189
|
1 |
// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32test\debug\t_heapcorruption.cpp
|
|
15 |
// This is a test application that will cause heap corruption
|
|
16 |
// to generate BTrace events (EHeapCorruption).
|
|
17 |
//
|
|
18 |
//
|
|
19 |
|
|
20 |
// Include Files
|
|
21 |
#include <e32test.h>
|
|
22 |
#include <e32base.h>
|
|
23 |
#include <e32panic.h>
|
|
24 |
#include <e32cmn.h>
|
|
25 |
#include "dla.h"
|
|
26 |
#include "slab.h"
|
|
27 |
#include "page_alloc.h"
|
|
28 |
#include "heap_hybrid.h"
|
|
29 |
|
|
30 |
LOCAL_D RTest test(_L("T_HEAPCHECK"));
|
|
31 |
|
|
32 |
TUint32 gSeed = 0xb504f334;
|
|
33 |
|
|
34 |
_LIT(KLitHeapCheck,"Heap Check");
|
|
35 |
|
|
36 |
|
|
37 |
TUint32 Random()
|
|
38 |
{
|
|
39 |
gSeed *= 69069;
|
|
40 |
gSeed += 41;
|
|
41 |
return gSeed;
|
|
42 |
}
|
|
43 |
|
|
44 |
TInt RandomNumber(TInt aMin, TInt aMax)
|
|
45 |
{
|
|
46 |
TInt y = aMax - aMin;
|
|
47 |
if ( y <= 0 )
|
|
48 |
return aMax;
|
|
49 |
TUint32 x = Random() & 0xff;
|
|
50 |
TInt s = 0;
|
|
51 |
while ( y > (0x100 << s) )
|
|
52 |
{
|
|
53 |
s++;
|
|
54 |
}
|
|
55 |
return (aMin + (x << s) % y);
|
|
56 |
}
|
|
57 |
|
|
58 |
|
|
59 |
/**
|
|
60 |
Friend class of RHeapHybrid to access to hybrid heap metadata
|
|
61 |
*/
|
|
62 |
class TestHybridHeap
|
|
63 |
{
|
|
64 |
public:
|
|
65 |
TBool Init();
|
|
66 |
TBool Check();
|
|
67 |
TUint8* Alloc(TInt aLth);
|
|
68 |
TUint8* ReAlloc(TAny* aBfr, TInt aLth, TInt aMode);
|
|
69 |
void Free(TAny* aBfr);
|
|
70 |
TInt AllocLen(TAny* aBfr);
|
|
71 |
TInt AllocSize(TInt& aTotalAllocSize);
|
|
72 |
TBool SlabAllocatorExists();
|
|
73 |
TBool PageAllocatorExists();
|
|
74 |
TBool SlabsCreated();
|
|
75 |
TBool CorruptSmallBin();
|
|
76 |
TBool CorruptTreeBin();
|
|
77 |
TBool ConfigurePageAllocator();
|
|
78 |
TInt CopyPageBitmap(TUint8* aBitmap, TInt aLth);
|
|
79 |
TBool RestorePageBitmap(TUint8* aBitmap, TInt aLth);
|
|
80 |
void AllocateSomeBuffers(TUint8** aBfrs, TInt aMinLth, TInt MaxLth, TInt aCount);
|
|
81 |
TBool PrintHeapInitData();
|
|
82 |
|
|
83 |
private:
|
|
84 |
RHybridHeap* iHybridHeap;
|
|
85 |
};
|
|
86 |
|
|
87 |
|
|
88 |
|
|
89 |
TBool TestHybridHeap::Init()
|
|
90 |
{
|
|
91 |
RHybridHeap::STestCommand cmd;
|
|
92 |
cmd.iCommand = RHybridHeap::EHeapMetaData;
|
|
93 |
RAllocator& heap = User::Allocator();
|
|
94 |
TInt ret = heap.DebugFunction(RHeap::EHybridHeap, &cmd, 0);
|
|
95 |
if (ret != KErrNone)
|
|
96 |
return EFalse;
|
|
97 |
iHybridHeap = (RHybridHeap*) cmd.iData;
