// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
//
/**
@file
@test
@internalComponent - Internal Symbian test code
*/
#include <e32math.h>
#include <s32file.h>
#include <bautils.h>
#include <hal.h>
#include <test/tefunit.h>
#include <graphics/bitmapuid.h>
#include "../sfbs/UTILS.H"
#include "TBitmap.h"
#include "../sfbs/fbsbitmapasyncstreamer.h"
#include "fbsmessage.h"
// Symbian modification to help reduce unnecessary warnings
#if (__ARMCC_VERSION >= 310000)
//turn off Warning: #546-D: transfer of control bypasses initialization of variable, which is unnecessary.
#pragma diag_suppress 546
#endif
// End of Symbian modification
//
//
//Globals
//LOCAL_D RTest TheTest(_L("Test Bitmap"));
LOCAL_D RFs TheFs;
const TUint8 KCheckValue = 0x69;//pixel value used in the tests
_LIT(KBmpCompr12, "z:\\system\\data\\compr12.mbm");
_LIT(KBmpCompr16, "z:\\system\\data\\compr16.mbm");
_LIT(KBmpCompr24, "z:\\system\\data\\compr24.mbm");
_LIT(KBmpZCompr12, "z:\\system\\data\\racompr12.mbm");
_LIT(KBmpZCompr16, "z:\\system\\data\\racompr16.mbm");
_LIT(KBmpZCompr24, "z:\\system\\data\\racompr24.mbm");
_LIT(KBmpCCompr12, "c:\\racompr12.mbm");
_LIT(KBmpCCompr16, "c:\\racompr16.mbm");
_LIT(KBmpCCompr24, "c:\\racompr24.mbm");
_LIT(KRc_RamInRom8, "z:\\system\\data\\rc_ram8.mbm");
_LIT(KRc_RamInRom12, "z:\\system\\data\\rc_ram12.mbm");
_LIT(KRc_RamInRom16, "z:\\system\\data\\rc_ram16.mbm");
_LIT(KRc_RamInRom24, "z:\\system\\data\\rc_ram24.mbm");
_LIT(KRc_Ram8, "c:\\rc_ram8.mbm");
_LIT(KRc_Ram12, "c:\\rc_ram12.mbm");
_LIT(KRc_Ram16, "c:\\rc_ram16.mbm");
_LIT(KRc_Ram24, "c:\\rc_ram24.mbm");
_LIT(KRamBitmapOnZ, "z:\\system\\data\\16RAM2.mbm");
_LIT(KRamBitmap, "c:\\16RAM2.mbm");
_LIT(KRamBitmap2, "c:\\16RAM3.mbm");
_LIT(KMono_RamInRom_M1, "z:\\system\\data\\mono_m1.mbm");
_LIT(KMono_RamInRom_M2, "z:\\system\\data\\mono_m2.mbm");
_LIT(KMono_RamInRom_M4, "z:\\system\\data\\mono_m4.mbm");
_LIT(KMono_RamInRom_M8, "z:\\system\\data\\mono_m8.mbm");
_LIT(KMono_RamInRom_C4, "z:\\system\\data\\mono_c4.mbm");
_LIT(KMono_RamInRom_C8, "z:\\system\\data\\mono_c8.mbm");
_LIT(KMono_RamInRom_C12, "z:\\system\\data\\mono_c12.mbm");
_LIT(KMono_RamInRom_C16, "z:\\system\\data\\mono_c16.mbm");
_LIT(KMono_RamInRom_C24, "z:\\system\\data\\mono_c24.mbm");
_LIT(KMono_RamInRom_C32, "z:\\system\\data\\mono_c32.mbm");
_LIT(KMono_M1, "c:\\mono_m1.mbm");
_LIT(KMono_M2, "c:\\mono_m2.mbm");
_LIT(KMono_M4, "c:\\mono_m4.mbm");
_LIT(KMono_M8, "c:\\mono_m8.mbm");
_LIT(KMono_C4, "c:\\mono_c4.mbm");
_LIT(KMono_C8, "c:\\mono_c8.mbm");
_LIT(KMono_C12, "c:\\mono_c12.mbm");
_LIT(KMono_C16, "c:\\mono_c16.mbm");
_LIT(KMono_C24, "c:\\mono_c24.mbm");
_LIT(KMono_C32, "c:\\mono_c32.mbm");
_LIT(KRomBitmap,"z:\\system\\data\\tfbs.rbm");
//
//
//Create/Destroy test environment global functions
//Delete "aFullName" file.
LOCAL_C void DeleteDataFile(const TDesC& aFullName)
{
RFs fsSession;
TInt err = fsSession.Connect();
if(err == KErrNone)
{
TEntry entry;
if(fsSession.Entry(aFullName, entry) == KErrNone)
{
RDebug::Print(_L("Deleting \"%S\" file.\n"), &aFullName);
err = fsSession.SetAtt(aFullName, 0, KEntryAttReadOnly);
if(err != KErrNone)
{
RDebug::Print(_L("Error %d changing \"%S\" file attributes.\n"), err, &aFullName);
}
err = fsSession.Delete(aFullName);
if(err != KErrNone)
{
RDebug::Print(_L("Error %d deleting \"%S\" file.\n"), err, &aFullName);
}
}
fsSession.Close();
}
else
{
RDebug::Print(_L("Error %d connecting file session. File: %S.\n"), err, &aFullName);
}
}
//Copy test bitmaps from Z: to C: drive. RFs::Connect() had to be called already
//on "TheFs" object.
LOCAL_C void CopyFilesOnC()
{
BaflUtils::CopyFile(TheFs, KTestBitmapOnZ, KTestBitmapOnC);
BaflUtils::CopyFile(TheFs, KBmpZCompr12, KBmpCCompr12);
BaflUtils::CopyFile(TheFs, KBmpZCompr16, KBmpCCompr16);
BaflUtils::CopyFile(TheFs, KBmpZCompr24, KBmpCCompr24);
BaflUtils::CopyFile(TheFs, KRc_RamInRom8, KRc_Ram8);
BaflUtils::CopyFile(TheFs, KRc_RamInRom12, KRc_Ram12);
BaflUtils::CopyFile(TheFs, KRc_RamInRom16, KRc_Ram16);
BaflUtils::CopyFile(TheFs, KRc_RamInRom24, KRc_Ram24);
BaflUtils::CopyFile(TheFs, KRamBitmapOnZ, KRamBitmap);
BaflUtils::CopyFile(TheFs, KRamBitmapOnZ, KRamBitmap2);
BaflUtils::CopyFile(TheFs, KMono_RamInRom_M1, KMono_M1);
BaflUtils::CopyFile(TheFs, KMono_RamInRom_M2, KMono_M2);
BaflUtils::CopyFile(TheFs, KMono_RamInRom_M4, KMono_M4);
BaflUtils::CopyFile(TheFs, KMono_RamInRom_M8, KMono_M8);
BaflUtils::CopyFile(TheFs, KMono_RamInRom_C4, KMono_C4);
BaflUtils::CopyFile(TheFs, KMono_RamInRom_C8, KMono_C8);
BaflUtils::CopyFile(TheFs, KMono_RamInRom_C12, KMono_C12);
BaflUtils::CopyFile(TheFs, KMono_RamInRom_C16, KMono_C16);
BaflUtils::CopyFile(TheFs, KMono_RamInRom_C24, KMono_C24);
BaflUtils::CopyFile(TheFs, KMono_RamInRom_C32, KMono_C32);
}
//Delete data files used by the test
LOCAL_C void DeleteFilesFromC()
{
DeleteDataFile(KTestBitmapOnC);
DeleteDataFile(KBmpCCompr12);
DeleteDataFile(KBmpCCompr16);
DeleteDataFile(KBmpCCompr24);
DeleteDataFile(KRc_Ram8);
DeleteDataFile(KRc_Ram12);
DeleteDataFile(KRc_Ram16);
DeleteDataFile(KRc_Ram24);
DeleteDataFile(KRamBitmap);
DeleteDataFile(KRamBitmap2);
DeleteDataFile(KMono_M1);
DeleteDataFile(KMono_M2);
DeleteDataFile(KMono_M4);
DeleteDataFile(KMono_M8);
DeleteDataFile(KMono_C4);
DeleteDataFile(KMono_C8);
DeleteDataFile(KMono_C12);
DeleteDataFile(KMono_C16);
DeleteDataFile(KMono_C24);
DeleteDataFile(KMono_C32);
}
//
//
void CTBitmap::DeleteScanLineBuffer()
{
RFbsSession* fbs = RFbsSession::GetSession();
delete fbs->iScanLineBuffer;
fbs->iScanLineBuffer = NULL;
}
CTBitmap::CTBitmap(CTestStep* aStep):
CTGraphicsBase(aStep),
iBmpHandler(NULL),
iBitmap(NULL),
iAs(NULL)
{
__ASSERT_DEBUG(CActiveScheduler::Current(), User::Invariant());
CFbsBitmap bmp;
iTestBitmapName = KTestBitmapOnZ;
TInt ret=bmp.Load(iTestBitmapName,ETfbs,NULL);
TEST2(ret, KErrNone);
bmp.Reset();
ret = iFs.Connect();
TEST2(ret, KErrNone);
// Expand session scanline buffer cache to avoid spurious alloc heavens later on
const TInt bufferSize = 1024;
ret = bmp.Create(TSize(bufferSize,1),EColor256);
TEST2(ret, KErrNone);
ret = bmp.Compress();
TEST2(ret, KErrNone);
TUint8* buffer = new TUint8[bufferSize];
TEST(buffer != NULL);
TPtr8 scanline(buffer,bufferSize,bufferSize);
bmp.GetScanLine(scanline,TPoint(0,0),bufferSize,EColor256);
delete [] buffer;
bmp.Reset();
TUint32* romAddress = NULL;
if(!CFbsBitmap::IsFileInRom(KRomBitmap, romAddress)) //any ROM bitmap
{
INFO_PRINTF2(_L("Skipping ROM bitmap tests since file \"%S\" is reported to not be a ROM bitmap."),
&KRomBitmap);
INFO_PRINTF1(_L("This should only occur on non-XIP ROMs, e.g. NAND ROMs, where ROM bitmaps aren't supported."));
iSkipRomBitmapTests = ETrue;
}
}
CTBitmap::~CTBitmap()
{
iFs.Close();
}
void CTBitmap::RunTestCaseL(TInt aCurTestCase)
{
((CTBitmapStep*)iStep)->SetTestStepID(KUnknownSYMTestCaseIDName);
switch(aCurTestCase)
{
case 1:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0550"));
TwoComprLines();
break;
case 2:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0517"));
// they are fast hence at the beginning
CheckScanlineL();
break;
case 3:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0534"));
Compress();
break;
case 4:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0518"));
StreamBitmap();
break;
case 5:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0519"));
StreamRectangle();
break;
case 6:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0523"));
LoadInSegments();
break;
case 7:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0524"));
SaveInSegments();
break;
case 8:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0525"));
MonoDetect();
break;
case 9:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0526"));
ChunkPileL();
break;
case 10:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0527"));
LargeBitmaps();
break;
case 12:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0528"));
HugeBitmaps();
break;
case 13:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0529"));
Resize();
break;
case 14:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0520"));
GetScanline();
break;
case 15:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0521"));
SetScanline();
break;
case 16:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0522"));
StretchScanline();
break;
case 17:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0530"));
BitmapUtil();
break;
case 18:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0531"));
InvalidBitmap();
break;
case 19:
((CTBitmapStep*)iStep)->SetTestStepID(_L(" GRAPHICS-FBSERV-0533"));
SaveAndLoadFast();
break;
case 20:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0532"));
SaveAndLoad();
break;
case 21:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0535"));
Color256BitmapUtil();
break;
case 22:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0536"));
HardwareBitmaps();
break;
case 23:
((CTBitmapStep*)iStep)->SetTestStepID(KNotATestSYMTestCaseIDName);
// BitmapTiming();
break;
case 24:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0537"));
INC036062L();
break;
case 25:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0538"));
PerformanceTest_INC036062L();
break;
case 26:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0539"));
INC037474L();
break;
case 27:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0540"));
DEF038286L();
break;
case 28:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0541"));
DEF038286_2L();
break;
case 29:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0542"));
MonohromeL();
break;
case 30:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0543"));
GetVerticalScanLineL();
break;
case 31:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0544"));
GetVerticalScanLinePerformanceL();
break;
case 32:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0545"));
DEF071843_16MAL();
((CTBitmapStep*)iStep)->RecordTestResultL();
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0546"));
DEF071843_16MUL();
((CTBitmapStep*)iStep)->RecordTestResultL();
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0547"));
DEF071843_16ML();
#ifdef _DEBUG
((CTBitmapStep*)iStep)->RecordTestResultL();
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0549"));
//It uses Heap Allocation failure macro
//which is supported only for debug mode
DEF095361_16MAL();
#endif
break;
case 33:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0548"));
DEF074623_16MAL();
break;
case 34:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0551"));
TestPaletteCompressionL();
break;
case 35:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0552"));
TestSynchronousBackgroundPaletteCompressionL();
break;
case 36:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0553"));
TestAsynchronousBackgroundPaletteCompressionL();
break;
case 37:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0501"));
GetAllBitmapsIdsL();
break;
case 38:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0554"));
CheckBadBmp();
break;
case 39:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0516"));
CheckSetDisplayModeL();
break;
case 40:
/**
@SYMTestCaseID GRAPHICS-FBSERV-0619
*/
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0619"));
MultiThreadedTestsL();
break;
case 41:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0612"));
TestBgCompressL();
break;
case 42:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0613"));
TestBgCompressInUseL();
break;
case 43:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0614"));
TestDisconnectWithBitmapL();
break;
case 44:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0617"));
TestTouchedAndVolatileL();
break;
case 45:
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0618"));
TestBitmapWhiteFillL();
break;
case 46:
((CTBitmapStep*)iStep)->SetTestStepID(KNotATestSYMTestCaseIDName);
((CTBitmapStep*)iStep)->CloseTMSGraphicsStep();
TestComplete();
break;
default:
((CTBitmapStep*)iStep)->SetTestStepID(KNotATestSYMTestCaseIDName);
break;
}
((CTBitmapStep*)iStep)->RecordTestResultL();
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0516
@SYMTestCaseDesc
Checks that the display mode can be set
to various modes, including EColor16MAP
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::CheckSetDisplayModeL()
{
INFO_PRINTF1(_L("Check SetDisplayMode EColor16MAP"));
CFbsBitmap bmp;
User::LeaveIfError(bmp.Create(TSize(4,4),EColor16MA));
TInt ret=bmp.SetDisplayMode(EColor16MAP);
TEST(ret==KErrNone);
bmp.Reset();
User::LeaveIfError(bmp.Create(TSize(4,4),EColor16MU));
ret=bmp.SetDisplayMode(EColor16MAP);
TEST(ret==KErrNone);
bmp.Reset();
User::LeaveIfError(bmp.Create(TSize(4,4),EColor64K));
ret=bmp.SetDisplayMode(EColor16MAP);
TEST(ret==KErrArgument);
bmp.Reset();
User::LeaveIfError(bmp.Create(TSize(4,4),EColor16MAP));
ret=bmp.SetDisplayMode(EColor16MAP);
TEST(ret==KErrNone);
ret=bmp.SetDisplayMode(EColor16MU);
TEST(ret==KErrNone);
bmp.Reset();
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0517
@SYMTestCaseDesc
Compares a pixel retrieved with GetPixel and GetScanLine
@SYMTestActions
Zero fills a buffer which has an uneven length of bytes and
gets a pixel from a point which should coincide with
that of a point retrieved with scan line
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::CheckScanlineL()
{
INFO_PRINTF1(_L("Scanline sanity check"));
CFbsBitmap bmp;
User::LeaveIfError(bmp.Create(TSize(32,1),EGray2));
// try using a buffer that isn't a whole number of words long.
TUint8 buffer[3];
Mem::FillZ(buffer,3);
TPtr8 scanline(buffer,3,3);
bmp.GetScanLine(scanline,TPoint(0,0),24,EGray2);
TRgb pixel(KRgbRed);
bmp.GetPixel(pixel,TPoint(0,0));
// getscanline and getpixel should agree
TEST(TRgb::Gray2(buffer[0] & 0x01) == pixel);
bmp.Reset();
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0518
@SYMTestCaseDesc
Streams different bitmap size of different colour depth.
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::StreamBitmap()
{
INFO_PRINTF1(_L("Test Bitmap Streaming"));
DoStreamBitmapSizes(EGray2);
DoStreamBitmapSizes(EGray4);
DoStreamBitmapSizes(EGray16);
DoStreamBitmapSizes(EGray256);
DoStreamBitmapSizes(EColor16);
DoStreamBitmapSizes(EColor256);
DoStreamBitmapSizes(EColor4K);
DoStreamBitmapSizes(EColor64K);
DoStreamBitmapSizes(EColor16M);
DoStreamBitmapSizes(EColor16MU);
DoStreamBitmapSizes(EColor16MAP);
}
void CTBitmap::DoStreamBitmapSizes(TDisplayMode aDispMode)
{
const TSize smallStreamBitmapSize(32,10);
const TSize largeStreamBitmapSize(256,256);
const TSize oddStreamBitmapSize(31,2);
DoStreamBitmap(smallStreamBitmapSize,aDispMode,ETrue);
DoStreamBitmap(smallStreamBitmapSize,aDispMode,EFalse);
DoStreamBitmap(largeStreamBitmapSize,aDispMode,ETrue);
DoStreamBitmap(largeStreamBitmapSize,aDispMode,EFalse);
DoStreamBitmap(oddStreamBitmapSize,aDispMode,ETrue);
DoStreamBitmap(oddStreamBitmapSize,aDispMode,EFalse);
}
void CTBitmap::DoStreamBitmap(const TSize& aSize,TDisplayMode aDispMode,TBool aBlank)
{
__UHEAP_MARK;
CFbsBitmapEx bmp;
TInt ret = bmp.Create(aSize,aDispMode);
TEST2(ret, KErrNone);
if (aBlank)
BlankBitmap(bmp);
else
FillBitmap(bmp);
CDirectFileStore* writestore=NULL;
TRAP(ret,writestore=CDirectFileStore::ReplaceL(iFs,KTempFilename,EFileStream|EFileWrite));
TEST2(ret, KErrNone);
TUidType uidtype(KDirectFileStoreLayoutUid,KMultiBitmapFileImageUid);
TRAP(ret,writestore->SetTypeL(uidtype));
TEST2(ret, KErrNone);
RStoreWriteStream writestrm;
TStreamId headerid(0);
TRAP(ret,headerid=writestrm.CreateL(*writestore));
TEST2(ret, KErrNone);
TRAP(ret,writestore->SetRootL(headerid));
TEST2(ret, KErrNone);
TRAP(ret,bmp.ExternalizeL(writestrm));
TEST2(ret, KErrNone);
writestrm.Close();
delete writestore;
CFbsBitmapEx bmpst;
CDirectFileStore* readstore=NULL;
TRAP(ret,readstore=CDirectFileStore::OpenL(iFs,KTempFilename,EFileStream|EFileRead));
TEST2(ret, KErrNone);
RStoreReadStream readstrm;
headerid=readstore->Root();
TRAP(ret,readstrm.OpenL(*readstore,headerid));
TEST2(ret, KErrNone);
TRAP(ret,bmpst.InternalizeL(readstrm));
TEST2(ret, KErrNone);
readstrm.Close();
delete readstore;
CompareBitmaps(bmp,bmpst,EColor16M);
iFs.Delete(KTempFilename);
bmp.Reset();
bmpst.Reset();
User::Heap().Check();
__UHEAP_MARKEND;
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0519
@SYMTestCaseDesc
Streams bitmap rectangles of different colour depth
to file store and reads them back again.
@SYMTestActions
Bitmap rectangles are externalized to file store and
read back again. ScanLine is used and compared to GetPixel
from the bitmap read back from file store.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::StreamRectangle()
{
INFO_PRINTF1(_L("Test Rectangle Streaming"));
DoStreamRectangle(EGray2,ETrue);
DoStreamRectangle(EGray2,EFalse);
DoStreamRectangle(EGray4,ETrue);
DoStreamRectangle(EGray4,EFalse);
DoStreamRectangle(EGray16,ETrue);
DoStreamRectangle(EGray16,EFalse);
DoStreamRectangle(EGray256,ETrue);
DoStreamRectangle(EGray256,EFalse);
DoStreamRectangle(EColor16,ETrue);
DoStreamRectangle(EColor16,EFalse);
DoStreamRectangle(EColor256,ETrue);
DoStreamRectangle(EColor256,EFalse);
DoStreamRectangle(EColor4K,ETrue);
DoStreamRectangle(EColor4K,EFalse);
DoStreamRectangle(EColor64K,ETrue);
DoStreamRectangle(EColor64K,EFalse);
DoStreamRectangle(EColor16M,ETrue);
DoStreamRectangle(EColor16M,EFalse);
DoStreamRectangle(EColor16MU,ETrue);
DoStreamRectangle(EColor16MU,EFalse);
DoStreamRectangle(EColor16MAP,ETrue);
DoStreamRectangle(EColor16MAP,EFalse);
}
void CTBitmap::DoStreamRectangle(TDisplayMode aDispMode,TBool aBlank)
{
__UHEAP_MARK;
CFbsBitmapEx bmp;
TInt ret = bmp.Create(TSize(160,80),aDispMode);
TEST2(ret, KErrNone);
if (aBlank)
BlankBitmap(bmp);
else
FillBitmap(bmp);
CDirectFileStore* writestore=NULL;
TRAP(ret,writestore=CDirectFileStore::ReplaceL(iFs,KTempFilename,EFileStream|EFileWrite));
TEST2(ret, KErrNone);
TUidType uidtype(KDirectFileStoreLayoutUid,KMultiBitmapFileImageUid);
TRAP(ret,writestore->SetTypeL(uidtype));
TEST2(ret, KErrNone);
RStoreWriteStream writestrm;
TStreamId headerid(0);
TRAP(ret,headerid=writestrm.CreateL(*writestore));
TEST2(ret, KErrNone);
TRAP(ret,writestore->SetRootL(headerid));
TEST2(ret, KErrNone);
TRAP(ret,bmp.ExternalizeRectangleL(writestrm,TRect(40,20,120,60)));
TEST2(ret, KErrNone);
writestrm.Close();
delete writestore;
CFbsBitmapEx bmpst;
CDirectFileStore* readstore=NULL;
TRAP(ret,readstore=CDirectFileStore::OpenL(iFs,KTempFilename,EFileStream|EFileRead));
TEST2(ret, KErrNone);
RStoreReadStream readstrm;
headerid=readstore->Root();
TRAP(ret,readstrm.OpenL(*readstore,headerid));
TEST2(ret, KErrNone);
TRAP(ret,bmpst.InternalizeL(readstrm));
TEST2(ret, KErrNone);
readstrm.Close();
delete readstore;
TInt scanLineLength = CFbsBitmap::ScanLineLength(80,aDispMode);
TUint8* buffer = new TUint8[scanLineLength];
TUint8* bufferst = new TUint8[scanLineLength];
Mem::FillZ(buffer,scanLineLength);
Mem::FillZ(bufferst,scanLineLength);
TPtr8 scanline(buffer,scanLineLength,scanLineLength);
TPtr8 scanlinest(bufferst,scanLineLength,scanLineLength);
for(TInt yy=0;yy<40;yy++)
{
bmp.GetScanLine(scanline,TPoint(40,yy+20),80,aDispMode);
bmpst.GetScanLine(scanlinest,TPoint(0,yy),80,aDispMode);
if(aDispMode != EColor16MU)
{
TInt memRet = Mem::Compare(buffer,scanLineLength,bufferst,scanLineLength);
TEST(memRet == 0);
}
else
{
TInt pixelsToCompare = scanLineLength / 4;
TUint8* bufferCur = buffer;
TUint8* bufferstCur = bufferst;
//top byte is unused, and would be more accurate to ignore it
for(TInt ii = 0; ii < pixelsToCompare; ii++)
{
TInt memRet = Mem::Compare(bufferCur,3,bufferstCur,3);
TEST(memRet == 0);
bufferCur += 4;
bufferstCur += 4;
}
}
}
delete [] bufferst;
delete [] buffer;
iFs.Delete(KTempFilename);
bmp.Reset();
bmpst.Reset();
User::Heap().Check();
__UHEAP_MARKEND;
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0520
@SYMTestCaseDesc
Calls GetScanLine for different screen modes with
the bitmap compressed and uncompressed and checks
if the pixels are correct.
