|
1 /* |
|
2 * Copyright (c) 2003, 2004 Nokia Corporation and/or its subsidiary(-ies). |
|
3 * All rights reserved. |
|
4 * This component and the accompanying materials are made available |
|
5 * under the terms of "Eclipse Public License v1.0" |
|
6 * which accompanies this distribution, and is available |
|
7 * at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
8 * |
|
9 * Initial Contributors: |
|
10 * Nokia Corporation - initial contribution. |
|
11 * |
|
12 * Contributors: |
|
13 * |
|
14 * Description: CJ2kSynthesis class used to perform inverse quantization and |
|
15 * inverse DWT. |
|
16 * |
|
17 */ |
|
18 |
|
19 |
|
20 // INCLUDE FILES |
|
21 #include "JP2KTileInfo.h" |
|
22 #include "JP2KImageInfo.h" |
|
23 #include "JP2KImageWriter.h" |
|
24 #include "JP2KEntropyDecoder.h" |
|
25 #include "JP2KCodeBlock.h" |
|
26 #include "JP2KPacket.h" |
|
27 #include "JP2KSubband.h" |
|
28 #include "JP2KComponentInfo.h" |
|
29 #include "JP2KSynthesis.h" |
|
30 |
|
31 // EXTERNAL DATA STRUCTURES |
|
32 |
|
33 // EXTERNAL FUNCTION PROTOTYPES |
|
34 |
|
35 // CONSTANTS |
|
36 |
|
37 // MACROS |
|
38 |
|
39 // LOCAL CONSTANTS AND MACROS |
|
40 |
|
41 // MODULE DATA STRUCTURES |
|
42 |
|
43 // LOCAL FUNCTION PROTOTYPES |
|
44 |
|
45 // FORWARD DECLARATIONS |
|
46 |
|
47 // ============================ MEMBER FUNCTIONS =============================== |
|
48 |
|
49 // ----------------------------------------------------------------------------- |
|
50 // CJ2kSynthesis::CJ2kSynthesis |
|
51 // C++ default constructor can NOT contain any code, that |
|
52 // might leave. |
|
53 // ----------------------------------------------------------------------------- |
|
54 // |
|
55 CJ2kSynthesis::CJ2kSynthesis() |
|
56 { |
|
57 // Set up the filter taps for irreversible filter |
|
58 iTapsLow[0] = KFixedLow9x70; |
|
59 iTapsLow[1] = KFixedLow9x71; |
|
60 iTapsLow[2] = KFixedLow9x72; |
|
61 iTapsLow[3] = KFixedLow9x73; |
|
62 |
|
63 iTapsHigh[0] = KFixedHigh9x70; |
|
64 iTapsHigh[1] = KFixedHigh9x71; |
|
65 iTapsHigh[2] = KFixedHigh9x72; |
|
66 iTapsHigh[3] = KFixedHigh9x73; |
|
67 iTapsHigh[4] = KFixedHigh9x74; |
|
68 } |
|
69 |
|
70 // Destructor |
|
71 CJ2kSynthesis::~CJ2kSynthesis() |
|
72 { |
|
73 if ( iInputBuffer ) |
|
74 { |
|
75 iInputBuffer -= ( KFilterExtension + 1 ); |
|
76 User::Free( iInputBuffer ); |
|
77 iInputBuffer = 0; |
|
78 } |
|
79 if ( iOutputBuffer ) |
|
80 { |
|
81 iOutputBuffer -= ( KFilterExtension + 1 ); |
|
82 User::Free( iOutputBuffer ); |
|
83 iOutputBuffer = 0; |
|
84 } |
|
85 } |
|
86 |
|
87 // ----------------------------------------------------------------------------- |
|
88 // CJ2kSynthesis::DecodeTileL |
|
89 // Decode a single tile |
|
90 // (other items were commented in a header). |
|
91 // ----------------------------------------------------------------------------- |
|
92 // |
|
93 void CJ2kSynthesis::DecodeTileL( CJ2kImageWriter& aImageWriter, |
|
94 CJ2kEntropyDecoder& aEntropyDecoder, |
|
95 CJ2kImageInfo& aImageInfo, |
|
96 CJ2kTileInfo& aTile ) |
|
97 { |
|
98 if ( aImageInfo.Crop() ) |
|
99 { |
|
100 // If this tile doesn't belong to the crop area, continue |
|
101 if ( !aImageInfo.TileMaskAt( aTile.SotMarker().iIsot ) ) |
|
102 { |
|
103 return; |
|
104 } |
|
105 } |
|
106 |
|
107 CJ2kComponentInfo* componentInfo = 0; |
|
108 TInt32 maxSize = 0; |
|
109 TUint16 compIndex = 0; |
|
110 TUint16 numOfComponents = aImageInfo.NumOfComponents(); |
|
111 |
|
112 // Find the largest width or height |
|
113 for ( compIndex = 0; compIndex < numOfComponents; ++compIndex ) |
|
114 { |
|
115 componentInfo = CONST_CAST( CJ2kComponentInfo*, &aTile.ComponentAt( compIndex ) ); |
|
116 maxSize = Max( maxSize, Max( componentInfo->ComponentCanvas().Height(), |
|
117 componentInfo->ComponentCanvas().Width() ) ); |
|
118 } |
|
119 |
|
120 maxSize += 2 * ( KFilterExtension + 1 ); |
|
121 AllocBufferL( maxSize ); |
|
122 |
|
123 TSize subbandSize( 0, 0 ); |
|
124 TUint16 bandIndex = 0; |
|
125 TUint16 blockIndex = 0; |
|
126 |
|
127 CJ2kSubband* subband = 0; |
|
128 CJ2kPacket* packet = 0; |
|
129 CJ2kCodeBlock* codeblock = 0; |
|
130 |
|
131 TUint8 quantStyle = 0; |
|
132 TUint8 bitDepth = 0; |
|
133 TUint8 cblkStyle = 0; |
|
134 TUint8 levelIndex = 0; |
|
135 TUint32 packetIndex = 0; |
|
136 |
|
137 CJ2kWriterComponentInfo* component = 0; |
|
138 RPointerArray<CJ2kPacket>* packetList; |
|
139 |
|
140 aEntropyDecoder.SetNewSizeL( aImageInfo.MaxBlockSize() ); |
|
141 |
|
142 // For each component in the tile |
|
143 for ( compIndex = 0; compIndex < aImageInfo.NumOfComponents(); ++compIndex ) |
|
144 { |
|
145 componentInfo = CONST_CAST( CJ2kComponentInfo*, &aTile.ComponentAt( compIndex ) ); |
|
146 |
|
147 // Skip the component when height or width is 0 |
|
148 if ( componentInfo->ComponentCanvas().Height() == 0 || |
|
149 componentInfo->ComponentCanvas().Width() == 0 ) |
|
150 { |
|
151 continue; //lint !e960 Continue is OK. |
|
152 } |
|
153 |
|
154 // Check for component truncation |
|
155 if ( aImageInfo.ComponentDrop() ) |
|
156 { |
|
157 if ( aImageWriter.SingleFileOutput() ) |
|
158 { |
|
159 if ( compIndex == ( aImageInfo.ComponentDrop() - 1 ) ) |
|
160 { |
|
161 numOfComponents = compIndex; |
|
162 } |
|
163 else |
|
164 { |
|
165 continue; //lint !e960 Continue is OK. |
|
166 } |
|
167 } |
|
168 else |
|
169 { |
|
170 if ( compIndex != ( aImageInfo.ComponentDrop() - 1 ) ) |
|
171 { |
|
172 continue; //lint !e960 Continue is OK. |
|
173 } |
|
174 } |
|
175 } |
|
176 |
|
177 // Get the resolution level for this component |
|
178 iWaveletLevels = (TInt16)( componentInfo->Levels() - aImageInfo.LevelDrop() ); |
|
179 |
|
180 TInt32 stepSize = 1; |
|
181 if ( iWaveletLevels < 0 ) |
|
182 { |
|
183 TInt32 i; |
|
184 |
|
185 // Compute the output step size, the stepSize indicates how much more |
|
186 // resolution has to be dropped if the image didn't have enough wavelet |
|
187 // levels to begin with. One indicates no extra resolution drop (write |
|
188 // each sample) and for each extra drop skip half of the samples, i.e. |
|
189 // stepSize is 2^extraLevels in case extra drop is needed. |
|
190 |
|
191 // Adjust the tile starting points and the stepSize |
|
192 for ( i = 0; i < (-iWaveletLevels); i++ ) |
|
193 { |
|
194 // Double the step size for every extra level dropped. |
|
195 stepSize *= 2; |
|
196 } |
|
197 |
|
198 iWaveletLevels = 0; |
|
199 } |
|
200 |
|
201 // Get the top subband ( original image ) |
|
202 subband = CONST_CAST( CJ2kSubband*, componentInfo->SubbandAt( (TUint8)iWaveletLevels ) ); |
|
203 |
|
204 if ( subband->SubbandResLevel() != 0 ) |
|
205 { |
|
206 subband = subband->Parent(); |
|
207 } |
|
208 |
|
209 subbandSize = subband->SubbandCanvasSize(); |
|
210 |
|
211 // Skip the component when subband's height or width is 0 |
|
212 if ( subbandSize.iWidth == 0 || subbandSize.iHeight == 0 ) |
|
213 { |
|
214 continue; //lint !e960 Continue is OK. |
|
215 } |
|
216 |
|
217 component = CONST_CAST( CJ2kWriterComponentInfo*, &aImageWriter.WriterComponentAt( compIndex ) ); |
|
218 |
|
219 // Have to allocate memory for each component in the image writer |
|
220 component->AllocDataL( subbandSize ); |
|
221 |
|
222 bitDepth = aImageInfo.DepthOfComponent( compIndex ); |
|
223 |
|
224 // Get the right number of levels and transform type |
|
225 // reversible == 1 for 5x3 filter and == 0 for 9x7 filter |
|
226 iReversible = componentInfo->IsReversible(); |
|
227 iROIShift = componentInfo->RoiShift(); |
|
228 |
|
229 quantStyle = componentInfo->QuantizationStyle(); |
|
230 cblkStyle = componentInfo->CodeBlockStyle(); |
|
231 |
|
232 // For each resolution level in the component |
|
233 for ( levelIndex = 0; levelIndex <= iWaveletLevels; levelIndex++ ) |
|
234 { |
|
235 subband = CONST_CAST( CJ2kSubband*, componentInfo->SubbandAt( levelIndex ) ); |
|
236 |
|
237 // For each subband in the resolution level |
|
238 do |
|
239 { |
|
240 bandIndex = ( quantStyle == 1 ) ? (TUint16)0 : subband->SubbandTreeIndex(); |
|
241 |
|
242 // Get the right magnitude bits for this band |
|
243 iMagnitudeBitsHere = componentInfo->MagnitudeBits( bandIndex ); |
|
244 |
|
245 // Compute the Quantization parameters here, so we don't repeat that for every codeblock/precinct |
|
246 ComputeQuantizationParameters( *componentInfo, bandIndex, subband->SubbandGain(), bitDepth ); |
|
247 |
|
248 // Set the lookup table for entropy decoder |
|
249 aEntropyDecoder.SetCurrentZCLUT( (TUint8)( subband->SubbandType() ) ); |
|
250 |
|
251 packetList = CONST_CAST( RPointerArray<CJ2kPacket>*, &subband->PacketList() ); //lint !e665 the first parameter cannot be parenthesized here |
|
252 |
|
253 // For each packet in the subband |
|
254 for ( packetIndex = 0; packetIndex < componentInfo->NumOfPackets( levelIndex ); ++packetIndex ) |
|
255 { |
|
256 packet = ( *packetList )[packetIndex]; |
|
257 |
|
258 // For each codeblock in the packet |
|
259 for ( blockIndex = 0; blockIndex < packet->NumOfBlocks(); ++blockIndex ) |
|
260 { |
|
261 codeblock = CONST_CAST( CJ2kCodeBlock*, &packet->CodeBlockAt( blockIndex ) ); |
|
262 |
|
263 // There is coded data in the codeblock |
|
264 if ( codeblock->DataLength() ) |
|
265 { |
|
266 // Decode the codeblock |
|
267 aEntropyDecoder.DecodeCodeblock( *codeblock, cblkStyle, (TUint8)( iMagnitudeBitsHere + iROIShift ) ); |
|
268 |
|
269 // Copy data from the decoded codeblock for inverse quantization and ROI shifting |
|
270 CopyDataToImage( aEntropyDecoder, component->Data(), *subband, *codeblock, quantStyle ); |
|
271 } |
|
272 } // end of each codeblock |
|
273 } // end of each packet |
|
274 |
|
275 // Get the sibling subband |
|
276 subband = subband->NextSubbandRaster(); |
|
277 |
|
278 } while ( subband ); // end of each subband in the resolution level |
|
279 |
|
280 } // end of each resolution level in the component |
|
281 |
|
282 // Point to the LL-band before calling inverse wavelet transform |
|
283 subband = CONST_CAST( CJ2kSubband*, componentInfo->SubbandAt( 0 ) ); |
|
284 |
|
285 // Perform a full inverse wavelet transformation |
|
286 FullWaveletInverse( component->Data(), subband ); |
|
287 |
|
288 |
|
289 // Check whether extra downsampling is needed |
|
290 if(stepSize > 1) |
|
291 { |
|
292 TInt32 i,j; |
|
293 TInt32 iStep,jStep; |
|
294 |
|
295 // If the stepSize is larger than one it means that we have to downsample |
|
296 // the output. This is because there were not enough wavelet levels to do |
|
297 // the resolution dropping for this component. |
|
298 |
|
299 // The reason why downsampling is done here and not in the ImageWriter is |
|
300 // that different components might have different number of wavlet levels |
|
301 // and thus it is easier to downsample the components here (so that we can |
|
302 // just write out the samples normally in ImageWriter. |
|
303 for(i = 0,iStep = 0; iStep < subbandSize.iHeight; i++,iStep += stepSize) |
|
304 { |
|
305 for(j = 0,jStep = 0; jStep < subbandSize.iWidth; j++,jStep += stepSize) |
|
306 { |
|
307 // Downsample the component so that downsampled image is in the |
|
308 // upper left-hand corner. |
|
309 component->Data()[i][j] = component->Data()[iStep][jStep]; |
|
310 } |
|
311 } |
|
312 } |
|
313 |
|
314 |
|
315 |
|
316 if ( numOfComponents >= 3 ) |
|
317 { |
|
318 if ( aTile.ColorTransformation() || |
|
319 ( aImageWriter.CSCode() == 18 || aImageWriter.CSCode() == 16 ) ) |
|
320 { |
|
321 // Wait til we finish decoding all components before writing out the image |
|
322 if ( compIndex < 2 ) |
|
323 { |
|
324 continue; //lint !e960 Continue is OK. |
|
325 } |
|
326 } |
|
327 else if ( aImageWriter.CSCode() == 0 ) |
|
328 { |
|
