Revise some of the compositor performance improvements to improve correctness.
Implement pixel blending using a variation of Jim Blinn's no-division blending algorithm.
Move transparency type simplification further up the composition code.
Remove some unnecessary fields.
Output to YUV implementation needs revision as it is actually converting from YUV (copy of source conversion code).
// Copyright (c) 2008-2010 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
//
/**
@file
@test
@internalComponent - Internal Symbian test code
*/
#include <e32debug.h>
#include <e32base.h>
#include <e32math.h>
#include <s32file.h>
#include <bautils.h>
#include <hal.h>
#include <e32hal.h>
#include "graphicsmemoryhogger.h"
_LIT(KTGraphicsMemoryHoggerPanic, "TGfxMemHog");
GLDEF_C TInt E32Main()
{
RDebug::Print(_L("Graphics Memory Hogger::E32Main - entry"));
CTrapCleanup* TheTrapCleanup = CTrapCleanup::New();
TRAPD(err, StartTestL());
if (err)
{
User::Panic(KTGraphicsMemoryHoggerPanic,err);
}
delete TheTrapCleanup;
RDebug::Print(_L("Graphics Memory Hogger::E32Main - exit"));
return KErrNone;
}
LOCAL_C void StartTestL(void)
{
RDebug::Print(_L("Graphics Memory Hogger::StartTestL - entry"));
TMemoryInfoV1Buf membuf;
UserHal::MemoryInfo(membuf);
const TReal maxmem = membuf().iTotalRamInBytes;
RDebug::Print(_L("GfxMemHog::TotalRamInBytes: %f"), maxmem);
TInt pageSize = 0;
HAL::Get(HAL::EMemoryPageSize, pageSize);
RDebug::Print(_L("GfxMemHog::pageSize: %d"), pageSize);
TInt maxHeap = 0;
HAL::Get(HALData::EMemoryRAM, maxHeap);
_LIT(KTGfxMemoryHogger, "GfxMemHog");
RHeap* myHeap;
myHeap = UserHeap::ChunkHeap(&KTGfxMemoryHogger, pageSize, maxmem);
const TInt KOneSecond = 1000000;
TInt newSize = pageSize;
// allocate an initial cell with size equal to the page size
TAny * myCell = myHeap->Alloc(newSize);
TAny * myCell2 = NULL;
// for each cycle increase the memory allocated to the cell until
// the max is reached, at which point reset back to a cell of the
// size of a page. A second loop is used to write to memory locations
// in each page of the cell to ensure that the page is 'paged in'
FOREVER
{
newSize += pageSize*10;
TInt size = myHeap->Size();
myCell2 = myHeap->ReAlloc(myCell, newSize);
if (myCell2 == NULL)
{
RDebug::Print(_L("GfxMemHog::ERROR: size reached = %d"), size);
newSize = pageSize; //reset
myCell = myHeap->ReAlloc(myCell, newSize);
if (myCell == NULL)
{
RDebug::Print(_L("GfxMemHog::ERROR: Could not ReAlloc(myCell)"));
break;
}
}
else
{
RDebug::Print(_L("GfxMemHog::myHeap.Size() = %d"), myHeap->Size());
TInt index = 0;
TInt stop = (myHeap->AllocLen(myCell) - pageSize)/4;
RDebug::Print(_L("GfxMemHog::stop = %d"), stop);
RDebug::Print(_L("GfxMemHog::myCell.AllocLen() = %d"), myHeap->AllocLen(myCell));
TInt loopCount = 0;
// write to each page of memory in the heap
while(index<stop)
{
loopCount++;
TInt * myData = ((TInt *) myCell2) + index;
*myData = index;
index += pageSize/4;
}
RDebug::Print(_L("GfxMemHog::Loop count = %d"), loopCount);
}
User::After(KOneSecond);
}
RDebug::Print(_L("Graphics Memory Hogger::StartTestL - exit"));
}