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::GetScanline()
{
INFO_PRINTF1(_L("Test GetScanline"));
const TSize size1(257,5);
const TSize size2(33,17);
INFO_PRINTF1(_L("EGray2"));
DoGetScanline(size1,EGray2);
DoGetScanline(size2,EGray2);
DoGetScanlineAlt(EGray2);
INFO_PRINTF1(_L(" EGray4"));
DoGetScanline(size1,EGray4);
DoGetScanline(size2,EGray4);
DoGetScanlineAlt(EGray4);
INFO_PRINTF1(_L(" EGray16"));
DoGetScanline(size1,EGray16);
DoGetScanline(size2,EGray16);
DoGetScanlineAlt(EGray16);
INFO_PRINTF1(_L(" EGray256"));
DoGetScanline(size1,EGray256);
DoGetScanline(size2,EGray256);
DoGetScanlineAlt(EGray256);
INFO_PRINTF1(_L(" EColor16"));
DoGetScanline(size1,EColor16);
DoGetScanline(size2,EColor16);
DoGetScanlineAlt(EColor16);
INFO_PRINTF1(_L(" EColor256"));
DoGetScanline(size1,EColor256);
DoGetScanline(size2,EColor256);
DoGetScanlineAlt(EColor256);
INFO_PRINTF1(_L(" EColor4K"));
DoGetScanline(size1,EColor4K);
DoGetScanline(size2,EColor4K);
DoGetScanlineAlt(EColor4K);
INFO_PRINTF1(_L(" EColor64K"));
DoGetScanline(size1,EColor64K);
DoGetScanline(size2,EColor64K);
DoGetScanlineAlt(EColor64K);
INFO_PRINTF1(_L(" EColor16M"));
DoGetScanline(size1,EColor16M);
DoGetScanline(size2,EColor16M);
DoGetScanlineAlt(EColor16M);
INFO_PRINTF1(_L(" EColor16MA"));
DoGetScanline(size1,EColor16MA);
DoGetScanline(size2,EColor16MA);
DoGetScanlineAlt(EColor16MA);
INFO_PRINTF1(_L(" EColor16MU"));
DoGetScanline(size1,EColor16MU);
DoGetScanline(size2,EColor16MU);
DoGetScanlineAlt(EColor16MU);
INFO_PRINTF1(_L(" EColor16MAP"));
DoGetScanline(size1,EColor16MAP);
DoGetScanline(size2,EColor16MAP);
DoGetScanlineAlt(EColor16MAP);
INFO_PRINTF1(_L("\n"));
}
void CTBitmap::DoGetScanline(const TSize& aSize,TDisplayMode aDispMode)
{
__UHEAP_MARK;
CFbsBitmapEx bmp;
TInt ret = bmp.Create(aSize,aDispMode);
TEST2(ret, KErrNone);
FillBitmap(bmp);
DoGetScanlineCheck1(bmp, bmp, aSize, aDispMode);
DoGetScanlineCheck2(bmp, bmp, aSize, aDispMode);
DoGetScanlineCheck3(bmp, aDispMode);
ret = bmp.Create(aSize,aDispMode);
TEST2(ret, KErrNone);
StripeBitmap(bmp);
CFbsBitmapEx ref;
ret = ref.Create(aSize,aDispMode);
TEST2(ret, KErrNone);
CopyBitmap(ref, bmp);
ret = bmp.Compress();
TEST2(ret, KErrNone);
DoGetScanlineCheck1(bmp, ref, aSize, aDispMode);
ref.Reset();
bmp.Reset();
User::Heap().Check();
__UHEAP_MARKEND;
}
void CTBitmap::DoGetScanlineCheck1(CFbsBitmap& aBitmap,CFbsBitmap& aReference,const TSize& aSize,TDisplayMode aDispMode)
{
TInt byteWidth = CFbsBitmap::ScanLineLength(aSize.iWidth,aDispMode);
TUint8* buffer = new TUint8[byteWidth + 1];
buffer[byteWidth] = KCheckValue;
TPtr8 scanline(buffer,byteWidth,byteWidth);
for(TInt xStart = 0; xStart <= 33; xStart++)
{
for (TInt xLength = 1; xLength <= 33; xLength++)
{
TInt xEnd = xStart + xLength;
if (xEnd <= aSize.iWidth)
{
aBitmap.GetScanLine(scanline,TPoint(xStart,0),xLength,aDispMode);
for(TInt xx = xStart; xx < xEnd; xx++)
{
TRgb color;
aReference.GetPixel(color,TPoint(xx,0));
TRgb bufferColor = ExtractRgb(buffer,xx - xStart,aDispMode);
TEST(bufferColor == color);
}
}
}
}
for(TInt yy = 0; yy < aSize.iHeight; yy++)
{
aBitmap.GetScanLine(scanline,TPoint(0,yy),aSize.iWidth,aDispMode);
for(TInt xx = 0; xx < aSize.iWidth; xx++)
{
TRgb color;
aReference.GetPixel(color,TPoint(xx,yy));
TRgb bufferColor = ExtractRgb(buffer,xx,aDispMode);
TEST(bufferColor == color);
}
}
TEST(buffer[byteWidth] == KCheckValue);
delete [] buffer;
}
void CTBitmap::DoGetScanlineCheck2(CFbsBitmap& aBitmap,CFbsBitmap& aReference,const TSize& aSize,TDisplayMode aDispMode)
{
TInt byteHeight = CFbsBitmap::ScanLineLength(aSize.iHeight,ERgb);
TUint8* buffer = new TUint8[byteHeight];
TPtr8 scanline(buffer,byteHeight,byteHeight);
TInt xx;
for(xx = 0; xx < aSize.iWidth; xx++)
{
aBitmap.GetVerticalScanLine(scanline,xx,aDispMode);
for(TInt yy = 0; yy < aSize.iHeight; yy++)
{
TRgb color;
aReference.GetPixel(color,TPoint(xx,yy));
TRgb bufferColor = ExtractRgb(buffer,yy,aDispMode);
TEST(bufferColor == color);
}
}
for(xx = 0; xx < aSize.iWidth; xx++)
{
aBitmap.GetVerticalScanLine(scanline,xx,ERgb);
for(TInt yy = 0; yy < aSize.iHeight; yy++)
{
TRgb color;
aReference.GetPixel(color,TPoint(xx,yy));
TRgb bufferColor = ExtractRgb(buffer,yy,ERgb);
TEST(bufferColor == color);
}
}
delete [] buffer;
}
void CTBitmap::DoGetScanlineCheck3(CFbsBitmap& aBitmap,TDisplayMode aDispMode)
{
TUint32 wordline=0xffffffff;
TPtr8 scanline((TUint8*)&wordline,4,4);
aBitmap.Create(TSize(31,1),aDispMode);
aBitmap.LockHeap();
Mem::Fill(aBitmap.DataAddress(),CFbsBitmap::ScanLineLength(31,aDispMode),0xff);
aBitmap.UnlockHeap();
aBitmap.SetScanLine(scanline,0);
TUint32 expected=0;
for(TInt zz=1;zz<31;zz++)
{
expected|=1<<(zz-1);
wordline=0;
aBitmap.GetScanLine(scanline,TPoint(0,0),zz,EGray2);
TUint32 actual=wordline&expected;
TEST(actual==expected);
}
}
/* this function calls CheckScanLine with various screen modes, and with the bitmap
compressed, and not compressed
*/
void CTBitmap::DoGetScanlineAlt(TDisplayMode aDispMode)
{
__UHEAP_MARK;
CFbsBitmapEx bmp;
TInt ret = bmp.Create(TSize(256,3),aDispMode);
TEST2(ret, KErrNone);
FillBitmap(bmp);
CheckScanLine(bmp,bmp,EGray2);
CheckScanLine(bmp,bmp,EGray4);
CheckScanLine(bmp,bmp,EGray16);
CheckScanLine(bmp,bmp,EGray256);
CheckScanLine(bmp,bmp,EColor16);
CheckScanLine(bmp,bmp,EColor256);
CheckScanLine(bmp,bmp,EColor4K);
CheckScanLine(bmp,bmp,EColor64K);
CheckScanLine(bmp,bmp,EColor16M);
CheckScanLine(bmp,bmp,ERgb);
CheckScanLine(bmp,bmp,EColor16MU);
CheckScanLine(bmp,bmp,EColor16MAP);
CFbsBitmapEx ref;
ret = ref.Create(bmp.SizeInPixels(),aDispMode);
TEST2(ret, KErrNone);
CopyBitmap(ref,bmp);
bmp.Compress();
CheckScanLine(bmp,ref,EGray2);
CheckScanLine(bmp,ref,EGray4);
CheckScanLine(bmp,ref,EGray16);
CheckScanLine(bmp,ref,EGray256);
CheckScanLine(bmp,ref,EColor16);
CheckScanLine(bmp,ref,EColor256);
CheckScanLine(bmp,ref,EColor4K);
CheckScanLine(bmp,ref,EColor64K);
CheckScanLine(bmp,ref,EColor16M);
CheckScanLine(bmp,ref,ERgb);
CheckScanLine(bmp,ref,EColor16MU);
CheckScanLine(bmp,ref,EColor16MAP);
User::Heap().Check();
__UHEAP_MARKEND;
}
void CTBitmap::CheckScanLine(CFbsBitmapEx& aBitmap,CFbsBitmapEx& aReference,TDisplayMode aDispMode)
{
const TSize bmpSize(aBitmap.SizeInPixels());
TInt byteWidth = CFbsBitmap::ScanLineLength(bmpSize.iWidth,aDispMode);
TUint8* buffer = new TUint8[byteWidth + 1];
buffer[byteWidth] = KCheckValue;
TPtr8 scanLine(buffer,byteWidth,byteWidth);
aBitmap.GetScanLine(scanLine,TPoint(0,1),bmpSize.iWidth,aDispMode);
for(TInt xx = 0; xx < bmpSize.iWidth; xx++)
{
TRgb color;
aReference.GetPixel(color,TPoint(xx,1));
TRgb bufferColor = ExtractRgb(buffer,xx,aDispMode);
switch (aDispMode)
{
case EGray2:
if (color.Gray4() == 0 || color.Gray4() == 3) // doesn't check in great detail because dithering occurs
TEST(bufferColor.Gray2() == color.Gray2());
break;
case EGray4:
if (aBitmap.DisplayMode() != EGray16) // doesn't check EGray16 because dithering occurs
TEST(bufferColor.Gray4() == color.Gray4());
break;
case EGray16:
TEST(bufferColor.Gray16() == color.Gray16());
break;
case EGray256:
TEST(bufferColor.Gray256() == color.Gray256());
break;
case EColor16:
TEST(bufferColor.Color16() == color.Color16());
break;
case EColor256:
TEST(bufferColor.Color256() == color.Color256());
break;
case EColor4K:
TEST(bufferColor.Color4K() == color.Color4K());
break;
case EColor64K:
TEST(bufferColor.Color64K() == color.Color64K());
break;
case EColor16M:
TEST(bufferColor.Color16M() == color.Color16M());
break;
case ERgb:
TEST(bufferColor == color);
break;
case EColor16MU:
if (aReference.DisplayMode()==EColor16MAP || aReference.DisplayMode()==EColor16MA)
color.SetAlpha(0xff);
CompareColourLikeness(bufferColor, color);
break;
case EColor16MAP:
//Compare the TRgb values. For an exact match to work the comparison would
//need to be done in PMA space.
color.SetInternal(color.Color16MAP());
bufferColor.SetInternal(bufferColor.Color16MAP());
CompareColourLikeness(bufferColor, color);
break;
default:
break;
};
}
TEST(buffer[byteWidth] == KCheckValue);
delete [] buffer;
}
/**
Compares two TRgbs and tests if they are similar colour.
This is required because there may be some rounding errors when converting bitmaps from one display mode to another
or due to alpha blending calculations.
@param aSrc is the source colour
@param aDest is the destination colour
@param aDifference use this value for colour difference. Value of 0 use KColourDifference;
*/
void CTBitmap::CompareColourLikeness(const TRgb& aSrc, const TRgb& aDest, TInt aDifference)
{
const TInt KColourDifference = 2; // Acceptable difference to check for
TInt diff;
if (aDifference==0)
diff=KColourDifference;
else
diff=aDifference;
TInt redDiff = Abs(aSrc.Red() - aDest.Red());
TInt greenDiff = Abs(aSrc.Green() - aDest.Green());
TInt blueDiff = Abs(aSrc.Blue() - aDest.Blue());
TInt alphaDiff = Abs(aSrc.Alpha() - aDest.Alpha());
// Test each channel
TEST(redDiff <= diff);
TEST(greenDiff <= diff);
TEST(blueDiff <= diff);
TEST(alphaDiff <= diff);
// the code below is useful for a breakpoint, to inspect the differences, in case of failure
/**
if ((redDiff > diff)||(greenDiff > diff)||(blueDiff > diff)||(alphaDiff > diff))
TInt temp=1;
*/
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0521
@SYMTestCaseDesc
Sets a scanline of random values into
bitmaps of different color depths
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::SetScanline()
{
INFO_PRINTF1(_L("Test SetScanline"));
DoSetScanline(EGray2);
DoSetScanline(EGray4);
DoSetScanline(EGray16);
DoSetScanline(EGray256);
DoSetScanline(EColor16);
DoSetScanline(EColor256);
DoSetScanline(EColor4K);
DoSetScanline(EColor64K);
DoSetScanline(EColor16M);
DoSetScanline(EColor16MU);
DoSetScanline(EColor16MAP);
}
void CTBitmap::DoSetScanline(TDisplayMode aDispMode)
{
__UHEAP_MARK;
CFbsBitmap bmp;
TInt ret = bmp.Create(TSize(256,2),aDispMode);
TEST2(ret, KErrNone);
TInt scanLineLength = CFbsBitmap::ScanLineLength(256,aDispMode);
TUint8* buffer = new TUint8[scanLineLength];
TEST(buffer != NULL);
TPtr8 scanline(buffer,scanLineLength,scanLineLength);
TUint8* bufptr = buffer;
TInt64 seed = bmp.Handle();
for(TInt count = 0; count < scanLineLength; count++)
*bufptr++ = (TUint8)Math::Rand(seed);
bmp.SetScanLine(scanline,0);
bmp.SetScanLine(scanline,1);
bmp.LockHeap();
TUint8* data = (TUint8*)bmp.DataAddress();
bmp.UnlockHeap();
ret = Mem::Compare(buffer,scanLineLength,data,scanLineLength);
TEST(ret == 0);
data += scanLineLength;
ret = Mem::Compare(buffer,scanLineLength,data,scanLineLength);
TEST(ret == 0);
delete [] buffer;
bmp.Reset();
User::Heap().Check();
__UHEAP_MARKEND;
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0522
@SYMTestCaseDesc
Stretches a scan line to make it
double as long for different colour depths
tested on both small and large bitmaps.
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::StretchScanline()
{
INFO_PRINTF1(_L("Test StretchScanline"));
const TSize smallBitmapSize(226,2);
const TSize largeBitmapSize(1026,40);
INFO_PRINTF1(_L("EGray2"));
DoStretchScanline(smallBitmapSize,EGray2);
DoStretchScanline(largeBitmapSize,EGray2);
INFO_PRINTF1(_L(" EGray4"));
DoStretchScanline(smallBitmapSize,EGray4);
DoStretchScanline(largeBitmapSize,EGray4);
INFO_PRINTF1(_L(" EGray16"));
DoStretchScanline(smallBitmapSize,EGray16);
DoStretchScanline(largeBitmapSize,EGray16);
INFO_PRINTF1(_L(" EGray256"));
DoStretchScanline(smallBitmapSize,EGray256);
DoStretchScanline(largeBitmapSize,EGray256);
INFO_PRINTF1(_L(" EColor16"));
DoStretchScanline(smallBitmapSize,EColor16);
DoStretchScanline(largeBitmapSize,EColor16);
INFO_PRINTF1(_L(" EColor256"));
DoStretchScanline(smallBitmapSize,EColor256);
DoStretchScanline(largeBitmapSize,EColor256);
INFO_PRINTF1(_L(" EColor4K"));
DoStretchScanline(smallBitmapSize,EColor4K);
DoStretchScanline(largeBitmapSize,EColor4K);
INFO_PRINTF1(_L(" EColor64K"));
DoStretchScanline(smallBitmapSize,EColor64K);
DoStretchScanline(largeBitmapSize,EColor64K);
INFO_PRINTF1(_L(" EColor16M"));
DoStretchScanline(smallBitmapSize,EColor16M);
DoStretchScanline(largeBitmapSize,EColor16M);
INFO_PRINTF1(_L(" EColor16MU"));
DoStretchScanline(smallBitmapSize,EColor16MU);
DoStretchScanline(largeBitmapSize,EColor16MU);
INFO_PRINTF1(_L(" EColor16MA"));
DoStretchScanline(smallBitmapSize,EColor16MA);
DoStretchScanline(largeBitmapSize,EColor16MA);
INFO_PRINTF1(_L(" EColor16MAP"));
DoStretchScanline(smallBitmapSize,EColor16MAP);
DoStretchScanline(largeBitmapSize,EColor16MAP);
DoStretchScanline(smallBitmapSize,EColor16MAP,EColor16M, ETrue);
DoStretchScanline(largeBitmapSize,EColor16MAP,EColor16M, ETrue);
DoStretchScanline(smallBitmapSize,EColor16MAP,EColor16MU, ETrue);
DoStretchScanline(largeBitmapSize,EColor16MAP,EColor16MU, ETrue);
DoStretchScanline(smallBitmapSize,EColor16MAP,EColor16MA, ETrue);
DoStretchScanline(largeBitmapSize,EColor16MAP,EColor16MA, ETrue);
DoStretchScanline(smallBitmapSize,EColor16MAP,EColor64K, ETrue);
DoStretchScanline(largeBitmapSize,EColor16MAP,EColor64K, ETrue);
DoStretchScanline(smallBitmapSize,EColor16MAP,EColor4K, ETrue);
DoStretchScanline(largeBitmapSize,EColor16MAP,EColor4K, ETrue);
DoStretchScanline(smallBitmapSize,EColor16MAP,EColor256, ETrue);
DoStretchScanline(largeBitmapSize,EColor16MAP,EColor256, ETrue);
DoStretchScanline(smallBitmapSize,EColor16M,EColor16MAP, ETrue);
DoStretchScanline(largeBitmapSize,EColor16M,EColor16MAP, ETrue);
DoStretchScanline(smallBitmapSize,EColor16MU,EColor16MAP, ETrue);
DoStretchScanline(largeBitmapSize,EColor16MU,EColor16MAP, ETrue);
DoStretchScanline(smallBitmapSize,EColor16MA,EColor16MAP, ETrue);
DoStretchScanline(largeBitmapSize,EColor16MA,EColor16MAP, ETrue);
DoStretchScanline(smallBitmapSize,EColor64K,EColor16MAP, ETrue);
DoStretchScanline(largeBitmapSize,EColor64K,EColor16MAP, ETrue);
DoStretchScanline(smallBitmapSize,EColor4K,EColor16MAP, ETrue);
DoStretchScanline(largeBitmapSize,EColor4K,EColor16MAP, ETrue);
DoStretchScanline(smallBitmapSize,EColor256,EColor16MAP, ETrue);
DoStretchScanline(largeBitmapSize,EColor256,EColor16MAP, ETrue);
DoStretchScanline(smallBitmapSize,EColor16MU,EColor16M, ETrue);
DoStretchScanline(largeBitmapSize,EColor16MU,EColor16M, ETrue);
INFO_PRINTF1(_L("\n"));
}
void CTBitmap::DoStretchScanline(const TSize& aSize,TDisplayMode aDispMode)
{
DoStretchScanline(aSize,aDispMode,aDispMode, EFalse);
}
/* this function is used to determine an acceptable colour difference based on the screen mode
and the alpha value. This is because when converting from PMA to non pre-multiplied, there
can be large errors, especially if alpha is small.
*/
TInt CTBitmap::ColorDifference(TDisplayMode aMode, TInt aAlpha)
{
switch (aMode)
{
case EGray2:// Monochrome display mode (1 bpp)
return 0xff>>1;
case EGray4:// Four grayscales display mode (2 bpp)
return 0xff>>2;
case EGray16:// 16 grayscales display mode (4 bpp)
return 0xff>>2;
case EGray256:// 256 grayscales display mode (8 bpp)
return 0xff>>2;
case EColor16:// Low colour EGA 16 colour display mode (4 bpp)
return 0xff>>2;
case EColor256: // 256 colour display mode (8 bpp)
return 0xff>>2;
case EColor64K: // 64,000 colour display mode (16 bpp)
return 0xff>>5;
case EColor16M: // True colour display mode (24 bpp)
return 0xff>>5;
case EColor4K: // 4096 colour display (12 bpp).
return 0xff>>4;
case EColor16MU:// True colour display mode (32 bpp, but top byte is unused and unspecified)
return 0xff>>5;
case EColor16MA:// Display mode with alpha (24bpp colour plus 8bpp alpha)
return 0xff>>6;
case EColor16MAP:// Pre-multiplied Alpha display mode (24bpp color multiplied with the alpha channel value, plus 8bpp alpha)
if (aAlpha==0xff)
return 0xff>>4;
else
//make inaccuracy a function of alpha since the colour will the premultiplied, and then
//unpremultiplied. For small alpha this can be quite large.
if (aAlpha==0)
return 0xff;
else
return Max(0xff>>4,Min(0xff,(0xff/aAlpha)+0xf));//value corrected by trial and error, with minimum of 15.
