Merge 1. Pull in cpp files in the performance enhanced Khronos RI OVG files which are newly added. I've ignored platform-specific cpp files for linux, macosx, and null operating systems because this local solution has its own platform glue (i.e. facility to target Bitmaps but no full windowing support). I've ignored sfEGLInterface.cpp because this is used as a bridge to go from EGL to Nokia's Platsim which offers an EGL service. That's not relevant to this implementation because this is ARM side code, not Intel side. I just left a comment to sfEGLInterface.cpp in case we need to pick up this later on. The current code compiles on winscw. Prior to this fix, the code works on winscw, and can launch the SVG tiger (tiger.exe). That takes about 20 seconds to render. I hope to always be able to show this icon on each commit, and the plan is for the render time to reduce with this series of submissions. On this commit, the tiger renders ok in 20 seconds.
// Copyright (c) 1997-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
//
#include <hal.h>
#include "_WININC.H"
#include <bitdrawinterfaceid.h>
#if defined(SYMBIAN_GRAPHICS_GCE)
#include <surface.h>
#endif //SYMBIAN_GRAPHICS_GCE
template <class T> CScreenDevice<T>::~CScreenDevice()
{
iUpdateRegion.Close();
iWindowInUse.Close();
RWindows::ReleaseWindow(iScreenNo);
}
/**
Constructs the CScreenDevice<T> object.
@param aScreenNo Screen number. It will be used in HAL::Get() calls.
@param aHwnd Windows OS - window handle.
@param aSize Screen size
@return System-wide error codes, KErrNone if the construction was successfull.
*/
template <class T> TInt CScreenDevice<T>::ConstructScreen(TInt aScreenNo, TAny* aHwnd,const TSize& aSize)
{
iScreenNo = aScreenNo;
TInt ret = Construct(aSize);
if (ret != KErrNone)
return ret;
if (aSize.iWidth < aSize.iHeight)
{
TInt bpp = BitsPerPixel(iDispMode);
delete[] iScanLineBuffer;
TInt scanLineWords = ((iSize.iHeight * bpp) + 31) / 32;
iScanLineBuffer = (TUint32*)(User::Heap().Alloc(scanLineWords * 4));
if (!iScanLineBuffer)
return KErrNoMemory;
}
iWindow = RWindows::GetWindow(iScreenNo, aHwnd,aSize);
if (iWindow == NULL)
return KErrNoMemory;
SetBits(iWindow->EpocBitmapBits());
//Some explanations about iWindowInUse semaphore.
//On the Emulator, a single Windows OS window can be shared between many Symbian OS
//screen devices. iWindowInUse semaphore is used to help to determine the moment,
//when the related Windows OS window can be destroyed safely. Because it is a named
//semaphore, it will be created once by the first client (Symbian OS screen device)
//and opened (reference counted) by the every next client (Symbian OS screen device).
//In the CScreenDevice<T>'s deastructor iWindowInUse semaphore will be closed
//(its reference counter gets decremented). When its value reaches zero, the Symbian OS
//will destroy the semaphore. This action will be detected by the RWindows::ReleaseWindow()'s
//implementation and the related Windows OS window will be destroyed.
TBuf<32> screenSemaphoreName;
::CreateScreenSemaphoreName(iScreenNo, screenSemaphoreName);
ret = iWindowInUse.CreateGlobal(screenSemaphoreName,0,EOwnerThread);
if (ret == KErrAlreadyExists)
{
iWindowInUse.OpenGlobal(screenSemaphoreName,EOwnerThread);
}
return KErrNone;
}
template <class T> TInt CScreenDevice<T>::HorzTwipsPerThousandPixels() const
{
if (iSize.iWidth==0)
return(0);
TInt twips = 0;
HAL::Get(iScreenNo, HALData::EDisplayXTwips,twips);
return twips * 1000 / iSize.iWidth;
}
template <class T> TInt CScreenDevice<T>::VertTwipsPerThousandPixels() const
{
if (iSize.iHeight==0)
return(0);
TInt twips = 0;
HAL::Get(iScreenNo, HALData::EDisplayYTwips,twips);
return twips * 1000 / iSize.iHeight;
}
template <class T> void CScreenDevice<T>::OrientationsAvailable(TBool aOrientation[4])
{
aOrientation[EOrientationNormal] = ETrue;
aOrientation[EOrientationRotated90] = ETrue;
aOrientation[EOrientationRotated180] = ETrue;
aOrientation[EOrientationRotated270] = ETrue;
}
template <class T> void CScreenDevice<T>::SetDisplayMode(CFbsDrawDevice* aDrawDevice)
{
iUpdateRegion.Clear();
SetOrientation(static_cast<CFbsDrawDevice::TOrientation>(iWindow->Orientation()));
CopyOldSettings(aDrawDevice);
InitScreen();
}
template <class T> void CScreenDevice<T>::SetAutoUpdate(TBool aAutoUpdate)
{
iAutoUpdate = aAutoUpdate;
}
template <class T> void CScreenDevice<T>::SetScreenOrientation(TInt aOrientation)
{
Update();
TEmulatorFlip flip = EEmulatorFlipRestore;
switch (aOrientation)
{
case 0: // Already set
break;
case 1:
flip = EEmulatorFlipLeft;
break;
case 2:
flip = EEmulatorFlipInvert;
break;
case 3:
flip = EEmulatorFlipRight;
break;
default:
ASSERT(0);
break;
}
EmulatorFlip(flip, iScreenNo);
iWindow->SetOrientation(aOrientation);
}
//
// Update the screen with the update region.