329 // This case is also valid when no CSCode is defined, e.g. no file format is present |
|
330 if( numOfComponents <= 3 ) |
|
331 { |
|
332 if ( compIndex < 2 ) |
|
333 { |
|
334 continue; //lint !e960 Continue is OK. |
|
335 } |
|
336 } |
|
337 else |
|
338 { |
|
339 // Proceed to outputImageL |
|
340 } |
|
341 } |
|
342 } //lint !e961 no else is needed here at the end of if...else if |
|
343 |
|
344 // Write out the tile image |
|
345 aImageWriter.OutputImageL( aTile, compIndex ); |
|
346 |
|
347 } // end of each component in the tile |
|
348 } |
|
349 |
|
350 // ----------------------------------------------------------------------------- |
|
351 // CJ2kSynthesis::DecodeTileBlockL |
|
352 // Decode a single tile with lower memory using 256x256 blocks |
|
353 // for the inverse wavelet transform |
|
354 // (other items were commented in a header). |
|
355 // ----------------------------------------------------------------------------- |
|
356 // |
|
357 void CJ2kSynthesis::DecodeTileBlockL( CJ2kImageWriter& aImageWriter, |
|
358 CJ2kEntropyDecoder& aEntropyDecoder, |
|
359 CJ2kImageInfo& aImageInfo, |
|
360 CJ2kTileInfo& aTile ) |
|
361 { |
|
362 if ( aImageInfo.Crop() ) |
|
363 { |
|
364 // If this tile doesn't belong to the crop area, continue |
|
365 if ( !aImageInfo.TileMaskAt( aTile.SotMarker().iIsot ) ) |
|
366 { |
|
367 return; |
|
368 } |
|
369 } |
|
370 |
|
371 CJ2kComponentInfo* componentInfo = 0; |
|
372 TInt32 maxSize = 0; |
|
373 TUint16 compIndex = 0; |
|
374 TUint16 numOfComponents = aImageInfo.NumOfComponents(); |
|
375 |
|
376 // Find the largest width or height |
|
377 for ( compIndex = 0; compIndex < numOfComponents; ++compIndex ) |
|
378 { |
|
379 componentInfo = CONST_CAST( CJ2kComponentInfo*, &aTile.ComponentAt( compIndex ) ); |
|
380 maxSize = Max( maxSize, Max( componentInfo->ComponentCanvas().Height(), |
|
381 componentInfo->ComponentCanvas().Width() ) ); |
|
382 } |
|
383 |
|
384 maxSize = KMaxBlockSupportSize; |
|
385 |
|
386 maxSize += 2 * ( KFilterExtension + 1 ); |
|
387 AllocBufferL( maxSize ); |
|
388 |
|
389 TSize subbandSize( 0, 0 ); |
|
390 TUint16 bandIndex = 0; |
|
391 TUint16 blockIndex = 0; |
|
392 |
|
393 CJ2kSubband* subband = 0; |
|
394 CJ2kPacket* packet = 0; |
|
395 CJ2kCodeBlock* codeblock = 0; |
|
396 |
|
397 TUint8 quantStyle = 0; |
|
398 TUint8 bitDepth = 0; |
|
399 TUint8 cblkStyle = 0; |
|
400 TUint8 levelIndex = 0; |
|
401 TUint32 packetIndex = 0; |
|
402 TUint32 blockXCoord = 0; |
|
403 TUint32 blockYCoord = 0; |
|
404 TUint32 compXCoord = 0; |
|
405 TUint32 compYCoord = 0; |
|
406 TInt32 blockXEnd = 0; |
|
407 TInt32 blockYEnd = 0; |
|
408 TRect supportRegion( 0, 0, 0 , 0 ); |
|
409 TRect parentSupportRegion( 0, 0, 0 , 0 ); |
|
410 TPoint regionOffset( 0, 0 ); |
|
411 TInt16 tmpLevelIndex = 0; |
|
412 TSize thisCompSize( 0, 0 ); |
|
413 TSize firstCompSize( 0, 0 ); |
|
414 TSize regionSize( 0, 0 ); |
|
415 TPoint tileEndPoint( 0, 0 ); |
|
416 TPoint tileStartPoint( 0, 0 ); |
|
417 TPoint blockStepSize( 0, 0 ); |
|
418 |
|
419 CJ2kWriterComponentInfo* component = 0; |
|
420 RPointerArray<CJ2kPacket>* packetList; |
|
421 TSizMarker& sizMarker = CONST_CAST( TSizMarker&, aImageInfo.SizMarker() ); |
|
422 |
|
423 aEntropyDecoder.SetNewSizeL( aImageInfo.MaxBlockSize() ); |
|
424 componentInfo = CONST_CAST( CJ2kComponentInfo*, &aTile.ComponentAt( 0 ) ); |
|
425 |
|
426 // Get the resolution level for this component |
|
427 iWaveletLevels = (TInt16)( componentInfo->Levels() - aImageInfo.LevelDrop() ); |
|
428 if ( iWaveletLevels < 0 ) |
|
429 { |
|
430 iWaveletLevels = 0; |
|
431 } |
|
432 |
|
433 // Get the top subband ( original image ) |
|
434 subband = CONST_CAST( CJ2kSubband*, componentInfo->SubbandAt( (TUint8)iWaveletLevels ) ); |
|
435 if ( subband->SubbandResLevel() != 0 ) |
|
436 { |
|
437 subband = subband->Parent(); |
|
438 } |
|
439 |
|
440 subbandSize = subband->SubbandCanvasSize(); |
|
441 tileEndPoint.iX = subbandSize.iWidth; |
|
442 tileEndPoint.iY = subbandSize.iHeight; |
|
443 tileStartPoint.iX = componentInfo->ComponentCanvas().iTl.iX; |
|
444 tileStartPoint.iY = componentInfo->ComponentCanvas().iTl.iY; |
|
445 |
|
446 // Loop on 256x256 blocks to reduce the memory required to perform the inverse wavelet |
|
447 // First set as starting point the canvas coordinates of this component |
|
448 blockXCoord = 0; |
|
449 blockYCoord = 0; |
|
450 blockStepSize.iX = KWaveletBlockSize; |
|
451 blockStepSize.iY = KWaveletBlockSize; |
|
452 |
|
453 for ( ; blockYCoord < (TUint32)tileEndPoint.iY; blockYCoord += KWaveletBlockSize ) |
|
454 { |
|
455 // Start from the left border of this tile |
|
456 blockXCoord = 0; |
|
457 |
|
458 for ( ; blockXCoord < ( TUint32 )tileEndPoint.iX; blockXCoord += KWaveletBlockSize ) |
|
459 { |
|
460 // For each component in the tile |
|
461 for ( compIndex = 0; compIndex < aImageInfo.NumOfComponents(); ++compIndex ) |
|
462 { |
|
463 compXCoord = blockXCoord; |
|
464 compYCoord = blockYCoord; |
|
465 |
|
466 componentInfo = CONST_CAST( CJ2kComponentInfo*, &aTile.ComponentAt( compIndex ) ); |
|
467 |
|
468 // Skip the component when height or width is 0 |
|
469 if ( componentInfo->ComponentCanvas().Height() == 0 || |
|
470 componentInfo->ComponentCanvas().Width() == 0 ) |
|
471 { |
|
472 continue; //lint !e960 Continue is OK. |
|
473 } |
|
474 |
|
475 // Here we have to add a check that if we have sub sampled component together with color transform, |
|
476 // we have to subsample also the block dimensions ( so that the inverse color transform is performed |
|
477 // correctly. |
|
478 blockStepSize.iX = KWaveletBlockSize; |
|
479 blockStepSize.iY = KWaveletBlockSize; |
|
480 if ( aImageInfo.NumOfComponents() == 3 ) |
|
481 { |
|
482 if ( sizMarker.iXRsiz[1] == 2 * sizMarker.iXRsiz[0] && |
|
483 sizMarker.iXRsiz[2] == 2 * sizMarker.iXRsiz[0] ) |
|
484 { |
|
485 if ( sizMarker.iXRsiz[1] == 2 * sizMarker.iXRsiz[0] && |
|
486 sizMarker.iXRsiz[2] == 2 * sizMarker.iXRsiz[0] ) |
|
487 { |
|
488 if( compIndex == 1 || compIndex == 2 ) |
|
489 { |
|
490 blockStepSize.iX = KWaveletBlockSize >> 1; |
|
491 blockStepSize.iY = KWaveletBlockSize >> 1; |
|
492 compXCoord >>= 1; |
|
493 compYCoord >>= 1; |
|
494 } |
|
495 } |
|
496 else |
|
497 { |
|
498 if( compIndex == 1 || compIndex == 2 ) |
|
499 { |
|
500 blockStepSize.iX = KWaveletBlockSize >> 1; |
|
501 compXCoord >>= 1; |
|
502 blockStepSize.iY = KWaveletBlockSize; |
|
503 } |
|
504 } |
|
505 } |
|
506 } |
|
507 |
|
508 // Check for component truncation |
|
509 if ( aImageInfo.ComponentDrop() ) |
|
510 { |
|
511 if ( aImageWriter.SingleFileOutput() ) |
|
512 { |
|
513 if ( compIndex == ( aImageInfo.ComponentDrop() - 1 ) ) |
|
514 { |
|
515 numOfComponents = compIndex; |
|
516 } |
|
517 else |
|
518 { |
|
519 continue; //lint !e960 Continue is OK. |
|
520 } |
|
521 } |
|
522 else |
|
523 { |
|
524 if ( compIndex != ( aImageInfo.ComponentDrop() - 1 ) ) |
|
525 { |
|
526 continue; //lint !e960 Continue is OK. |
|
527 } |
|
528 } |
|
529 } |
|
530 |
|
531 // Get the resolution level for this component |
|
532 iWaveletLevels = (TInt16)( componentInfo->Levels() - aImageInfo.LevelDrop() ); |
|
533 |
|
534 TInt32 stepSize = 1; |
|
535 if ( iWaveletLevels < 0 ) |
|
536 { |
|
537 TInt32 i; |
|
538 |
|
539 // Compute the output step size, the stepSize indicates how much more |
|
540 // resolution has to be dropped if the image didn't have enough wavelet |
|
541 // levels to begin with. One indicates no extra resolution drop (write |
|
542 // each sample) and for each extra drop skip half of the samples, i.e. |
|
543 // stepSize is 2^extraLevels in case extra drop is needed. |
|
544 |
|
545 // Adjust the tile starting points and the stepSize |
|
546 for ( i = 0; i < (-iWaveletLevels); i++ ) |
|
547 { |
|
548 // Double the step size for every extra level dropped. |
|
549 stepSize *= 2; |
|
550 } |
|
551 |
|
552 |
|
553 iWaveletLevels = 0; |
|
554 } |
|
555 |
|
556 // Get the top subband ( original image ) |
|
557 subband = CONST_CAST( CJ2kSubband*, componentInfo->SubbandAt( (TUint8)iWaveletLevels ) ); |
|
558 |
|
559 if ( subband->SubbandResLevel() != 0 ) |
|
560 { |
|
561 subband = subband->Parent(); |
|
562 } |
|
563 |
|
564 subbandSize = subband->SubbandCanvasSize(); |
|
565 |
|
566 // Skip the component when subband's height or width is 0 |
|
567 if ( subbandSize.iWidth == 0 || subbandSize.iHeight == 0 ) |
|
568 { |
|
569 continue; //lint !e960 Continue is OK. |
|
570 } |
|
571 |
|
572 // Check that the block doesn't exceed the boundary of this component |
|
573 if( (TInt32)compXCoord+blockStepSize.iX > subbandSize.iWidth ) |
|
574 { |
|
575 blockXEnd = subbandSize.iWidth; |
|
576 } |
|
577 else |
|
578 { |
|
579 blockXEnd = compXCoord+blockStepSize.iX; |
|
580 } |
|
581 if( (TInt32)compYCoord+blockStepSize.iY > subbandSize.iHeight ) |
|
582 { |
|
583 blockYEnd = subbandSize.iHeight; |
|
584 } |
|
585 else |
|
586 { |
|
587 blockYEnd = compYCoord+blockStepSize.iY; |
|
588 } |
|
589 |
|
590 // Store the block size on the first component in case the others are sub sampled |
|
591 if( compIndex == 0 ) |
|
592 { |
|
593 firstCompSize.iWidth = blockXEnd - blockXCoord; |
|
594 firstCompSize.iHeight = blockYEnd - blockYCoord; |
|
595 } |
|
596 |
|
597 // Store the block size of this component |
|
598 thisCompSize.iWidth = blockXEnd - compXCoord; |
|
599 thisCompSize.iHeight = blockYEnd - compYCoord; |
|
600 |
|
601 // This component could be sampled so that the block doesn't "exist" |
|
602 // in this component, if so move to next component |
|
603 if( thisCompSize.iWidth <= 0 || thisCompSize.iHeight <= 0 ) |
|
604 { |
|
605 continue; //lint !e960 Continue is OK. |
|
606 } |
|
607 |
|
608 component = CONST_CAST( CJ2kWriterComponentInfo*, &aImageWriter.WriterComponentAt( compIndex ) ); |
|
609 |
|
610 // Have to allocate memory for each component in the image writer |
|
611 subbandSize.iWidth = subbandSize.iHeight = KMaxBlockSupportSize; |
|
612 component->AllocDataL( subbandSize ); |
|
613 |
|
614 bitDepth = aImageInfo.DepthOfComponent( compIndex ); |
|
615 |
|
616 // Get the right number of levels and transform type |
|
617 // reversible == 1 for 5x3 filter and == 0 for 9x7 filter |
|
618 iReversible = componentInfo->IsReversible(); |
|
619 iROIShift = componentInfo->RoiShift(); |
|
620 |
|
621 quantStyle = componentInfo->QuantizationStyle(); |
|
622 cblkStyle = componentInfo->CodeBlockStyle(); |
|
623 |
|
624 // The support region is the region needed on current level to |
|
625 // compute the samples in current block. |
|
626 supportRegion.iTl.iX = compXCoord; |
|
627 supportRegion.iTl.iY = compYCoord; |
|
628 supportRegion.iBr.iX = blockXEnd; |
|
629 supportRegion.iBr.iY = blockYEnd; |
|
630 |
|
631 // For each resolution level in the component |
|
632 for ( levelIndex = 0; levelIndex <= iWaveletLevels; levelIndex++ ) |
|
633 { |
|
634 // The support region is the region needed on current level to compute the samples in current block. |
|
635 supportRegion.iTl.iX = compXCoord; |
|
636 supportRegion.iTl.iY = compYCoord; |
|
637 supportRegion.iBr.iX = blockXEnd; |
|
638 supportRegion.iBr.iY = blockYEnd; |
|
639 parentSupportRegion = supportRegion; |
|
640 regionOffset.iX = regionOffset.iY = 0; |
|
641 |
|
642 // Compute the support region of the parent level of the bands that are to be processed |
|
643 // The support region is computed depending on the level we process currently. |
|
644 for( tmpLevelIndex = iWaveletLevels; tmpLevelIndex > levelIndex; tmpLevelIndex-- ) |
|
645 { |
|
646 // Get the subband on this ( temp )level in order to find out if high-pass first is true or not |
|