}
return 0xff>>7;
}
void CTBitmap::DoStretchScanline(const TSize& aSize,TDisplayMode aSrcMode,TDisplayMode aDstMode, TBool aUseCompareLikeness)
{
__UHEAP_MARK;
CFbsBitmapEx bmp;
CBitwiseBitmap* bmpadd=NULL;
TInt ret = bmp.Create(aSize,aSrcMode);
TEST2(ret, KErrNone);
FillBitmap(bmp);
bmpadd = bmp.BitmapAddress();
bmp.LockHeap();
TUint32* base = bmp.DataAddress();
bmp.UnlockHeap();
TInt scanLineLength = CFbsBitmap::ScanLineLength(aSize.iWidth,aSrcMode);
TInt scanLineDestLength = CFbsBitmap::ScanLineLength(aSize.iWidth,aDstMode)*2;
TUint8* buffer = new TUint8[scanLineLength];
TUint8* doubleBuffer = new TUint8[scanLineDestLength];
TPtr8 scanline(buffer,scanLineLength,scanLineLength);
TPtr8 doubleScanline(doubleBuffer,scanLineDestLength,scanLineDestLength);
TInt yy;
for(yy = 0; yy < aSize.iHeight; yy++)
{
bmp.GetScanLine(scanline,TPoint(0,yy),aSize.iWidth,aSrcMode);
bmpadd->StretchScanLine(doubleScanline,TPoint(0,yy),0,aSize.iWidth * 2,aSize.iWidth * 2,0,aSize.iWidth,TPoint(0,0),aDstMode,base);
for(TInt xx = 0; xx < aSize.iWidth; xx++)
{
TRgb scanlineColor = ExtractRgb(buffer,xx,aSrcMode);
TRgb firstStretchColor = ExtractRgb(doubleBuffer,xx * 2,aDstMode);
TRgb secondStretchColor = ExtractRgb(doubleBuffer,(xx * 2) + 1,aDstMode);
TRgb reportedColor;
bmpadd->GetPixel(reportedColor,TPoint(xx,yy),base,NULL);
if (!aUseCompareLikeness)
{
TEST(scanlineColor == firstStretchColor);
TEST(firstStretchColor == secondStretchColor);
TEST(secondStretchColor == reportedColor);
}
else
{
if (aDstMode==EColor16M||aDstMode==EColor16MU||aDstMode==EColor64K||aDstMode==EColor4K||aDstMode==EColor256)
{
//there is no alpha in the destination
scanlineColor.SetAlpha(0xff);
reportedColor.SetAlpha(0xff);
}
CompareColourLikeness(scanlineColor, firstStretchColor, ColorDifference(aDstMode,scanlineColor.Alpha()));
CompareColourLikeness(firstStretchColor, secondStretchColor,ColorDifference(aDstMode,scanlineColor.Alpha()));
CompareColourLikeness(secondStretchColor, reportedColor,ColorDifference(aDstMode,scanlineColor.Alpha()));
}
}
}
for(yy = 0; yy < aSize.iHeight; yy++)
{
bmp.GetScanLine(scanline,TPoint(0,yy),aSize.iWidth,aSrcMode);
bmpadd->StretchScanLine(doubleScanline,TPoint(0,yy),0,aSize.iWidth / 2,aSize.iWidth / 2,0,aSize.iWidth,TPoint(0,0),aDstMode,base);
for(TInt xx = 0; xx < aSize.iWidth; xx += 2)
{
TRgb scanlineColor = ExtractRgb(buffer,xx,aSrcMode);
TRgb compressColor = ExtractRgb(doubleBuffer,xx / 2,aDstMode);
TRgb reportedColor;
bmpadd->GetPixel(reportedColor,TPoint(xx,yy),base,NULL);
if (!aUseCompareLikeness)
{
TEST(scanlineColor == compressColor);
TEST(compressColor == reportedColor);
}
else
{
if (aDstMode==EColor16M||aDstMode==EColor16MU||aDstMode==EColor64K||aDstMode==EColor4K||aDstMode==EColor256)
{
//there is no alpha in the destination
scanlineColor.SetAlpha(0xff);
reportedColor.SetAlpha(0xff);
}
CompareColourLikeness(scanlineColor, compressColor,ColorDifference(aDstMode,scanlineColor.Alpha()));
CompareColourLikeness(compressColor, reportedColor,ColorDifference(aDstMode,scanlineColor.Alpha()));
}
}
}
delete [] buffer;
delete [] doubleBuffer;
buffer = NULL;
doubleBuffer = NULL;
TInt rgbScanLineLength = aSize.iWidth * sizeof(TRgb) * 2;
TUint8* rgbBuffer = new TUint8[rgbScanLineLength];
TPtr8 rgbScanline(rgbBuffer,rgbScanLineLength,rgbScanLineLength);
for(yy = 0; yy < aSize.iHeight; yy++)
{
bmpadd->StretchScanLine(rgbScanline,TPoint(0,yy),0,aSize.iWidth * 2,aSize.iWidth * 2,0,aSize.iWidth,TPoint(0,0),ERgb,base);
for(TInt xx = 0; xx < aSize.iWidth; xx++)
{
TRgb firstStretchColor = ExtractRgb(rgbBuffer,xx * 2,ERgb);
TRgb secondStretchColor = ExtractRgb(rgbBuffer,(xx * 2) + 1,ERgb);
TRgb reportedColor;
bmpadd->GetPixel(reportedColor,TPoint(xx,yy),base,NULL);
if (!aUseCompareLikeness)
{
TEST(firstStretchColor == secondStretchColor);
TEST(secondStretchColor == reportedColor);
}
else
{
CompareColourLikeness(firstStretchColor, secondStretchColor);
CompareColourLikeness(secondStretchColor, reportedColor);
}
}
}
for(yy = 0; yy < aSize.iHeight; yy++)
{
bmpadd->StretchScanLine(rgbScanline,TPoint(0,yy),0,aSize.iWidth / 2,aSize.iWidth / 2,0,aSize.iWidth,TPoint(0,0),ERgb,base);
for(TInt xx = 0; xx < aSize.iWidth; xx += 2)
{
TRgb compressColor = ExtractRgb(rgbBuffer,xx / 2,ERgb);
TRgb reportedColor;
bmpadd->GetPixel(reportedColor,TPoint(xx,yy),base,NULL);
if (!aUseCompareLikeness)
{
TEST(compressColor == reportedColor);
}
else
{
CompareColourLikeness(compressColor, reportedColor);
}
}
}
delete [] rgbBuffer;
rgbBuffer = NULL;
bmp.Reset();
User::Heap().Check();
DeleteScanLineBuffer();
__UHEAP_MARKEND;
}
TRgb CTBitmap::ExtractRgb(TUint8* aBuffer,TInt aPixelOffset,TDisplayMode aDispMode)
{
switch (aDispMode)
{
case EGray2:
{
TUint8 byte = *(aBuffer + (aPixelOffset >> 3));
if (byte & (1 << (aPixelOffset & 7)))
return KRgbWhite;
return KRgbBlack;
}
case EGray4:
{
TUint8 byte = *(aBuffer + (aPixelOffset >> 2));
byte >>= ((aPixelOffset & 3) << 1);
return TRgb::Gray4(byte & 3);
}
case EGray16:
{
TUint8 byte = *(aBuffer + (aPixelOffset >> 1));
if (aPixelOffset & 1)
byte >>= 4;
return TRgb::Gray16(byte & 0xf);
}
case EGray256:
return TRgb::Gray256(*(aBuffer + aPixelOffset));
case EColor16:
{
TUint8 byte = *(aBuffer + (aPixelOffset >> 1));
if (aPixelOffset & 1)
byte >>= 4;
return TRgb::Color16(byte & 0xf);
}
case EColor256:
return TRgb::Color256(*(aBuffer + aPixelOffset));
case EColor4K:
{
TUint16 doubleByte = *(((TUint16*)aBuffer) + aPixelOffset);
return TRgb::Color4K(doubleByte & 0xfff);
}
case EColor64K:
{
TUint16 doubleByte = *(((TUint16*)aBuffer) + aPixelOffset);
return TRgb::Color64K(doubleByte);
}
case EColor16M:
{
aBuffer += aPixelOffset * 3;
TInt value = *aBuffer++;
value |= *aBuffer++ << 8;
value |= *aBuffer << 16;
return TRgb::Color16M(value);
}
case ERgb:
return *(((TRgb*)aBuffer) + aPixelOffset);
case EColor16MU:
{
return TRgb::Color16MU(*(((TUint32*)aBuffer) + aPixelOffset));
}
case EColor16MA:
{
return TRgb::Color16MA(*(((TUint32*)aBuffer) + aPixelOffset));
}
case EColor16MAP:
{
return TRgb::_Color16MAP(*(((TUint32*)aBuffer) + aPixelOffset));
}
default:
break;
};
return KRgbBlack;
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0523
@SYMTestCaseDesc
Streams a bitmap in segments and compares it
to an expected bitmap
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::LoadInSegments()
{
INFO_PRINTF1(_L("Test Segmented Loading"));
__UHEAP_MARK;
CFbsBitmapEx bmp;
TInt ret=bmp.Load(iTestBitmapName,ETfbs,NULL);
TEST2(ret, KErrNone);
CFbsBitmapAsyncStreamer* bmploader=NULL;
TRAP(ret,bmploader=CFbsBitmapAsyncStreamer::NewL(CFbsBitmapAsyncStreamer::ELoad));
TEST2(ret, KErrNone);
TInt slines=0;
ret=bmploader->Load(iTestBitmapName,ETfbs,slines);
TEST2(ret, KErrNone);
TEST(slines>0);
CFbsBitmap* newbmp=NULL;
TBool done=EFalse;
do {
TEST(newbmp==NULL);
TRAP(ret,done=bmploader->LoadScanLinesL(slines/10,newbmp));
TEST2(ret, KErrNone);
}
while(!done);
TEST(newbmp!=NULL);
CompareBitmaps(bmp,(CFbsBitmapEx&)*newbmp,EColor16M);
delete bmploader;
delete newbmp;
TRAP(ret,iBmpHandler=CFbsBitmapAsyncStreamer::NewL(CFbsBitmapAsyncStreamer::ELoad));
TEST2(ret, KErrNone);
ret=iBmpHandler->Load(iTestBitmapName,ETfbs,slines);
TEST2(ret, KErrNone);
TEST(slines>0);
CIdle* idleobj=CIdle::New(-20);
TEST(idleobj!=NULL);
TCallBack callback(BmpLoadCallBack,this);
idleobj->Start(callback);
CActiveScheduler* as = CActiveScheduler::Current();
__ASSERT_DEBUG(as, User::Invariant());
TRAP(ret,as->Start());
TEST2(ret, KErrNone);
CompareBitmaps(bmp,(CFbsBitmapEx&)*iBitmap,EColor16M);
delete iBmpHandler;
delete iBitmap;
bmp.Reset();
delete idleobj;
User::Heap().Check();
__UHEAP_MARKEND;
}
TInt CTBitmap::BmpLoadCallBack(TAny* aPtr)
{
CTBitmap* tbmp=(CTBitmap*)aPtr;
tbmp->INFO_PRINTF1(_L("*"));
TBool done=EFalse;
TRAPD(ret,done=tbmp->iBmpHandler->LoadScanLinesL(10,tbmp->iBitmap));
tbmp->TEST2(ret, KErrNone);
if(done)
{
tbmp->TEST(tbmp->iBitmap!=NULL);
CActiveScheduler::Stop();
}
else
{
tbmp->TEST(tbmp->iBitmap==NULL);
}
return(ETrue);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0524
@SYMTestCaseDesc
A bitmap is saved in segments and then read back from file store
and compared to an expected bitmap
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::SaveInSegments()
{
INFO_PRINTF1(_L("Test Segmented Saving"));
__UHEAP_MARK;
CFbsBitmapEx bmp;
TInt ret=bmp.Load(iTestBitmapName,ETfbs,NULL);
TEST2(ret, KErrNone);
CFbsBitmapAsyncStreamer* bmpsaver=NULL;
TRAP(ret,bmpsaver=CFbsBitmapAsyncStreamer::NewL(CFbsBitmapAsyncStreamer::ESave));
TEST2(ret, KErrNone);
TInt slines=0;
TInt32 id;
ret=bmpsaver->Save(KTempFilename,&bmp,id,slines);
TEST2(ret, KErrNone);
TEST(id==0);
TEST(slines>0);
TBool done=EFalse;
do {
TRAP(ret,done=bmpsaver->SaveScanLinesL(slines/10));
TEST2(ret, KErrNone);
}
while(!done);
delete bmpsaver;
CFbsBitmapEx bmp2;
ret=bmp2.Load(KTempFilename,id,NULL);
TEST2(ret, KErrNone);
TUint8 buffer[40];
TUint8 bufferst[40];
TPtr8 scanline(&buffer[0],40,40);
TPtr8 scanlinest(&bufferst[0],40,40);
TInt yy=0;
for(;yy<80;yy++)
{
bmp.GetScanLine(scanline,TPoint(0,yy),160,EGray4);
bmp2.GetScanLine(scanlinest,TPoint(0,yy),160,EGray4);
for(TInt count=0;count<40;count++)
TEST(buffer[count]==bufferst[count]);
}
bmp2.Reset();
iFs.Delete(KTempFilename);
CActiveScheduler* as = CActiveScheduler::Current();
__ASSERT_DEBUG(as, User::Invariant());
TRAP(ret,iBmpHandler=CFbsBitmapAsyncStreamer::NewL(CFbsBitmapAsyncStreamer::ESave));
TEST2(ret, KErrNone);
ret=iBmpHandler->Save(KTempFilename,&bmp,id,slines);
TEST2(ret, KErrNone);
TEST(id==0);
TEST(slines>0);
CIdle* idleobj=CIdle::New(-20);
TEST(idleobj!=NULL);
TCallBack callback(BmpSaveCallBack,this);
idleobj->Start(callback);
TRAP(ret,as->Start());
TEST2(ret, KErrNone);
delete iBmpHandler;
ret=bmp2.Load(KTempFilename,id,NULL);
TEST2(ret, KErrNone);
for(yy=0;yy<80;yy++)
{
bmp.GetScanLine(scanline,TPoint(0,yy),160,EGray4);
bmp2.GetScanLine(scanlinest,TPoint(0,yy),160,EGray4);
for(TInt count=0;count<40;count++)
TEST(buffer[count]==bufferst[count]);
}
bmp.Reset();
delete idleobj;
iFs.Delete(KTempFilename);
User::Heap().Check();
__UHEAP_MARKEND;
INFO_PRINTF1(_L("\r\n"));
}
TInt CTBitmap::BmpSaveCallBack(TAny* aPtr)
{
CTBitmap* tbmp=(CTBitmap*)aPtr;
tbmp->INFO_PRINTF1(_L("*"));
TBool done=EFalse;
TRAPD(ret,done=tbmp->iBmpHandler->SaveScanLinesL(10));
tbmp->TEST2(ret, KErrNone);
if(done)
{
CActiveScheduler::Stop();
}
return(ETrue);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0525
@SYMTestCaseDesc
Tests if a bitmap is monochrone for different
color depths
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::MonoDetect()
{
INFO_PRINTF1(_L("Test Mono Detection"));
DoMonoDetect(EGray2);
DoMonoDetect(EGray4);
DoMonoDetect(EGray16);
DoMonoDetect(EGray256);
DoMonoDetect(EColor16);
DoMonoDetect(EColor256);
DoMonoDetect(EColor4K);
DoMonoDetect(EColor64K);
DoMonoDetect(EColor16M);
DoMonoDetect(EColor16MU);
DoMonoDetect(EColor16MAP);
}
void CTBitmap::DoMonoDetect(TDisplayMode aDisplayMode)
{
CFbsBitmapEx bmp;
TInt ret = bmp.Create(TSize(100,3),aDisplayMode);
TEST2(ret, KErrNone);
CBitwiseBitmap* bmpadd = bmp.BitmapAddress();
bmp.LockHeap();
TUint32* base = bmp.DataAddress();
bmp.UnlockHeap();
TUint32* data = bmpadd->ScanLineAddress(base,1);
if(aDisplayMode == EColor16M)
{
*(data+1) = 0x0000FFFF;
*(data+2) = 0xFFFFFF00;
//Pixel at (data + 1). Bytes (3) and (2) are part of the pixel at (data) addr.
//LSB MSB
//3 2 1 0
//FF FF 00 00
//Pixel at (data + 2). Byte (3) is part of the pixel at (data + 1) addr.
//LSB MSB
//3 2 1 0
//00 FF FF FF
}
else
{
*(data+1) = 0;
}
TBool mono = bmp.IsMonochrome();
TEST(mono);
*(data+1) = 0x1234abcd;
mono = bmp.IsMonochrome();
if (aDisplayMode == EGray2)
TEST(mono);
else
TEST(!mono);
if(aDisplayMode == EColor16M)
{
*(data+1) = 0xffffffff;
*(data+2) = 0xffffffff;
}
else
{
*(data+1) = 0xffffffff;
}
mono=bmp.IsMonochrome();
TEST(mono);
bmp.Reset();
}
#if defined(__WINS__)
// these are patchable constants defined in fbscli.dll but on the emulator
// it's not possible to import them so they are re-defined here
const TInt KFbServLargeChunkGrowByShifter = 1;
const TInt KFbServLargeChunkSizeShifter = 2;
const TInt KFbServLargeChunkMinPhysicalSize = 0x4000;
#elif defined(__X86GCC__)
IMPORT_D extern const TInt KFbServLargeChunkGrowByShifter;
IMPORT_D extern const TInt KFbServLargeChunkSizeShifter;
IMPORT_D extern const TInt KFbServLargeChunkMinPhysicalSize;
#endif
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0526
@SYMTestCaseDesc
Allocates different sized chunks of memory
in a loop and frees them
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::ChunkPileL()
{
INFO_PRINTF1(_L("Test Chunk Pile"));
TInt virtualSize = 0x4000000;
RChunk chunk;
TInt ret = chunk.CreateDisconnectedGlobal(_L("TFbsLargeChunk"), 0, 0, virtualSize);
TEST2(ret, KErrNone);
CleanupClosePushL(chunk);
TInt pageSize = 0;
HAL::Get(HAL::EMemoryPageSize, pageSize);
TEST(pageSize == 4096);
TUint8* chunkSmallBase = chunk.Base() + pageSize;
TUint8* chunkLargeBase = chunk.Base() + (virtualSize >> KFbServLargeChunkSizeShifter);
CChunkPile* cp=NULL;
TRAP(ret, cp = CChunkPile::NewL(chunk));
TEST2(ret, KErrNone);
TEST(cp!=NULL);
CleanupStack::PushL(cp);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize);
TUint8* chunkalloc[16];
TInt size[16];
for (TInt i = 0; i < 64; ++i)
{
chunkalloc[0] = cp->Alloc(size[0] = 512);
TEST(chunkalloc[0] == chunkSmallBase);
chunkalloc[1] = cp->Alloc(size[1] = 8);
TEST(chunkalloc[1] == chunkalloc[0] + size[0]);
chunkalloc[2] = cp->Alloc(size[2] = 128);
TEST(chunkalloc[2] == chunkalloc[1] + size[1]);
chunkalloc[3] = cp->Alloc(size[3] = 372);
TEST(chunkalloc[3] == chunkalloc[2] + size[2]);
chunkalloc[4] = cp->Alloc(size[4] = 256);
TEST(chunkalloc[4] == chunkalloc[3] + size[3]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize);
// now we should have [0], [1], [2], [3], [4]
cp->Free(chunkalloc[2]);
cp->Free(chunkalloc[3]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize);
chunkalloc[5] = cp->Alloc(size[5] = size[2] + size[3]);
TEST(chunkalloc[5] == chunkalloc[2]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize);
// now we should have [0], [1], [5], [4]
chunkalloc[6] = cp->Alloc(size[6] = 4);
TEST(chunkalloc[6] == chunkalloc[4] + size[4]);
chunkalloc[7] = cp->Alloc(size[7] = 1024);
TEST(chunkalloc[7] == chunkalloc[6] + size[6]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize);
cp->Free(chunkalloc[7]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize);
// now we should have [0], [1], [5], [4], [6]
cp->Free(chunkalloc[1]);
cp->Free(chunkalloc[0]);
cp->Free(chunkalloc[4]);
cp->Free(chunkalloc[5]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize);
chunkalloc[8] = cp->Alloc(size[8] = size[0] + size[1] + size[4] + size[5] - 32);
TEST(chunkalloc[8] == chunkalloc[0]);
chunkalloc[9] = cp->Alloc(size[9] = 32);
TEST(chunkalloc[9] == chunkalloc[8] + size[8]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize);
// now we should have [8], [9], [6]
chunkalloc[10] = cp->Alloc(size[10] = KFbServLargeChunkMinPhysicalSize - size[6] - size[8] - size[9]);
TEST(chunkalloc[10] == chunkalloc[6] + size[6]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize);
chunkalloc[11] = cp->Alloc(size[11] = 16);
TEST(chunkalloc[11] == chunkalloc[10] + size[10]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + (pageSize << KFbServLargeChunkGrowByShifter));
chunkalloc[12] = cp->Alloc(size[12] = ((pageSize << KFbServLargeChunkGrowByShifter) - 16) / 2);
TEST(chunkalloc[12] == chunkalloc[11] + size[11]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + (pageSize << KFbServLargeChunkGrowByShifter));
chunkalloc[13] = cp->Alloc(size[13] = size[12]);
TEST(chunkalloc[13] == chunkalloc[12] + size[12]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + (pageSize << KFbServLargeChunkGrowByShifter));
chunkalloc[14] = cp->Alloc(size[14] = pageSize << KFbServLargeChunkGrowByShifter);
TEST(chunkalloc[14] == chunkalloc[13] + size[13]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + 2 * (pageSize << KFbServLargeChunkGrowByShifter));
chunkalloc[15] = cp->Alloc(size[15] = (pageSize << KFbServLargeChunkGrowByShifter) + 4);
TEST(chunkalloc[15] == chunkalloc[14] + size[14]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + 4 * (pageSize << KFbServLargeChunkGrowByShifter));
// now we should have [8], [9], [6], [10], [11], [12], [13], [14], [15]
cp->Free(chunkalloc[15]);
cp->Free(chunkalloc[14]);
cp->Free(chunkalloc[13]);
cp->Free(chunkalloc[12]);
cp->Free(chunkalloc[11]);
cp->Free(chunkalloc[10]);
cp->Free(chunkalloc[9]);
cp->Free(chunkalloc[8]);
cp->Free(chunkalloc[6]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize);
TEST(cp->Alloc(virtualSize) == NULL);
TInt largeSize = 4 * pageSize;
chunkalloc[0] = cp->Alloc(size[0] = 2 * largeSize);
TEST(chunkalloc[0] == chunkLargeBase);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + size[0]);
chunkalloc[1] = cp->Alloc(2 * largeSize + 1);
size[1] = 2 * largeSize + pageSize;
TEST(chunkalloc[1] == chunkalloc[0] + size[0]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + size[0] + size[1]);
chunkalloc[2] = cp->Alloc(size[2] = 3 * largeSize + pageSize);
TEST(chunkalloc[2] == chunkalloc[1] + size[1]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + size[0] + size[1] + size[2]);
// now we should have [0], [1], [2]
cp->Free(chunkalloc[1]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + size[0] + size[2]);
chunkalloc[3] = cp->Alloc(largeSize + 1);
size[3] = largeSize + pageSize;
TEST(chunkalloc[3] == chunkalloc[1]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + size[0] + size[2] + size[3]);
chunkalloc[4] = cp->Alloc(size[4] = largeSize);
TEST(chunkalloc[4] == chunkalloc[3] + size[3]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + size[0] + size[2] + size[3] + size[4]);
chunkalloc[5] = cp->Alloc(size[5] = 64 * largeSize);
TEST(chunkalloc[5] == chunkalloc[2] + size[2]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + size[0] + size[2] + size[3] + size[4] + size[5]);
// now we should have [0], [3], [4], [2], [5]
cp->Free(chunkalloc[0]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + size[2] + size[3] + size[4] + size[5]);
cp->Free(chunkalloc[2]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + size[3] + size[4] + size[5]);
cp->Free(chunkalloc[3]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + size[4] + size[5]);
cp->Free(chunkalloc[4]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize + size[5]);
cp->Free(chunkalloc[5]);
TEST(chunk.Size() == KFbServLargeChunkMinPhysicalSize);
}
CleanupStack::PopAndDestroy(2, &chunk); // cp, chunk
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0527
@SYMTestCaseDesc
Creates large bitmaps of different colour depth.
@SYMTestActions
The bitmaps allocated are too big so
the allocation should fail.
@SYMTestExpectedResults
KErrNoMemory when allocating the bitmaps.
*/
void CTBitmap::LargeBitmaps()
{
INFO_PRINTF1(_L("Test Large Bitmaps"));
TMemoryInfoV1Buf membuf;
UserHal::MemoryInfo(membuf);
const TReal maxmem = membuf().iTotalRamInBytes;
TReal realSize = 0;
TInt ret = Math::Sqrt(realSize,maxmem);
TEST2(ret, KErrNone);
TInt32 size = 0;
ret = Math::Int(size,realSize);
TEST2(ret, KErrNone);
DoLargeBitmaps(TSize(size * 8,size),EGray2);
DoLargeBitmaps(TSize(size * 4,size),EGray4);
DoLargeBitmaps(TSize(size * 2,size),EGray16);
DoLargeBitmaps(TSize(size,size),EGray256);
DoLargeBitmaps(TSize(size * 2,size),EColor16);
DoLargeBitmaps(TSize(size,size),EColor256);
DoLargeBitmaps(TSize(size / 2,size),EColor4K);
DoLargeBitmaps(TSize(size / 2,size),EColor64K);
DoLargeBitmaps(TSize(size / 3,size),EColor16M);
DoLargeBitmaps(TSize(size / 4,size),EColor16MU);
DoLargeBitmaps(TSize(size / 4,size),EColor16MAP);
}
void CTBitmap::DoLargeBitmaps(const TSize& aSize,TDisplayMode aDisplayMode)
{
CFbsBitmapEx bmp1;
TInt ret = bmp1.Create(aSize,aDisplayMode);
TEST2(ret, KErrNoMemory);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0528
@SYMTestCaseDesc
Check error handling for bitmaps above pixel and byte size limits
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::HugeBitmaps()
{
// Check error handling for bitmaps above pixel and byte size limits
INFO_PRINTF1(_L("Test Huge Bitmaps"));
const TInt KLargePixelSize = 50000;
DoHugeBitmaps(TSize(KLargePixelSize * 8,KLargePixelSize),EGray2);
DoHugeBitmaps(TSize(KLargePixelSize * 4,KLargePixelSize),EGray4);
DoHugeBitmaps(TSize(KLargePixelSize * 2,KLargePixelSize),EGray16);
DoHugeBitmaps(TSize(KLargePixelSize,KLargePixelSize),EGray256);
DoHugeBitmaps(TSize(KLargePixelSize * 2,KLargePixelSize),EColor16);
DoHugeBitmaps(TSize(KLargePixelSize,KLargePixelSize),EColor256);
DoHugeBitmaps(TSize(KLargePixelSize / 2,KLargePixelSize),EColor4K);
DoHugeBitmaps(TSize(KLargePixelSize / 2,KLargePixelSize),EColor64K);
DoHugeBitmaps(TSize(KLargePixelSize / 3,KLargePixelSize),EColor16M);
DoHugeBitmaps(TSize(KLargePixelSize / 4,KLargePixelSize),EColor16MU);
DoHugeBitmaps(TSize(KLargePixelSize / 4,KLargePixelSize),EColor16MAP);
}
void CTBitmap::DoHugeBitmaps(const TSize& aSize,TDisplayMode aDisplayMode)
{
const TInt KMaxPixelSize = KMaxTInt / 4 + 1;
CFbsBitmap bmp;
TInt ret = bmp.Create(TSize(aSize.iWidth / 2,aSize.iHeight / 2),aDisplayMode);
TEST2(ret, KErrNoMemory);
ret = bmp.Create(aSize,aDisplayMode);
TEST2(ret, KErrTooBig);
ret = bmp.Create(TSize(1,KMaxPixelSize),aDisplayMode);
TEST2(ret, KErrTooBig);
ret = bmp.Create(TSize(KMaxPixelSize,1),aDisplayMode);
TEST2(ret, KErrTooBig);
ret = bmp.Create(TSize(KMaxPixelSize,KMaxPixelSize),aDisplayMode);
TEST2(ret, KErrTooBig);
ret = bmp.Create(TSize(KMaxTInt,KMaxTInt),aDisplayMode);
TEST2(ret, KErrTooBig);
ret = bmp.Create(TSize(1,1),aDisplayMode);
TEST2(ret, KErrNone);
ret = bmp.Resize(TSize(aSize.iWidth / 2,aSize.iHeight / 2));
TEST2(ret, KErrNoMemory);
ret = bmp.Resize(aSize);
TEST2(ret, KErrTooBig);
ret = bmp.Resize(TSize(1,KMaxPixelSize));
TEST2(ret, KErrTooBig);
ret = bmp.Resize(TSize(KMaxPixelSize,1));
TEST2(ret, KErrTooBig);
ret = bmp.Resize(TSize(KMaxPixelSize,KMaxPixelSize));
TEST2(ret, KErrTooBig);
ret = bmp.Resize(TSize(KMaxTInt,KMaxTInt));
TEST2(ret, KErrTooBig);
bmp.Reset();
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0529
@SYMTestCaseDesc
Resizes a bitmap to a larger size and
checks if the new bitmap is as expected
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::Resize()
{
INFO_PRINTF1(_L("Test Resizing"));
DoResize(EGray2);
DoResize(EGray4);
DoResize(EGray16);
DoResize(EGray256);
DoResize(EColor16);
DoResize(EColor256);
DoResize(EColor4K);
DoResize(EColor64K);
DoResize(EColor16M);
DoResize(EColor16MU);
DoResize(EColor16MAP);
}
void CTBitmap::DoResize(TDisplayMode aDispMode)
{
const TSize KBitmapOriginalSize(256,24);
const TSize KBitmapLargeSize(288,32);
const TSize KBitmapSmallSize(1,1);
CFbsBitmapEx bmp;
TInt ret = bmp.Create(KBitmapOriginalSize,aDispMode);
TEST2(ret, KErrNone);
bmp.SetSizeInTwips(KBitmapOriginalSize);
TEST(bmp.SizeInPixels() == KBitmapOriginalSize);
TEST(bmp.SizeInTwips() == KBitmapOriginalSize);
CBitwiseBitmap* bb = bmp.BitmapAddress();
bmp.LockHeap();
TUint32* base = bmp.DataAddress();
bmp.UnlockHeap();
TInt scanLineLength = CFbsBitmap::ScanLineLength(256,aDispMode);
TInt blockStart = scanLineLength / 4;
TInt blockLength = scanLineLength / 2;
TInt row;
for(row = 8; row < 16; row++)
{
TUint8* bmpadd = (TUint8*)bb->ScanLineAddress(base,row);
Mem::FillZ(bmpadd + blockStart,blockLength);
}
ret = bmp.Resize(KBitmapLargeSize);
TEST2(ret, KErrNone);
TEST(bmp.SizeInPixels() == KBitmapLargeSize);
TEST(bmp.SizeInTwips() == KBitmapLargeSize);
bb = bmp.BitmapAddress();
bmp.LockHeap();
base = bmp.DataAddress();
bmp.UnlockHeap();
scanLineLength = CFbsBitmap::ScanLineLength(288,aDispMode);
for(row = 0; row < 8; row++)
{
TUint8* bmpadd=(TUint8*)bb->ScanLineAddress(base,row);
CheckWhite(bmpadd,scanLineLength,aDispMode);
}
for(row = 16; row < 32; row++)
{
TUint8* bmpadd=(TUint8*)bb->ScanLineAddress(base,row);
CheckWhite(bmpadd,scanLineLength,aDispMode);
}
for(row = 8; row < 16; row++)
{
TUint8* bmpadd=(TUint8*)bb->ScanLineAddress(base,row);
CheckWhite(bmpadd,blockStart,aDispMode);
TUint8* ptr = bmpadd + blockStart;
TUint8* ptrLimit = ptr + blockLength;
while (ptr < ptrLimit)
TEST(*ptr++ == 0);
CheckWhite(ptr,scanLineLength - blockStart - blockLength,aDispMode);
}
ret = bmp.Resize(KBitmapSmallSize);
TEST2(ret, KErrNone);
TEST(bmp.SizeInPixels() == KBitmapSmallSize);
TEST(bmp.SizeInTwips() == KBitmapSmallSize);
ret = bmp.Resize(KBitmapOriginalSize);
TEST2(ret, KErrNone);
TEST(bmp.SizeInPixels() == KBitmapOriginalSize);
TEST(bmp.SizeInTwips() == KBitmapOriginalSize);
bmp.Reset();
}
void CTBitmap::CheckWhite(TUint8* aData,TInt aDataLength,TDisplayMode aDispMode)
{
TUint8* dataLimit = aData + aDataLength;
if (aDispMode != EColor4K)
{
while (aData < dataLimit)
TEST(*aData++ == 0xff);
}
else
{
while (aData < dataLimit)
{
TEST(*aData == 0xff || *aData == 0x0f);
aData++;
}
}
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0530
@SYMTestCaseDesc
Creates BitmapUtil objects and sets the
current position to different positions
and retrieves and sets the pixels in these
and compares it to another Bitmap Util object
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::BitmapUtil()
{
INFO_PRINTF1(_L("Test Bitmap Util"));
TSize bmpUtilSize1(256,4);
TSize bmpUtilSize2(256,1);
TSize bmpUtilSize3(256,256);
TSize bmpUtilSize4(1024,1024);
INFO_PRINTF1(_L("256x4.. "));
DoBitmapUtil(bmpUtilSize1,EGray2);
DoBitmapUtil(bmpUtilSize1,EGray4);
DoBitmapUtil(bmpUtilSize1,EGray16);
DoBitmapUtil(bmpUtilSize1,EGray256);
DoBitmapUtil(bmpUtilSize1,EColor16);
DoBitmapUtil(bmpUtilSize1,EColor256);
DoBitmapUtil(bmpUtilSize1,EColor4K);
DoBitmapUtil(bmpUtilSize1,EColor64K);
DoBitmapUtil(bmpUtilSize1,EColor16M);
DoBitmapUtil(bmpUtilSize1,EColor16MU);
DoBitmapUtil(bmpUtilSize1,EColor16MAP);
INFO_PRINTF1(_L("256x1.. "));
DoBitmapUtil(bmpUtilSize2,EGray2);
DoBitmapUtil(bmpUtilSize2,EGray4);
DoBitmapUtil(bmpUtilSize2,EGray16);
DoBitmapUtil(bmpUtilSize2,EGray256);
DoBitmapUtil(bmpUtilSize2,EColor16);
DoBitmapUtil(bmpUtilSize2,EColor256);
DoBitmapUtil(bmpUtilSize2,EColor4K);
DoBitmapUtil(bmpUtilSize2,EColor64K);
DoBitmapUtil(bmpUtilSize2,EColor16M);
DoBitmapUtil(bmpUtilSize2,EColor16MU);
DoBitmapUtil(bmpUtilSize2,EColor16MAP);
INFO_PRINTF1(_L("256x256..\n"));
DoBitmapUtil(bmpUtilSize3,EGray2);
DoBitmapUtil(bmpUtilSize3,EGray4);
DoBitmapUtil(bmpUtilSize3,EGray16);
DoBitmapUtil(bmpUtilSize3,EGray256);
DoBitmapUtil(bmpUtilSize3,EColor16);
DoBitmapUtil(bmpUtilSize3,EColor256);
DoBitmapUtil(bmpUtilSize3,EColor4K);
DoBitmapUtil(bmpUtilSize3,EColor64K);
DoBitmapUtil(bmpUtilSize3,EColor16M);
DoBitmapUtil(bmpUtilSize3,EColor16MU);
DoBitmapUtil(bmpUtilSize3,EColor16MAP);
INFO_PRINTF1(_L("Testing wastage bytes in 16M scanlines...\n"));
bmpUtilSize1.SetSize(5,13);
bmpUtilSize2.SetSize(6,14);
bmpUtilSize3.SetSize(7,15);
bmpUtilSize4.SetSize(8,16);
DoBitmapUtil(bmpUtilSize1,EColor16M);
DoBitmapUtil(bmpUtilSize2,EColor16M);
DoBitmapUtil(bmpUtilSize3,EColor16M);
DoBitmapUtil(bmpUtilSize4,EColor16M);
/*
* Test code commented out as it results in test case failure.
