Merge 3. Improve performance by switching to less aggressive settings for RI_NUM_TESSELLATED_SEGMENTS and RI_MAX_SAMPLES. Ignored the WIN32 specific API decoration defines when doing the merge. Note the code is now optimised in riPath.cpp to change from RI_NUM_TESSELLATED_SEGMENTS to _QUAD, _CUBIC, _ARC settings which are each now set to 8. SVG Tiger now renders in 5 seconds (15 seconds quicker). The quality of the OVG icons is slightly reduced but still very useable.
// Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
//
/*
* Portions of this code, in particular the fghCircleTable function and the code to
* calculate the vertices for the solid sphere, is ported from freeglut_geometry.cpp
* which is distributed under the following terms:
*
******************************************************************
* Copyright (c) 1999-2000 Pawel W. Olszta. All Rights Reserved.
* Written by Pawel W. Olszta, <olszta@sourceforge.net>
* Creation date: Fri Dec 3 1999
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*********************************************************************
* Apart from porting to use Open GL ES instead of Open GL the other major change is
* to separate out the code that calculates vertices from the code that draws the shape.
*/
#include "geometrystructs.h"
#include <GLES/gl.h>
#include <e32math.h>
float sin(float x)
{
double t = x;
double r;
TInt error = Math::Sin(r,t);
ASSERT(error==KErrNone);
return r;
}
float cos(float x)
{
double t = x;
double r;
TInt error = Math::Cos(r,t);
ASSERT(error==KErrNone);
return r;
}
int abs(int x)
{
return Abs(x);
}
Vertex3F::Vertex3F(float x, float y, float z)
:iX(x), iY(y), iZ(z)
{
}
Vertex3F::Vertex3F()
:iX(0), iY(0), iZ(0)
{
}
int fghCircleTable(float **sint,float **cost,const int n)
{
int i;
/* Table size, the sign of n flips the circle direction */
const int size = abs(n);
/* Determine the angle between samples */
const float angle = 2*KPi/(float)( ( n == 0 ) ? 1 : n );
/* Allocate memory for n samples, plus duplicate of first entry at the end */
*sint = new float[sizeof(float) * size+1];
if(*sint==NULL)
{
return KErrNoMemory;
}
*cost = new float[sizeof(float) * size+1];
if(*cost==NULL)
{
delete[] sint;
return KErrNoMemory;
}
/* Compute cos and sin around the circle */
(*sint)[0] = 0.0;
(*cost)[0] = 1.0;
for (i=1; i<size; i++)
{
(*sint)[i] = sin(angle*i);
(*cost)[i] = cos(angle*i);
}
/* Last sample is duplicate of the first */
(*sint)[size] = (*sint)[0];
(*cost)[size] = (*cost)[0];
return KErrNone;
}
CSolidSphere* CSolidSphere::NewLC(TReal aRadius, TInt aSlices, TInt aStacks)
{
CSolidSphere* self = new(ELeave) CSolidSphere(aSlices, aStacks);
CleanupStack::PushL(self);
self->ConstructL(aRadius);
return self;
}
CSolidSphere::~CSolidSphere()
{
delete[] iTopVertices;
delete[] iTopNormals;
delete[] iBottomVertices;
delete[] iBottomNormals;
delete[] iStackVertices;
delete[] iStackNormals;
}
void CSolidSphere::Draw() const
{
//top fan
glVertexPointer(3, GL_FLOAT, 0, iTopVertices);
glNormalPointer(GL_FLOAT, 0, iTopNormals);
glDrawArrays(GL_TRIANGLE_FAN, 0, iSlices+2);
//stacks, one at a time
glVertexPointer(3, GL_FLOAT, 0, iStackVertices);
glNormalPointer(GL_FLOAT, 0, iStackNormals);
TInt offset = 0;
TInt verticesPerStack = (iSlices+1)*2;
for(TInt i=1; i<iStacks-1; i++ )
{
glDrawArrays(GL_TRIANGLE_STRIP, offset, verticesPerStack);
offset+=verticesPerStack;
}
//bottom fan
glVertexPointer(3, GL_FLOAT, 0, iBottomVertices);
glNormalPointer(GL_FLOAT, 0, iBottomNormals);
glDrawArrays(GL_TRIANGLE_FAN, 0, iSlices+2);
}
CSolidSphere::CSolidSphere(TInt aSlices, TInt aStacks)
:iSlices(aSlices), iStacks(aStacks)
{
}
void CSolidSphere::ConstructL(TReal aRadius)
{
//* Pre-computed circle
float* sint1 = NULL;
float* cost1 = NULL;
float* sint2 = NULL;
float* cost2 = NULL;
fghCircleTable(&sint1,&cost1,-iSlices);
CleanupArrayDeletePushL(sint1);
CleanupArrayDeletePushL(cost1);
fghCircleTable(&sint2,&cost2,iStacks*2);
CleanupArrayDeletePushL(sint2);
CleanupArrayDeletePushL(cost2);
//* The top stack is covered with a triangle fan
int i,j;
//* Adjust z and radius as stacks are drawn.