647 subband = CONST_CAST( CJ2kSubband*, componentInfo->SubbandAt( (TUint8)( tmpLevelIndex ) ) ); |
|
648 |
|
649 // Level zero has the same support as level 1, so don't update the support for level zero. |
|
650 if( tmpLevelIndex != 1 ) |
|
651 { |
|
652 // Compute the new crop coordinates for the subbands on this level |
|
653 if( iReversible ) |
|
654 { |
|
655 // Support region for low-pass bands for 5x3 filter |
|
656 |
|
657 // If this band is computed high-pass first, then one extra low-pass coefficient is needed from left. |
|
658 // This is due to the fact that for Output[2n+1], we need five samples H[n-1], L[n], H[n], L[n+1] and H[n+1], but when high-pass |
|
659 // is computed first, we actually need samples H[n-1], L[n-1], H[n], L[n] and H[n+1], where L are the low-pass filtered samples |
|
660 // and H are the high-pass filtered samples. |
|
661 if( subband->Parent()->HighPassFirst().iX ) |
|
662 { |
|
663 parentSupportRegion.iTl.iX = ( ( ( parentSupportRegion.iTl.iX >> 1 ) - 1 ) > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
664 ( ( parentSupportRegion.iTl.iX >> 1 ) - 1 ) : 0; //lint !e702 The shifted values cannot be negative here |
|
665 } |
|
666 else |
|
667 { |
|
668 parentSupportRegion.iTl.iX = parentSupportRegion.iTl.iX >> 1; //lint !e702 The shifted values cannot be negative here |
|
669 } |
|
670 // If this band is computed high-pass first, then one extra low-pass coefficient is needed from above. |
|
671 if( subband->Parent()->HighPassFirst().iY ) |
|
672 { |
|
673 parentSupportRegion.iTl.iY = ( ( ( parentSupportRegion.iTl.iY >> 1 ) - 1 )>0 ) ? //lint !e702 The shifted values cannot be negative here |
|
674 ( ( parentSupportRegion.iTl.iY >> 1 ) - 1 ) : 0; //lint !e702 The shifted values cannot be negative here |
|
675 } |
|
676 else |
|
677 { |
|
678 parentSupportRegion.iTl.iY = parentSupportRegion.iTl.iY >> 1; //lint !e702 The shifted values cannot be negative here |
|
679 } |
|
680 |
|
681 parentSupportRegion.iBr.iX = ( ( parentSupportRegion.iBr.iX ) >> 1 ) + 1; //lint !e702 The shifted values cannot be negative here |
|
682 parentSupportRegion.iBr.iY = ( ( parentSupportRegion.iBr.iY ) >> 1 ) + 1; //lint !e702 The shifted values cannot be negative here |
|
683 } |
|
684 else |
|
685 { |
|
686 // Support region for low-pass bands for 9x7 filter |
|
687 // If this band is computed high-pass first, then one extra low-pass coefficient is needed ( from left ). |
|
688 if( subband->Parent()->HighPassFirst().iX ) |
|
689 { |
|
690 parentSupportRegion.iTl.iX = ( ( parentSupportRegion.iTl.iX >> 1 )-2 > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
691 ( parentSupportRegion.iTl.iX >> 1 )-2 : 0; //lint !e702 the shifted values cannot be negative here |
|
692 } |
|
693 else |
|
694 { |
|
695 parentSupportRegion.iTl.iX = ( ( ( parentSupportRegion.iTl.iX >> 1 ) - 1 ) > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
696 ( ( parentSupportRegion.iTl.iX >> 1 ) - 1 ) : 0; //lint !e702 the shifted values cannot be negative here |
|
697 } |
|
698 if( subband->Parent()->HighPassFirst().iY ) |
|
699 { |
|
700 parentSupportRegion.iTl.iY = ( ( ( parentSupportRegion.iTl.iY >> 1 ) - 2 ) > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
701 ( ( parentSupportRegion.iTl.iY >> 1 ) - 2 ) : 0; //lint !e702 the shifted values cannot be negative here |
|
702 } |
|
703 else |
|
704 { |
|
705 parentSupportRegion.iTl.iY = ( ( ( parentSupportRegion.iTl.iY >> 1 ) - 1 ) > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
706 ( ( parentSupportRegion.iTl.iY >> 1 ) - 1 ) : 0; //lint !e702 the shifted values cannot be negative here |
|
707 } |
|
708 |
|
709 parentSupportRegion.iBr.iX = ( ( parentSupportRegion.iBr.iX ) >> 1 ) + 2; //lint !e702 the shifted values cannot be negative here |
|
710 parentSupportRegion.iBr.iY = ( ( parentSupportRegion.iBr.iY ) >> 1 ) + 2; //lint !e702 the shifted values cannot be negative here |
|
711 } |
|
712 } |
|
713 } |
|
714 |
|
715 |
|
716 subband = CONST_CAST( CJ2kSubband*, componentInfo->SubbandAt( levelIndex ) ); |
|
717 |
|
718 // For each subband in the resolution level |
|
719 do |
|
720 { |
|
721 bandIndex = ( quantStyle == 1 ) ? (TUint16)0 : subband->SubbandTreeIndex(); |
|
722 |
|
723 // Get the right magnitude_bits for this band |
|
724 iMagnitudeBitsHere = componentInfo->MagnitudeBits( bandIndex ); |
|
725 |
|
726 // If iWaveletLevels == 0, do not update the supportRegion, since there is no wavelet decomposition ( zero levels ) |
|
727 if( iWaveletLevels != 0 ) |
|
728 { |
|
729 // Now compute the support region for this band depending on whether it is LL, LH, HL or HH |
|
730 // Use the support region of the parent for computation. |
|
731 // |
|
732 if( iReversible ) |
|
733 { |
|
734 if( ( subband->SubbandType() ) == 0 || ( subband->SubbandType() ) == 2 ) |
|
735 { |
|
736 if( subband->Parent()->HighPassFirst().iX ) |
|
737 { |
|
738 supportRegion.iTl.iX = ( ( parentSupportRegion.iTl.iX >> 1 )-1 > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
739 ( parentSupportRegion.iTl.iX >> 1 )-1 : 0; //lint !e702 the shifted values cannot be negative here |
|
740 } |
|
741 else |
|
742 { |
|
743 supportRegion.iTl.iX = parentSupportRegion.iTl.iX >> 1; //lint !e702 the shifted value cannot be negative here |
|
744 } |
|
745 } |
|
746 else |
|
747 { |
|
748 supportRegion.iTl.iX = ( ( parentSupportRegion.iTl.iX >> 1 )-1 > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
749 ( parentSupportRegion.iTl.iX >> 1 )-1 : 0; //lint !e702 the shifted values cannot be negative here |
|
750 } |
|
751 |
|
752 |
|
753 if( ( subband->SubbandType() ) == 0 || ( subband->SubbandType() ) == 1 ) |
|
754 { |
|
755 if( subband->Parent()->HighPassFirst().iY ) |
|
756 { |
|
757 supportRegion.iTl.iY = ( ( parentSupportRegion.iTl.iY >> 1 )-1 > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
758 ( parentSupportRegion.iTl.iY >> 1 )-1 : 0; //lint !e702 the shifted values cannot be negative here |
|
759 } |
|
760 else |
|
761 { |
|
762 supportRegion.iTl.iY = parentSupportRegion.iTl.iY >>1; //lint !e702 the shifted value cannot be negative here |
|
763 } |
|
764 } |
|
765 else |
|
766 { |
|
767 supportRegion.iTl.iY = ( ( parentSupportRegion.iTl.iY >> 1 )-1 > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
768 ( parentSupportRegion.iTl.iY >> 1 )-1 : 0; //lint !e702 the shifted values cannot be negative here |
|
769 } |
|
770 |
|
771 // Compute the offset for this level |
|
772 regionOffset.iX = parentSupportRegion.iTl.iX - 2*supportRegion.iTl.iX; |
|
773 regionOffset.iY = parentSupportRegion.iTl.iY - 2*supportRegion.iTl.iY; |
|
774 |
|
775 // Support region's bottom right corner for each band is ( supportParent.iBr>>1 )+1 |
|
776 supportRegion.iBr.iX = ( ( parentSupportRegion.iBr.iX ) >> 1 ) + 1; //lint !e702 the shifted value cannot be negative here |
|
777 supportRegion.iBr.iY = ( ( parentSupportRegion.iBr.iY ) >> 1 ) + 1; //lint !e702 the shifted value cannot be negative here |
|
778 } |
|
779 else // irreversible ( 9x7 ) filter |
|
780 { |
|
781 // For low-pass filtering, the offset for the output is 1 |
|
782 if( ( subband->SubbandType() ) == 0 || ( subband->SubbandType() ) == 2 ) |
|
783 { |
|
784 if( subband->Parent()->HighPassFirst().iX ) |
|
785 { |
|
786 supportRegion.iTl.iX = ( ( parentSupportRegion.iTl.iX >> 1 )-2 > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
787 ( parentSupportRegion.iTl.iX >> 1 )-2 : 0; //lint !e702 the shifted values cannot be negative here |
|
788 } |
|
789 else |
|
790 { |
|
791 supportRegion.iTl.iX = ( ( parentSupportRegion.iTl.iX >> 1 )-1 > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
792 ( parentSupportRegion.iTl.iX >> 1 )-1 : 0; //lint !e702 the shifted values cannot be negative here |
|
793 } |
|
794 |
|
795 } |
|
796 else |
|
797 { |
|
798 supportRegion.iTl.iX = ( ( parentSupportRegion.iTl.iX >> 1 )-2 > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
799 ( parentSupportRegion.iTl.iX >> 1 )-2 : 0; //lint !e702 the shifted values cannot be negative here |
|
800 } |
|
801 |
|
802 if( ( subband->SubbandType() ) == 0 || ( subband->SubbandType() ) == 1 ) |
|
803 { |
|
804 if( subband->Parent()->HighPassFirst().iY ) |
|
805 { |
|
806 supportRegion.iTl.iY = ( ( parentSupportRegion.iTl.iY >> 1 )-2 > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
807 ( parentSupportRegion.iTl.iY >> 1 )-2 : 0; //lint !e702 the shifted values cannot be negative here |
|
808 } |
|
809 else |
|
810 { |
|
811 supportRegion.iTl.iY = ( ( parentSupportRegion.iTl.iY >> 1 )-1 > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
812 ( parentSupportRegion.iTl.iY >> 1 )-1 : 0; //lint !e702 the shifted values cannot be negative here |
|
813 } |
|
814 } |
|
815 else |
|
816 { |
|
817 supportRegion.iTl.iY = ( ( parentSupportRegion.iTl.iY >> 1 )-2 > 0 ) ? //lint !e702 The shifted values cannot be negative here |
|
818 ( parentSupportRegion.iTl.iY >> 1 )-2 : 0; //lint !e702 the shifted values cannot be negative here |
|
819 } |
|
820 |
|
821 // Compute the offset for this level |
|
822 regionOffset.iY = parentSupportRegion.iTl.iY - 2*supportRegion.iTl.iY; |
|
823 regionOffset.iX = parentSupportRegion.iTl.iX - 2*supportRegion.iTl.iX; |
|
824 |
|
825 // Support region's bottom right corner for each band is ( supportParent.iBr>>1 )+2 |
|
826 supportRegion.iBr.iX = ( ( parentSupportRegion.iBr.iX ) >> 1 ) + 2; //lint !e702 the shifted value cannot be negative here |
|
827 supportRegion.iBr.iY = ( ( parentSupportRegion.iBr.iY ) >> 1 ) + 2; //lint !e702 the shifted value cannot be negative here |
|
828 } |
|
829 } |
|
830 |
|
831 // Check that the support region doesn't exceed the band boundaries |
|
832 if( supportRegion.iBr.iX > subband->SubbandCanvasSize().iWidth ) |
|
833 { |
|
834 supportRegion.iBr.iX = subband->SubbandCanvasSize().iWidth; |
|
835 } |
|
836 if( supportRegion.iBr.iY > subband->SubbandCanvasSize().iHeight ) |
|
837 { |
|
838 supportRegion.iBr.iY = subband->SubbandCanvasSize().iHeight; |
|
839 } |
|
840 |
|
841 // Store the low-band's dimensions here to later compute the size of the whole region ( low-band plus high-band ). |
|
842 if( subband->SubbandType() == 2 ) |
|
843 { |
|
844 regionSize.iWidth = supportRegion.Width(); |
|
845 } |
|
846 if( subband->SubbandType() == 1 ) |
|
847 { |
|
848 regionSize.iHeight = supportRegion.Height(); |
|
849 } |
|
850 |
|
851 // Compute the Quantization parameters here, so we don't repeat that for every codeblock/precinct |
|
852 ComputeQuantizationParameters( *componentInfo, bandIndex, subband->SubbandGain(), bitDepth ); |
|
853 |
|
854 // Set the lookup table for entropy decoder |
|
855 aEntropyDecoder.SetCurrentZCLUT( (TUint8)( subband->SubbandType() ) ); |
|
856 |
|
857 packetList = CONST_CAST( RPointerArray<CJ2kPacket>*, &subband->PacketList() ); //lint !e665 the first parameter cannot be parenthesized here |
|
858 |
|
859 // For each packet in the subband |
|
860 for ( packetIndex = 0; packetIndex < componentInfo->NumOfPackets( levelIndex ); |
|
861 ++packetIndex ) |
|
862 { |
|
863 packet = ( *packetList )[packetIndex]; |
|
864 |
|
865 // For each codeblock in the packet |
|
866 for ( blockIndex = 0; blockIndex < packet->NumOfBlocks(); ++blockIndex ) |
|
867 { |
|
868 codeblock = CONST_CAST( CJ2kCodeBlock*, &packet->CodeBlockAt( blockIndex ) ); |
|
869 |
|
870 const TRect& cbCanvas = codeblock->CodeBlockCanvas(); |
|
871 |
|
872 TInt32 startRow = cbCanvas.iTl.iY - subband->SubbandCanvas().iTl.iY; |
|
873 TInt32 startCol = cbCanvas.iTl.iX - subband->SubbandCanvas().iTl.iX; |
|
874 TInt32 cblkHeight = cbCanvas.Height(); |
|
875 TInt32 cblkWidth = cbCanvas.Width(); |
|
876 TInt32 startRowCblk = 0; |
|
877 TInt32 startColCblk = 0; |
|