* Problem recorded in defect DEF001233.
*
INFO_PRINTF1(_L("Testing wastage bits in Gray16 scanlines...\n\n"));
bmpUtilSize1.SetSize(4,13);
bmpUtilSize2.SetSize(5,14);
bmpUtilSize3.SetSize(6,15);
bmpUtilSize4.SetSize(7,16);
DoBitmapUtil(bmpUtilSize1,EGray16);
DoBitmapUtil(bmpUtilSize2,EGray16);
DoBitmapUtil(bmpUtilSize3,EGray16);
DoBitmapUtil(bmpUtilSize4,EGray16);
*/
}
void CTBitmap::DoBitmapUtil(const TSize& aSize,TDisplayMode aDispMode)
{
const TPoint startPoint(aSize.iWidth / 3,aSize.iHeight / 3);
const TPoint zeroPoint(0,0);
CFbsBitmapEx bmp1;
TInt ret=bmp1.Create(aSize,aDispMode);
TEST2(ret, KErrNone);
FillBitmap(bmp1);
const TInt numPixels = ((aSize.iWidth + 31) & ~0x1f) * aSize.iHeight;
TInt count1;
CFbsBitmapEx bmp2;
ret=bmp2.Create(aSize,aDispMode);
TEST2(ret, KErrNone);
TBitmapUtil util1(&bmp1);
util1.Begin(zeroPoint);
TBitmapUtil util2(&bmp2);
util2.Begin(zeroPoint,util1);
TPoint currentPosition;
for (currentPosition.iY = 0; currentPosition.iY < aSize.iHeight; currentPosition.iY++)
for (currentPosition.iX = 0; currentPosition.iX < aSize.iWidth; currentPosition.iX++)
{
util1.SetPos(currentPosition);
util2.SetPos(currentPosition);
TUint32 pixelData = util1.GetPixel();
util2.SetPixel(pixelData);
}
util1.End();
util2.End();
CompareBitmaps(bmp1,bmp2,EColor16M);
bmp2.Reset();
ret=bmp2.Create(aSize,aDispMode);
TEST2(ret, KErrNone);
util1.Begin(startPoint);
util2.Begin(startPoint,util1);
for (count1 = 0; count1 < numPixels; count1++)
{
util2.SetPixel(util1);
util1.IncXPos();
util2.IncXPos();
}
util1.End();
util2.End();
CompareBitmaps(bmp1,bmp2,EColor16M);
bmp2.Reset();
ret=bmp2.Create(aSize,aDispMode);
TEST2(ret, KErrNone);
util1.Begin(zeroPoint);
util2.Begin(zeroPoint,util1);
for (currentPosition.iX = 0; currentPosition.iX < aSize.iWidth; currentPosition.iX++)
{
for (currentPosition.iY = 0; currentPosition.iY < aSize.iHeight; currentPosition.iY++)
{
util2.SetPixel(util1);
util1.IncYPos();
util2.IncYPos();
}
util1.IncXPos();
util2.IncXPos();
}
util1.End();
util2.End();
CompareBitmaps(bmp1,bmp2,EColor16M);
bmp2.Reset();
ret=bmp2.Create(aSize,aDispMode);
TEST2(ret, KErrNone);
util1.Begin(startPoint);
util2.Begin(startPoint,util1);
for (count1 = 0; count1 < numPixels; count1++)
{
util2.SetPixel(util1);
util1.DecXPos();
util2.DecXPos();
}
util1.End();
util2.End();
CompareBitmaps(bmp1,bmp2,EColor16M);
bmp2.Reset();
ret=bmp2.Create(aSize,aDispMode);
TEST2(ret, KErrNone);
util1.Begin(zeroPoint);
util2.Begin(zeroPoint,util1);
for (currentPosition.iX = 0; currentPosition.iX < aSize.iWidth; currentPosition.iX++)
{
for (currentPosition.iY = 0; currentPosition.iY < aSize.iHeight; currentPosition.iY++)
{
util2.SetPixel(util1);
util1.DecYPos();
util2.DecYPos();
}
util1.DecXPos();
util2.DecXPos();
}
util1.End();
util2.End();
CompareBitmaps(bmp1,bmp2,EColor16M);
bmp2.Reset();
bmp1.Reset();
}
void CTBitmap::BitmapTiming()
{
INFO_PRINTF1(_L("Test Timing"));
CFbsBitmap bmp;
TInt ret=bmp.Load(iTestBitmapName,ETfbs,NULL);
TEST2(ret, KErrNone);
CDirectFileStore* writestore=NULL;
TRAP(ret,writestore=CDirectFileStore::ReplaceL(iFs,KTempFilename,EFileStream|EFileWrite));
TEST2(ret, KErrNone);
TUidType uidtype(KDirectFileStoreLayoutUid,KMultiBitmapFileImageUid);
TRAP(ret,writestore->SetTypeL(uidtype));
TEST2(ret, KErrNone);
RStoreWriteStream writestrm;
TStreamId headerid(0);
TRAP(ret,headerid=writestrm.CreateL(*writestore));
TEST2(ret, KErrNone);
TRAP(ret,writestore->SetRootL(headerid));
TEST2(ret, KErrNone);
INFO_PRINTF1(_L("Save time: "));
TUint startTime=User::TickCount();
for(TInt count=0;count<5000;count++)
{
TRAP(ret,bmp.ExternalizeL(writestrm));
if(ret) break;
}
TUint stopTime=User::TickCount();
TEST2(ret, KErrNone);
writestrm.Close();
delete writestore;
INFO_PRINTF2(_L("%d ticks\r\n"),stopTime-startTime);
CDirectFileStore* readstore=NULL;
TRAP(ret,readstore=CDirectFileStore::OpenL(iFs,KTempFilename,EFileStream|EFileRead));
TEST2(ret, KErrNone);
RStoreReadStream readstrm;
headerid=readstore->Root();
INFO_PRINTF1(_L("Load time: "));
startTime=User::TickCount();
for(TInt count2=0;count2<5000;count2++)
{
TRAP(ret,readstrm.OpenL(*readstore,headerid));
if(ret) break;
TRAP(ret,bmp.InternalizeL(readstrm));
if(ret) break;
readstrm.Close();
}
stopTime=User::TickCount();
TEST2(ret, KErrNone);
delete readstore;
INFO_PRINTF2(_L("%d ticks\r\n"),stopTime-startTime);
bmp.Reset();
iFs.Delete(KTempFilename);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0531
@SYMTestCaseDesc
Tries to load non existing bitmaps from the
Z-drive.
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::InvalidBitmap()
{
INFO_PRINTF1(_L("Test Invalid Bitmap"));
__UHEAP_MARK;
CFbsBitmapEx bmp;
TInt ret=bmp.Load(_L("z:\\tfbsx.mbm"),ETfbs,NULL);
TEST2(ret, KErrNotFound);
ret=bmp.Load(_L("z:\\tfbs.xbm"),ETfbs,NULL);
TEST2(ret, KErrNotFound);
ret=bmp.Load(iTestBitmapName,999,NULL);
TEST2(ret, KErrEof);
ret=bmp.Load(iTestBitmapName,-1,NULL);
TEST2(ret, KErrEof);
bmp.Reset();
User::Heap().Check();
__UHEAP_MARKEND;
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0532
@SYMTestCaseDesc
Creates bitmaps and saves them to the C-drive
and loads them back again and compares them to
the original bitmaps.
@SYMTestActions
The test uses different colour depths and sizes
of the bitmaps. The sizes of the bitmaps are
large.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::SaveAndLoad()
{
INFO_PRINTF1(_L("Test Save/Load Bitmap"));
const TInt sizes[] = { 1,2,3,4,5,7,8,9,15,16,17,31,32,33,100 };
const TInt numSizes = sizeof(sizes) / sizeof(TInt);
TSize size;
for (TInt widthIndex = 0; widthIndex < numSizes; widthIndex++)
{
INFO_PRINTF3(_L("Index %d/%d\r"), widthIndex + 1, numSizes);
size.iWidth = sizes[widthIndex];
for (TInt heightIndex = 0; heightIndex < numSizes; heightIndex++)
{
size.iHeight = sizes[heightIndex];
DoSaveAndLoad(size,EGray2,EFalse);
DoSaveAndLoad(size,EGray2,ETrue);
DoSaveAndLoad(size,EGray4,EFalse);
DoSaveAndLoad(size,EGray4,ETrue);
DoSaveAndLoad(size,EGray16,EFalse);
DoSaveAndLoad(size,EGray16,ETrue);
DoSaveAndLoad(size,EGray256,EFalse);
DoSaveAndLoad(size,EGray256,ETrue);
DoSaveAndLoad(size,EColor16,EFalse);
DoSaveAndLoad(size,EColor16,ETrue);
DoSaveAndLoad(size,EColor256,EFalse);
DoSaveAndLoad(size,EColor256,ETrue);
DoSaveAndLoad(size,EColor4K,EFalse);
DoSaveAndLoad(size,EColor4K,ETrue);
DoSaveAndLoad(size,EColor64K,EFalse);
DoSaveAndLoad(size,EColor64K,ETrue);
DoSaveAndLoad(size,EColor16M,EFalse);
DoSaveAndLoad(size,EColor16M,ETrue);
DoSaveAndLoad(size,EColor16MU,EFalse);
DoSaveAndLoad(size,EColor16MU,ETrue);
DoSaveAndLoad(size,EColor16MAP,EFalse);
DoSaveAndLoad(size,EColor16MAP,ETrue);
}
}
INFO_PRINTF1(_L("\r\n"));
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0533
@SYMTestCaseDesc
Creates bitmaps and saves them to the C-drive
and loads them back again and compares them to
the original bitmaps.
@SYMTestActions
The test uses different colour depths and sizes
of the bitmaps. The sizes of the bitmaps are
small.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::SaveAndLoadFast()
{
INFO_PRINTF1(_L("Test Save/Load Fast Bitmap"));
// Keep this array small as the test time increases with n^2
// This way we can put in bigger sizes...
const TInt sizes[] = { 501, 107, 213 };
const TInt numSizes = sizeof(sizes) / sizeof(TInt);
TSize size;
for (TInt widthIndex = 0; widthIndex < numSizes; widthIndex++)
{
INFO_PRINTF3(_L("Index %d/%d\r"), widthIndex + 1, numSizes);
size.iWidth = sizes[widthIndex];
for (TInt heightIndex = 0; heightIndex < numSizes; heightIndex++)
{
size.iHeight = sizes[heightIndex];
DoSaveAndLoad(size,EGray2,EFalse);
DoSaveAndLoad(size,EGray2,ETrue);
DoSaveAndLoad(size,EGray4,EFalse);
DoSaveAndLoad(size,EGray4,ETrue);
DoSaveAndLoad(size,EGray16,EFalse);
DoSaveAndLoad(size,EGray16,ETrue);
DoSaveAndLoad(size,EGray256,EFalse);
DoSaveAndLoad(size,EGray256,ETrue);
DoSaveAndLoad(size,EColor16,EFalse);
DoSaveAndLoad(size,EColor16,ETrue);
DoSaveAndLoad(size,EColor256,EFalse);
DoSaveAndLoad(size,EColor256,ETrue);
DoSaveAndLoad(size,EColor4K,EFalse);
DoSaveAndLoad(size,EColor4K,ETrue);
DoSaveAndLoad(size,EColor64K,EFalse);
DoSaveAndLoad(size,EColor64K,ETrue);
DoSaveAndLoad(size,EColor16M,EFalse);
DoSaveAndLoad(size,EColor16M,ETrue);
DoSaveAndLoad(size,EColor16MU,EFalse);
DoSaveAndLoad(size,EColor16MU,ETrue);
DoSaveAndLoad(size,EColor16MAP,EFalse);
DoSaveAndLoad(size,EColor16MAP,ETrue);
}
}
INFO_PRINTF1(_L("\r\n"));
}
void CTBitmap::DoSaveAndLoad(const TSize& aSize,TDisplayMode aDispMode,TBool aBlank)
{
CFbsBitmapEx bmp1;
bmp1.Create(aSize,aDispMode);
if (aBlank)
BlankBitmap(bmp1);
else
FillBitmap(bmp1);
TInt ret = bmp1.Save(KTempFilename);
TEST2(ret, KErrNone);
CFbsBitmapEx bmp2;
ret = bmp2.Load(KTempFilename);
TEST2(ret, KErrNone);
CompareBitmaps(bmp1,bmp2,EColor16M);
ret = bmp2.Compress();
TEST2(ret, KErrNone);
CompareBitmaps(bmp1,bmp2,EColor16M);
iFs.Delete(KTempFilename);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0534
@SYMTestCaseDesc
Compresses bitmaps to ROM and RAM
@SYMTestActions
Tries to compress a bitmap in ROM and expects it to fail.
Compresses a bitmap in RAM and expect it to succeed.