float z0,z1;
float r0,r1;
z0 = 1.0;
z1 = cost2[(iStacks>0)?1:0];
r0 = 0.0;
r1 = sint2[(iStacks>0)?1:0];
iTopVertices = new (ELeave) Vertex3F[iSlices+2];
iTopNormals = new (ELeave) Vertex3F[iSlices+2];
TInt topVerticesIndex = 0;
iTopVertices[topVerticesIndex] = Vertex3F(0,0,aRadius);
iTopNormals[topVerticesIndex] = Vertex3F(0,0,1);
for(j=iSlices; j>=0; j--)
{
topVerticesIndex++;
Vertex3F vertex(cost1[j]*r1*aRadius, sint1[j]*r1*aRadius, z1*aRadius);
iTopVertices[topVerticesIndex] = vertex;
Vertex3F normal(cost1[j]*r1, sint1[j]*r1, z1 );
iTopNormals[topVerticesIndex] = normal;
}
//*calculate the vertices for each stack
TInt stackVertexCount = ((iSlices+1)*2) *iStacks;
iStackVertices = new (ELeave) Vertex3F[stackVertexCount];
iStackNormals = new (ELeave) Vertex3F[stackVertexCount];
TInt stackIndex = 0;
for( i=1; i<iStacks-1; i++ )
{
z0 = z1; z1 = cost2[i+1];
r0 = r1; r1 = sint2[i+1];
for(j=0; j<=iSlices; j++)
{
Vertex3F v1(cost1[j]*r1*aRadius, sint1[j]*r1*aRadius, z1*aRadius);
Vertex3F v2(cost1[j]*r0*aRadius, sint1[j]*r0*aRadius, z0*aRadius);
iStackVertices[stackIndex*2] = v1;
iStackVertices[(stackIndex*2)+1] = v2;
Vertex3F n1(cost1[j]*r1, sint1[j]*r1, z1);
Vertex3F n2(cost1[j]*r0, sint1[j]*r0, z0);
iStackNormals[stackIndex*2] = n1;
iStackNormals[(stackIndex*2)+1] = n2;
stackIndex++;
}
}
//* The bottom stack is covered with a triangle fan
z0 = z1;
r0 = r1;
iBottomVertices = new (ELeave) Vertex3F[iSlices+2];
iBottomNormals = new (ELeave) Vertex3F[iSlices+2];
iBottomVertices[0] = Vertex3F(0,0,-aRadius);
iBottomNormals[0] = Vertex3F(0,0,-1);
for(j=0; j<=iSlices; j++)
{
Vertex3F vertex(cost1[j]*r0*aRadius, sint1[j]*r0*aRadius, z0*aRadius);
iBottomVertices[j+1] = vertex;
Vertex3F normal(cost1[j]*r0, sint1[j]*r0, z0);
iBottomNormals[j+1] = normal;
}
//* Release sin and cos tables
CleanupStack::PopAndDestroy(4);
}