878 TInt32 startRowImage = 0; |
|
879 TInt32 startColImage = 0; |
|
880 |
|
881 if( startRow >= supportRegion.iBr.iY || startCol >= supportRegion.iBr.iX || |
|
882 ( startRow+cblkHeight ) <= supportRegion.iTl.iY || |
|
883 ( startCol+cblkWidth ) <= supportRegion.iTl.iX ) |
|
884 { |
|
885 } |
|
886 else |
|
887 { |
|
888 // Compute the start column from which to copy from ( in the codeblock ) and where to copy to ( in the image block ) |
|
889 if( startCol <= supportRegion.iTl.iX ) |
|
890 { |
|
891 startColCblk = supportRegion.iTl.iX - startCol; // Ignore samples outside supportRegion |
|
892 startColImage = 0; // First block, start from supportRegion's start |
|
893 cblkWidth -= startColCblk; // Ignore samples outside supportRegion |
|
894 } |
|
895 else |
|
896 { |
|
897 startColCblk = 0; // First block, start from supportRegion's start |
|
898 startColImage = startCol-supportRegion.iTl.iX; // First block, start from supportRegion's start |
|
899 } |
|
900 // If the last block extends outside supportRegion, we have to adjust codeblock's width |
|
901 if( ( startCol+cbCanvas.Width() ) > supportRegion.iBr.iX ) |
|
902 { |
|
903 cblkWidth -= ( ( startCol+cbCanvas.Width() ) - supportRegion.iBr.iX ); // Ignore samples outside supportRegion |
|
904 } |
|
905 |
|
906 // Compute the start row from which to copy from ( in the codeblock ) and where to copy to ( in the image block ) |
|
907 if( startRow <= supportRegion.iTl.iY ) |
|
908 { |
|
909 startRowCblk = supportRegion.iTl.iY - startRow; // ignore samples outside supportRegion |
|
910 startRowImage = 0; // First block, start from supportRegion's start |
|
911 cblkHeight -= startRowCblk; // Ignore samples outside supportRegion |
|
912 } |
|
913 else |
|
914 { |
|
915 startRowCblk = 0; // First block, start from supportRegion's start |
|
916 startRowImage = startRow-supportRegion.iTl.iY; // First block, start from supportRegion's start |
|
917 } |
|
918 // If the last block extends outside supportRegion, we have to adjust codeblock's height |
|
919 if( ( startRow+cbCanvas.Height() ) > supportRegion.iBr.iY ) |
|
920 { |
|
921 cblkHeight -= ( ( startRow+cbCanvas.Height() ) - supportRegion.iBr.iY ); // ignore samples outside supportRegion |
|
922 } |
|
923 |
|
924 // There is coded data in the codeblock |
|
925 if ( codeblock->DataLength() ) |
|
926 { |
|
927 // Decode the codeblock |
|
928 aEntropyDecoder.DecodeCodeblock( *codeblock, cblkStyle, |
|
929 (TUint8)( iMagnitudeBitsHere + iROIShift ) ); |
|
930 |
|
931 codeblock->SetCodeBlockDecoded(); |
|
932 |
|
933 CopyDataToBlock( aEntropyDecoder, component->Data(), *subband, quantStyle, |
|
934 startRowCblk, startColCblk, startRowImage, |
|
935 startColImage, cblkHeight, cblkWidth ); |
|
936 } |
|
937 else |
|
938 { |
|
939 // Empty codeblock, fill the corresponding area with zero, since other wise there might be data left from lower levels. |
|
940 FillDataWithZeros( component->Data(), *subband, startRowImage, startColImage, cblkHeight, cblkWidth ); |
|
941 } |
|
942 } |
|
943 |
|
944 } // end of each codeblock |
|
945 } // end of each packet |
|
946 |
|
947 // Get the sibling subband |
|
948 subband = subband->NextSubbandRaster(); |
|
949 |
|
950 } while ( subband ); // end of each subband in the resolution level |
|
951 |
|
952 // Now that we have processed all the blocks on this level, we can perform inverse wavelet transform on this level |
|
953 // On resolution level zero, we don't have to inverse transform |
|
954 if( levelIndex != 0 ) |
|
955 { |
|
956 // The size of the inverse transformed region is the size of the low- ( stored in "regionSize" ) |
|
957 // and high-pass ( the supportRegion is always for HH-band, when we reach this point ) parts combined |
|
958 regionSize = regionSize + supportRegion.Size(); |
|
959 |
|
960 subband = CONST_CAST( CJ2kSubband*, componentInfo->SubbandAt( levelIndex ) ); |
|
961 SingleLevelWaveletInverse( component->Data(), subband, regionOffset, regionSize, levelIndex ); |
|
962 } |
|
963 } // end of each resolution level in the component |
|
964 |
|
965 // Check whether extra downsampling is needed |
|
966 if( stepSize > 1 ) |
|
967 { |
|
968 |
|
969 TInt32 i,j; |
|
970 TInt32 iStep,jStep; |
|
971 |
|
972 // If the stepSize is larger than one it means that we have to downsample |
|
973 // the output. This is because there were not enough wavelet levels to do |
|
974 // the resolution dropping for this component. |
|
975 |
|
976 // The reason why downsampling is done here and not in the ImageWriter is |
|
977 // that different components might have different number of wavlet levels |
|
978 // and thus it is easier to downsample the components here (so that we can |
|
979 // just write out the samples normally in ImageWriter. |
|
980 for( i = 0,iStep = 0; iStep<KMaxBlockSupportSize; i++,iStep += stepSize) |
|
981 { |
|
982 for( j = 0,jStep = 0; jStep<KMaxBlockSupportSize; j++,jStep += stepSize) |
|
983 { |
|
984 |
|
985 // Downsample the component so that downsampled image is in the |
|
986 // upper left-hand corner. |
|
987 component->Data()[i][j] = component->Data()[iStep][jStep]; |
|
988 } |
|
989 } |
|
990 } |
|
991 |
|
992 if ( numOfComponents >= 3 ) |
|
993 { |
|
994 if ( aTile.ColorTransformation() || |
|
995 ( aImageWriter.CSCode() == 18 || aImageWriter.CSCode() == 16 ) ) |
|
996 { |
|
997 // Wait til we finish decoding all components before writing out the image |
|
998 if ( compIndex < 2 ) |
|
999 { |
|
1000 continue; //lint !e960 Continue is OK. |
|
1001 } |
|
1002 } |
|
1003 else if ( aImageWriter.CSCode() == 0 ) |
|
1004 { |
|
1005 // This case is also valid when no CSCode is defined, e.g. no file format is present |
|
1006 if( numOfComponents <= 3 ) |
|
1007 { |
|
1008 if ( compIndex < 2 ) |
|
1009 { |
|
1010 continue; //lint !e960 Continue is OK. |
|
1011 } |
|
1012 } |
|
1013 else |
|
1014 { |
|
1015 // Proceed to outputBlockL |
|
1016 } |
|
1017 } |
|
1018 } //lint !e961 no else is needed here at the end of if...else if |
|
1019 |
|
1020 aImageWriter.OutputBlockL( aTile, compIndex, blockXCoord, blockYCoord, firstCompSize, thisCompSize ); |
|
1021 } // end of each component in the tile |
|
1022 } // end of loop on the 256x256 blocks |
|
1023 } |
|
1024 } |
|
1025 |
|
1026 // ----------------------------------------------------------------------------- |
|
1027 // CJ2kSynthesis::OneDimReversibleFilter |
|
1028 // Perform one dimensional synthesis using reversible 5/3 filter |
|
1029 // (other items were commented in a header). |
|
1030 // ----------------------------------------------------------------------------- |
|
1031 // |
|
1032 void CJ2kSynthesis::OneDimReversibleFilter( TInt32 aStartPos, TInt32 aEndPos ) |
|
1033 { |
|
1034 if ( ( aEndPos - aStartPos ) == 1 ) |
|
1035 { |
|
1036 if ( aStartPos ) |
|
1037 { |
|
1038 iOutputBuffer[aStartPos] = iInputBuffer[aStartPos] / 2; |
|
1039 } |
|
1040 else |
|
1041 { |
|
1042 iOutputBuffer[aStartPos] = iInputBuffer[aStartPos]; |
|
1043 } |
|
1044 } |
|
1045 else |
|
1046 { |
|
1047 aEndPos++; |
|
1048 TInt32 idx = 0; |
|
1049 for ( idx = 0; idx < aEndPos; idx += 2 ) |
|
1050 { |
|
1051 iOutputBuffer[idx] = iInputBuffer[idx] - |
|
1052 ( ( iInputBuffer[idx - 1] + iInputBuffer[idx + 1] + 2 ) >> 2 ); //lint !e704 shifting is OK. |
|
1053 } |
|
1054 |
|
1055 for ( idx = 1; idx < aEndPos; idx += 2 ) |
|
1056 { |
|
1057 iOutputBuffer[idx] = iInputBuffer[idx] + |
|
1058 ( ( iOutputBuffer[idx - 1] + iOutputBuffer[idx + 1] ) >> 1 ); //lint !e704 shifting is OK. |
|
1059 } |
|
1060 } |
|
1061 } |
|
1062 |
|
1063 // ----------------------------------------------------------------------------- |
|
1064 // CJ2kSynthesis::PerformExtension |
|
1065 // Performs one dimensional symmetric extension of the line of pixels from |
|
1066 // the 2 extensions of the line. |
|
1067 // (other items were commented in a header). |
|
1068 // ----------------------------------------------------------------------------- |
|
1069 // |
|
1070 void CJ2kSynthesis::PerformExtension( TInt32 aStartPos, TInt32 aEndPos ) |
|
1071 { |
|
1072 TInt32* high = iInputBuffer + aEndPos - 1; |
|
1073 TInt32 dir = 1; |
|
1074 TInt32 posLeft = aStartPos; |
|
1075 TInt32 posRight = aEndPos - 1; |
|
1076 |
|
1077 for ( TInt32 idx = 1; idx <= KFilterExtension; ++idx ) |
|
1078 { |
|
1079 posLeft += dir; |
|
1080 posRight -= dir; |
|
1081 iInputBuffer[aStartPos - idx] = iInputBuffer[posLeft]; |
|
1082 high[idx] = iInputBuffer[posRight]; |
|
1083 |
|
1084 if ( posLeft == ( aEndPos - 1 ) ) |
|
1085 { |
|
1086 dir = -1; |
|
1087 } |
|
1088 if ( dir == -1 ) |
|
1089 { |
|
1090 if ( posLeft == aStartPos ) |
|
1091 { |
|
1092 dir = 1; |
|
1093 } |
|
1094 } |
|
1095 } |
|
1096 } |
|
1097 |
|
1098 // ----------------------------------------------------------------------------- |
|
1099 // CJ2kSynthesis::OneDimIrrevFilter |
|
1100 // Perform one dimensional synthesis using irreversible 9/7 filter |
|
1101 // (other items were commented in a header). |
|
1102 // ----------------------------------------------------------------------------- |
|
1103 // |
|
1104 void CJ2kSynthesis::OneDimIrrevFilter( TInt32 aStartPos, |
|
1105 TInt32 aEndPos, |
|
1106 TUint8 aLevel, |
|
1107 TUint8 aVertical ) |
|
1108 { |
|
1109 if ( ( aEndPos - aStartPos ) == 1 ) |
|
1110 { |
|
1111 if ( aStartPos ) |
|
1112 { |
|
1113 iOutputBuffer[aStartPos] = iInputBuffer[aStartPos] / 2; |
|
1114 } |
|
1115 else |
|
1116 { |
|
1117 iOutputBuffer[aStartPos] = iInputBuffer[aStartPos]; |
|
1118 } |
|
1119 } |
|
1120 else |
|
1121 { |
|
1122 // First the low-pass parts |
|
1123 TInt32 idx = aStartPos + ( aStartPos % 2 ); |
|
1124 for ( ; idx < aEndPos; idx += 2 ) |
|
1125 { |
|
1126 iOutputBuffer[idx] = iTapsLow[0] * iInputBuffer[idx] + |
|
1127 iTapsLow[2] * ( iInputBuffer[idx - 2] + iInputBuffer[idx + 2] ); |
|
1128 } |
|
1129 |
|
1130 idx = aStartPos + ( ( aStartPos + 1 ) % 2 ); |
|
1131 for ( ; idx < aEndPos; idx += 2 ) |
|
1132 { |
|
1133 iOutputBuffer[idx] = iTapsLow[1] * ( iInputBuffer[idx - 1] + iInputBuffer[idx + 1] ) + |
|
1134 iTapsLow[3] * ( iInputBuffer[idx - 3] + iInputBuffer[idx + 3] ); |
|
1135 } |
|
1136 |
|
1137 // Then the high-pass parts |
|
1138 idx = aStartPos + ( ( aStartPos + 1 ) % 2 ); |
|
1139 for ( ; idx < aEndPos; idx += 2 ) |
|
1140 { |
|
1141 iOutputBuffer[idx] += iTapsHigh[0] * iInputBuffer[idx] + |
|
1142 iTapsHigh[2] * ( iInputBuffer[idx - 2] + iInputBuffer[idx + 2] ) + |
|
1143 iTapsHigh[4] * ( iInputBuffer[idx - 4] + iInputBuffer[idx + 4] ); |
|
1144 } |
|
1145 |
|
1146 idx = aStartPos + ( aStartPos % 2 ); |
|
1147 for ( ; idx < aEndPos; idx += 2 ) |
|
1148 { |
|
1149 iOutputBuffer[idx] += iTapsHigh[1] * ( iInputBuffer[idx - 1] + iInputBuffer[idx + 1] ) + |
|
1150 iTapsHigh[3] * ( iInputBuffer[idx - 3] + iInputBuffer[idx + 3] ); |
|
1151 } |
|
1152 |
|
1153 TInt32 offset = 0; |
|
1154 TInt32 downshift = 0; |
|
1155 |
|
1156 // Finally downshift all the samples |
|
1157 if ( !aVertical || ( aLevel != 0 ) ) |
|
1158 { |
|
1159 downshift = KFilterShift; |
|
1160 } |
|
1161 else |
|
1162 { |
|
1163 downshift = KFilterShift + KWaveletShift; |
|
1164 } |
|
1165 |
|
1166 offset = ( (TUint32)( 1 << downshift ) >> 1 ); |
|
1167 idx = aStartPos; |
|
1168 |
|
1169 for ( ; idx < aEndPos; idx++ ) |
|
1170 { |
|
1171 iOutputBuffer[idx] = ( iOutputBuffer[idx] + offset ) >> downshift; //lint !e704 shifting is OK. |
|
1172 } |
|
1173 } |
|
1174 } |
|
1175 |
|
1176 // ----------------------------------------------------------------------------- |
|
1177 // CJ2kSynthesis::OneDimFiltering |
|
1178 // Perform one dimensional filtering |
|
1179 // (other items were commented in a header). |
|