Compression tested when executed in the background.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::Compress()
{
INFO_PRINTF1(_L("Test Compression"));
CFbsBitmap bmp;
RFbsSession* fbs = RFbsSession::GetSession();
TRequestStatus rs;
if(!iSkipRomBitmapTests)
{
INFO_PRINTF1(_L("check compressing of ROM files causes error"));
TInt ret=bmp.Load(KRomBitmap,ETfbs,NULL);
TEST2(ret, KErrNone);
ret = bmp.Compress();
TEST2(ret, KErrAccessDenied); //cannot compress bitmaps in ROM
ret = bmp.CompressInBackground();
TEST2(ret, KErrAccessDenied); //cannot compress bitmaps in ROM
bmp.CompressInBackground(rs);
User::WaitForRequest(rs);
TEST2(rs.Int(), KErrAccessDenied); //cannot compress bitmaps in ROM
ret = bmp.Save(KTempFilename);
TEST2(ret, KErrNone);
bmp.Reset();
ret = bmp.Load(KTempFilename);
TEST2(ret, KErrNone);
ret = bmp.Compress();
TEST2(ret, KErrNone);
TEST(bmp.IsCompressedInRAM());
bmp.Reset();
ret = bmp.Load(KTempFilename);
TEST2(ret, KErrNone);
ret = bmp.CompressInBackground();
TEST2(ret, KErrNone);
fbs->SendCommand(EFbsCompress, 0); // force background compression to execute
TEST(bmp.IsCompressedInRAM());
bmp.Reset();
ret = bmp.Load(KTempFilename);
TEST2(ret, KErrNone);
bmp.CompressInBackground(rs);
User::WaitForRequest(rs); // wait until background compression is finished
TEST2(rs.Int(), KErrNone);
TEST(bmp.IsCompressedInRAM());
bmp.Reset();
iFs.Delete(KTempFilename);
}
INFO_PRINTF1(_L("check compressing of RAM files is OK"));
{
TInt ret=bmp.Load(KTestBitmapOnC,ETfbs,NULL);
if(ret != KErrNone)
{
INFO_PRINTF1(_L("Could not load "));
INFO_PRINTF1(KTestBitmapOnC);
INFO_PRINTF1(_L(" Ensure is it copied over and rerun test\n"));
User::Panic(_L(""), ret);
}
ret = bmp.Compress();
TEST2(ret, KErrNone);
TEST(bmp.IsCompressedInRAM());
ret = bmp.Save(KTempFilename);
TEST2(ret, KErrNone);
bmp.Reset();
ret = bmp.Load(KTempFilename);
TEST2(ret, KErrNone);
ret = bmp.Compress();
TEST2(ret, KErrNone);
TEST(bmp.IsCompressedInRAM());
bmp.Reset();
ret = bmp.Load(KTempFilename);
TEST2(ret, KErrNone);
ret = bmp.CompressInBackground();
TEST2(ret, KErrNone);
fbs->SendCommand(EFbsCompress, 0); // force background compression to execute
TEST(bmp.IsCompressedInRAM());
bmp.Reset();
ret = bmp.Load(KTempFilename);
TEST2(ret, KErrNone);
bmp.CompressInBackground(rs);
fbs->SendCommand(EFbsCompress, 0); // force background compression to execute
User::WaitForRequest(rs);
TEST2(rs.Int(), KErrNone);
TEST(bmp.IsCompressedInRAM());
bmp.Reset();
iFs.Delete(KTempFilename);
}
INFO_PRINTF1(_L("check compressing a created bitmap"));
{
INFO_PRINTF1(_L("1\r\n"));
CFbsBitmapEx bitmap;
TInt ret=bitmap.Create(TSize(200,200),EColor256);
TEST2(ret, KErrNone);
INFO_PRINTF1(_L("2\r\n"));
BlankBitmap(bitmap);
ret = bitmap.Compress();
TEST2(ret, KErrNone);
INFO_PRINTF1(_L("3\r\n"));
TEST(bitmap.IsCompressedInRAM());
}
}
void CTBitmap::BlankBitmap(CFbsBitmapEx& aBitmap)
{
TSize size = aBitmap.SizeInPixels();
TInt dataLength = CFbsBitmap::ScanLineLength(size.iWidth,aBitmap.DisplayMode()) * size.iHeight;
aBitmap.LockHeap();
Mem::FillZ((TUint8*)aBitmap.DataAddress(),dataLength);
aBitmap.UnlockHeap();
}
void CTBitmap::FillBitmap(CFbsBitmapEx& aBitmap)
{
TSize size = aBitmap.SizeInPixels();
TInt dataLength = CFbsBitmap::ScanLineLength(size.iWidth,aBitmap.DisplayMode()) * size.iHeight;
aBitmap.LockHeap();
TUint8* bmpBits = (TUint8*)aBitmap.DataAddress();
aBitmap.UnlockHeap();
TUint8* bmpBitsLimit = bmpBits + dataLength;
TInt64 seed = aBitmap.Handle();
switch (aBitmap.DisplayMode())
{
case EColor4K:
Mem::FillZ(bmpBits,dataLength);
while (bmpBits < bmpBitsLimit)
{
*bmpBits++ = (TUint8)Math::Rand(seed);
*bmpBits++ = (TUint8)(Math::Rand(seed) & 0x0f);
}
break;
case EColor16MAP:
while (bmpBits < bmpBitsLimit)
{
TUint32 alpha = (TUint8)Math::Rand(seed);
TUint32 red = (TUint8)Math::Rand(seed);
TUint32 green = (TUint8)Math::Rand(seed);
TUint32 blue = (TUint8)Math::Rand(seed);
red = ((red * alpha)/255)&0xff;
green = ((green * alpha)/255)&0xff;
blue = ((blue * alpha)/255)&0xff;
*(TUint32*)bmpBits = (alpha<<24)|(red<<16)|(green<<8)|blue;
bmpBits+=4;
}
break;
default:
while (bmpBits < bmpBitsLimit)
*bmpBits++ = (TUint8)Math::Rand(seed);
break;
}
}
void CTBitmap::StripeBitmap(CFbsBitmapEx& aBitmap) // Compression friendly bitmap filling
{
TSize size = aBitmap.SizeInPixels();
TInt dataLength = CFbsBitmap::ScanLineLength(size.iWidth,aBitmap.DisplayMode()) * size.iHeight;
aBitmap.LockHeap();
TUint8* bmpBits = (TUint8*)aBitmap.DataAddress();
aBitmap.UnlockHeap();
TUint8* bmpBitsLimit = bmpBits + dataLength;
TInt64 seed = aBitmap.Handle();
if (aBitmap.DisplayMode() != EColor4K)
{
while (bmpBits < bmpBitsLimit)
{
TUint8* tempBmpBitsLimit = Min(bmpBitsLimit, bmpBits + (TUint8)Math::Rand(seed));
while (bmpBits < tempBmpBitsLimit)
*bmpBits++ = 0;
tempBmpBitsLimit = Min(bmpBitsLimit, bmpBits + (TUint8)Math::Rand(seed));
while (bmpBits < tempBmpBitsLimit)
*bmpBits++ = 0xff;
}
}
else
{
Mem::FillZ(bmpBits,dataLength);
while (bmpBits < bmpBitsLimit)
{
TUint8* tempBmpBitsLimit = Min(bmpBitsLimit, bmpBits + (TUint8)(Math::Rand(seed) * 2));
while (bmpBits < tempBmpBitsLimit)
{
*bmpBits++ = 0;
*bmpBits++ = 0;
}
tempBmpBitsLimit = Min(bmpBitsLimit, bmpBits + (TUint8)Math::Rand(seed));
while (bmpBits < tempBmpBitsLimit)
{
*bmpBits++ = 0xff;
*bmpBits++ = 0x0f;
}
}
}
}
void CTBitmap::CompareBitmaps(CFbsBitmapEx& aBmp1,CFbsBitmapEx& aBmp2,TDisplayMode aDispMode)
{
// We will compare bitmaps that we draw beginning at four different offsets into the bitmap
const TInt KTestBitmapOrigins = 4;
const TSize bmpSize = aBmp1.SizeInPixels();
TEST(bmpSize == aBmp2.SizeInPixels());
TInt originIndex = 0;
// Call DoCompareBitmaps() for four different origins
for(TInt ii=0;ii<KTestBitmapOrigins;ii++)
{
TInt xCoord = originIndex*(bmpSize.iWidth/4);
TInt yCoord = originIndex*(bmpSize.iHeight/4);
DoCompareBitmaps(aBmp1,aBmp2,aDispMode,TPoint(xCoord, yCoord), bmpSize);
originIndex++;
}
}
void CTBitmap::DoCompareBitmaps(CFbsBitmapEx& aBmp1,CFbsBitmapEx& aBmp2,TDisplayMode aDispMode, TPoint aLineOrigin, TSize aBmpSize)
{
// Compares two bitmaps line by line
const TInt KBitmapWidth = aBmpSize.iWidth;
const TInt KStartRow = aLineOrigin.iY;
const TInt KBitmapHeight = aBmpSize.iHeight;
HBufC8* buf1 = HBufC8::NewMax(KBitmapWidth * 4);
HBufC8* buf2 = HBufC8::NewMax(KBitmapWidth * 4);
TEST(buf1 && buf2);
TPtr8 des1(buf1->Des());
TPtr8 des2(buf2->Des());
for (TInt row = KStartRow; row < KBitmapHeight; row++)
{
aBmp1.GetScanLine(des1,aLineOrigin,KBitmapWidth,aDispMode);
aBmp2.GetScanLine(des2,aLineOrigin,KBitmapWidth,aDispMode);
const TInt ret = des1.Compare(des2);
if (ret!=0)
{
INFO_PRINTF2(_L("Bitmap comparison failed, row %d differernt!\n"), row);
aBmp1.Save(KFail1Filename);
aBmp2.Save(KFail2Filename);
}
TEST(ret == 0);
}
delete buf1;
delete buf2;
}
void CTBitmap::CopyBitmap(CFbsBitmapEx& aBmp1,const CFbsBitmapEx& aBmp2)
{
TSize bmp1size = aBmp1.SizeInPixels();
TSize bmp2size = aBmp2.SizeInPixels();
TInt bmp1dataLength = CFbsBitmap::ScanLineLength(bmp1size.iWidth,aBmp1.DisplayMode()) * bmp1size.iHeight;
TInt bmp2dataLength = CFbsBitmap::ScanLineLength(bmp2size.iWidth,aBmp2.DisplayMode()) * bmp2size.iHeight;
TEST(bmp1dataLength == bmp2dataLength);
aBmp1.LockHeap();
TUint32* bmp1Bits = aBmp1.DataAddress();
aBmp1.UnlockHeap();
aBmp2.LockHeap();
TUint32* bmp2Bits = aBmp2.DataAddress();
aBmp2.UnlockHeap();
Mem::Copy((TUint8*)bmp1Bits,(TUint8*)bmp2Bits,bmp1dataLength);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0535
@SYMTestCaseDesc
Loads and copies bitmaps and does a
fuzzy compare on the bitmaps using
scan lines
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::Color256BitmapUtil()
{
INFO_PRINTF1(_L("Test CFbsColor256BitmapUtil"));
CFbsBitmapEx bmpRefDitherFs;
TInt ret=bmpRefDitherFs.Load(_L("z:\\system\\data\\8bitDitherFS.mbm"));
TEST2(ret, KErrNone);
CFbsBitmapEx bmpRefNoDither;
ret=bmpRefNoDither.Load(_L("z:\\system\\data\\8bitNoDither.mbm"));
TEST2(ret, KErrNone);
TSize size = bmpRefNoDither.SizeInPixels();
CFbsColor256BitmapUtil* util = NULL;
TRAP(ret, util=CFbsColor256BitmapUtil::NewL(NULL));
TEST2(ret, KErrNone);
CFbsBitmapEx bmp2;
ret = bmp2.Create(size,EColor256);
TEST2(ret, KErrNone);
CFbsBitmapEx bmp1;
INFO_PRINTF1(_L("EColor256 "));
ret = util->CopyBitmap(&bmp2,&bmpRefNoDither,CFbsColor256BitmapUtil::ENoDither);
TEST2(ret, KErrNone);
CompareBitmaps(bmpRefNoDither,bmp2,EColor16M);
ret = util->CopyBitmap(&bmp2,&bmpRefDitherFs,CFbsColor256BitmapUtil::EFloydSteinberg);
TEST2(ret, KErrNone);
CompareBitmaps(bmpRefDitherFs,bmp2,EColor16M);
INFO_PRINTF1(_L("EColor4K "));
ret=bmp1.Load(_L("z:\\system\\data\\12bit.mbm"));
TEST2(ret, KErrNone);
ret = util->CopyBitmap(&bmp2,&bmp1,CFbsColor256BitmapUtil::ENoDither);
TEST2(ret, KErrNone);
CompareBitmaps(bmpRefNoDither,bmp2,EColor16M);
ret = util->CopyBitmap(&bmp2,&bmp1,CFbsColor256BitmapUtil::EFloydSteinberg);
TEST2(ret, KErrNone);
FuzzyCompareBitmapsColor256(bmpRefNoDither,bmp2,23);
INFO_PRINTF1(_L("EColor64K "));
ret=bmp1.Load(_L("z:\\system\\data\\16bit.mbm"));
TEST2(ret, KErrNone);
ret = util->CopyBitmap(&bmp2,&bmp1,CFbsColor256BitmapUtil::ENoDither);
TEST2(ret, KErrNone);
CompareBitmaps(bmpRefNoDither,bmp2,EColor16M);
ret = util->CopyBitmap(&bmp2,&bmp1,CFbsColor256BitmapUtil::EFloydSteinberg);
TEST2(ret, KErrNone);
FuzzyCompareBitmapsColor256(bmpRefNoDither,bmp2,28);
INFO_PRINTF1(_L("EColor16M\r\n"));
ret=bmp1.Load(_L("z:\\system\\data\\24bit.mbm"));
TEST2(ret, KErrNone);
ret = util->CopyBitmap(&bmp2,&bmp1,CFbsColor256BitmapUtil::ENoDither);
TEST2(ret, KErrNone);
CompareBitmaps(bmpRefNoDither,bmp2,EColor16M);
ret = util->CopyBitmap(&bmp2,&bmp1,CFbsColor256BitmapUtil::EFloydSteinberg);
TEST2(ret, KErrNone);
FuzzyCompareBitmapsColor256(bmpRefNoDither,bmp2,32);
INFO_PRINTF1(_L("EColor16MU\r\n"));
ret=bmp1.Load(_L("z:\\system\\data\\32bit.mbm"));
TEST2(ret, KErrNone);
ret = util->CopyBitmap(&bmp2,&bmp1,CFbsColor256BitmapUtil::ENoDither);
TEST2(ret, KErrNone);
CompareBitmaps(bmpRefNoDither,bmp2,EColor16M);
ret = util->CopyBitmap(&bmp2,&bmp1,CFbsColor256BitmapUtil::EFloydSteinberg);
TEST2(ret, KErrNone);
FuzzyCompareBitmapsColor256(bmpRefNoDither,bmp2,32);
CFbsBitmapEx bmp3;
ret = bmp3.Create(size,EColor16MAP);
TEST2(ret, KErrNone);
CopyBitmap(bmp3,bmp1);
TEST2(ret, KErrNone);
ret = util->CopyBitmap(&bmp2,&bmp3,CFbsColor256BitmapUtil::ENoDither);
TEST2(ret, KErrNone);
//Do not compare bitmaps since there is no reference EColor16MAP image
//CompareBitmaps(bmpRefNoDither,bmp2,EColor16M); - testing ensures that
//copying succeeds, not accuracy
ret = util->CopyBitmap(&bmp2,&bmp3,CFbsColor256BitmapUtil::EFloydSteinberg);
TEST2(ret, KErrNone);
//Do not compare bitmaps since there is no reference EColor16MAP image
//FuzzyCompareBitmapsColor256(bmpRefNoDither,bmp2,32); - testing ensures that
//copying succeeds, not accuracy
bmp3.Reset();
// bmp2.Save(_L("c:\\8bitSaved.mbm"));
bmp1.Reset();
bmp2.Reset();
bmpRefNoDither.Reset();
bmpRefDitherFs.Reset();
delete util;
}
void CTBitmap::FuzzyCompareBitmapsColor256(CFbsBitmapEx& aBmp1,CFbsBitmapEx& aBmp2,TUint aDifLimit)
{
TSize bmp1size = aBmp1.SizeInPixels();
TSize bmp2size = aBmp2.SizeInPixels();
TInt bmp1dataLength = CFbsBitmap::ScanLineLength(bmp1size.iWidth,aBmp1.DisplayMode()) * bmp1size.iHeight;
TInt bmp2dataLength = CFbsBitmap::ScanLineLength(bmp2size.iWidth,aBmp2.DisplayMode()) * bmp2size.iHeight;
TEST(bmp1dataLength == bmp2dataLength);
aBmp1.LockHeap();
TUint8* bmp1Bits = (TUint8*)aBmp1.DataAddress();
aBmp1.UnlockHeap();
aBmp2.LockHeap();
TUint8* bmp2Bits = (TUint8*)aBmp2.DataAddress();
aBmp2.UnlockHeap();
TUint totalDifference = 0;
TUint difference = 0;
while(bmp1dataLength--)
{
difference = TRgb::Color256((TUint)*(bmp1Bits++)).Difference(TRgb::Color256((TUint)*(bmp2Bits++)));
totalDifference+=difference;
}
TUint avDif = totalDifference/bmp2dataLength;
TEST(avDif<=aDifLimit);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0536
@SYMTestCaseDesc
Creates a hardware bitmap with a size and
display mode for different display modes.
@SYMTestActions
It checks some bitmap attributes, bitmapHandle,
if it is a large bitmap and if the bitmap is in ROM.
Creates a 'normal' bitmap with the same size as the
hardware one. Checks it can write to the hardware
bitmap. Checks reuse of a CFbsBitmap for mixture of
hardware and normal bitmaps works.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::HardwareBitmaps()
{
static const TDisplayMode modes[] =
{
EGray2,
EGray4,
EGray16,
EGray256,
EColor16,
EColor256,
EColor64K,
EColor16M,
EColor16MU,
EColor4K,
EColor16MAP,
ENone
};
INFO_PRINTF1(_L("Test Hardware Bitmaps"));
CFbsBitmapEx bitmap1;
// Large bitmap threshold increased from 4K to 64K
TSize size(300,300);
TDisplayMode displayMode;
// Try and find a display mode that hardware bitmaps support
TInt ret = KErrNotSupported;
TInt i=0;
while((displayMode=modes[i])!=ENone)
{
ret = bitmap1.CreateHardwareBitmap(size,displayMode,TUid::Uid(0));
if(ret!=KErrNotSupported)
{
TEST2(ret, KErrNone);
break;
}
i++;
}
if(ret==KErrNotSupported)
{
// Hardware bitmaps not supported on this device
WARN_PRINTF1(_L("...Not Supported"));
return;
}
// Check some bitmap attributes
TEST(bitmap1.HardwareBitmapHandle()!=NULL);
TEST(!bitmap1.IsLargeBitmap());
TEST(!bitmap1.IsRomBitmap());
// Create a 'normal' bitmap the same size as the hardware one
CFbsBitmapEx bitmap2;
ret = bitmap2.Create(size,displayMode);
TEST2(ret, KErrNone);
TEST(bitmap2.HardwareBitmapHandle()==NULL);
TEST(bitmap2.IsLargeBitmap());
// Check we can write to the hardware bitmap OK
FillBitmap(bitmap1);
CopyBitmap(bitmap1,bitmap2);
CompareBitmaps(bitmap1,bitmap2,EColor16M);
// Discard hardware bitmap
bitmap1.Reset();
// Check reuse of a CFbsBitmap for mixture of hardware and normal bitmaps works
ret = bitmap2.CreateHardwareBitmap(size,displayMode,TUid::Uid(0));
TEST2(ret, KErrNone);
ret = bitmap2.Create(TSize(10,10),displayMode);
TEST2(ret, KErrNone);
ret = bitmap2.CreateHardwareBitmap(size,displayMode,TUid::Uid(0));
TEST2(ret, KErrNone);
ret = bitmap2.Create(size,displayMode);
TEST2(ret, KErrNone);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0537
@SYMTestCaseDesc
GetScanLine test
@SYMDEF INC036062
@SYMTestActions
For each possible display mode it creates a test bitmap
and initialize it with the data from the gray bitmap.
Then for each possible display mode it calls GetScanLine
on the gray and test bitmaps and compares the lines.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::INC036062L()
//INC036062 - Optimise masked bitblit for 1 bit greyscale mask case
{
INFO_PRINTF1(_L("INC036062"));
TDisplayMode displayMode[] =
{
EGray2, EGray4, EGray16, EGray256, EColor16, EColor256,
EColor64K, EColor16M, EColor4K, EColor16MU, EColor16MAP
};
//Two EGray2 test bitmaps with sizes (11, 11) and (121, 121).
TSize size[] =
{
TSize(11, 11), TSize(121, 121)
};
//Masks for for the last scanline byte (probably partially initialized)
TUint8 mask[sizeof(size)/sizeof(size[0])][sizeof(displayMode)/sizeof(displayMode[0])] =
{
//EGray2 EGray4 EGray16 EGray256 EColor16 EColor256 EColor64K EColor16M EColor4K EColor16MU
{0x07, 0x3F, 0x0F, 0xFF, 0x0F, 0xFF, 0xFF, 0xFF, 0x0F, 0xFF},
{0x01, 0x03, 0x0F, 0xFF, 0x0F, 0xFF, 0xFF, 0xFF, 0x0F, 0xFF}
};
for(TInt i=0;i<TInt(sizeof(size)/sizeof(size[0]));i++)
{
//Create EGray2 bitmap
CFbsBitmap* bmp = CreateBitmapLC(size[i], EGray2);
//GetScanLine test - for each possible display mode: create a test bitmap
//and initialize it with the data from the gray bitmap.
//After that: for each possible display mode - call GetScanLine on the gray and
//test bitmaps and compare the lines.
for(TInt m=0;m<TInt(sizeof(displayMode)/sizeof(displayMode[0]));m++)
{
HBufC8* row1 = HBufC8::NewLC(1000);
TPtr8 prow1 = row1->Des();
HBufC8* row2 = HBufC8::NewLC(1000);
TPtr8 prow2 = row2->Des();
//Create test bitmap
CFbsBitmap* tbmp = CreateBitmapLC(size[i], displayMode[m], bmp);
//Check test bitmap
for(TInt m2=0;m2<TInt(sizeof(displayMode)/sizeof(displayMode[0]));m2++)
{
for(TInt y=0;y<size[i].iHeight;y++)
{
bmp->GetScanLine(prow1, TPoint(0, y), size[i].iWidth, displayMode[m2]);
tbmp->GetScanLine(prow2, TPoint(0, y), size[i].iWidth, displayMode[m2]);
TInt len = prow1.Length();
TEST(len == prow2.Length());
TEST(len > 0);
TUint8 b1 = prow1[len - 1];
TUint8 b2 = prow2[len - 1];
if(mask[i][m2] != 0xFF)
{//Not all bits from the last byte are used.
TEST((b1 & mask[i][m2]) == (b2 & mask[i][m2]));
prow1.SetLength(len - 1);
prow2.SetLength(len - 1);
}
TEST(prow1 == prow2);
}//end of - for(TInt y=0;y<size[i].iHeight;y++)
}//end of - for(TInt m2=0;m2<(sizeof(displayMode)/sizeof(displayMode[0]));m2++)
CleanupStack::PopAndDestroy(tbmp);
CleanupStack::PopAndDestroy(row2);
CleanupStack::PopAndDestroy(row1);
}//end of - for(TInt m=0;m<(sizeof(displayMode)/sizeof(displayMode[0]));m++)
CleanupStack::PopAndDestroy(bmp);
}//end of - for(TInt i=0;i<(sizeof(size)/sizeof(size[0]));i++)
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0538
@SYMTestCaseDesc
Performance test of INC036062 (GetScanLine test)
@SYMDEF INC036062
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::PerformanceTest_INC036062L()
//INC036062 - Optimise masked bitblit for 1 bit greyscale mask case
{
INFO_PRINTF1(_L("INC036062-Performance Test"));
TSize size(143, 143);
//Create EGray2 bitmap
CFbsBitmap* bmpGray2 = CreateBitmapLC(size, EGray2);
//Create EColor64 bitmap
CFbsBitmap* bmpEColor64 = CreateBitmapLC(size, EColor64K);
//Performance test
TDisplayMode displayMode[] =
{
EGray2, EGray4, EGray16, EGray256, EColor16, EColor256,
EColor64K, EColor16M, EColor4K, EColor16MU, EColor16MAP
};
TInt i;
HBufC8* row = HBufC8::NewLC(1000);
TPtr8 prow = row->Des();
for(TInt m=0;m<TInt(sizeof(displayMode)/sizeof(displayMode[0]));m++)
{
TUint time[2] = {0, 0};
CFbsBitmap* pbmp[2] = {bmpGray2, bmpEColor64};
for(TInt j=0;j<2;j++)
{
time[j] = User::TickCount();
for(i=0;i<200;i++)
{
for(TInt y=0;y<size.iHeight;y++)
{
pbmp[j]->GetScanLine(prow, TPoint(0, y), size.iWidth, displayMode[m]);
}
}
time[j] = User::TickCount() - time[j];
}
//"Time+" - time with optimized GetScanLine for EGray2 bitmaps
//"Time-" - time with GetScanLine for all bitmaps which colour is not EGray2.
INFO_PRINTF4(_L("GetScanLine. Mode=%d, Time+ =%d, Time- =%d\r\n"), displayMode[m], time[0], time[1]);
}
CleanupStack::PopAndDestroy(row);
CleanupStack::PopAndDestroy(bmpEColor64);
CleanupStack::PopAndDestroy(bmpGray2);
}
CFbsBitmap* CTBitmap::CreateBitmapLC(const TSize& aSize, TDisplayMode aMode)
{
CFbsBitmap* bmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp);
User::LeaveIfError(bmp->Create(aSize, aMode));
//Initialize the bitmap
TBitmapUtil bmpUtil(bmp);
bmpUtil.Begin(TPoint(0, 0));
for(TInt y=0;y<aSize.iHeight;bmpUtil.IncYPos(),y++)
{
for(TInt x=0;x<aSize.iWidth;bmpUtil.IncXPos(),x++)
{
TUint32 color = 0;
switch(aMode)
{
case EGray2:
color = Math::Random() % 2;
break;
case EColor64K:
color = Math::Random() % 0x10000;
break;
case EColor16MA:
color = Math::Random();
break;
default:
break;
}
bmpUtil.SetPixel(color);
}
}
bmpUtil.End();
return bmp;
}
CFbsBitmap* CTBitmap::CreateBitmapLC(const TSize& aSize, TDisplayMode aMode, const CFbsBitmap* aSrcBmp)
{
CFbsBitmap* tbmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(tbmp);
User::LeaveIfError(tbmp->Create(aSize, aMode));
//Initialize test bitmap
HBufC8* row = HBufC8::NewLC(1000);
TPtr8 prow = row->Des();
for(TInt y=0;y<aSize.iHeight;y++)
{
aSrcBmp->GetScanLine(prow, TPoint(0, y), aSize.iWidth, aMode);
tbmp->SetScanLine(prow, y);
}
CleanupStack::PopAndDestroy(row);
return tbmp;
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0539
@SYMTestCaseDesc
Loads bitmaps from ROM and RAM
and does a GetScanLine on the bitmaps
and measures the time it takes to do
the GetScanLine.
@SYMDEF INC037474
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::INC037474L()
//INC037474 - SS66 - CBitwiseBitmap::GenerateLineFromCompressedSixteenBitData() is very slow
{
TPtrC bmpFile[] =
{
KBmpCompr12(),
KBmpCompr16(),
KBmpCompr24(),
KBmpCCompr12(),
KBmpCCompr16(),
KBmpCCompr24()
};
TPtrC tt[] = {_L("rom"), _L("rom"), _L("rom"), _L("ram"), _L("ram"), _L("ram")};
TBool inRam[] = {EFalse, EFalse, EFalse, ETrue, ETrue, ETrue};
TInt bpp[] = {12, 16, 24, 12, 16, 24};
TDisplayMode targetMode[] = {EColor4K, EColor64K, EColor16M, EColor4K, EColor64K, EColor16M};
const TInt KMaxScanLineLen = 800;
TBuf8<KMaxScanLineLen> scanLineBuf;
for(TInt i=0;i<TInt(sizeof(bmpFile)/sizeof(bmpFile[0]));i++)
{
if(iSkipRomBitmapTests && !inRam[i])
continue;
CFbsBitmap* bmp = LoadBitmapLC(bmpFile[i]);
if(inRam[i])
{
User::LeaveIfError(bmp->Compress());
}
//
TDesC& des = tt[i];
INFO_PRINTF3(_L("%d bpp %S compressed bitmap, GetScanLine test\r\n"), bpp[i], &des);
TSize size = bmp->SizeInPixels();
TEST(TInt(size.iWidth * sizeof(TInt16)) <= KMaxScanLineLen);
TUint timeStart = User::TickCount();
enum {KTestTimes = 15};//Greater KTestTimes values make the test is too slow!
for(TInt j=0;j<KTestTimes;j++)
{
TPoint startPixel(0, 0);
for(TInt k=0;k<size.iHeight;k++)
{
startPixel.iY = k;
bmp->GetScanLine(scanLineBuf, startPixel, size.iWidth, targetMode[i]);
}
}
TUint timeEnd = User::TickCount();
INFO_PRINTF4(_L("%d bpp %S compressed bitmap, time = %d\r\n"), bpp[i], &des, timeEnd - timeStart);
//
CleanupStack::PopAndDestroy(bmp);
}
}
CFbsBitmap* CTBitmap::LoadBitmapLC(const TDesC& aFileName)
{
CFbsBitmap* bmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp);
const TInt err = bmp->Load(aFileName, 0);
TEST(err == KErrNone);
User::LeaveIfError(err);
return bmp;
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0540
@SYMTestCaseDesc
Test to verify defect DEF038286.
@SYMDEF DEF038286
@SYMTestActions
Initialized a test bitmap, compresses it
and performs a GetScanLine on the compressed
bitmap. Checks the color value against an
expected value.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::DEF038286L()
//DEF038286 - CBitwiseBitmap::GenerateLineFromCompressedSixteenBitData returns wrong clr value
{
INFO_PRINTF1(_L("DEF038286 fix test"));
//Create test bitmap
CFbsBitmap* bmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp);
const TInt width = 16;
const TSize size(width, 1);
User::LeaveIfError(bmp->Create(size, EColor64K));
//Test bitmap data
TUint8 colorVal[width * 2] =
// 0 1 2 3 4 5 6 7
{0x00,0x00, 0x00,0x00, 0x00,0x00, 0x00,0x00, 0x00,0x00, 0x00,0x00, 0x00,0x00, 0x00,0x00,
// 8 9 10 11 12 13 14 15
0x00,0x00, 0x00,0x00, 0x00,0x00, 0xFF,0xFF, 0xFF,0xFF, 0xFF,0xFF, 0xFF,0xFF, 0xFF,0xFF};
//Initialize test bitmap
TPtr8 ptr(colorVal, width * 2, width * 2);
bmp->SetScanLine(ptr, 0);
//Compress test bitmap
User::LeaveIfError(bmp->Compress());
//Check the test data
TUint8 colorVal2[width * 2];
TPtr8 ptr2(colorVal2, width * 2, width * 2);
//test 1
colorVal2[0] = colorVal2[1] = colorVal2[2] = colorVal2[3] = 0x12;
bmp->GetScanLine(ptr2, TPoint(10, 0), 2, EColor64K);
TEST(colorVal2[0] == colorVal[10 * 2] && colorVal2[1] == colorVal[10 * 2 + 1] &&
colorVal2[2] == colorVal[11 * 2] && colorVal2[3] == colorVal[11 * 2 + 1]);
//test 2
colorVal2[0] = colorVal2[1] = colorVal2[2] = colorVal2[3] = 0x12;
bmp->GetScanLine(ptr2, TPoint(10, 0), 1, EColor64K);
TEST(colorVal2[0] == colorVal[10 * 2] && colorVal2[1] == colorVal[10 * 2 + 1]);
//test 3
colorVal2[0] = colorVal2[1] = colorVal2[2] = colorVal2[3] = 0x12;
bmp->GetScanLine(ptr2, TPoint(11, 0), 1, EColor64K);
TEST(colorVal2[0] == colorVal[11 * 2] && colorVal2[1] == colorVal[11 * 2 + 1]);
//Destroy test bitmap and data
CleanupStack::PopAndDestroy(bmp);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0541
@SYMTestCaseDesc
Test to verify defect DEF038286.