//
template <class T> void CScreenDevice<T>::Update()
{
if (iUpdateRegion.IsEmpty())
return;
UpdateScreen(iUpdateRegion);
iUpdateRegion.Clear();
}
//
// Update the screen with the union of the update and specified regions.
// aRegion - logical coordinates
template <class T> void CScreenDevice<T>::Update(const TRegion& aRegion)
{
if(!aRegion.IsEmpty() && !aRegion.CheckError())
{
if(iScalingOff && iOriginIsZero)
{
iUpdateRegion.Union(aRegion);
}
else
{
register TInt rcCnt = aRegion.Count();
RRegion physRegion(rcCnt);
register TInt originX = iOrigin.iX;
register TInt originY = iOrigin.iY;
register TInt factorX = iScalingSettings.iFactorX;
register TInt factorY = iScalingSettings.iFactorY;
for(register TInt i=0;i<rcCnt;++i)
{
const TRect& logRect = aRegion[i];
TRect physRect;
physRect.iTl.iX = ::Log2Phys(logRect.iTl.iX, originX, factorX, iSize.iWidth);
physRect.iTl.iY = ::Log2Phys(logRect.iTl.iY, originY, factorY, iSize.iHeight);
physRect.iBr.iX = ::RBtmLog2Phys(logRect.iBr.iX, originX, factorX, iSize.iWidth);
physRect.iBr.iY = ::RBtmLog2Phys(logRect.iBr.iY, originY, factorY, iSize.iHeight);
//The next statement sometimes have to allocate a block of memory and may
//fail setting RRegion's internal error flag. But there is nothing we can do.
physRegion.AddRect(physRect);
}
iUpdateRegion.Union(physRegion);
physRegion.Close();
}
}
Update();
}
//
// Update the update region.
// aRect - logical coordinates
template <class T> void CScreenDevice<T>::UpdateRegion(const TRect& aRect)
{
register TInt originX = iOrigin.iX;
register TInt originY = iOrigin.iY;
register TInt factorX = iScalingSettings.iFactorX;
register TInt factorY = iScalingSettings.iFactorY;
TRect physRect;
physRect.iTl.iX = ::Log2Phys(aRect.iTl.iX, originX, factorX, iSize.iWidth);
physRect.iTl.iY = ::Log2Phys(aRect.iTl.iY, originY, factorY, iSize.iHeight);
physRect.iBr.iX = ::RBtmLog2Phys(aRect.iBr.iX, originX, factorX, iSize.iWidth);
physRect.iBr.iY = ::RBtmLog2Phys(aRect.iBr.iY, originY, factorY, iSize.iHeight);
physRect.Normalize();
iUpdateRegion.AddRect(physRect);
if(iUpdateRegion.Count() >= 10)
{
iUpdateRegion.AddRect(iUpdateRegion.BoundingRect());
}
if(iAutoUpdate)
{
Update();
}
}
template <class T> void CScreenDevice<T>::UpdateScreen(const TRegion& aRegion)
{
if (aRegion.CheckError())
UpdateRect(iSize);
else
for(TInt count = 0; count < aRegion.Count(); count++)
UpdateRect(aRegion[count]);
iWindow->Update(aRegion,iSize);
}
template <class T> TUint8* CScreenDevice<T>::WinPixelAddress(TInt aX,TInt aY) const
{
return iWindow->PixelAddress(aX,aY);
}