1180 // ----------------------------------------------------------------------------- |
|
1181 // |
|
1182 void CJ2kSynthesis::OneDimFiltering( TInt32 aStartPos, |
|
1183 TInt32 aEndPos, |
|
1184 TUint8 aLevel, |
|
1185 TUint8 aVertical ) |
|
1186 { |
|
1187 // Extend the signals ( at the start and end ) |
|
1188 PerformExtension( aStartPos, aEndPos ); |
|
1189 |
|
1190 if ( iReversible ) |
|
1191 { |
|
1192 OneDimReversibleFilter( aStartPos, aEndPos ); |
|
1193 } |
|
1194 else |
|
1195 { |
|
1196 OneDimIrrevFilter( aStartPos, aEndPos, aLevel, aVertical ); |
|
1197 } |
|
1198 } |
|
1199 |
|
1200 // ----------------------------------------------------------------------------- |
|
1201 // CJ2kSynthesis::HorizontalFilter |
|
1202 // Perform one dimensional horizontal filtering |
|
1203 // (other items were commented in a header). |
|
1204 // ----------------------------------------------------------------------------- |
|
1205 // |
|
1206 void CJ2kSynthesis::HorizontalFilter( TPrecInt** aImage, |
|
1207 TInt32 aRow, |
|
1208 TUint32 aXtcSiz, |
|
1209 CJ2kSubband* aSubband ) |
|
1210 { |
|
1211 TInt32 endPos = 0; |
|
1212 TInt32 startPos = aSubband->HighPassFirst().iX; |
|
1213 |
|
1214 TInt32* rowImage = (TInt32*)aImage[aRow]; |
|
1215 TInt32* rowImageHigh = rowImage + aSubband->ChildAt( CJ2kSubband::EBandLL )->SubbandCanvasSize().iWidth; |
|
1216 TInt32* iterator = iInputBuffer; |
|
1217 |
|
1218 // Low-pass is first |
|
1219 if ( !startPos ) |
|
1220 { |
|
1221 for ( endPos = aXtcSiz >> 1; endPos > 0; endPos-- ) |
|
1222 { |
|
1223 *iterator++ = *rowImage++; |
|
1224 *iterator++ = *rowImageHigh++; |
|
1225 } |
|
1226 if ( aXtcSiz % 2 ) // One extra sample for low-pass |
|
1227 { |
|
1228 *iterator = *rowImage; |
|
1229 } |
|
1230 } |
|
1231 else // High-pass is first |
|
1232 { |
|
1233 iterator++; |
|
1234 for ( endPos = aXtcSiz >> 1; endPos > 0; endPos-- ) |
|
1235 { |
|
1236 *iterator++ = *rowImageHigh++; |
|
1237 *iterator++ = *rowImage++; |
|
1238 } |
|
1239 if ( aXtcSiz % 2 ) // One extra sample for high-pass |
|
1240 { |
|
1241 *iterator = *rowImageHigh; |
|
1242 } |
|
1243 } |
|
1244 |
|
1245 endPos = aXtcSiz + startPos; |
|
1246 |
|
1247 OneDimFiltering( startPos, endPos, aSubband->SubbandLevel(), 0 ); |
|
1248 Mem::Copy( aImage[aRow], iOutputBuffer + startPos, aXtcSiz * sizeof( TPrecInt ) ); |
|
1249 } |
|
1250 |
|
1251 // ----------------------------------------------------------------------------- |
|
1252 // CJ2kSynthesis::VerticalFilter |
|
1253 // Perform one dimensional vertical filtering |
|
1254 // (other items were commented in a header). |
|
1255 // ----------------------------------------------------------------------------- |
|
1256 // |
|
1257 void CJ2kSynthesis::VerticalFilter( TPrecInt **aImage, |
|
1258 TInt32 aColumn, |
|
1259 TUint32 aYtcSiz, |
|
1260 CJ2kSubband *aSubband ) |
|
1261 { |
|
1262 TInt32 startPos = aSubband->HighPassFirst().iY; |
|
1263 TInt32 highStart = aSubband->ChildAt( CJ2kSubband::EBandLL )->SubbandCanvasSize().iHeight; |
|
1264 TInt32 highStop = aSubband->SubbandCanvasSize().iHeight; |
|
1265 TInt32 *iterator = iInputBuffer; |
|
1266 |
|
1267 TInt32 lowIndex = 0; |
|
1268 TInt32 highIndex = highStart; |
|
1269 if ( !startPos ) |
|
1270 { |
|
1271 for ( ; highIndex < highStop; lowIndex++, highIndex++ ) |
|
1272 { |
|
1273 *iterator++ = aImage[lowIndex][aColumn]; |
|
1274 *iterator++ = aImage[highIndex][aColumn]; |
|
1275 } |
|
1276 if ( aYtcSiz % 2 ) |
|
1277 { |
|
1278 *iterator = aImage[lowIndex][aColumn]; |
|
1279 } |
|
1280 } |
|
1281 else |
|
1282 { |
|
1283 iterator++; |
|
1284 for ( ; lowIndex < highStart; highIndex++, lowIndex++ ) |
|
1285 { |
|
1286 *iterator++ = aImage[highIndex][aColumn]; |
|
1287 *iterator++ = aImage[lowIndex][aColumn]; |
|
1288 } |
|
1289 if ( aYtcSiz % 2 ) |
|
1290 { |
|
1291 *iterator = aImage[highIndex][aColumn]; |
|
1292 } |
|
1293 } |
|
1294 |
|
1295 OneDimFiltering( startPos, startPos + aYtcSiz, aSubband->SubbandLevel(), 1 ); |
|
1296 iOutputBuffer += ( startPos + aYtcSiz - 1 ); |
|
1297 |
|
1298 for ( lowIndex = aYtcSiz - 1; lowIndex >= 0; lowIndex-- ) |
|
1299 { |
|
1300 aImage[lowIndex][aColumn] = *iOutputBuffer--; |
|
1301 } |
|
1302 iOutputBuffer += ( 1 - startPos ); |
|
1303 } |
|
1304 |
|
1305 // ----------------------------------------------------------------------------- |
|
1306 // CJ2kSynthesis::TwoDimFiltering |
|
1307 // Perform two dimensional inverse wavelet transformation |
|
1308 // (other items were commented in a header). |
|
1309 // ----------------------------------------------------------------------------- |
|
1310 // |
|
1311 void CJ2kSynthesis::TwoDimFiltering( TPrecInt **aImage, |
|
1312 TInt32 aXtcSiz, |
|
1313 TInt32 aYtcSiz, |
|
1314 CJ2kSubband *aSubband ) |
|
1315 { |
|
1316 TInt32 index = 0; |
|
1317 |
|
1318 for ( index = aYtcSiz - 1; index >= 0; index-- ) |
|
1319 { |
|
1320 HorizontalFilter( aImage, index, aXtcSiz, aSubband ); |
|
1321 } |
|
1322 |
|
1323 for ( index = aXtcSiz - 1; index >= 0; index-- ) |
|
1324 { |
|
1325 VerticalFilter( aImage, index, aYtcSiz, aSubband ); |
|
1326 } |
|
1327 } |
|
1328 |
|
1329 // ----------------------------------------------------------------------------- |
|
1330 // CJ2kSynthesis::FullWaveletInverse |
|
1331 // Perform a full inverse wavelet transformation |
|
1332 // (other items were commented in a header). |
|
1333 // ----------------------------------------------------------------------------- |
|
1334 // |
|
1335 void CJ2kSynthesis::FullWaveletInverse( TPrecInt **aImage, CJ2kSubband *aSubband ) |
|
1336 { |
|
1337 TSize canvas( 0, 0 ); |
|
1338 TUint8 reduceLevels = 0; |
|
1339 |
|
1340 // If truncating resolution levels, we have to compute the reduced levels, |
|
1341 // so that the final WAVELET_SHIFT in case of 9x7 filter is performed. |
|
1342 if ( aSubband->SubbandLevel() > iWaveletLevels ) |
|
1343 { |
|
1344 reduceLevels = (TUint8)( aSubband->SubbandLevel() - iWaveletLevels ); |
|
1345 } |
|
1346 |
|
1347 for ( TUint8 levelIndex = (TUint8)iWaveletLevels; levelIndex > 0; levelIndex-- ) |
|
1348 { |
|
1349 // The next lines assume that subband points to the LL-band and |
|
1350 // it is then moved to point to the parent i.e. to the last |
|
1351 // _decomposition level_ of the wavelet transform. |
|
1352 aSubband = aSubband->Parent(); |
|
1353 |
|
1354 // Adjust the level in case of resolution truncation |
|
1355 aSubband->SetSubbandLevel( (TUint8)( aSubband->SubbandLevel() - reduceLevels ) ); |
|
1356 |
|
1357 canvas = aSubband->SubbandCanvasSize(); |
|
1358 if ( canvas.iWidth > 0 && canvas.iHeight > 0 ) |
|
1359 { |
|
1360 TwoDimFiltering( aImage, canvas.iWidth, canvas.iHeight, aSubband ); |
|
1361 } |
|
1362 } |
|
1363 } |
|
1364 |
|
1365 // ----------------------------------------------------------------------------- |
|
1366 // CJ2kSynthesis::ComputeQuantizationParameters |
|
1367 // Compute the quantization parameters for a particular subband in the component |
|
1368 // (other items were commented in a header). |
|
1369 // ----------------------------------------------------------------------------- |
|
1370 // |
|
1371 void CJ2kSynthesis::ComputeQuantizationParameters( const CJ2kComponentInfo& aComponentInfo, |
|
1372 TInt16 aBandIndex, |
|
1373 TUint8 aBandGain, |
|
1374 TUint8 aBitDepth ) |
|
1375 { |
|
1376 if ( iROIShift != 0 ) |
|
1377 { |
|
1378 // ROI shifting is used |
|
1379 if ( aComponentInfo.QuantizationStyle() == 0 ) |
|
1380 { |
|
1381 // Compute the shift for the codeblock's data, which is |
|
1382 // IMPLEMENTATION PRECISION -1( for sign ) - subband's range - |
|
1383 // the guard bits. |
|
1384 iDataShift = ( KImplementationPrecision - 1 ) - iMagnitudeBitsHere; |
|
1385 } |
|
1386 else // Irreversible case |
|
1387 { |
|
1388 // Because we have integer arithmetic only, we subtract WAVELET_SHIFT from the shift. |
|
1389 // This is to compensate for the fractional bits of the inverse quantized wavelet |
|
1390 // coefficients. |
|
1391 iDataShift = ( KImplementationPrecision - 1 ) - iMagnitudeBitsHere - KWaveletShift; |
|
1392 |
|
1393 // The quantization step is computed from the equation |
|
1394 // step = ( 2^( Range-Exponent ) )*( 1+( Mantissa/( 2^11 ) ) ), where Range is the dynamic |
|
1395 // range of this subband ( = bitdepth + gain ). ( see Annex E of the standard for more |
|
1396 // information ). |
|
1397 // |
|
1398 // The "iStepExponent" is the shift needed to remove "iStepValue"'s fractional |
|
1399 // bits. The "iStepValue" is the shifted quantization step. Shifting back |
|
1400 // is done right after computing the quantized coefficient. |
|
1401 iStepExponent = aBitDepth + aBandGain - aComponentInfo.Exponent( aBandIndex ) - KStepBits; |
|
1402 iStepValue = aComponentInfo.Mantissa( aBandIndex ) + ( 1 << KStepBits ); |
|
1403 } |
|
1404 |
|
1405 // Compute the shift for the data inside the ROI |
|
1406 iROIDataShift = iDataShift - iROIShift; |
|
1407 } |
|
1408 else |
|
1409 { |
|
1410 // ROI is not present |
|
1411 if ( aComponentInfo.QuantizationStyle() == 0 ) |
|
1412 { |
|
1413 // Compute the shift for the codeblock's data, which is |
|
1414 // IMPLEMENTATION PRECISION-1( for sign ) - subband's range - |
|
1415 // the guard bits. |
|
1416 iDataShift = ( KImplementationPrecision - 1 ) - iMagnitudeBitsHere; |
|
1417 // Shift all the samples in the codeblock |
|
1418 } |
|
1419 else // Irreversible case |
|
1420 { |
|
1421 // Because we have integer arithmetic only, we subtract WAVELET_SHIFT from the shift. |
|
1422 // This is to compensate for the fractional bits of the inverse quantized wavelet |
|
1423 // coefficients. |
|
1424 iDataShift = ( KImplementationPrecision - 1 ) - iMagnitudeBitsHere - KWaveletShift; |
|
1425 |
|
1426 // To prevent overflows we check if the "shift" is at least 12. The minimum downshift of 12 is |
|
1427 // derived from the computation of "value*iStepValue", where "value" is downshifted previously by "shift" |
|
1428 // and "iStepValue" is at maximum 12 bits ( since iStepValue = mantissa + 1<<KStepBits, where mantissa is |
|
1429 // a 11-bit value and KStepBits is 11 ). |
|
1430 // |
|
1431 TInt32 iExtraBits = 0; |
|
1432 // If the implementation precision is 16 then we don't have to check if the shift is at least 12. |
|
1433 // This is because we use 32 bits for the computation and thus have at least 16 zero most significant |
|
1434 // bits at the "value". |
|
1435 |
|
1436 |
|
1437 if ( iDataShift < 12 ) // Test to prevent overflows |
|
1438 { |
|
1439 iExtraBits = 12 - iDataShift; |
|
1440 iDataShift += iExtraBits; |
|
1441 } |
|
1442 |
|
1443 // The quantization step is computed from the equation |
|
1444 // step = ( 2^( Range-Exponent ) )*( 1+( Mantissa/( 2^11 ) ) ), where Range is the dynamic |
|
1445 // range of this subband ( = bitdepth + gain ). ( see Annex E of the standard for more |
|
1446 // information ). |
|
1447 // |
|
1448 // The "iStepExponent" is the shift needed to remove "iStepValue"'s fractional |
|
1449 // bits. The "iStepValue" is the shifted quantization step. Shifting back |
|
1450 // is done right after computing the quantized coefficient. |
|
1451 // |
|
1452 iStepExponent = aBitDepth + aBandGain - aComponentInfo.Exponent( aBandIndex ) - KStepBits; |
|
1453 |
|
1454 // Test to prevent overflows |
|
1455 iStepExponent += iExtraBits; |
|
1456 |
|
1457 iStepValue = aComponentInfo.Mantissa( aBandIndex ) + ( 1 << KStepBits ); |
|
1458 } |
|
1459 } |
|
1460 } |
|
1461 |
|
1462 // ----------------------------------------------------------------------------- |
|
1463 // CJ2kSynthesis::CopyDataToImage |
|
1464 // Apply inverse quantization and ROI shifting on the decoded |
|
1465 // codeblock and copy to the image writer |