|
|
98 |
|
|
99 |
return ETrue;
|
|
100 |
}
|
|
101 |
|
|
102 |
TBool TestHybridHeap::Check()
|
|
103 |
{
|
|
104 |
if ( iHybridHeap )
|
|
105 |
{
|
|
106 |
iHybridHeap->Check();
|
|
107 |
}
|
|
108 |
|
|
109 |
return EFalse;
|
|
110 |
}
|
|
111 |
|
|
112 |
TUint8* TestHybridHeap::Alloc(TInt aLth)
|
|
113 |
{
|
|
114 |
if ( iHybridHeap )
|
|
115 |
{
|
|
116 |
return (TUint8*)iHybridHeap->Alloc(aLth);
|
|
117 |
}
|
|
118 |
|
|
119 |
return NULL;
|
|
120 |
}
|
|
121 |
|
|
122 |
TUint8* TestHybridHeap::ReAlloc(TAny* aBfr, TInt aLth, TInt aMode)
|
|
123 |
{
|
|
124 |
if ( iHybridHeap )
|
|
125 |
{
|
|
126 |
return (TUint8*)iHybridHeap->ReAlloc(aBfr, aLth, aMode);
|
|
127 |
}
|
|
128 |
|
|
129 |
return NULL;
|
|
130 |
}
|
|
131 |
|
|
132 |
void TestHybridHeap::Free(TAny* aBfr)
|
|
133 |
{
|
|
134 |
if ( iHybridHeap )
|
|
135 |
{
|
|
136 |
iHybridHeap->Free(aBfr);
|
|
137 |
}
|
|
138 |
}
|
|
139 |
|
|
140 |
TInt TestHybridHeap::AllocLen(TAny* aBfr)
|
|
141 |
{
|
|
142 |
if ( iHybridHeap )
|
|
143 |
{
|
|
144 |
return iHybridHeap->AllocLen(aBfr);
|
|
145 |
}
|
|
146 |
return 0;
|
|
147 |
}
|
|
148 |
|
|
149 |
TInt TestHybridHeap::AllocSize(TInt& aTotalAllocSize)
|
|
150 |
{
|
|
151 |
aTotalAllocSize = 0;
|
|
152 |
if ( iHybridHeap )
|
|
153 |
{
|
|
154 |
return iHybridHeap->AllocSize(aTotalAllocSize);
|
|
155 |
}
|
|
156 |
return 0;
|
|
157 |
}
|
|
158 |
|
|
159 |
TBool TestHybridHeap::SlabAllocatorExists()
|
|
160 |
{
|
|
161 |
TBool status = EFalse;
|
|
162 |
if ( iHybridHeap )
|
|
163 |
{
|
|
164 |
status = !iHybridHeap->iDLOnly;
|
|
165 |
}
|
|
166 |
|
|
167 |
return status;
|
|
168 |
}
|
|
169 |
|
|
170 |
TBool TestHybridHeap::PageAllocatorExists()
|
|
171 |
{
|
|
172 |
TBool status = EFalse;
|
|
173 |
if ( iHybridHeap )
|
|
174 |
{
|
|
175 |
status = (!iHybridHeap->iDLOnly && (iHybridHeap->iPageThreshold < 31));
|
|
176 |
}
|
|
177 |
|
|
178 |
return status;
|
|
179 |
}
|
|
180 |
|
|
181 |
TBool TestHybridHeap::SlabsCreated()
|
|
182 |
{
|
|
183 |
TBool status = EFalse;
|
|
184 |
if ( iHybridHeap )
|
|
185 |
{
|
|
186 |
status = (iHybridHeap->iSlabThreshold != 0);
|
|
187 |
}
|
|
188 |
|
|
189 |
return status;
|
|
190 |
}
|
|
191 |
|
|
192 |
TBool TestHybridHeap::ConfigurePageAllocator()
|
|
193 |
{
|
|
194 |
TBool status = EFalse;
|
|
195 |
if ( iHybridHeap )
|
|
196 |
{
|
|
197 |
RHybridHeap::STestCommand conf;
|
|
198 |
conf.iCommand = RHybridHeap::ESetConfig;
|
|
199 |
conf.iConfig.iPagePower = 14; // 16 Kb
|
|
200 |
