSize(100, 1), EColor256));
TPtr8 p1(srcBmpData, 100, 100);
srcBmp->SetScanLine(p1, 0);
//Alpha bitmap
alphaBmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(alphaBmp);
User::LeaveIfError(alphaBmp->Create(TSize(20, 1), EGray256));
TPtr8 p2(alphaBmpData, 20, 20);
alphaBmp->SetScanLine(p2, 0);
//Do BitBltMasked()
iGc->BitBltMasked(TPoint(20, 20), srcBmp, TRect(10, 0, 100, 1), alphaBmp, EFalse);
iDevice->Update();
iGc->SetOrientation(CFbsBitGc::EGraphicsOrientationNormal);
//
CleanupStack::PopAndDestroy(alphaBmp);
CleanupStack::PopAndDestroy(srcBmp);
}
}
TUint32 AlphaBlend(TUint32 aDestPixel, TUint32 aSrcPixel, TUint8 aMask)
{
TUint32 dr = (aDestPixel & 0x00FF0000) >> 16;
TUint32 dg = (aDestPixel & 0x0000FF00) >> 8;
TUint32 db = aDestPixel & 0x000000FF;
TUint32 sr = (aSrcPixel & 0x00FF0000) >> 16;
TUint32 sg = (aSrcPixel & 0x0000FF00) >> 8;
TUint32 sb = aSrcPixel & 0x000000FF;
TUint32 rr = (aMask * sr)/255 + ((0xFF - aMask) * dr)/255;
TUint32 rg = (aMask * sg)/255 + ((0xFF - aMask) * dg)/255;
TUint32 rb = (aMask * sb)/255 + ((0xFF - aMask) * db)/255;
return(rr << 16 | rg << 8 | rb | 0xff000000);
}
inline TUint32 OptimizedBlend32(TInt aPrimaryRed,TInt aPrimaryGreen,TInt aPrimaryBlue,TUint32 aSecondary,TUint8 aAlphaValue)
{
if(aAlphaValue == 0xff)
{
return (aPrimaryBlue + (aPrimaryGreen<<8) + (aPrimaryRed<<16)) | 0xff000000;
}
else
{
const TUint32 alphaValue = (aAlphaValue << 8) + aAlphaValue;
const TInt r2 = (aSecondary & 0x00ff0000) >> 16;
const TInt g2 = (aSecondary & 0x0000ff00) >> 8;
const TInt b2 = aSecondary & 0x000000ff;
const TInt r3 = ((alphaValue * (aPrimaryRed - r2)) >> 16) + r2;
const TInt g3 = ((alphaValue * (aPrimaryGreen - g2)) >> 16) + g2;
const TInt b3 = ((alphaValue * (aPrimaryBlue - b2)) >> 16) + b2;
return (b3 & 0xFF) | ((g3<<8) & 0xFF00) | ((r3<<16) & 0xFF0000) | 0xFF000000;
}
}
/**
@SYMTestCaseID GRAPHICS-BITGDI-0085
@SYMDEF
@SYMTestCaseDesc
@SYMTestPriority High
@SYMTestStatus Implemented
@SYMTestActions
@SYMTestExpectedResults
*/
// This tests the correctness of the results of alpha-blending with EColor16MA
void CTAlphaBlending::TestAlphaBlendCorrect(TDisplayMode /* aScreenMode */, TDisplayMode /* aBitmapMode */)
{
// test data
TUint32 top = 0xFFCCEE55;
TUint32 beneath = 0xFFEEAA66;
TUint8 alpha = 0xF0;
TInt maxDiff = 0;
for(TInt i = 0; i < 100000; i++)
{
top = Math::Random();
beneath = Math::Random();
alpha = Math::Random();
TUint32 res1 = AlphaBlend(beneath, top, alpha);
TUint32 res2 = OptimizedBlend32((top >> 16) & 0xFF,(top >>8) & 0xFF,(top & 0xFF),beneath, alpha);
if(res1 != res2)
{
TInt diff = 0;
TInt diff1 = res1 & 0xFF;
TInt diff2 = res2 & 0xFF;
diff = diff1 - diff2;
if(diff < 0)
diff*=-1;
if(diff > maxDiff)
maxDiff = diff;
diff1 = (res1 >> 8) & 0xFF;
diff2 = (res2 >> 8) & 0xFF;
diff = diff1 - diff2;
if(diff < 0)
diff*=-1;
if(diff > maxDiff)
maxDiff = diff;
diff1 = (res1 >> 16) & 0xFF;
diff2 = (res2 >> 16) & 0xFF;
diff = diff1 - diff2;
if(diff < 0)
diff*=-1;
if(diff > maxDiff)
maxDiff = diff;
}
}
INFO_PRINTF1(_L("Results:"));
if(maxDiff)
INFO_PRINTF2(_L("Max Diff = %i"), maxDiff);
else
INFO_PRINTF1(_L("Results are identical"));
}
//--------------
__CONSTRUCT_STEP__(AlphaBlending)
void CTAlphaBlendingStep::TestSetupL()
{
}