|
1466 // (other items were commented in a header). |
|
1467 // ----------------------------------------------------------------------------- |
|
1468 // |
|
1469 void CJ2kSynthesis::CopyDataToImage( CJ2kEntropyDecoder& aEntropyDecoder, TPrecInt** aImageBlock, |
|
1470 CJ2kSubband& aSubband, CJ2kCodeBlock& aCodeblock, |
|
1471 TUint8 aQuantizationStyle ) |
|
1472 { |
|
1473 TPrecInt* buffer = 0; // To buffer one row of the aImageBlock |
|
1474 TPrecInt* imageRow = 0; // One row of the image |
|
1475 TPrecInt valueInt = 0; |
|
1476 TInt32 value = 0; |
|
1477 TInt32 j = 0; |
|
1478 |
|
1479 const TRect& cbCanvas = aCodeblock.CodeBlockCanvas(); |
|
1480 |
|
1481 TInt32 startRow = cbCanvas.iTl.iY - aSubband.SubbandCanvas().iTl.iY + aSubband.SubbandOrigin().iY; |
|
1482 TInt32 startCol = cbCanvas.iTl.iX - aSubband.SubbandCanvas().iTl.iX + aSubband.SubbandOrigin().iX; |
|
1483 TInt32 endRow = startRow + cbCanvas.Height() - 1; |
|
1484 TInt32 endCol = startCol + cbCanvas.Width(); |
|
1485 |
|
1486 TInt32 cols = endCol - startCol - 1; |
|
1487 |
|
1488 if ( iROIShift ) // ROI shifting is used |
|
1489 { |
|
1490 // Compute mask to determine which samples are in ROI |
|
1491 // for mask ROI coefficients |
|
1492 TInt32 mask = ( ( 1 << iMagnitudeBitsHere ) - 1 ) << ( ( KImplementationPrecision - 1 ) - iMagnitudeBitsHere ); |
|
1493 TInt32 mask2 = ( ~mask ) & KMaximumPrecisionInteger; |
|
1494 TInt32 mask3 = ( ( 1 << iROIShift ) - 1 ) << ( ( KImplementationPrecision - 1 ) - iROIShift ); |
|
1495 TInt32 maskShift = ( ~mask3 ) & KMaximumPrecisionInteger; |
|
1496 |
|
1497 if ( !aQuantizationStyle ) |
|
1498 { |
|
1499 // Shift all the samples in the codeblock |
|
1500 TInt32 roiDataShift = ( iROIDataShift < 0 ) ? -iROIDataShift : iROIDataShift; |
|
1501 |
|
1502 for ( ; endRow >= startRow; endRow-- ) |
|
1503 { |
|
1504 buffer = aEntropyDecoder.iData[endRow - startRow] + cols; |
|
1505 for ( j = endCol - 1; j >= startCol; j-- ) |
|
1506 { |
|
1507 value = ( *buffer-- ); |
|
1508 if ( !( value & mask ) ) // Background |
|
1509 { |
|
1510 // iROIDataShift can never be negative here! |
|
1511 if ( iROIDataShift < 0 ) |
|
1512 { |
|
1513 aImageBlock[endRow][j] = ( value < 0 ) ? -( ( value & KMaximumPrecisionInteger ) << roiDataShift ) |
|
1514 : ( value << roiDataShift ); //lint !e704 value is positive here |
|
1515 } |
|
1516 else |
|
1517 { |
|
1518 aImageBlock[endRow][j] = ( value < 0 ) ? -( ( value & maskShift ) >> roiDataShift ) //lint !e704 value&maskShift is positive, so no risk of right shifting negative values |
|
1519 : ( ( value & maskShift ) >> roiDataShift ); //lint !e704 value&maskShift is positive |
|
1520 } |
|
1521 } |
|
1522 else // ROI |
|
1523 { |
|
1524 if ( value & mask2 ) |
|
1525 { |
|
1526 // Decoded more than magbits bit-planes, set |
|
1527 // quantization mid-interval approx. bit just after |
|
1528 // the magbits. |
|
1529 value &= ( ~mask2 ); |
|
1530 } |
|
1531 |
|
1532 aImageBlock[endRow][j] = ( value < 0 ) ? -( ( value & KMaximumPrecisionInteger ) >> iDataShift ) |
|
1533 : ( value >> iDataShift ); //lint !e704 value is positive here |
|
1534 } |
|
1535 } |
|
1536 } |
|
1537 } |
|
1538 else // Irreversible case |
|
1539 { |
|
1540 // Shift all the samples in the codeblock |
|
1541 TInt32 stepExponent = ( iStepExponent < 0 ) ? -iStepExponent : iStepExponent; |
|
1542 |
|
1543 // Divide into two cases depending on the sign of the iStepExponent to speed up coding |
|
1544 if ( iStepExponent < 0 ) |
|
1545 { |
|
1546 for ( ; endRow >= startRow; endRow-- ) |
|
1547 { |
|
1548 buffer = aEntropyDecoder.iData[endRow - startRow] + cols; |
|
1549 for ( j = endCol - 1; j >= startCol; j-- ) |
|
1550 { |
|
1551 value = ( *buffer-- ); |
|
1552 |
|
1553 // Divide into two cases depending on whether value is negative |
|
1554 if ( value < 0 ) |
|
1555 { |
|
1556 if ( !( value & mask ) ) // Background |
|
1557 { |
|
1558 value = ( ( value & maskShift ) >> iROIDataShift ); //lint !e704 value&maskShift is positive |
|
1559 valueInt = -( ( value * iStepValue ) >> stepExponent ); //lint !e704 ( value*iStepValue )&KMaximumPrecisionInteger is positive |
|
1560 } |
|
1561 else // ROI |
|
1562 { |
|
1563 if ( value & mask2 ) |
|
1564 { |
|
1565 // Decoded more than magbits bit-planes, set |
|
1566 // quantization mid-interval approx. bit just after |
|
1567 // the magbits. |
|
1568 value = ( value & ( ~mask2 ) ) | ( 1 << ( KImplementationPrecision - 2 - iMagnitudeBitsHere ) ); |
|
1569 } |
|
1570 |
|
1571 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
1572 valueInt = -( ( value * iStepValue ) >> stepExponent ); //lint !e704 ( value*iStepValue )&KMaximumPrecisionInteger is positive |
|
1573 } |
|
1574 } |
|
1575 else // Value is non-negative |
|
1576 { |
|
1577 if ( !( value & mask ) ) // background |
|
1578 { |
|
1579 value = ( ( value & maskShift ) >> iROIDataShift ); //lint !e704 value&maskShift is positive |
|
1580 valueInt = ( ( value * iStepValue ) >> stepExponent ); //lint !e704 value*iStepValue is positive |
|
1581 } |
|
1582 else // ROI |
|
1583 { |
|
1584 if ( value & mask2 ) |
|
1585 { |
|
1586 // Decoded more than magbits bit-planes, set |
|
1587 // quantization mid-interval approx. bit just after |
|
1588 // the magbits. |
|
1589 value = ( value & ( ~mask2 ) ) | ( 1 << ( KImplementationPrecision - 2 - iMagnitudeBitsHere ) ); |
|
1590 } |
|
1591 |
|
1592 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
1593 valueInt = ( ( value * iStepValue ) >> stepExponent ); //lint !e704 value*iStepValue is positive |
|
1594 } |
|
1595 } |
|
1596 |
|
1597 aImageBlock[endRow][j] = valueInt; |
|
1598 } |
|
1599 } |
|
1600 } |
|
1601 else // iStepExponent is non-negative |
|
1602 { |
|
1603 for ( ; endRow >= startRow; endRow-- ) |
|
1604 { |
|
1605 buffer = aEntropyDecoder.iData[endRow - startRow] + cols; |
|
1606 for ( j = endCol - 1; j >= startCol; j-- ) |
|
1607 { |
|
1608 value = ( *buffer-- ); |
|
1609 |
|
1610 // Divide into two cases depending on whether value is negative |
|
1611 if ( value < 0 ) |
|
1612 { |
|
1613 |
|
1614 // Change value to be positive |
|
1615 value = -value; |
|
1616 |
|
1617 if ( !( value & mask ) ) // Background |
|
1618 { |
|
1619 value = ( ( value & maskShift ) >> iROIDataShift ); //lint !e704 value&maskShift is positive |
|
1620 valueInt = ( ( value * iStepValue ) << stepExponent ); |
|
1621 } |
|
1622 else // ROI |
|
1623 { |
|
1624 if ( value & mask2 ) |
|
1625 { |
|
1626 // Decoded more than magbits bit-planes, set |
|
1627 // quantization mid-interval approx. bit just after |
|
1628 // the magbits. |
|
1629 value = ( value & ( ~mask2 ) ) | ( 1 << ( KImplementationPrecision - 2 - iMagnitudeBitsHere ) ); |
|
1630 } |
|
1631 |
|
1632 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
1633 valueInt = ( ( value * iStepValue ) << stepExponent ); |
|
1634 } |
|
1635 |
|
1636 // Change the sign back to negative |
|
1637 aImageBlock[endRow][j] = -valueInt; |
|
1638 } |
|
1639 else // Value is non-negative |
|
1640 { |
|
1641 if ( !( value & mask ) ) // Background |
|
1642 { |
|
1643 value = ( ( value & maskShift ) >> iROIDataShift ); //lint !e704 value&maskShift is positive |
|
1644 valueInt = ( ( value * iStepValue ) << stepExponent ); |
|
1645 } |
|
1646 else // ROI |
|
1647 { |
|
1648 if ( value & mask2 ) |
|
1649 { |
|
1650 // Decoded more than magbits bit-planes, set |
|
1651 // quantization mid-interval approx. bit just after |
|
1652 // the magbits. |
|
1653 value = ( value & ( ~mask2 ) ) | ( 1 << ( KImplementationPrecision - 2 - iMagnitudeBitsHere ) ); |
|
1654 } |
|
1655 |
|
1656 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
1657 valueInt = ( ( value * iStepValue ) << stepExponent ); |
|
1658 } |
|
1659 aImageBlock[endRow][j] = valueInt; |
|
1660 } |
|
1661 } |
|
1662 } |
|
1663 } |
|
1664 } |
|
1665 } |
|
1666 else // ROI is not present |
|
1667 { |
|
1668 if ( !aQuantizationStyle ) |
|
1669 { |
|
1670 // Shift all the samples in the codeblock |
|
1671 TInt32 i = endRow - startRow; |
|
1672 for ( ; endRow >= startRow; endRow--, i-- ) |
|
1673 { |
|
1674 imageRow = aImageBlock[endRow] + endCol - 1; |
|
1675 buffer = aEntropyDecoder.iData[i] + cols; |
|
1676 for ( j = endCol - 1; j >= startCol; j-- ) |
|
1677 { |
|
1678 value = *buffer--; |
|
1679 if ( value < 0 ) |
|
1680 { |
|
1681 *imageRow-- = -( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
1682 } |
|
1683 else |
|
1684 { |
|
1685 *imageRow-- = value >> iDataShift; //lint !e704 value is positive here |
|
1686 } |
|
1687 } |
|
1688 } |
|
1689 } |
|
1690 else // Irreversible case |
|
1691 { |
|
1692 // Shift all the samples in the codeblock |
|
1693 TInt32 stepExponent = ( iStepExponent < 0 ) ? -iStepExponent : iStepExponent; |
|
1694 |
|
1695 // Divide into two cases depending on the sign of the iStepExponent to speed up coding |
|
1696 if ( iStepExponent < 0 ) |
|
1697 { |
|
1698 for ( ; endRow >= startRow; endRow-- ) |
|
1699 { |
|
1700 buffer = aEntropyDecoder.iData[endRow - startRow] + cols; |
|
1701 for ( j = endCol - 1; j >= startCol; j-- ) |
|
1702 { |
|
1703 value = ( *buffer-- ); |
|
1704 |
|
1705 if ( value < 0 ) // Negative value |
|
1706 { |
|
1707 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
1708 aImageBlock[endRow][j] = (TPrecInt)( -( ( value * iStepValue ) >> stepExponent ) ); //lint !e704 value*iStepValue is positive |
|
1709 } |
|
1710 else |
|
1711 { |
|
1712 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
1713 aImageBlock[endRow][j] = (TPrecInt)( ( value * iStepValue ) >> stepExponent ); //lint !e704 value*iStepValue is positive |
|
1714 } |
|
1715 } |
|
1716 } |
|
1717 } |
|
1718 else // iStepExponent is non-negative |
|
1719 { |
|
1720 for ( ; endRow >= startRow; endRow-- ) |
|
1721 { |
|
1722 buffer = aEntropyDecoder.iData[endRow - startRow] + cols; |
|
1723 for ( j = endCol - 1; j >= startCol; j-- ) |
|
1724 { |
|
1725 value = ( *buffer-- ); |
|
1726 |
|
1727 if ( value < 0 ) // Negative value |
|
1728 { |
|
1729 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
1730 aImageBlock[endRow][j] = (TPrecInt)( -( ( value * iStepValue ) << stepExponent ) ); |
|
1731 } |
|
1732 else |
|
1733 { |
|
1734 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
1735 aImageBlock[endRow][j] = (TPrecInt)( ( value * iStepValue ) << stepExponent ); |
|
1736 } |
|
1737 } |
|
1738 } |
|
1739 } |
|
1740 } |
|
1741 } |
|
1742 |
|
1743 // If number of levels is zero then we have to do the |
|
1744 // inverse wavelet shifting here. |
|
1745 // |
|
1746 if ( iWaveletLevels == 0 ) |
|
1747 { |
|
1748 endRow = startRow + cbCanvas.Height(); |
|
1749 endCol = startCol + cbCanvas.Width(); |
|
1750 |
|
1751 if ( aQuantizationStyle ) |
|
1752 { |
|
1753 for ( TInt32 i = endRow - 1; i >= startRow; i-- ) |
|
1754 { |
|
1755 for ( j = endCol - 1; j >= startCol; j-- ) |
|
1756 { |
|
1757 aImageBlock[i][j] >>= KWaveletShift; //lint !e704 shifting is OK. |
|
1758 } |
|
1759 } |
|
1760 } |
|
1761 } |
|
1762 } |
|
1763 |
|
1764 // ----------------------------------------------------------------------------- |
|
1765 // CJ2kSynthesis::AllocBufferL |
|
1766 // Allocate internal buffer based on the requested size |
|
1767 // (other items were commented in a header). |
|
1768 // ----------------------------------------------------------------------------- |
|
1769 // |
|
1770 void CJ2kSynthesis::AllocBufferL( TInt32 aSize ) |
|
1771 { |
|
1772 // Allocate memory for the input and output buffers |
|
1773 TInt32 totalSize = aSize * sizeof( TInt32 ); |
|
1774 |
|
1775 if ( iIOBufferSize ) |
|
1776 { |
|
1777 // Resize only when the request buffer is larger than current buffer |
|
1778 if ( iIOBufferSize < totalSize ) |