@SYMDEF DEF038286
@SYMTestActions
Initialized a test bitmap, compresses it
and performs a GetScanLine on the compressed
bitmap. Checks the colour value against an
expected value.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::DEF038286_2L()
//DEF038286 - CBitwiseBitmap::GenerateLineFromCompressedSixteenBitData returns wrong clr value
//24 bpp bitmap test
{
INFO_PRINTF1(_L("DEF038286 fix test. 24 bpp bitmap."));
//Create test bitmap
CFbsBitmap* bmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp);
const TInt width = 16;
const TSize size(width, 1);
User::LeaveIfError(bmp->Create(size, EColor16M));
//Test bitmap data
TUint8 colorVal[width * 3] =
// 0 1 2 3 4 5 6 7
{0x00,0x00,0x00, 0x00,0x00,0x00, 0x00,0x00,0x00, 0x00,0x00,0x00, 0x00,0x00,0x00, 0x00,0x00,0x00, 0x00,0x00,0x00, 0x00,0x00,0x00,
// 8 9 10 11 12 13 14 15
0x00,0x00,0x00, 0x00,0x00,0x00, 0x00,0x00,0x00, 0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF};
//Initialize test bitmap
TPtr8 ptr(colorVal, width * 3, width * 3);
bmp->SetScanLine(ptr, 0);
//Compress test bitmap
User::LeaveIfError(bmp->Compress());
//Check the test data
TUint8 colorVal2[width * 3];
TPtr8 ptr2(colorVal2, width * 3, width * 3);
//test 1
colorVal2[0] = colorVal2[1] = colorVal2[2] = colorVal2[3] = colorVal2[4] = colorVal2[5] = 0x12;
bmp->GetScanLine(ptr2, TPoint(10, 0), 2, EColor16M);
TEST(colorVal2[0] == colorVal[10 * 3] && colorVal2[1] == colorVal[10 * 3 + 1] && colorVal2[2] == colorVal[10 * 3 + 2] &&
colorVal2[3] == colorVal[11 * 3] && colorVal2[4] == colorVal[11 * 3 + 1] && colorVal2[5] == colorVal[11 * 3 + 2]);
//test 2
colorVal2[0] = colorVal2[1] = colorVal2[2] = colorVal2[3] = colorVal2[4] = colorVal2[5] = 0x12;
bmp->GetScanLine(ptr2, TPoint(10, 0), 1, EColor16M);
TEST(colorVal2[0] == colorVal[10 * 3] && colorVal2[1] == colorVal[10 * 3 + 1] && colorVal2[2] == colorVal[10 * 3 + 2]);
//test 3
colorVal2[0] = colorVal2[1] = colorVal2[2] = colorVal2[3] = colorVal2[4] = colorVal2[5] = 0x12;
bmp->GetScanLine(ptr2, TPoint(11, 0), 1, EColor16M);
TEST(colorVal2[0] == colorVal[11 * 3] && colorVal2[1] == colorVal[11 * 3 + 1] && colorVal2[2] == colorVal[11 * 3 + 2]);
//Destroy test bitmap and data
CleanupStack::PopAndDestroy(bmp);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0542
@SYMTestCaseDesc
Tests the function CFbsBitmap::IsMonochrome()
@SYMTestActions
Loads uncompressed bitmaps and checks
them if they are monochrome
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::MonohromeL()
{
INFO_PRINTF1(_L("Monohrome bitmaps"));
TPtrC bitmap_ram[] =
{
KMono_M1(),
KMono_M2(),
KMono_M4(),
KMono_M8(),
KMono_C4(),
KMono_C8(),
KMono_C12(),
KMono_C16(),
KMono_C24(),
KMono_C32()
};
TInt i;
//Check monohrome bitmaps
//1 bpp bitmap is always monochrome
for(i=0;i<TInt(sizeof(bitmap_ram)/sizeof(bitmap_ram[0]));i++)
{
CFbsBitmap* uncompressedBitmap = NULL;
LoadAndNotCompressBitmapLC(uncompressedBitmap, bitmap_ram[i]);
TEST(!uncompressedBitmap->IsCompressedInRAM());
TBool monochrome = uncompressedBitmap->IsMonochrome();
TEST(monochrome);
CleanupStack::PopAndDestroy(uncompressedBitmap);
}
//Modify monohrome bitmaps and check them
//1 bpp bitmap is always monochrome
for(i=0;i<TInt(sizeof(bitmap_ram)/sizeof(bitmap_ram[0]));i++)
{
CFbsBitmap* uncompressedBitmap = NULL;
LoadAndNotCompressBitmapLC(uncompressedBitmap, bitmap_ram[i]);
TEST(!uncompressedBitmap->IsCompressedInRAM());
//Change something into the bitmap data
uncompressedBitmap->LockHeap(ETrue);
TUint32* data = uncompressedBitmap->DataAddress();
*data = 0x12345678;
uncompressedBitmap->UnlockHeap(ETrue);
//Check the bitmap
TBool monochrome = uncompressedBitmap->IsMonochrome();
TEST(i > 0 ? !monochrome : monochrome);
CleanupStack::PopAndDestroy(uncompressedBitmap);
}
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0543
@SYMTestCaseDesc
Tests the function CFbsBitmap::GetVerticalScanLine
@SYMTestActions
Gets the bitmap's vertical scanline starting at
a specified x co-ordinate.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::GetVerticalScanLineL()
{
INFO_PRINTF1(_L("GetVerticalScanLine()"));
TDisplayMode displayMode[] =
{
EGray2,
EGray4,
EGray16,
EGray256,
EColor16,
EColor256,
EColor64K,
EColor16M,
ERgb,
EColor4K,
EColor16MU,
EColor16MAP,
};
CFbsBitmap* uncompressedBitmap = NULL;
LoadAndNotCompressBitmapLC(uncompressedBitmap, KRamBitmap2);
TEST(!uncompressedBitmap->IsCompressedInRAM());
TSize sizeInPixels = uncompressedBitmap->SizeInPixels();
HBufC8* vertScanLine = HBufC8::NewLC(sizeInPixels.iHeight * 4);
TPtr8 p = vertScanLine->Des();
TDes8& des = p;
for(TInt i=0;i<TInt(sizeof(displayMode)/sizeof(displayMode[0]));i++)
{
TBuf<80> buf;
buf.Format(_L("--mode=%d\r\n"), displayMode[i]);
INFO_PRINTF1(buf);
for(TInt j=0;j<sizeInPixels.iWidth;j++)
{
uncompressedBitmap->GetVerticalScanLine(des, j, displayMode[i]);
}
}
CleanupStack::PopAndDestroy(vertScanLine);
CleanupStack::PopAndDestroy(uncompressedBitmap);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0544
@SYMTestCaseDesc
Tests the performance of the function
CFbsBitmap::GetVerticalScanLine
@SYMTestActions
Gets the bitmap's vertical scanline starting at
a specified x co-ordinate and measures the time
it takes.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::GetVerticalScanLinePerformanceL()
{
INFO_PRINTF1(_L("GetVerticalScanLine() performance"));
TDisplayMode displayMode[] =
{
EGray2,
EGray4,
EGray16,
EGray256,
EColor16,
EColor256,
EColor64K,
EColor16M,
ERgb,
EColor4K,
EColor16MU,
EColor16MAP
};
CFbsBitmap* uncompressedBitmap = NULL;
LoadAndNotCompressBitmapLC(uncompressedBitmap, KRamBitmap2);
TEST(!uncompressedBitmap->IsCompressedInRAM());
TSize sizeInPixels = uncompressedBitmap->SizeInPixels();
HBufC8* vertScanLine = HBufC8::NewLC(sizeInPixels.iHeight * 4);
TPtr8 p = vertScanLine->Des();
TDes8& des = p;
TUint time;
for(TInt i=0;i<TInt(sizeof(displayMode)/sizeof(displayMode[0]));i++)
{
time = User::TickCount();
for(TInt j=0;j<sizeInPixels.iWidth;j++)
{
uncompressedBitmap->GetVerticalScanLine(des, j, displayMode[i]);
}
INFO_PRINTF3(_L("Vert. line. Mode=%d, Time=%d\r\n"), displayMode[i], User::TickCount() - time);
}
CleanupStack::PopAndDestroy(vertScanLine);
CleanupStack::PopAndDestroy(uncompressedBitmap);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0545
@SYMTestCaseDesc
Test to verify defect DEF071843
@SYMDEF DEF071843
@SYMTestActions
Creates a test bitmap. Initializes it
with test data using SetScanLine. Saves
bitmap and then reloads it and compares
it against expected bitmap.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::DEF071843_16MAL()
{
INFO_PRINTF1(_L("DEF071843 fix test. Saving and loading 16MA 32bpp bitmap."));
// Create test bitmap
CFbsBitmap* bmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp);
const TInt width = 12;
const TSize size(width, 8);
User::LeaveIfError(bmp->Create(size, EColor16MA));
//Test bitmap data - 8 rows of 12 pixels each containing various run lengths
TUint8 colorVal0[width * 4] = // runs: 12
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0};
TUint8 colorVal1[width * 4] = // runs: 1 1 1 1 1 1 1 1 1 1 1 1
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5, 6,6,6,6, 7,7,7,7, 8,8,8,8, 9,9,9,9, 10,10,10,10, 11,11,11,11};
TUint8 colorVal2[width * 4] = // runs: 1 1 2 1 1 3 1 1 1
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 1,1,1,1, 2,2,2,2, 2,2,2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5, 5,5,5,5, 5,5,5,5, 6,6,6,6, 7,7,7,7, 8,8,8,8};
TUint8 colorVal3[width * 4] = // runs: 1 2 1 3 1 4
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 1,1,1,1, 1,1,1,1, 2,2,2,2, 3,3,3,3, 3,3,3,3, 3,3,3,3, 4,4,4,4, 5,5,5,5, 5,5,5,5, 5,5,5,5, 5,5,5,5};
TUint8 colorVal4[width * 4] = // runs: 2 1 2 2 2 3
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 0,0,0,0, 1,1,1,1, 2,2,2,2, 2,2,2,2, 3,3,3,3, 3,3,3,3, 4,4,4,4, 4,4,4,4, 5,5,5,5, 5,5,5,5, 5,5,5,5};
TUint8 colorVal5[width * 4] = // runs: 3 1 3 2 3
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 0,0,0,0, 0,0,0,0, 1,1,1,1, 2,2,2,2, 2,2,2,2, 2,2,2,2, 3,3,3,3, 3,3,3,3, 4,4,4,4, 4,4,4,4, 4,4,4,4};
TUint8 colorVal6[width * 4] = // runs: 4 1 1 1 1 4
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5, 5,5,5,5, 5,5,5,5, 5,5,5,5};
TUint8 colorVal7[width * 4] = // runs: 1 1 1 1 4 1 1 1 1
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4, 5,5,5,5, 6,6,6,6, 7,7,7,7, 8,8,8,8};
//Initialize test bitmap
TPtr8 line0(colorVal0, width * 4, width * 4);
bmp->SetScanLine(line0, 0);
TPtr8 line1(colorVal1, width * 4, width * 4);
bmp->SetScanLine(line1, 1);
TPtr8 line2(colorVal2, width * 4, width * 4);
bmp->SetScanLine(line2, 2);
TPtr8 line3(colorVal3, width * 4, width * 4);
bmp->SetScanLine(line3, 3);
TPtr8 line4(colorVal4, width * 4, width * 4);
bmp->SetScanLine(line4, 4);
TPtr8 line5(colorVal5, width * 4, width * 4);
bmp->SetScanLine(line5, 5);
TPtr8 line6(colorVal6, width * 4, width * 4);
bmp->SetScanLine(line6, 6);
TPtr8 line7(colorVal7, width * 4, width * 4);
bmp->SetScanLine(line7, 7);
// Save bitmap then reload and compare
_LIT(KTest16MABmpFile, "c:\\test16ma.mbm");
bmp->Save(KTest16MABmpFile);
//
CFbsBitmap* bmp2 = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp2);
TInt err = bmp2->Load(KTest16MABmpFile);
TEST2(err, KErrNone);
//
CompareBitmaps((CFbsBitmapEx&)*bmp, (CFbsBitmapEx&)*bmp2,EColor16MA);
// Destroy test bitmaps
CleanupStack::PopAndDestroy(2, bmp); // bmp2
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0546
@SYMTestCaseDesc
Test to verify defect DEF071843
@SYMDEF DEF071843
@SYMTestActions
Creates a test bitmap. Initializes it
with test data using SetScanLine. Saves
bitmap and then reloads it and compares
it against expected bitmap.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::DEF071843_16MUL()
{
INFO_PRINTF1(_L("DEF071843 fix test. Compression improvements for 16MU 32bpp bitmap."));
// Create test bitmap
CFbsBitmap* bmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp);
const TInt width = 12;
const TSize size(width, 8);
User::LeaveIfError(bmp->Create(size, EColor16MU));
//Test bitmap data - 8 rows of 12 pixels each containing various run lengths
//Format is b,g,r,a where a (alpha) is unused, hence 255.
TUint8 colorVal0[width * 4] = // runs: 12
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255};
TUint8 colorVal1[width * 4] = // runs: 1 1 1 1 1 1 1 1 1 1 1 1
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,255, 1,1,1,255, 2,2,2,255, 3,3,3,255, 4,4,4,255, 5,5,5,255, 6,6,6,255, 7,7,7,255, 8,8,8,255, 9,9,9,255, 10,10,10,255, 11,11,11,255};
TUint8 colorVal2[width * 4] = // runs: 1 1 2 1 1 3 1 1 1
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,255, 1,1,1,255, 2,2,2,255, 2,2,2,255, 3,3,3,255, 4,4,4,255, 5,5,5,255, 5,5,5,255, 5,5,5,255, 6,6,6,255, 7,7,7,255, 8,8,8,255};
TUint8 colorVal3[width * 4] = // runs: 1 2 1 3 1 4
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,255, 1,1,1,255, 1,1,1,255, 2,2,2,255, 3,3,3,255, 3,3,3,255, 3,3,3,255, 4,4,4,255, 5,5,5,255, 5,5,5,255, 5,5,5,255, 5,5,5,255};
TUint8 colorVal4[width * 4] = // runs: 2 1 2 2 2 3
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,255, 0,0,0,255, 1,1,1,255, 2,2,2,255, 2,2,2,255, 3,3,3,255, 3,3,3,255, 4,4,4,255, 4,4,4,255, 5,5,5,255, 5,5,5,255, 5,5,5,255};
TUint8 colorVal5[width * 4] = // runs: 3 1 3 2 3
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,255, 0,0,0,255, 0,0,0,255, 1,1,1,255, 2,2,2,255, 2,2,2,255, 2,2,2,255, 3,3,3,255, 3,3,3,255, 4,4,4,255, 4,4,4,255, 4,4,4,255};
TUint8 colorVal6[width * 4] = // runs: 4 1 1 1 1 4
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255, 1,1,1,255, 2,2,2,255, 3,3,3,255, 4,4,4,255, 5,5,5,255, 5,5,5,255, 5,5,5,255, 5,5,5,255};
TUint8 colorVal7[width * 4] = // runs: 1 1 1 1 4 1 1 1 1
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,255, 1,1,1,255, 2,2,2,255, 3,3,3,255, 4,4,4,255, 4,4,4,255, 4,4,4,255, 4,4,4,255, 5,5,5,255, 6,6,6,255, 7,7,7,255, 8,8,8,255};
//Initialize test bitmap
TPtr8 line0(colorVal0, width * 4, width * 4);
bmp->SetScanLine(line0, 0);
TPtr8 line1(colorVal1, width * 4, width * 4);
bmp->SetScanLine(line1, 1);
TPtr8 line2(colorVal2, width * 4, width * 4);
bmp->SetScanLine(line2, 2);
TPtr8 line3(colorVal3, width * 4, width * 4);
bmp->SetScanLine(line3, 3);
TPtr8 line4(colorVal4, width * 4, width * 4);
bmp->SetScanLine(line4, 4);
TPtr8 line5(colorVal5, width * 4, width * 4);
bmp->SetScanLine(line5, 5);
TPtr8 line6(colorVal6, width * 4, width * 4);
bmp->SetScanLine(line6, 6);
TPtr8 line7(colorVal7, width * 4, width * 4);
bmp->SetScanLine(line7, 7);
// Save bitmap then reload and compare
_LIT(KTest16MUBmpFile, "c:\\test16mu.mbm");
bmp->Save(KTest16MUBmpFile);
//
CFbsBitmap* bmp2 = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp2);
TInt err = bmp2->Load(KTest16MUBmpFile);
TEST2(err, KErrNone);
//
CompareBitmaps((CFbsBitmapEx&)*bmp, (CFbsBitmapEx&)*bmp2, EColor16MU);
// Destroy test bitmaps
CleanupStack::PopAndDestroy(2, bmp); // bmp2
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0547
@SYMTestCaseDesc
Test to verify defect DEF071843
@SYMDEF DEF071843
@SYMTestActions
Creates a test bitmap. Initializes it
with test data using SetScanLine. Saves
bitmap and then reloads it and compares
it against expected bitmap.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::DEF071843_16ML()
{
INFO_PRINTF1(_L("DEF071843 fix test. Compression improvements for 16M 24bpp bitmap."));
// Create test bitmap
CFbsBitmap* bmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp);
const TInt width = 12;
const TSize size(width, 8);
User::LeaveIfError(bmp->Create(size, EColor16M));
//Test bitmap data - 8 rows of 12 pixels each containing various run lengths
TUint8 colorVal0[width * 3] = // runs: 12
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0};
TUint8 colorVal1[width * 3] = // runs: 1 1 1 1 1 1 1 1 1 1 1 1
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0, 1,1,1, 2,2,2, 3,3,3, 4,4,4, 5,5,5, 6,6,6, 7,7,7, 8,8,8, 9,9,9, 10,10,10, 11,11,11};
TUint8 colorVal2[width * 3] = // runs: 1 1 2 1 1 3 1 1 1
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0, 1,1,1, 2,2,2, 2,2,2, 3,3,3, 4,4,4, 5,5,5, 5,5,5, 5,5,5, 6,6,6, 7,7,7, 8,8,8};
TUint8 colorVal3[width * 3] = // runs: 1 2 1 3 1 4
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0, 1,1,1, 1,1,1, 2,2,2, 3,3,3, 3,3,3, 3,3,3, 4,4,4, 5,5,5, 5,5,5, 5,5,5, 5,5,5};
TUint8 colorVal4[width * 3] = // runs: 2 1 2 2 2 3
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0, 0,0,0, 1,1,1, 2,2,2, 2,2,2, 3,3,3, 3,3,3, 4,4,4, 4,4,4, 5,5,5, 5,5,5, 5,5,5};
TUint8 colorVal5[width * 3] = // runs: 3 1 3 2 3
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0, 0,0,0, 0,0,0, 1,1,1, 2,2,2, 2,2,2, 2,2,2, 3,3,3, 3,3,3, 4,4,4, 4,4,4, 4,4,4};
TUint8 colorVal6[width * 3] = // runs: 4 1 1 1 1 4
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0, 0,0,0, 0,0,0, 0,0,0, 1,1,1, 2,2,2, 3,3,3, 4,4,4, 5,5,5, 5,5,5, 5,5,5, 5,5,5};
TUint8 colorVal7[width * 3] = // runs: 1 1 1 1 4 1 1 1 1
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0, 1,1,1, 2,2,2, 3,3,3, 4,4,4, 4,4,4, 4,4,4, 4,4,4, 5,5,5, 6,6,6, 7,7,7, 8,8,8};
//Initialize test bitmap
TPtr8 line0(colorVal0, width * 3, width * 3);
bmp->SetScanLine(line0, 0);
TPtr8 line1(colorVal1, width * 3, width * 3);
bmp->SetScanLine(line1, 1);
TPtr8 line2(colorVal2, width * 3, width * 3);
bmp->SetScanLine(line2, 2);
TPtr8 line3(colorVal3, width * 3, width * 3);
bmp->SetScanLine(line3, 3);
TPtr8 line4(colorVal4, width * 3, width * 3);
bmp->SetScanLine(line4, 4);
TPtr8 line5(colorVal5, width * 3, width * 3);
bmp->SetScanLine(line5, 5);
TPtr8 line6(colorVal6, width * 3, width * 3);
bmp->SetScanLine(line6, 6);
TPtr8 line7(colorVal7, width * 3, width * 3);
bmp->SetScanLine(line7, 7);
// Save bitmap then reload and compare
_LIT(KTest16MBmpFile, "c:\\test16m.mbm");
bmp->Save(KTest16MBmpFile);
//
CFbsBitmap* bmp2 = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp2);
TInt err = bmp2->Load(KTest16MBmpFile);
TEST2(err, KErrNone);
//
CompareBitmaps((CFbsBitmapEx&)*bmp, (CFbsBitmapEx&)*bmp2, EColor16M);
// Destroy test bitmaps
CleanupStack::PopAndDestroy(2, bmp); // bmp2
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0548
@SYMTestCaseDesc
Test to verify defect DEF074623 (Alpha bit)
@SYMDEF DEF074623
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::DEF074623_16MAL()
{
INFO_PRINTF1(_L("DEF074623 fix test For Alpha Bit."));
// Create test bitmap
CFbsBitmap* bmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp);
const TInt iBitmapWidth = 10;
const TInt iBitmapHeight = 10;
TInt rowIndex;
TInt colIndex;
TSize rectSize(iBitmapWidth,iBitmapHeight);
TRect srcRect(0,0,iBitmapWidth,iBitmapHeight);
User::LeaveIfError(bmp->Create(rectSize, EColor16MU));
srcRect.SetSize(rectSize);
TBitmapUtil bmpUtil(bmp);
bmpUtil.Begin(TPoint(0,0));
for (rowIndex=0;rowIndex<iBitmapHeight;++rowIndex)
{
TInt red=0;
TInt blue=255;
TInt green=0;
bmpUtil.SetPos(TPoint(0,rowIndex));
for (colIndex=0;colIndex<iBitmapWidth;++colIndex)
{
TRgb rgb(red,green,blue);
bmpUtil.SetPixel(rgb.Color16MA());
}
bmpUtil.IncXPos();
red-=10;
blue+=10;
green-=10;
if(red <= 0)
{
red+=255;
}
if(blue >= 255)
{
blue-=255;
}
if(green <= 0)
{
green+=255;
}
}
bmpUtil.End();
bmp->SetDisplayMode(EColor16MA);
for(TInt yy = 0; yy < iBitmapHeight; yy++)
{
for(TInt xx = 0; xx < iBitmapWidth; xx++)
{
TRgb bmpcol;
bmp->GetPixel(bmpcol,TPoint(xx,yy));
TEST(bmpcol.Alpha() == 255);
}
}
CleanupStack::PopAndDestroy(bmp);
}
#ifdef _DEBUG
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0549
@SYMTestCaseDesc
Test to verify defect DEF095361
@SYMDEF DEF095361
@SYMTestActions
Creates a test bitmap. Initializes it
with test data using SetScanLine. Compresses
the bitmap. Saves bitmap and then reloads it
and compares it against expected bitmap.