|
1779 { |
|
1780 iInputBuffer -= ( KFilterExtension + 1 ); |
|
1781 TInt32* tmpBuffer = STATIC_CAST( TInt32*, User::ReAlloc( iInputBuffer, totalSize ) ); |
|
1782 if ( !tmpBuffer ) |
|
1783 { |
|
1784 iInputBuffer += ( KFilterExtension + 1 ); |
|
1785 User::Leave( KErrNoMemory ); |
|
1786 } |
|
1787 iInputBuffer = tmpBuffer; |
|
1788 iInputBuffer += ( KFilterExtension + 1 ); |
|
1789 |
|
1790 iOutputBuffer -= ( KFilterExtension + 1 ); |
|
1791 tmpBuffer = STATIC_CAST( TInt32*, User::ReAlloc( iOutputBuffer, totalSize ) ); |
|
1792 if ( !tmpBuffer ) |
|
1793 { |
|
1794 iOutputBuffer += ( KFilterExtension + 1 ); |
|
1795 User::Leave( KErrNoMemory ); |
|
1796 } |
|
1797 iOutputBuffer = tmpBuffer; |
|
1798 iOutputBuffer += ( KFilterExtension + 1 ); |
|
1799 |
|
1800 iIOBufferSize = totalSize; |
|
1801 } |
|
1802 } |
|
1803 else |
|
1804 { |
|
1805 // First time buffer allocation |
|
1806 iInputBuffer = STATIC_CAST( TInt32*, User::Alloc( totalSize ) ); |
|
1807 if ( !iInputBuffer ) |
|
1808 { |
|
1809 User::Leave( KErrNoMemory ); |
|
1810 } |
|
1811 iInputBuffer += ( KFilterExtension + 1 ); |
|
1812 iOutputBuffer = STATIC_CAST( TInt32*, User::Alloc( totalSize ) ); |
|
1813 if ( !iOutputBuffer ) |
|
1814 { |
|
1815 User::Leave( KErrNoMemory ); |
|
1816 } |
|
1817 iOutputBuffer += ( KFilterExtension + 1 ); |
|
1818 iIOBufferSize = totalSize; |
|
1819 } |
|
1820 } |
|
1821 |
|
1822 // ----------------------------------------------------------------------------- |
|
1823 // CJ2kSynthesis::HorizontalBlockFilter |
|
1824 // Perform one dimensional horizontal filtering ( block-based ). |
|
1825 // (other items were commented in a header). |
|
1826 // ----------------------------------------------------------------------------- |
|
1827 // |
|
1828 void CJ2kSynthesis::HorizontalBlockFilter( TPrecInt** aImage, TInt32 aRow, |
|
1829 TUint32 aXtcSiz, CJ2kSubband* aSubband, |
|
1830 TInt32 aXOffset, TUint8 aCurrentLevel ) |
|
1831 { |
|
1832 TInt32 endPos = 0; |
|
1833 TInt32 startPos = aSubband->HighPassFirst().iX; |
|
1834 |
|
1835 TInt32* rowImage = (TInt32*)aImage[aRow]; |
|
1836 TInt32* rowImageHigh = rowImage + KWaveletBlockMidPoint; |
|
1837 TInt32* iterator = iInputBuffer; |
|
1838 |
|
1839 // Insert one extra ( dummy, i.e. zero-valued ) low-pass sample. |
|
1840 // This sample is not actually needed in computations, but now we can use the same |
|
1841 // functions for filtering for block-based and normal wavelet. |
|
1842 if( !startPos && ( aXOffset > 0 ) ) |
|
1843 { |
|
1844 |
|
1845 // The need for one extra sample derives from the fact that the support region |
|
1846 // for the high-pass is extends one sample further than the low-pass region. |
|
1847 *iterator++ = 0; |
|
1848 *iterator++ = *rowImageHigh++; |
|
1849 |
|
1850 // Increment aXtcSiz by one to account for the dummy sample |
|
1851 aXtcSiz++; |
|
1852 } |
|
1853 |
|
1854 if ( !startPos ) // Low-pass first |
|
1855 { |
|
1856 for ( endPos = aXtcSiz >> 1; endPos > 0; endPos-- ) |
|
1857 { |
|
1858 *iterator++ = *rowImage++; |
|
1859 *iterator++ = *rowImageHigh++; |
|
1860 } |
|
1861 if ( aXtcSiz % 2 ) // One extra sample for low-pass |
|
1862 { |
|
1863 *iterator = *rowImage; |
|
1864 } |
|
1865 } |
|
1866 else // High-pass first |
|
1867 { |
|
1868 iterator++; |
|
1869 for ( endPos = aXtcSiz >> 1; endPos > 0; endPos-- ) |
|
1870 { |
|
1871 *iterator++ = *rowImageHigh++; |
|
1872 *iterator++ = *rowImage++; |
|
1873 } |
|
1874 if ( aXtcSiz % 2 ) // One extra sample for high-pass |
|
1875 { |
|
1876 *iterator = *rowImageHigh; |
|
1877 } |
|
1878 } |
|
1879 |
|
1880 endPos = aXtcSiz + startPos; |
|
1881 |
|
1882 OneDimFiltering( startPos, endPos, (TUint8)( iWaveletLevels - aCurrentLevel ), 0 ); |
|
1883 |
|
1884 // Copy row back to image, take care of offset |
|
1885 Mem::Copy( aImage[aRow], iOutputBuffer + startPos + ( aXOffset ), ( aXtcSiz - ( aXOffset ) ) * sizeof( TPrecInt ) ); |
|
1886 } |
|
1887 |
|
1888 // ----------------------------------------------------------------------------- |
|
1889 // CJ2kSynthesis::VerticalBlockFilter |
|
1890 // Perform one dimensional vertical filtering ( block-based ) |
|
1891 // (other items were commented in a header). |
|
1892 // ----------------------------------------------------------------------------- |
|
1893 // |
|
1894 void CJ2kSynthesis::VerticalBlockFilter( TPrecInt** aImage, TInt32 aColumn, TUint32 aYtcSiz, |
|
1895 CJ2kSubband* aSubband, TInt32 aYOffset, |
|
1896 TUint8 aCurrentLevel ) |
|
1897 { |
|
1898 TInt32 startPos = aSubband->HighPassFirst().iY; |
|
1899 TInt32 highStart = KWaveletBlockMidPoint; |
|
1900 TInt32* iterator = iInputBuffer; |
|
1901 |
|
1902 TInt32 lowIndex = 0; |
|
1903 TInt32 highIndex = highStart; |
|
1904 |
|
1905 // Insert one extra ( dummy, i.e. zero-valued ) low-pass sample. |
|
1906 if( !startPos && ( aYOffset > 0 ) ) |
|
1907 { |
|
1908 *iterator++ = 0; |
|
1909 *iterator++ = aImage[highIndex++][aColumn]; |
|
1910 |
|
1911 // Increment aYtcSiz by one to account for the dummy sample |
|
1912 aYtcSiz++; |
|
1913 } |
|
1914 |
|
1915 TInt32 highStop = KWaveletBlockMidPoint + ( aYtcSiz >> 1 ); |
|
1916 TInt32 lowStop = aYtcSiz >> 1; |
|
1917 |
|
1918 if ( !startPos ) |
|
1919 { |
|
1920 for ( ; highIndex < highStop; lowIndex++, highIndex++ ) |
|
1921 { |
|
1922 *iterator++ = aImage[lowIndex][aColumn]; |
|
1923 *iterator++ = aImage[highIndex][aColumn]; |
|
1924 } |
|
1925 if ( aYtcSiz % 2 ) |
|
1926 { |
|
1927 *iterator = aImage[lowIndex][aColumn]; |
|
1928 } |
|
1929 } |
|
1930 else |
|
1931 { |
|
1932 iterator++; |
|
1933 for ( ; lowIndex < lowStop; highIndex++, lowIndex++ ) |
|
1934 { |
|
1935 *iterator++ = aImage[highIndex][aColumn]; |
|
1936 *iterator++ = aImage[lowIndex][aColumn]; |
|
1937 } |
|
1938 if ( aYtcSiz % 2 ) |
|
1939 { |
|
1940 *iterator = aImage[highIndex][aColumn]; |
|
1941 } |
|
1942 } |
|
1943 |
|
1944 OneDimFiltering( startPos, startPos + aYtcSiz, (TUint8)( iWaveletLevels - aCurrentLevel ), 1 ); |
|
1945 iOutputBuffer += ( startPos + aYtcSiz - 1 ); |
|
1946 |
|
1947 // Copy column back to image, take care of offset |
|
1948 for ( lowIndex = ( aYtcSiz - 1 - aYOffset ); lowIndex >= 0; lowIndex-- ) |
|
1949 { |
|
1950 aImage[lowIndex][aColumn] = *iOutputBuffer--; |
|
1951 } |
|
1952 iOutputBuffer += ( 1 - startPos - aYOffset ); |
|
1953 } |
|
1954 |
|
1955 // ----------------------------------------------------------------------------- |
|
1956 // CJ2kSynthesis::TwoDimBlockFiltering |
|
1957 // Perform two dimensional inverse wavelet transformation ( block-based ) |
|
1958 // (other items were commented in a header). |
|
1959 // ----------------------------------------------------------------------------- |
|
1960 // |
|
1961 void CJ2kSynthesis::TwoDimBlockFiltering( TPrecInt** aImage, TSize aRegion, CJ2kSubband* aSubband, |
|
1962 TPoint aOffset, TUint8 aCurrentLevel ) |
|
1963 { |
|
1964 TInt32 index = 0; |
|
1965 TUint32 xtcSiz = aRegion.iWidth; |
|
1966 TUint32 ytcSiz = aRegion.iHeight; |
|
1967 |
|
1968 // For block filtering we have the data in two blocks ( column-wise ), |
|
1969 // from 0 to ( ytcsiz+1 )>>1 ( +1 to take care of odd number of samples ) |
|
1970 // and from KWaveletBlockMidPoint to KWaveletBlockMidPoint+( ( ytcsiz+1 )>>1 ). |
|
1971 index = KWaveletBlockMidPoint + ( ( ytcSiz+1 ) >> 1 ) - 1; |
|
1972 |
|
1973 // First apply horizontal filter to the ( vertically ) high-pass samples |
|
1974 for ( ; index >= KWaveletBlockMidPoint; index-- ) |
|
1975 { |
|
1976 HorizontalBlockFilter( aImage, index, xtcSiz, aSubband, aOffset.iX, aCurrentLevel ); |
|
1977 } |
|
1978 |
|
1979 // Then apply horizontal filter to the ( vertically ) low-pass samples |
|
1980 index = ( ( ytcSiz+1 ) >> 1 ) - 1; |
|
1981 for ( ; index >= 0; index-- ) |
|
1982 { |
|
1983 HorizontalBlockFilter( aImage, index, xtcSiz, aSubband, aOffset.iX, aCurrentLevel ); |
|
1984 } |
|
1985 |
|
1986 // Because of the horizontal filtering, the data is now in one block row-wise, thus |
|
1987 // two loops are not needed for vertical fitering. |
|
1988 index = xtcSiz-1-( (TUint32)( aOffset.iX ) >> 1 ); |
|
1989 for ( ; index >= 0; index-- ) |
|
1990 { |
|
1991 VerticalBlockFilter( aImage, index, ytcSiz, aSubband, aOffset.iY, aCurrentLevel ); |
|
1992 } |
|
1993 } |
|
1994 |
|
1995 // ----------------------------------------------------------------------------- |
|
1996 // CJ2kSynthesis::SingleLevelWaveletInverse |
|
1997 // Perform a full inverse wavelet transformation ( block-based ) |
|
1998 // (other items were commented in a header). |
|
1999 // ----------------------------------------------------------------------------- |
|
2000 // |
|
2001 void CJ2kSynthesis::SingleLevelWaveletInverse( TPrecInt **aImage, CJ2kSubband *aSubband, |
|
2002 TPoint aOffset, TSize aRegion, TUint8 aCurrentLevel ) |
|
2003 { |
|
2004 if ( aRegion.iWidth > 0 && aRegion.iHeight > 0 ) |
|
2005 { |
|
2006 aSubband = aSubband->Parent(); |
|
2007 TwoDimBlockFiltering( aImage, aRegion, aSubband, aOffset, aCurrentLevel ); |
|
2008 } |
|
2009 } |
|
2010 |
|
2011 // ----------------------------------------------------------------------------- |
|
2012 // CJ2kSynthesis::CopyDataToBlock |
|
2013 // Apply inverse quantization and ROI shifting on the decoded |
|
2014 // codeblock and copy to the image writer ( block-based ). |
|
2015 // (other items were commented in a header). |
|
2016 // ----------------------------------------------------------------------------- |
|
2017 // |
|
2018 void CJ2kSynthesis::CopyDataToBlock( CJ2kEntropyDecoder& aEntropyDecoder, TPrecInt** aImageBlock, |
|
2019 CJ2kSubband& aSubband, TUint8 aQuantizationStyle, |
|
2020 TInt32 aStartRowCblk, TInt32 aStartColCblk, |
|
2021 TInt32 aStartRowImage, TInt32 aStartColImage, |
|
2022 TInt32 aCblkHeight, TInt32 aCblkWidth ) |
|
2023 { |
|
2024 TPrecInt* buffer = 0; // To buffer one row of the image_block |
|
2025 TPrecInt* imageRow = 0; // One row of the image |
|
2026 TPrecInt valueInt = 0; |
|
2027 TInt32 value = 0; |
|
2028 TInt32 j = 0; |
|
2029 |
|
2030 TInt32 startRowImageBlock = aStartRowImage; // Start row's index in the image to copy to |
|
2031 TInt32 startColImageBlock = aStartColImage; // Start column's index in the image to copy to |
|
2032 |
|
2033 TUint8 aBandIndex = (TUint8)( aSubband.SubbandType() ); |
|
2034 |
|
2035 // Adjust the place where to copy the data according to the subband type |
|
2036 // ( i.e. whether we have LL, HL, LH or HH band ). |
|
2037 if( aBandIndex == 1 ) |
|
2038 { |
|
2039 startColImageBlock += KWaveletBlockMidPoint; |
|
2040 } |
|
2041 else if( aBandIndex == 2 ) |
|
2042 { |
|
2043 startRowImageBlock += KWaveletBlockMidPoint; |
|
2044 } |
|
2045 else if( aBandIndex == 3 ) |
|
2046 { |
|
2047 startRowImageBlock += KWaveletBlockMidPoint; |
|
2048 startColImageBlock += KWaveletBlockMidPoint; |
|
2049 } |
|
2050 |
|
2051 // Compute the end of the copy region |
|
2052 TInt32 endRowImageBlock = startRowImageBlock + aCblkHeight - 1; //lint !e961 no else is needed here at the end of if...else if |
|
2053 TInt32 endColImageBlock = startColImageBlock + aCblkWidth; |
|
2054 |
|
2055 // Index of the row to copy from in the codeblock |
|
2056 TInt32 codeblockRow = aStartRowCblk + aCblkHeight-1; |
|
2057 |
|
2058 // Index of the row to copy from in the codeblock |
|
2059 TInt32 codeblockColumn = aStartColCblk + aCblkWidth-1; |
|
2060 |
|
2061 if ( iROIShift ) // ROI shifting is used |
|
2062 { |
|
2063 // Compute mask to determine which samples are in ROI |
|
2064 // for mask ROI coefficients |
|
2065 TInt32 mask = ( ( 1 << iMagnitudeBitsHere ) - 1 ) << ( ( KImplementationPrecision - 1 ) - iMagnitudeBitsHere ); |
|
2066 TInt32 mask2 = ( ~mask ) & KMaximumPrecisionInteger; |
|
2067 TInt32 mask3 = ( ( 1 << iROIShift ) - 1 ) << ( ( KImplementationPrecision - 1 ) - iROIShift ); |
|
2068 TInt32 maskShift = ( ~mask3 ) & KMaximumPrecisionInteger; |
|
2069 |
|
2070 if ( !aQuantizationStyle ) |
|
2071 { |
|
2072 // Shift all the samples in the codeblock |
|
2073 TInt32 roiDataShift = ( iROIDataShift < 0 ) ? -iROIDataShift : iROIDataShift; |
|
2074 |
|
2075 for ( ; endRowImageBlock >= startRowImageBlock; endRowImageBlock--,codeblockRow-- ) |
|
2076 { |
|
2077 buffer = aEntropyDecoder.iData[codeblockRow] + codeblockColumn; |
|
2078 for ( j = endColImageBlock-1; j >= startColImageBlock; j-- ) |
|
2079 { |
|
2080 value = ( *buffer-- ); |
|
2081 if ( !( value & mask ) ) // Background |
|
2082 { |
|
2083 if ( iROIDataShift < 0 ) |
|
2084 { |
|
2085 aImageBlock[endRowImageBlock][j] = ( value < 0 ) ? -( ( value & KMaximumPrecisionInteger ) << roiDataShift ) |
|
2086 : ( value << roiDataShift ); |
|
2087 } |
|
2088 else |
|
2089 { |
|
2090 aImageBlock[endRowImageBlock][j] = ( value < 0 ) ? -( ( value & maskShift ) >> roiDataShift ) //lint !e704 value&maskShift is positive, so no risk of right shifting negative values |
|
2091 : ( ( value & maskShift ) >> roiDataShift ); //lint !e704 value&maskShift is positive, so no risk of right shifting negative values |
|
2092 } |
|
2093 } |
|
2094 else // ROI |
|
2095 { |
|
2096 if ( value & mask2 ) |
|
2097 { |
|
2098 // Decoded more than magbits bit-planes, set |
|
2099 // quantization mid-interval approx. bit just after |
|
2100 // the magbits. |
|
2101 value &= ( ~mask2 ); |
|
2102 } |
|
2103 aImageBlock[endRowImageBlock][j] = ( value < 0 ) ? -( ( value & KMaximumPrecisionInteger ) >> iDataShift ) |
|
2104 : ( value >> iDataShift ); //lint !e704 value is positive here |
|
2105 } |
|
2106 } |
|
2107 } |
|
2108 } |
|
2109 else // Irreversible case |
|
2110 { |
|
2111 // Shift all the samples in the codeblock |
|
2112 TInt32 stepExponent = ( iStepExponent < 0 ) ? -iStepExponent : iStepExponent; |
|
2113 |
|
2114 // Divide into two cases depending on the sign of the iStepExponent to speed up coding |
|
2115 if ( iStepExponent < 0 ) |
|
2116 { |
|
2117 for ( ; endRowImageBlock >= startRowImageBlock; endRowImageBlock--, codeblockRow-- ) |
|
2118 { |
|
2119 buffer = aEntropyDecoder.iData[codeblockRow] + codeblockColumn; |
|
2120 for ( j = endColImageBlock-1; j >= startColImageBlock; j-- ) |
|
2121 { |
|
2122 value = ( *buffer-- ); |
|
2123 |
|
2124 // Divide into two cases depending on whether value is negative |
|
2125 if ( value < 0 ) |
|
2126 { |
|
2127 if ( !( value & mask ) ) // Background |
|
2128 { |
|
2129 value = ( ( value & maskShift ) >> iROIDataShift ); //lint !e704 value&maskShift is positive, so no risk of right shifting negative values |
|
2130 valueInt = -( ( value * iStepValue ) >> stepExponent ); //lint !e704 value*iStepValue is positive |
|
2131 } |
|
2132 else // ROI |
|
2133 { |
|
2134 if ( value & mask2 ) |
|
2135 { |
|
2136 // Decoded more than magbits bit-planes, set |
|
2137 // quantization mid-interval approx. bit just after |
|
2138 // the magbits. |
|
2139 value = ( value & ( ~mask2 ) ) | ( 1 << ( KImplementationPrecision - 2 - iMagnitudeBitsHere ) ); |
|
2140 } |
|
2141 |
|
2142 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
2143 valueInt = -( ( value * iStepValue ) >> stepExponent ); //lint !e704 value*iStepValue is positive |
|
2144 } |
|
2145 } |
|
2146 else // Value is non-negative |
|
2147 { |
|
2148 if ( !( value & mask ) ) // Background |
|
2149 { |
|
2150 value = ( ( value & maskShift ) >> iROIDataShift ); //lint !e704 value&maskShift is positive, so no risk of right shifting negative values |
|
2151 valueInt = ( ( value * iStepValue ) >> stepExponent ); //lint !e704 value*iStepValue is positive |
|
2152 } |
|
2153 else // ROI |
|
2154 { |
|
2155 if ( value & mask2 ) |
|
2156 { |
|
2157 // Decoded more than magbits bit-planes, set |
|
2158 // quantization mid-interval approx. bit just after |
|
2159 // the magbits. |
|
2160 value = ( value & ( ~mask2 ) ) | ( 1 << ( KImplementationPrecision - 2 - iMagnitudeBitsHere ) ); |
|
2161 } |
|
2162 |
|
2163 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
2164 valueInt = ( ( value * iStepValue ) >> stepExponent ); //lint !e704 value*iStepValue is positive |
|
2165 } |
|
2166 } |
|
2167 |
|
2168 aImageBlock[endRowImageBlock][j] = valueInt; |
|
2169 } |
|
2170 } |
|
2171 } |
|
2172 else // iStepExponent is non-negative |
|
2173 { |
|
2174 for ( ; endRowImageBlock >= startRowImageBlock; endRowImageBlock--,codeblockRow-- ) |
|
2175 { |
|
2176 buffer = aEntropyDecoder.iData[codeblockRow] + codeblockColumn; |
|
2177 for ( j = endColImageBlock-1; j >= startColImageBlock; j-- ) |
|
2178 { |
|
2179 value = ( *buffer-- ); |
|
2180 if ( !( value & mask ) ) // Background |
|
2181 { |
|
2182 if ( value < 0 ) // Get the sign |
|
2183 { |
|
2184 value = -( ( value & maskShift ) >> iROIDataShift ); //lint !e704 value&maskShift is positive, so no risk of right shifting negative values |
|
2185 } |
|
2186 else |
|
2187 { |
|
2188 value = ( ( value & maskShift ) >> iROIDataShift ); //lint !e704 value&maskShift is positive, so no risk of right shifting negative values |
|
2189 } |
|
2190 |
|
2191 valueInt = ( ( value * iStepValue ) << stepExponent ); |
|
2192 } |
|
2193 else // ROI |
|
2194 { |
|
2195 if ( value & mask2 ) |
|
2196 { |
|
2197 // Decoded more than magbits bit-planes, set |
|
2198 // quantization mid-interval approx. bit just after |
|
2199 // the magbits. |
|
2200 value = ( value & ( ~mask2 ) ) | ( 1 << ( KImplementationPrecision - 2 - iMagnitudeBitsHere ) ); |
|
2201 } |
|
2202 if ( value < 0 ) |
|
2203 { |
|
2204 value = -( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
2205 } |
|
2206 else |
|
2207 { |
|
2208 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
2209 } |
|
2210 |
|
2211 valueInt = ( ( value * iStepValue ) << stepExponent ); |
|
2212 } |
|
2213 aImageBlock[endRowImageBlock][j] = valueInt; |
|
2214 } |
|
2215 } |
|
2216 } |
|
2217 } |
|
2218 } |
|
2219 else // ROI is not present |
|
2220 { |
|
2221 if ( !aQuantizationStyle ) |
|
2222 { |
|
2223 // Shift all the samples in the codeblock |
|
2224 TInt32 i = codeblockRow; |
|
2225 for ( ; endRowImageBlock >= startRowImageBlock; endRowImageBlock--, i-- ) |
|
2226 { |
|
2227 imageRow = aImageBlock[endRowImageBlock] + endColImageBlock - 1; |
|
2228 buffer = aEntropyDecoder.iData[i] + codeblockColumn; |
|
2229 |
|
2230 for ( j = endColImageBlock-1; j >= startColImageBlock; j-- ) |
|
2231 { |
|
2232 value = *buffer--; |
|
2233 if ( value < 0 ) |
|
2234 { |
|
2235 *imageRow-- = -( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
2236 } |
|
2237 else |
|
2238 { |
|
2239 *imageRow-- = value >> iDataShift; //lint !e704 value is positive here |
|
2240 } |
|
2241 } |
|
2242 } |
|
2243 } |
|
2244 else // Irreversible case |
|
2245 { |
|
2246 // Shift all the samples in the codeblock |
|
2247 TInt32 stepExponent = ( iStepExponent < 0 ) ? -iStepExponent : iStepExponent; |
|
2248 |
|
2249 // Divide into two cases depending on the sign of the iStepExponent to speed up coding |
|
2250 if ( iStepExponent < 0 ) |
|
2251 { |
|
2252 for ( ; endRowImageBlock >= startRowImageBlock; endRowImageBlock--,codeblockRow-- ) |
|
2253 { |
|
2254 buffer = aEntropyDecoder.iData[codeblockRow] + codeblockColumn; |
|
2255 for ( j = endColImageBlock-1; j >= startColImageBlock; j-- ) |
|
2256 { |
|
2257 value = ( *buffer-- ); |
|
2258 |
|
2259 if ( value < 0 ) // Negative value |
|
2260 { |
|
2261 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
2262 aImageBlock[endRowImageBlock][j] = (TPrecInt)( -( ( value * iStepValue ) >> stepExponent ) ); //lint !e704 value*iStepValue is positive |
|
2263 } |
|
2264 else |
|
2265 { |
|
2266 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
2267 aImageBlock[endRowImageBlock][j] = (TPrecInt)( ( value * iStepValue ) >> stepExponent ); //lint !e704 value*iStepValue is positive |
|
2268 } |
|
2269 } |
|
2270 } |
|
2271 } |
|
2272 else // iStepExponent is non-negative |
|
2273 { |
|
2274 for ( ; endRowImageBlock >= startRowImageBlock; endRowImageBlock--,codeblockRow-- ) |
|
2275 { |
|
2276 buffer = aEntropyDecoder.iData[codeblockRow] + codeblockColumn; |
|
2277 for ( j = endColImageBlock-1; j >= startColImageBlock; j-- ) |
|
2278 { |
|
2279 value = ( *buffer-- ); |
|
2280 |
|
2281 if ( value < 0 ) // Negative value |
|
2282 { |
|
2283 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
2284 aImageBlock[endRowImageBlock][j] = (TPrecInt)( -( ( value * iStepValue ) << stepExponent ) ); |
|
2285 } |
|
2286 else |
|
2287 { |
|
2288 value = ( ( value & KMaximumPrecisionInteger ) >> iDataShift ); |
|
2289 aImageBlock[endRowImageBlock][j] = (TPrecInt)( ( value * iStepValue ) << stepExponent ); |
|
2290 } |
|
2291 } |
|
2292 } |
|
2293 } |
|
2294 } |
|
2295 } |
|
2296 |
|
2297 // If number of levels is zero then we have to do the |
|
2298 // inverse wavelet shifting here. |
|
2299 // |
|
2300 if ( iWaveletLevels == 0 ) |
|
2301 { |
|
2302 endRowImageBlock = startRowImageBlock + aCblkHeight; |
|
2303 endColImageBlock = startColImageBlock + aCblkWidth; |
|
2304 |
|
2305 if ( aQuantizationStyle ) |
|
2306 { |
|
2307 for ( TInt32 i = endRowImageBlock - 1; i >= startRowImageBlock; i-- ) |
|
2308 { |
|
2309 for ( j = endColImageBlock - 1; j >= startColImageBlock; j-- ) |
|
2310 { |
|
2311 aImageBlock[i][j] >>= KWaveletShift; //lint !e704 shifting is OK. |
|
2312 } |
|
2313 } |
|
2314 } |
|
2315 } |
|
2316 } |
|
2317 |
|
2318 // ----------------------------------------------------------------------------- |
|
2319 // CJ2kSynthesis::FillDataWithZeros |
|
2320 // Fill a block in image writer with zeros ( corresponding to an empty block ) |
|
2321 // (other items were commented in a header). |
|
2322 // ----------------------------------------------------------------------------- |
|
2323 // |
|
2324 void CJ2kSynthesis::FillDataWithZeros( TPrecInt** aImageBlock, CJ2kSubband& aSubband, |
|
2325 TInt32 aStartRowImage, TInt32 aStartColImage, |
|
2326 TInt32 aCblkHeight, TInt32 aCblkWidth ) |
|
2327 { |
|
2328 TPrecInt* imageRow = 0; // One row of the image |
|
2329 TInt32 j = 0; |
|
2330 |
|
2331 TInt32 startRowImageBlock = aStartRowImage; // Start row's index in the image to copy to |
|
2332 TInt32 startColImageBlock = aStartColImage; // Start column's index in the image to copy to |
|
2333 |
|
2334 TUint8 aBandIndex = (TUint8)( aSubband.SubbandType() ); |
|
2335 |
|
2336 // Adjust the place where to copy the data according to the subband type |
|
2337 // ( i.e. whether we have LL, HL, LH or HH band ). |
|
2338 if( aBandIndex == 1 ) |
|
2339 { |
|
2340 startColImageBlock += KWaveletBlockMidPoint; |
|
2341 } |
|
2342 else if( aBandIndex == 2 ) |
|
2343 { |
|
2344 startRowImageBlock += KWaveletBlockMidPoint; |
|
2345 } |
|
2346 else if( aBandIndex == 3 ) |
|
2347 { |
|
2348 startRowImageBlock += KWaveletBlockMidPoint; |
|
2349 startColImageBlock += KWaveletBlockMidPoint; |
|
2350 } |
|
2351 |
|
2352 // Compute the end of the copy region |
|
2353 TInt32 endRowImageBlock = startRowImageBlock + aCblkHeight - 1; //lint !e961 no else is needed here at the end of if...else if |
|
2354 TInt32 endColImageBlock = startColImageBlock + aCblkWidth; |
|
2355 |
|
2356 // Shift all the samples in the codeblock |
|
2357 for ( ; endRowImageBlock >= startRowImageBlock; endRowImageBlock-- ) |
|
2358 { |
|
2359 imageRow = aImageBlock[endRowImageBlock] + endColImageBlock - 1; |
|
2360 for ( j = endColImageBlock-1; j >= startColImageBlock; j-- ) |
|
2361 { |
|
2362 *imageRow-- = 0; |
|
2363 } |
|
2364 } |
|
2365 } |
|
2366 |