Simulates heap allocation failure of memory.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::DEF095361_16MAL()
{
INFO_PRINTF1(_L("DEF095361 fix test. Compressing, Saving and loading 16MA 32bpp bitmap."));
// Create test bitmap
CFbsBitmap* bmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp);
const TInt width = 12;
const TSize size(width, 8);
User::LeaveIfError(bmp->Create(size, EColor16MA));
//Test bitmap data - 8 rows of 12 pixels each containing various run lengths
TUint8 colorVal0[width * 4] = // runs: 12
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0};
TUint8 colorVal1[width * 4] = // runs: 1 1 1 1 1 1 1 1 1 1 1 1
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5, 6,6,6,6, 7,7,7,7, 8,8,8,8, 9,9,9,9, 10,10,10,10, 11,11,11,11};
TUint8 colorVal2[width * 4] = // runs: 1 1 2 1 1 3 1 1 1
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 1,1,1,1, 2,2,2,2, 2,2,2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5, 5,5,5,5, 5,5,5,5, 6,6,6,6, 7,7,7,7, 8,8,8,8};
TUint8 colorVal3[width * 4] = // runs: 1 2 1 3 1 4
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 1,1,1,1, 1,1,1,1, 2,2,2,2, 3,3,3,3, 3,3,3,3, 3,3,3,3, 4,4,4,4, 5,5,5,5, 5,5,5,5, 5,5,5,5, 5,5,5,5};
TUint8 colorVal4[width * 4] = // runs: 2 1 2 2 2 3
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 0,0,0,0, 1,1,1,1, 2,2,2,2, 2,2,2,2, 3,3,3,3, 3,3,3,3, 4,4,4,4, 4,4,4,4, 5,5,5,5, 5,5,5,5, 5,5,5,5};
TUint8 colorVal5[width * 4] = // runs: 3 1 3 2 3
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 0,0,0,0, 0,0,0,0, 1,1,1,1, 2,2,2,2, 2,2,2,2, 2,2,2,2, 3,3,3,3, 3,3,3,3, 4,4,4,4, 4,4,4,4, 4,4,4,4};
TUint8 colorVal6[width * 4] = // runs: 4 1 1 1 1 4
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5, 5,5,5,5, 5,5,5,5, 5,5,5,5};
TUint8 colorVal7[width * 4] = // runs: 1 1 1 1 4 1 1 1 1
// 0 1 2 3 4 5 6 7 8 9 10 11
{0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4, 5,5,5,5, 6,6,6,6, 7,7,7,7, 8,8,8,8};
//Initialize test bitmap
TPtr8 line0(colorVal0, width * 4, width * 4);
bmp->SetScanLine(line0, 0);
TPtr8 line1(colorVal1, width * 4, width * 4);
bmp->SetScanLine(line1, 1);
TPtr8 line2(colorVal2, width * 4, width * 4);
bmp->SetScanLine(line2, 2);
TPtr8 line3(colorVal3, width * 4, width * 4);
bmp->SetScanLine(line3, 3);
TPtr8 line4(colorVal4, width * 4, width * 4);
bmp->SetScanLine(line4, 4);
TPtr8 line5(colorVal5, width * 4, width * 4);
bmp->SetScanLine(line5, 5);
TPtr8 line6(colorVal6, width * 4, width * 4);
bmp->SetScanLine(line6, 6);
TPtr8 line7(colorVal7, width * 4, width * 4);
bmp->SetScanLine(line7, 7);
//Compress bitmap using RLE Compression
bmp->Compress(ERLECompression);
// Save bitmap then reload and compare
_LIT(KTest16MABmpFile, "c:\\testDEF095361_16ma.mbm");
bmp->Save(KTest16MABmpFile);
//
CFbsBitmap* bmp2 = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp2);
RFbsSession* fbs = RFbsSession::GetSession();
TInt count;
for (count = 1; ; count++)
{
fbs->SendCommand(EFbsMessDefaultAllocFail,count);
TInt ret = bmp2->Load(KTest16MABmpFile, 0, EFalse);
if (ret == KErrNoMemory)
{
// Do Nothing
}
else if (ret == KErrNone)
{
break;
}
else
TEST2(ret, KErrNone);
}
fbs->SendCommand(EFbsMessDefaultAllocFail,0);
//
CompareBitmaps((CFbsBitmapEx&)*bmp, (CFbsBitmapEx&)*bmp2,EColor16MA);
// Destroy test bitmaps
CleanupStack::PopAndDestroy(2, bmp); // bmp2
}
#endif
void CTBitmap::LoadAndCompressBitmapLC(CFbsBitmap*& aBmp, const TDesC& aBmpFile)
{
aBmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(aBmp);
TInt err = aBmp->Load(aBmpFile);
TEST2(err, KErrNone);
err = aBmp->Compress();
TEST2(err, KErrNone);
TEST(aBmp->IsCompressedInRAM());
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0550
@SYMTestCaseDesc
Compresses a bitmap containing two lines
@SYMTestActions
Creates a test bitmap with two lines. Compresses it (16 bpp)
and checks if compressed successfully
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::TwoComprLines()
{
INFO_PRINTF1(_L("16 bpp compressed bitmap - 2 lines"));
//Create test bitmap
CFbsBitmap* bmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp);
const TInt width = 3;
const TSize size(width, 2);
User::LeaveIfError(bmp->Create(size, EColor64K));
//Test bitmap data
TUint8 colorVal[width * 2] =
// 0 1 2
{0x13,0x13, 0x13,0x13, 0x13,0x13};
//Initialize test bitmap
TPtr8 ptr(colorVal, width * 2, width * 2);
bmp->SetScanLine(ptr, 0);
bmp->SetScanLine(ptr, 1);
//Compress test bitmap
User::LeaveIfError(bmp->Compress());
//Check the test data
TUint8 colorVal2[width * 2];
TPtr8 ptr2(colorVal2, width * 2, width * 2);
//test 1
bmp->GetScanLine(ptr2, TPoint(0, 0), 3, EColor64K);
TEST(ptr2 == ptr);
bmp->GetScanLine(ptr2, TPoint(0, 1), 3, EColor64K);
TEST(ptr2 == ptr);
//Destroy test bitmap and data
CleanupStack::PopAndDestroy(bmp);
}
void CTBitmap::LoadAndNotCompressBitmapLC(CFbsBitmap*& aBmp, const TDesC& aBmpFile)
{
aBmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(aBmp);
TInt err = aBmp->Load(aBmpFile);
TEST2(err, KErrNone);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0551
@SYMTestCaseDesc
The test verifies the
CFbsBitmap::Compress((TBitmapfileCompressionScheme aScheme) API.
It loads bitmaps from ROM & saves (temporarily) to C-drive.
Then it loads from C-drive into a new bitmap.
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::TestPaletteCompressionL()
{
INFO_PRINTF1(_L("Test Palette Compression"));
_LIT(KmbmFileInRom, "z:\\system\\data\\24bitskin.mbm");
RFbsSession* fbs = RFbsSession::GetSession();
//create bitmap
CFbsBitmap* fbsCompressed = new(ELeave) CFbsBitmap;
CFbsBitmap* fbsUnCompressed = new(ELeave) CFbsBitmap;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(KmbmFileInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force foreground compression)
fbsCompressed->Compress(EPaletteCompression);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
//test that palette compression occurred
TEST(fbsCompressed->Header().iCompression == EGenericPaletteCompression);
//compare with original
INFO_PRINTF1(_L("Compare Palette Compressed bmp with original"));
CompareBitmaps((CFbsBitmapEx&)*fbsCompressed, (CFbsBitmapEx&)*fbsUnCompressed, EColor16M);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
//Test that the RLE option works.
//------------------------------------
//create bitmap
fbsCompressed = new(ELeave) CFbsBitmap ;
fbsUnCompressed = new(ELeave) CFbsBitmap ;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(KmbmFileInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force foreground compression)
fbsCompressed->Compress(ERLECompression);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
//test that RLE compression occurred
TEST(fbsCompressed->Header().iCompression == ETwentyFourBitRLECompression);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
//Test that unsuitable bitmaps are not palette compressed (too many colours).
//----------------------------------------------------------------------------------------
_LIT(KmbmMultiColourMBMInRom, "z:\\system\\data\\24bit.mbm");
//create bitmap
fbsCompressed = new(ELeave) CFbsBitmap;
fbsUnCompressed = new(ELeave) CFbsBitmap;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(KmbmMultiColourMBMInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force foreground compression)
fbsCompressed->Compress(EPaletteCompression);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
//test that palette compression occurred
TEST(fbsCompressed->Header().iCompression != EGenericPaletteCompression);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
//Test that unsuitable bitmaps are not palette compressed (too few BPP)
//---------------------------------------------------------------------------------
//create bitmap
fbsCompressed = new(ELeave) CFbsBitmap ;
fbsUnCompressed = new(ELeave) CFbsBitmap ;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(KmbmMultiColourMBMInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force foreground compression)
fbsCompressed->Compress(EPaletteCompression);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
//test that palette compression occurred
TEST(fbsCompressed->Header().iCompression != EGenericPaletteCompression);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
// Test that 12bitmap cannot pallete compress but will fall back to RLE
// --------------------------------------------------------------------
_LIT(Kmbm12BitMBMInRom, "z:\\system\\data\\file.mbm");
fbsCompressed = new(ELeave) CFbsBitmap ;
fbsUnCompressed = new(ELeave) CFbsBitmap ;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(Kmbm12BitMBMInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force foreground compression)
fbsCompressed->Compress(EPaletteCompressionWithRLEFallback);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
TBitmapfileCompression comp = fbsCompressed->Header().iCompression;
//test that palette compression occurred
TEST(fbsCompressed->Header().iCompression != EGenericPaletteCompression);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
// Test that multi colour bitmap cannot pallete compress but will fall back to RLE
// -------------------------------------------------------------------------------
fbsCompressed = new(ELeave) CFbsBitmap ;
fbsUnCompressed = new(ELeave) CFbsBitmap ;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(KmbmMultiColourMBMInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force foreground compression)
fbsCompressed->Compress(EPaletteCompressionWithRLEFallback);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
comp = fbsCompressed->Header().iCompression;
//test that palette compression occurred
TEST(fbsCompressed->Header().iCompression != EGenericPaletteCompression);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
//Test various BPP & bitmap widths
//----------------------------------------
INFO_PRINTF1(_L("Test assorted BPP & colour counts"));
_LIT(Kmbm16NarrowFileInRom, "z:\\system\\data\\16bitskin.mbm");
TestAssortedBPPandColourDepthL(Kmbm16NarrowFileInRom, fbs);
_LIT(Kmbm24bit6colFileInRom, "z:\\system\\data\\24bit6col.mbm");
TestAssortedBPPandColourDepthL(Kmbm24bit6colFileInRom, fbs);
_LIT(Kmbm24bit2colFileInRom, "z:\\system\\data\\24bit2col.mbm");
TestAssortedBPPandColourDepthL(Kmbm24bit2colFileInRom, fbs);
_LIT(Kmbm24bit3colFileInRom, "z:\\system\\data\\24bit3col.mbm");
TestAssortedBPPandColourDepthL(Kmbm24bit3colFileInRom, fbs);
_LIT(Kmbm24bit20colFileInRom, "z:\\system\\data\\24bit20col.mbm");
TestAssortedBPPandColourDepthL(Kmbm24bit20colFileInRom, fbs);
_LIT(Kmbm16bit6colFileInRom, "z:\\system\\data\\16bit6col.mbm");
TestAssortedBPPandColourDepthL(Kmbm16bit6colFileInRom, fbs);
_LIT(Kmbm16bit2colFileInRom, "z:\\system\\data\\16bit2col.mbm");
TestAssortedBPPandColourDepthL(Kmbm16bit2colFileInRom, fbs);
_LIT(Kmbm16bit3colFileInRom, "z:\\system\\data\\16bit3col.mbm");
TestAssortedBPPandColourDepthL(Kmbm16bit3colFileInRom, fbs);
_LIT(Kmbm16bit20colFileInRom, "z:\\system\\data\\16bit20col.mbm");
TestAssortedBPPandColourDepthL(Kmbm16bit20colFileInRom, fbs);
_LIT(Kmbm32BitSkinFileInRom, "z:\\system\\data\\32bitskin.mbm");
TestAssortedBPPandColourDepthL(Kmbm32BitSkinFileInRom, fbs);
_LIT(Kmbm32bit6colFileInRom, "z:\\system\\data\\32bit6col.mbm");
TestAssortedBPPandColourDepthL(Kmbm32bit6colFileInRom, fbs);
_LIT(Kmbm32bit2colFileInRom, "z:\\system\\data\\32bit2col.mbm");
TestAssortedBPPandColourDepthL(Kmbm32bit2colFileInRom, fbs);
_LIT(Kmbm32bit3colFileInRom, "z:\\system\\data\\32bit3col.mbm");
TestAssortedBPPandColourDepthL(Kmbm32bit3colFileInRom, fbs);
_LIT(Kmbm32bit20colFileInRom, "z:\\system\\data\\32bit20col.mbm");
TestAssortedBPPandColourDepthL(Kmbm32bit20colFileInRom, fbs);
INFO_PRINTF1(_L("Test Palette Compression - COMPLETE"));
}
void CTBitmap::TestAssortedBPPandColourDepthL(const TDesC& aFilename, RFbsSession* aFbs)
{
//create bitmap
CFbsBitmap* fbsCompressed = new (ELeave) CFbsBitmap ;
CFbsBitmap* fbsUnCompressed = new (ELeave) CFbsBitmap ;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(aFilename, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force foreground compression)
fbsCompressed->Compress(EPaletteCompression);
aFbs->SendCommand(EFbsCompress, 0); //force background compression to execute
//test that palette compression occurred
TEST(fbsCompressed->Header().iCompression == EGenericPaletteCompression);
//compare with original
INFO_PRINTF1(_L("Compare Palette Compressed bmp with original"));
CompareBitmaps((CFbsBitmapEx&)*fbsCompressed, (CFbsBitmapEx&)*fbsUnCompressed, EColor16M);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0552
@SYMTestCaseDesc
The test verifies the
CFbsBitmap::CompressInBackground((TBitmapfileCompressionScheme aScheme)
API. It loads bitmaps from ROM & saves (temporarily) to C-drive.
Then it loads from C-drive into a new bitmap.
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::TestSynchronousBackgroundPaletteCompressionL()
{
INFO_PRINTF1(_L("Test Background Palette Compression"));
_LIT(KmbmFileInRom, "z:\\system\\data\\24bitskin.mbm");
RFbsSession* fbs = RFbsSession::GetSession();
//create bitmap
CFbsBitmap* fbsCompressed = new(ELeave) CFbsBitmap ;
CFbsBitmap* fbsUnCompressed = new(ELeave) CFbsBitmap ;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(KmbmFileInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force immediate compression)
fbsCompressed->CompressInBackground(EPaletteCompression);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
//test that palette compression occurred
TEST(fbsCompressed->Header().iCompression == EGenericPaletteCompression);
//compare with original
INFO_PRINTF1(_L("Compare Palette Compressed bmp with original"));
CompareBitmaps((CFbsBitmapEx&)*fbsCompressed, (CFbsBitmapEx&)*fbsUnCompressed, EColor16M);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
//Test that the RLE option works.
//------------------------------------
//create bitmap
fbsCompressed = new(ELeave) CFbsBitmap ;
fbsUnCompressed = new(ELeave) CFbsBitmap ;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(KmbmFileInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force immediate compression)
fbsCompressed->CompressInBackground(ERLECompression);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
//test that RLE compression occurred
TEST(fbsCompressed->Header().iCompression == ETwentyFourBitRLECompression);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
//Test that unsuitable bitmaps are not palette compressed (too many colours).
//----------------------------------------------------------------------------------------
_LIT(KmbmMultiColourMBMInRom, "z:\\system\\data\\24bit.mbm");
//create bitmap
fbsCompressed = new(ELeave) CFbsBitmap ;
fbsUnCompressed = new(ELeave) CFbsBitmap ;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(KmbmMultiColourMBMInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force immediate compression)
fbsCompressed->CompressInBackground(EPaletteCompression);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
//test that palette compression occurred
TEST(fbsCompressed->Header().iCompression != EGenericPaletteCompression);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
//Test that unsuitable bitmaps are not palette compressed (too few BPP)
//---------------------------------------------------------------------------------
//create bitmap
fbsCompressed = new(ELeave) CFbsBitmap ;
fbsUnCompressed = new(ELeave) CFbsBitmap ;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(KmbmMultiColourMBMInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force immediate compression)
fbsCompressed->CompressInBackground(EPaletteCompression);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
//test that palette compression occurred
TEST(fbsCompressed->Header().iCompression != EGenericPaletteCompression);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
INFO_PRINTF1(_L("Test Background Palette Compression - COMPLETE"));
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0553
@SYMTestCaseDesc
The test verifies the
CFbsBitmap::CompressInBackground(TRequestStatus& aRequestStatus, TBitmapfileCompressionScheme aScheme)
API. It loads bitmaps from ROM & saves (temporarily) to C-drive.
Then it loads from C-drive into a new bitmap.
@SYMTestActions
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::TestAsynchronousBackgroundPaletteCompressionL()
{
INFO_PRINTF1(_L("Test Asynch background Palette Compression"));
TRequestStatus status ;
_LIT(KmbmFileInRom, "z:\\system\\data\\24bitskin.mbm");
RFbsSession* fbs = RFbsSession::GetSession();
//create bitmap
CFbsBitmap* fbsCompressed = new(ELeave) CFbsBitmap ;
CFbsBitmap* fbsUnCompressed = new(ELeave) CFbsBitmap ;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(KmbmFileInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force immediate compression)
fbsCompressed->CompressInBackground(status, EPaletteCompression);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
User::WaitForRequest(status);
TEST2(status.Int(), KErrNone);
//test that palette compression occurred
TEST(fbsCompressed->Header().iCompression == EGenericPaletteCompression);
//compare with original
INFO_PRINTF1(_L("Compare Palette Compressed bmp with original"));
CompareBitmaps((CFbsBitmapEx&)*fbsCompressed, (CFbsBitmapEx&)*fbsUnCompressed, EColor16M);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
//Test that the RLE option works.
//------------------------------------
//create bitmap
fbsCompressed = new (ELeave) CFbsBitmap ;
fbsUnCompressed = new (ELeave) CFbsBitmap ;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(KmbmFileInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force immediate compression)
fbsCompressed->CompressInBackground(status, ERLECompression);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
User::WaitForRequest(status);
TEST2(status.Int(), KErrNone);
//test that RLE compression occurred
TEST(fbsCompressed->Header().iCompression == ETwentyFourBitRLECompression);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
//Test that unsuitable bitmaps are not palette compressed (too many colours).
//----------------------------------------------------------------------------------------
_LIT(KmbmMultiColourMBMInRom, "z:\\system\\data\\24bit.mbm");
//create bitmap
fbsCompressed = new (ELeave) CFbsBitmap ;
fbsUnCompressed = new (ELeave) CFbsBitmap ;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(KmbmMultiColourMBMInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force immediate compression)
fbsCompressed->CompressInBackground(status, EPaletteCompression);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
User::WaitForRequest(status);
TEST2(status.Int(), KErrNotSupported);
//test that palette compression occurred
TEST(fbsCompressed->Header().iCompression != EGenericPaletteCompression);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
//Test that unsuitable bitmaps are not palette compressed (too few BPP)
//---------------------------------------------------------------------------------
//create bitmap
fbsCompressed = new(ELeave) CFbsBitmap ;
fbsUnCompressed = new(ELeave) CFbsBitmap ;
CleanupStack::PushL(fbsCompressed);
CleanupStack::PushL(fbsUnCompressed);
TEST2(fbsUnCompressed->Load(KmbmMultiColourMBMInRom, 0, EFalse), KErrNone);
fbsUnCompressed->Save(KTempFilename);
//load bitmap
TEST2(fbsCompressed->Load(KTempFilename, 0, EFalse), KErrNone);
//compress bitmap (force immediate compression)
fbsCompressed->CompressInBackground(status, EPaletteCompression);
fbs->SendCommand(EFbsCompress, 0); //force background compression to execute
User::WaitForRequest(status);
TEST2(status.Int(), KErrNotSupported);
//test that palette compression occurred
TEST(fbsCompressed->Header().iCompression != EGenericPaletteCompression);
CleanupStack::PopAndDestroy(2);
iFs.Delete(KTempFilename);
INFO_PRINTF1(_L("Test Asynch background Palette Compressio - COMPLETE"));
}
/**
@SYMTestCaseID GRAPHICS-FBSERV-0501
@SYMTestType UT
@SYMTestPriority Medium
@SYMCR DKRN-6QGJPT
@SYMTestCaseDesc Get all bitmap handles before and after loading a bitmap.
@SYMTestActions
1) Get all bitmap handles and store number of bitmaps obtained
2) Load a new bitmap
3) Get all bitmap handles and store number of bitmaps obtained
@SYMTestExpectedResults
The number of bitmap handles retrieved after loading the bitmap should be one more than prior to loading the bitmap.
*/
void CTBitmap::GetAllBitmapsIdsL()
{
CFbsBitmap* bitmap = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bitmap);
RArray <TInt> bitmapHandleArray;
CleanupClosePushL(bitmapHandleArray);
// Get current number of bitmap handles
User::LeaveIfError(bitmap->GetAllBitmapHandles(bitmapHandleArray));
const TInt numBitmapHandles = bitmapHandleArray.Count();
// Load another bitmap
CFbsBitmap* bmp = LoadBitmapLC(KRc_Ram8);
// Get current number of bitmap handles
User::LeaveIfError(bitmap->GetAllBitmapHandles(bitmapHandleArray));
const TInt newNumBitmapHandles = bitmapHandleArray.Count();
TEST(numBitmapHandles == newNumBitmapHandles - 1); // Ensure there is one more bitmap handle from the bitmap we just added
const TInt handle = bmp->Handle();
TInt foundHandle = 0;
for (TInt count = newNumBitmapHandles-1; count>=0; --count)
{
if (handle == bitmapHandleArray[count])
{
foundHandle++;
}
}
TEST(foundHandle==1); // Ensure only one instance of this handle is found in the array
CleanupStack::PopAndDestroy(3, bitmap); // bmp, bitmapHandleArray, bitmap
}
/**
@SYMTestCaseID
GRAPHICS-FBSERV-0554
@SYMTestCaseDesc
Test Code For Corrupted MBM File.
@SYMTestActions
Loads a specific bitmap from a multi-bitmap
file from ROM and tests if it is corrupted.
@SYMTestExpectedResults
Test should pass
*/
void CTBitmap::CheckBadBmp()
{
INFO_PRINTF1(_L("MalformedBmp"));
_LIT(KmalmbmFile0, "z:\\system\\data\\00_grbmap.mbm");
_LIT(KmalmbmFile1, "z:\\system\\data\\01_totalstramsize!.mbm");
_LIT(KmalmbmFile2, "z:\\system\\data\\02_headersize.mbm");
_LIT(KmalmbmFile3, "z:\\system\\data\\03_width!.mbm");
_LIT(KmalmbmFile4, "z:\\system\\data\\04_height!.mbm");
_LIT(KmalmbmFile5, "z:\\system\\data\\05_bitsperpixel.mbm");
_LIT(KmalmbmFile6, "z:\\system\\data\\bad_bmpsize.mbm");
_LIT(KmalmbmFile7, "z:\\system\\data\\bad_colormode.mbm");
_LIT(KmalmbmFile8, "z:\\system\\data\\bad_compression.mbm");
_LIT(KmalmbmFile9, "z:\\system\\data\\bad_paletteentries.mbm");
CFbsBitmap* fbsmalBmp = new(ELeave) CFbsBitmap;
CleanupStack::PushL(fbsmalBmp);
//load bitmap
TEST2(fbsmalBmp->Load(KmalmbmFile0, 0, EFalse), KErrNone);
TEST2(fbsmalBmp->Load(KmalmbmFile1, 0, EFalse), KErrCorrupt);
TEST2(fbsmalBmp->Load(KmalmbmFile2, 0, EFalse), KErrCorrupt);
TEST2(fbsmalBmp->Load(KmalmbmFile3, 0, EFalse), KErrCorrupt);
TEST2(fbsmalBmp->Load(KmalmbmFile4, 0, EFalse), KErrCorrupt);
TEST2(fbsmalBmp->Load(KmalmbmFile5, 0, EFalse), KErrNotSupported);
TEST2(fbsmalBmp->Load(KmalmbmFile6, 0, EFalse), KErrCorrupt);
TEST2(fbsmalBmp->Load(KmalmbmFile7, 0, EFalse), KErrCorrupt);
TEST2(fbsmalBmp->Load(KmalmbmFile8, 0, EFalse), KErrCorrupt);
TEST2(fbsmalBmp->Load(KmalmbmFile9, 0, EFalse), KErrNotSupported);
CleanupStack::PopAndDestroy(fbsmalBmp);
}
/**
@SYMTestCaseID GRAPHICS-FBSERV-0613
@SYMDEF PDEF111181
@SYMTestCaseDesc Test the return code of operations on bitmaps in the background compression queue
@SYMTestPriority Critical
@SYMTestType UT
@SYMTestStatus Implemented
@SYMTestActions 1. Creates a bitmap
2. Calls CompressInBackground()
3. Call Resize
4. Waits until compression is finished
@SYMTestExpectedResults The call to resize should return with KErrInUse since the compression is in progress
*/
void CTBitmap::TestBgCompressInUseL()
{
INFO_PRINTF1(_L("Test the return code of operations on bitmaps in the background compression queue"));
CFbsBitmap* bmp = new (ELeave) CFbsBitmap;
CleanupStack::PushL(bmp);
TInt ret = bmp->Create(TSize(256, 256), EGray256); // create a solid grey bitmap
TEST2 (ret,KErrNone);
TRequestStatus status;
bmp->CompressInBackground(status);
TInt resizeRet = bmp->Resize(TSize(512,512));
TEST2 (resizeRet,KErrInUse);
User::WaitForRequest(status);
TEST2 (status.Int(), KErrNone);
CleanupStack::PopAndDestroy(bmp);
}
//------------------------------------------------------------------------------
LOCAL_D const TInt KTestBitmapWidth = 256; // this affects BitmapCheckCompressed()
LOCAL_D const TInt KTestBitmapHeight = 256;
LOCAL_D const TInt KTestBitmapResizeHeight = 512;
LOCAL_D const TInt KMaxRLERunLength = 127;
LOCAL_C void SetBitmapDataWithVerticalGradient(TUint8* aDataPtr)
{
for (TInt y = 0; y < KTestBitmapHeight; ++y)
for (TInt x = 0; x < KTestBitmapWidth; ++x)
*aDataPtr++ = y;
}
LOCAL_C TBool BitmapDataCheckVerticalGradient(const TUint8* aDataPtr)
{
for (TInt y = 0; y < KTestBitmapHeight; ++y)
for (TInt x = 0; x < KTestBitmapWidth; ++x)
if (*aDataPtr++ != y)
return EFalse;
return ETrue;
}
LOCAL_C void SetBitmapDataWithHorizontalGradient(TUint8* aDataPtr)
{
for (TInt y = 0; y < KTestBitmapHeight; ++y)
for (TInt x = 0; x < KTestBitmapWidth; ++x)
*aDataPtr++ = x;
}
LOCAL_C TBool BitmapDataCheckHorizontalGradient(const TUint8* aDataPtr)
{
for (TInt y = 0; y < KTestBitmapHeight; ++y)
for (TInt x = 0; x < KTestBitmapWidth; ++x)
if (*aDataPtr++ != x)
return EFalse;
return ETrue;
}
LOCAL_C TInt ResizeTestBitmap(CFbsBitmap* aBitmap)
{
return aBitmap->Resize(TSize(KTestBitmapWidth, KTestBitmapResizeHeight));
}
LOCAL_C TBool BitmapCheckResized(const CFbsBitmap* aBitmap)
{
if (aBitmap->SizeInPixels() != TSize(KTestBitmapWidth, KTestBitmapResizeHeight))
return EFalse;
TUint8* dataPtr = (TUint8*)aBitmap->DataAddress();
for (TInt y = 0; y < KTestBitmapHeight; ++y)
for (TInt x = 0; x < KTestBitmapWidth; ++x)
if (*dataPtr++ != y)
return EFalse;
for (TInt y = KTestBitmapHeight; y < KTestBitmapResizeHeight; ++y)
for (TInt x = 0; x < KTestBitmapWidth; ++x)
if (*dataPtr++ != 0xFF)
return EFalse;
return ETrue;
}
LOCAL_C TInt CompressTestBitmap(CFbsBitmap* aBitmap)
{
return aBitmap->Compress();
}
LOCAL_C TBool BitmapCheckCompressed(const CFbsBitmap* aBitmap)
{
if (aBitmap->SizeInPixels() != TSize(KTestBitmapWidth, KTestBitmapHeight))
return EFalse;
// check RLE compression on vertical gradient
TUint8* dataPtr = (TUint8*)aBitmap->DataAddress();
for (TInt y = 0; y < KTestBitmapHeight - 1; ++y)
{
// this works when the width of the bitmap is 256, or twice the maximum encodable run length, which is 128
if (*dataPtr++ != KMaxRLERunLength)
return EFalse;
if (*dataPtr++ != y)
return EFalse;
if (*dataPtr++ != KMaxRLERunLength)
return EFalse;
if (*dataPtr++ != y)
return EFalse;
}
return ETrue;
}
struct TTestThreadParams
{
TInt iBitmapHandle;
TInt (*iBitmapFunction)(CFbsBitmap*); // operation to perform on the bitmap
TBool (*iCheckFunction)(const CFbsBitmap*); // check that the operation was successfully performed
};
LOCAL_C void AlternateTestThreadL(const TTestThreadParams& aParams)
{
RFbsSession* fbs = RFbsSession::GetSession();
if (fbs->ResourceCount() != 0)
User::Leave(KErrGeneral);
CFbsBitmap* bmp = new(ELeave) CFbsBitmap;
CleanupStack::PushL(bmp);
User::LeaveIfError(bmp->Duplicate(aParams.iBitmapHandle));
if (fbs->ResourceCount() != 1)
User::Leave(KErrGeneral);
if (!BitmapDataCheckVerticalGradient((TUint8*)bmp->DataAddress()))
User::Leave(KErrGeneral);
User::LeaveIfError((*aParams.iBitmapFunction)(bmp));
if (fbs->ResourceCount() != 1)
User::Leave(KErrGeneral);
if (aParams.iCheckFunction != NULL && !(*aParams.iCheckFunction)(bmp))
User::Leave(KErrGeneral);
CleanupStack::PopAndDestroy(bmp);
if (fbs->ResourceCount() != 0)
User::Leave(KErrGeneral);
}
LOCAL_C TInt AlternateTestThread(TAny* aParams)
{
__UHEAP_MARK;
TInt ret = RFbsSession::Connect();
if (ret != KErrNone)
return ret;
CTrapCleanup* cleanupStack = CTrapCleanup::New();
if (cleanupStack == NULL)
return KErrNoMemory;
TRAP(ret, AlternateTestThreadL(*static_cast<TTestThreadParams*>(aParams)));
delete cleanupStack;
RFbsSession::Disconnect();
__UHEAP_MARKEND;
return ret;
}
void CTBitmap::MultiThreadedTestsL()
{
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0503"));
MultiThreadedResizeTestL();
((CTBitmapStep*)iStep)->RecordTestResultL();
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0504"));
MultiThreadedCompressTestL();
#ifdef SYMBIAN_DEBUG_FBS_LOCKHEAP
((CTBitmapStep*)iStep)->RecordTestResultL();
((CTBitmapStep*)iStep)->SetTestStepID(_L("GRAPHICS-FBSERV-0505"));
MultiThreadedLockHeapTestL();
#endif
}
/**
@SYMTestCaseID GRAPHICS-FBSERV-0503
@SYMDEF DEF090812
@SYMTestCaseDesc Tests behaviour of CFbsBitmap::DataAddress() and CFbsBitmap::Resize() when called concurrently by different threads
@SYMTestPriority High
@SYMTestType UT
@SYMTestStatus Implemented
@SYMTestActions 1. The 1st thread will create a bitmap, store a pointer to the bitmap data, launch the 2nd thread and then wait for it to terminate
2. The 2nd thread will resize the same bitmap and exit
3. The 1st thread will manipulate the bitmap data using the stored pointer and then re-fetch the bitmap data
@SYMTestExpectedResults The 1st thread should be able both to manipulate the old bitmap data and check the resized bitmap data
*/
void CTBitmap::MultiThreadedResizeTestL()
{
INFO_PRINTF1(_L("Test Resize() with Multiple Threads"));
DoMultiThreadedTestL(_L("AlternateResizeThread"), ResizeTestBitmap, BitmapCheckResized);
}
/**
@SYMTestCaseID GRAPHICS-FBSERV-0504
@SYMDEF DEF090812
@SYMTestCaseDesc Tests behaviour of CFbsBitmap::DataAddress() and CFbsBitmap::Compress() when called concurrently by different threads
@SYMTestPriority High
@SYMTestType UT
@SYMTestStatus Implemented
@SYMTestActions 1. The 1st thread will create a bitmap, store a pointer to the bitmap data, launch the 2nd thread and then wait for it to terminate
2. The 2nd thread will compress the same bitmap and exit
3. The 1st thread will manipulate the bitmap data using the stored pointer and then re-fetch the bitmap data
@SYMTestExpectedResults The 1st thread should be able both to manipulate the old bitmap data and check the compressed bitmap data
*/
void CTBitmap::MultiThreadedCompressTestL()
{
INFO_PRINTF1(_L("Test Compress() with Multiple Threads"));
DoMultiThreadedTestL(_L("AlternateCompressThread"), CompressTestBitmap, BitmapCheckCompressed);
}
void CTBitmap::DoMultiThreadedTestL(const TDesC& aThreadName, TInt (*aBitmapFunction)(CFbsBitmap*), TBool (*aCheckFunction)(const CFbsBitmap*))
{
CFbsBitmap* bmp = new CFbsBitmap;
ASSERT_NOT_NULL(bmp);
CleanupStack::PushL(bmp);
TInt ret = bmp->Create(TSize(KTestBitmapWidth, KTestBitmapHeight), EGray256);
ASSERT_EQUALS(ret, KErrNone);
TUint8* dataPtr = (TUint8*)bmp->DataAddress();
SetBitmapDataWithVerticalGradient(dataPtr);
TTestThreadParams params;
params.iBitmapHandle = bmp->Handle();
params.iBitmapFunction = aBitmapFunction;
params.iCheckFunction = aCheckFunction;
RThread thread;
ret = thread.Create(aThreadName, AlternateTestThread, KDefaultStackSize, 0x2000, 0x2000, ¶ms);
ASSERT_EQUALS(ret, KErrNone);
TRequestStatus status;
thread.Logon(status);
thread.Resume();
User::WaitForRequest(status);
TExitType exitType = thread.ExitType();
TInt exitReason = thread.ExitReason();
TEST(exitType == EExitKill);
TEST(exitReason == KErrNone);
thread.Close();
TEST(BitmapDataCheckVerticalGradient(dataPtr));
SetBitmapDataWithHorizontalGradient(dataPtr);
TEST(BitmapDataCheckHorizontalGradient(dataPtr));
TEST((*aCheckFunction)(bmp));
CleanupStack::PopAndDestroy(bmp);
User::Heap().Check();
}
#ifdef SYMBIAN_DEBUG_FBS_LOCKHEAP
_LIT(KFBSERVClientPanicCategory, "FBSCLI");
LOCAL_C TInt LockHeapTestBitmap(CFbsBitmap* aBitmap)
{
aBitmap->LockHeap();
return KErrNone;
}
/**
@SYMTestCaseID GRAPHICS-FBSERV-0505
@SYMDEF DEF090812
@SYMTestCaseDesc Tests behaviour of CFbsBitmap::LockHeap() when called concurrently by different threads
@SYMTestPriority High
@SYMTestType UT
@SYMTestStatus Implemented
@SYMTestActions 1. The 1st thread will create a bitmap, call LockHeap() on it, launch the 2nd thread and then wait for it to terminate
2. The 2nd thread will also call LockHeap() on the same bitmap
3. The 1st thread will check that the 2nd thread has panicked
@SYMTestExpectedResults Panic FBSCLI 22
*/
void CTBitmap::MultiThreadedLockHeapTestL()
{
INFO_PRINTF1(_L("Test LockHeap() Panic with Multiple Threads"));
CFbsBitmap* bmp = new CFbsBitmap;
ASSERT_NOT_NULL(bmp);
CleanupStack::PushL(bmp);
TInt ret = bmp->Create(TSize(KTestBitmapWidth, KTestBitmapHeight), EGray256);
ASSERT_EQUALS(ret, KErrNone);
SetBitmapDataWithVerticalGradient((TUint8*)bmp->DataAddress());
bmp->LockHeap();
TTestThreadParams params;
params.iBitmapHandle = bmp->Handle();
params.iBitmapFunction = LockHeapTestBitmap;
params.iCheckFunction = NULL;
RThread thread;
ret = thread.Create(_L("AlternateLockHeapThread"), AlternateTestThread, KDefaultStackSize, 0x2000, 0x2000, ¶ms);
ASSERT_EQUALS(ret, KErrNone);
TRequestStatus status;
thread.Logon(status);
thread.Resume();
User::WaitForRequest(status);
TExitType exitType = thread.ExitType();
TExitCategoryName exitCategory = thread.ExitCategory();
TInt exitReason = thread.ExitReason();
TEST(exitType == EExitPanic);
TEST(exitCategory == KFBSERVClientPanicCategory);
TEST(exitReason == EFbsPanicBadHeapLock);
thread.Close();
CleanupStack::PopAndDestroy(bmp);
User::Heap().Check();
}
#endif
//--------------
class CStopTestBgCompress: public CAsyncOneShot
{
public:
CStopTestBgCompress(): CAsyncOneShot(CActive::EPriorityIdle - 1) {} // priority must be less than CFbsSessionHelper
void RunL() { CActiveScheduler::Stop(); }
};
LOCAL_C TInt TestBgCompressThread(TAny* /*aParams*/)
{
const TInt KBmpSize = 0x100000 + sizeof(SEpocBitmapHeader);
// assuming run-length encoding every scan line gets compressed into 8 runs of 128 bytes each
// 2 bytes per encoded run results in 16 bytes per scan line so the compressed bitmap is large (>16K)
// a few bytes added at the end for the compression bookmark are rounded up to a page
const TInt KBmpCompressedSize = 0x5000;
TInt ret = KErrNone;
__UHEAP_MARK;
CTrapCleanup* trap = CTrapCleanup::New();
TRequestStatus status;
if (trap == NULL)
{
ret = KErrNoMemory;
goto exitNoTrap;
}
CActiveScheduler* scheduler = new CActiveScheduler;
if (scheduler == NULL)
{
ret = KErrNoMemory;
goto exitNoScheduler;
}
CActiveScheduler::Install(scheduler);
CStopTestBgCompress* stop = new CStopTestBgCompress;
if (stop == NULL)
{
ret = KErrNoMemory;
goto exitNoStop;
}
ret = RFbsSession::Connect();
if (ret != KErrNone)
goto exitNoFbs;
CFbsBitmapEx* bmp = new CFbsBitmapEx;
if (bmp == NULL)
{
ret = KErrNoMemory;
goto exitNoBmp;
}
CFbsBitmapEx* bmp2 = new CFbsBitmapEx;
if (bmp2 == NULL)
{
ret = KErrNoMemory;
goto exitNoBmp2;
}
ret = bmp->Create(TSize(1024, 1024), EGray256); // create a solid white bitmap
if (ret != KErrNone)
goto exitAll;
ret = bmp2->Duplicate(bmp->Handle()); // duplicate the bitmap handle
if (ret != KErrNone)
goto exitAll;
bmp->CompressInBackground(status);
User::WaitForRequest(status);
if (status != KErrNone)
{
ret = status.Int();
goto exitAll;
}
if (bmp->BitmapAddress()->Header().iBitmapSize != KBmpSize || bmp->BitmapAddress() != bmp2->BitmapAddress())
{
ret = KErrGeneral;
goto exitAll;
}
stop->Call();
CActiveScheduler::Start(); // now CFbsSessionHelper should clean both bmp and bmp2 and free the dirty bitmap data
if (!bmp->BitmapAddress()->IsCompressedInRAM() || bmp->BitmapAddress()->Header().iBitmapSize > KBmpCompressedSize || bmp->BitmapAddress() != bmp2->BitmapAddress())
ret = KErrGeneral;
exitAll:
delete bmp2;
exitNoBmp2:
delete bmp;
exitNoBmp:
RFbsSession::Disconnect();
exitNoFbs:
delete stop;
exitNoStop:
delete scheduler;
exitNoScheduler:
delete trap;
exitNoTrap:
__UHEAP_MARKEND;
return ret;
}
/**
@SYMTestCaseID GRAPHICS-FBSERV-0612
@SYMDEF INC109293
@SYMTestCaseDesc Tests memory usage with CFbsBitmap::CompressInBackground()
@SYMTestPriority High
@SYMTestType UT
@SYMTestStatus Implemented
@SYMTestActions 1. Creates a bitmap
2. Calls CompressInBackground()
3. Waits until compression is finished
4. Gives the active scheduler the chance to run the session's helper
@SYMTestExpectedResults Efficient use of memory
*/
void CTBitmap::TestBgCompressL()
{
INFO_PRINTF1(_L("Test memory usage with CFbsBitmap::CompressInBackground()"));
RThread thread;
TInt ret = thread.Create(_L("TestBgCompressThread"), TestBgCompressThread, KDefaultStackSize, 0x2000, 0x2000, NULL);
ASSERT_EQUALS(ret, KErrNone);
TRequestStatus status;
thread.Logon(status);
thread.Resume();
User::WaitForRequest(status);
TExitType exitType = thread.ExitType();
TInt exitReason = thread.ExitReason();
TEST(exitType == EExitKill);
TEST(exitReason == KErrNone);
if (exitType != EExitKill || exitReason != KErrNone)
{
INFO_PRINTF3(_L("Exit Type = %d, Exit Reason = %d"), TInt(exitType), exitReason);
}
thread.Close();
}
/**
@SYMTestCaseID GRAPHICS-FBSERV-0618
@SYMDEF DEF123068
@SYMTestCaseDesc Tests that small and large bitmaps are white-filled upon creation.
@SYMTestPriority High
@SYMTestType UT
@SYMTestStatus Implemented
@SYMTestActions 1. Create a small bitmap
2. Create a large bitmap
@SYMTestExpectedResults Both bitmaps are filled with white
*/
void CTBitmap::TestBitmapWhiteFillL()
{
INFO_PRINTF1(_L("Test white fill of CFbsBitmap upon creation."));
const TDisplayMode KDispMode = EColor16MAP;
RPointerArray<CFbsBitmap> bmpArray;
const TSize KBitmapSmallSize(4,4);
const TSize KBitmapLargeSize(200,200);
// Create small CFbsBitmap
CFbsBitmap* bmp = new (ELeave) CFbsBitmap;;
TInt ret = bmp->Create(KBitmapSmallSize,KDispMode);
TEST2(ret, KErrNone);
bmpArray.AppendL(bmp);
// Create large CFbsBitmap
bmp = new (ELeave) CFbsBitmap;;
ret = bmp->Create(KBitmapLargeSize,KDispMode);
TEST2(ret, KErrNone);
bmpArray.AppendL(bmp);
// Create small hardware bitmap
bmp = new (ELeave) CFbsBitmap;;
ret = bmp->CreateHardwareBitmap(KBitmapSmallSize, KDispMode, KNullUid);
if (ret == KErrNotSupported)
{
INFO_PRINTF1(_L("WhiteFill test skipped for small hardware bitmaps as they are not supported"));
delete bmp;
}
else
{
TEST2(ret, KErrNone);
bmpArray.AppendL(bmp);
}
// Create large hardware bitmap
bmp = new (ELeave) CFbsBitmap;;
ret = bmp->CreateHardwareBitmap(KBitmapLargeSize, KDispMode, KNullUid);
if (ret == KErrNotSupported)
{
INFO_PRINTF1(_L("WhiteFill test skipped for large hardware bitmaps as they are not supported"));
delete bmp;
}
else
{
TEST2(ret, KErrNone);
bmpArray.AppendL(bmp);
}
for (TInt ii = 0; ii < bmpArray.Count(); ++ii)
{
bmp = bmpArray[ii];
bmp->BeginDataAccess();
TUint32* base = bmp->DataAddress();
TSize size = bmp->SizeInPixels();
TInt scanLineLength = CFbsBitmap::ScanLineLength(size.iWidth,KDispMode);
TInt dataLength = scanLineLength * size.iHeight;
CheckWhite((TUint8*)base,dataLength,KDispMode);
bmp->EndDataAccess(ETrue);
delete bmp;
}
bmpArray.Close();
}
//--------------
// The code for regression test case GRAPHICS-FBSERV-0614 must be in a separate thread
// because it has to call RFbsSession::Disconnect() and without the fix it panics.
LOCAL_C TInt TestDisconnectWithBitmapThread(TAny* /*aParams*/)
{
CTrapCleanup* trap = CTrapCleanup::New();
if (trap == NULL)
return KErrNoMemory;
CActiveScheduler* scheduler = new CActiveScheduler;
if (scheduler == NULL)
{
delete trap;
return KErrNoMemory;
}
CActiveScheduler::Install(scheduler);
TInt ret = RFbsSession::Connect();
if (ret != KErrNone)
{
delete scheduler;
delete trap;
return ret;
}
CFbsBitmap* bmp = new CFbsBitmap;
if (bmp == NULL)
{
RFbsSession::Disconnect();
delete scheduler;
delete trap;
return KErrNoMemory;
}
ret = bmp->Create(TSize(256, 256), EGray256); // create a solid white bitmap
if (ret != KErrNone)
{
RFbsSession::Disconnect();
delete scheduler;
delete trap;
return ret;
}
RFbsSession::Disconnect();
delete scheduler;
delete trap;
return ret;
}
/**
@SYMTestCaseID GRAPHICS-FBSERV-0614
@SYMDEF INC113118
@SYMTestCaseDesc Tests behaviour when RFbsSession::Disconnect() is called and there is a CFbsBitmap not yet deleted
@SYMTestPriority High
@SYMTestType UT
@SYMTestStatus Implemented
@SYMTestActions 1. Creates and installs an active scheduler so that CFbsSessionHelper can be activated
2. Calls RFbsSession::Connect()
3. Creates a bitmap
4. Calls RFbsSession::Disconnect()
@SYMTestExpectedResults The bitmap should be destroyed automatically and no panics should occur
*/
void CTBitmap::TestDisconnectWithBitmapL()
{
INFO_PRINTF1(_L("Test RFbsSession::Disconnect() with a CFbsBitmap not yet deleted"));
RThread thread;
TInt ret = thread.Create(_L("TestDisconnectWithBitmapThread"), TestDisconnectWithBitmapThread, KDefaultStackSize, 0x2000, 0x2000, NULL);
ASSERT_EQUALS(ret, KErrNone);
TRequestStatus status;
thread.Logon(status);
thread.Resume();
User::WaitForRequest(status);
TExitType exitType = thread.ExitType();
TInt exitReason = thread.ExitReason();
TEST(exitType == EExitKill);
TEST(exitReason == KErrNone);
thread.Close();
}
/**
@SYMTestCaseID GRAPHICS-FBSERV-0617
@SYMPREQ PREQ39
@SYMTestCaseDesc Test that bitmaps have been touched when data changes.
Test that bitmaps become volatile when DataAddress is called outside of
calls to BeginDataAccess() and EndDataAccess().
@SYMTestStatus Implemented
@SYMTestPriority High
@SYMTestActions Create a bitmap.
Call each public API.
Check that the touch count increases when the bitmap data has been modified.
Check whether bitmap is volatile.
@SYMTestExpectedResults Touch count only increases for the following functions:
Resize,
SetDisplayMode,
SetScanLine,
InternalizeL,
SwapWidthAndHeight,
DataAddress() called inside a Begin() and End(EFalse) pairing.
Bitmap is volatile only when DataAddress() called outside
a Begin() and End(EFalse) pairing.
*/
void CTBitmap::TestTouchedAndVolatileL()
{
INFO_PRINTF1(_L("Test bitmaps become touched or volatile when data changes."));
CFbsBitmap* bmp = new CFbsBitmap;
TEST(bmp != NULL);
TInt touchCount = 0;
TInt newTouchCount = 0;
CleanupStack::PushL(bmp);
// Resize
User::LeaveIfError(bmp->Create(TSize(4,4),EColor16MA));
touchCount = bmp->TouchCount();
TInt ret = bmp->Resize(TSize(5,5));
TEST(ret == KErrNone);
newTouchCount = bmp->TouchCount();
TEST(newTouchCount == touchCount+1);
TEST(!bmp->IsVolatile());
touchCount = bmp->TouchCount();
ret = bmp->Resize(TSize(3,3));
TEST(ret == KErrNone);
newTouchCount = bmp->TouchCount();
TEST(newTouchCount == touchCount+1);
TEST(!bmp->IsVolatile());
touchCount = bmp->TouchCount();
ret = bmp->Resize(TSize(3,3));
TEST(ret == KErrNone);
newTouchCount = bmp->TouchCount();
TEST(newTouchCount == touchCount+1);
TEST(!bmp->IsVolatile());
bmp->Reset();
// SetDisplayMode
User::LeaveIfError(bmp->Create(TSize(4,4),EColor16MA));
touchCount = bmp->TouchCount();
ret = bmp->SetDisplayMode(EColor16MAP);
TEST(ret == KErrNone);
newTouchCount = bmp->TouchCount();
TEST(newTouchCount == touchCount+1);
TEST(!bmp->IsVolatile());
bmp->Reset();
// SetScanLine
TInt scanLineLength = CFbsBitmap::ScanLineLength(256,EColor16MA);
TUint8* buffer = new TUint8[scanLineLength];
TEST(buffer != NULL);
TPtr8 scanline(buffer,scanLineLength,scanLineLength);
User::LeaveIfError(bmp->Create(TSize(4,4),EColor16MA));
touchCount = bmp->TouchCount();
bmp->SetScanLine(scanline, 1);
newTouchCount = bmp->TouchCount();
TEST(newTouchCount == touchCount+1);
TEST(!bmp->IsVolatile());
delete[] buffer;
bmp->Reset();
// SwapWidthAndHeight
User::LeaveIfError(bmp->Create(TSize(4,6),EColor16MA));
touchCount = bmp->TouchCount();
ret = bmp->SwapWidthAndHeight();
TEST(ret == KErrNone);
newTouchCount = bmp->TouchCount();
TEST(newTouchCount == touchCount+1);
TEST(!bmp->IsVolatile());
bmp->Reset();
// InternalizeL
// Requires data to be externalised first
User::LeaveIfError(bmp->Create(TSize(4,6),EColor16MA));
touchCount = bmp->TouchCount();
CDirectFileStore* writestore = CDirectFileStore::ReplaceL(iFs,KTempFilename,EFileStream|EFileWrite);
TEST(writestore != NULL);
TUidType uidtype(KDirectFileStoreLayoutUid,KMultiBitmapFileImageUid);
writestore->SetTypeL(uidtype);
RStoreWriteStream writestrm;
TStreamId headerid(0);
headerid = writestrm.CreateL(*writestore);
writestore->SetRootL(headerid);
bmp->ExternalizeL(writestrm);
writestrm.Close();
delete writestore;
bmp->Reset();
// Now internalise data to reset bitmap.
CDirectFileStore* readstore = CDirectFileStore::OpenL(iFs,KTempFilename,EFileStream|EFileRead);
RStoreReadStream readstrm;
headerid = readstore->Root();
readstrm.OpenL(*readstore,headerid);
bmp->InternalizeL(readstrm);
readstrm.Close();
delete readstore;
newTouchCount = bmp->TouchCount();
TEST(newTouchCount == touchCount+1);
TEST(!bmp->IsVolatile());
bmp->Reset();
// DataAddress
// 1. Call as read-only (by passing ETrue into End())
// Expect: touch count doesn't increase & bitmap not volatile
User::LeaveIfError(bmp->Create(TSize(4,6),EColor16MA));
touchCount = bmp->TouchCount();
bmp->BeginDataAccess();
bmp->DataAddress(); // ignore returned value for this test.
bmp->EndDataAccess(ETrue);
newTouchCount = bmp->TouchCount();
TEST(newTouchCount == touchCount);
TEST(!bmp->IsVolatile());
// 2. Call as writeable (by passing EFalse into End())
// Expect: touch count increases & bitmap not volatile
touchCount = newTouchCount;
bmp->BeginDataAccess();
bmp->DataAddress(); // ignore returned value for this test.
bmp->EndDataAccess(EFalse);
newTouchCount = bmp->TouchCount();
TEST(newTouchCount == touchCount+1);
TEST(!bmp->IsVolatile());
// 3. Call without Begin/End pairing
// Expect: bitmap is volatile
bmp->DataAddress(); // ignore returned value for this test.
TEST(bmp->IsVolatile());
bmp->Reset();
CleanupStack::PopAndDestroy(bmp);
}
//--------------
__CONSTRUCT_STEP__(Bitmap)
void CTBitmapStep::TestSetupL()
{
TheFs.Connect();
::CopyFilesOnC();
}
void CTBitmapStep::TestClose()
{
::DeleteFilesFromC(); //clean up data files used by this test - must be done before call to End() - DEF047652
TheFs.Close();
}