if ( iHybridHeap->DebugFunction(RHeap::EHybridHeap, (TAny*)&conf ) == KErrNone )
|
|
201 |
status = ETrue;
|
|
202 |
}
|
|
203 |
|
|
204 |
return status;
|
|
205 |
}
|
|
206 |
|
|
207 |
|
|
208 |
TBool TestHybridHeap::CorruptTreeBin()
|
|
209 |
{
|
|
210 |
TBool status = EFalse;
|
|
211 |
if ( iHybridHeap )
|
|
212 |
{
|
|
213 |
TUint i;
|
|
214 |
for (i = 0; i < NTREEBINS; ++i)
|
|
215 |
{
|
|
216 |
tbinptr* tb = TREEBIN_AT(&iHybridHeap->iGlobalMallocState, i);
|
|
217 |
tchunkptr t = *tb;
|
|
218 |
if ( t )
|
|
219 |
{
|
|
220 |
// Corrupt tree bin by writing erroneous index value
|
|
221 |
t->iIndex ++;
|
|
222 |
return ETrue;
|
|
223 |
}
|
|
224 |
}
|
|
225 |
}
|
|
226 |
|
|
227 |
return status;
|
|
228 |
}
|
|
229 |
|
|
230 |
TBool TestHybridHeap::CorruptSmallBin()
|
|
231 |
{
|
|
232 |
TBool status = EFalse;
|
|
233 |
if ( iHybridHeap )
|
|
234 |
{
|
|
235 |
TUint i;
|
|
236 |
for (i = 0; i < NSMALLBINS; ++i)
|
|
237 |
{
|
|
238 |
sbinptr b = SMALLBIN_AT(&iHybridHeap->iGlobalMallocState, i);
|
|
239 |
mchunkptr p = b->iBk;
|
|
240 |
if ( p != b )
|
|
241 |
{
|
|
242 |
b->iBk = b;
|
|
243 |
status = ETrue;
|
|
244 |
}
|
|
245 |
}
|
|
246 |
}
|
|
247 |
|
|
248 |
return status;
|
|
249 |
}
|
|
250 |
|
|
251 |
TInt TestHybridHeap::CopyPageBitmap(TUint8* aBitmap, TInt aLth)
|
|
252 |
{
|
|
253 |
TInt lth = 0;
|
|
254 |
if ( iHybridHeap && (aLth > (TInt) sizeof(iHybridHeap->iBitMapBuffer)) )
|
|
255 |
{// Dirty version
|
|
256 |
memcpy(aBitmap, &iHybridHeap->iBitMapBuffer[0], sizeof(iHybridHeap->iBitMapBuffer));
|
|
257 |
lth = sizeof(iHybridHeap->iBitMapBuffer) << 3;
|
|
258 |
}
|
|
259 |
|
|
260 |
return lth;
|
|
261 |
}
|
|
262 |
|
|
263 |
TBool TestHybridHeap::RestorePageBitmap(TUint8* aBitmap, TInt aLth)
|
|
264 |
{
|
|
265 |
TBool status = EFalse;
|
|
266 |
if ( iHybridHeap && ((aLth >> 3) <= (TInt) sizeof(iHybridHeap->iBitMapBuffer)) )
|
|
267 |
{// Dirty version
|
|
268 |
memcpy(&iHybridHeap->iBitMapBuffer[0], aBitmap, (aLth >> 3));
|
|
269 |
status = ETrue;
|
|
270 |
}
|
|
271 |
|
|
272 |
return status;
|
|
273 |
}
|
|
274 |
|
|
275 |
void TestHybridHeap::AllocateSomeBuffers(TUint8** aBfrs, TInt aMinLth, TInt MaxLth, TInt aCount )
|
|
276 |
{
|
|
277 |
|
|
278 |
TInt loop = RandomNumber(2, 8);
|
|
279 |
|
|
280 |
while ( loop )
|
|
281 |
{
|
|
282 |
// allocate all buffers
|
|
283 |
TInt i;
|
|
284 |
for (i=0; i<aCount; ++i)
|
|
285 |
{
|
|
286 |
if (!aBfrs[i])
|
|
287 |
{
|
|
288 |
aBfrs[i] = (TUint8*)Alloc(RandomNumber(aMinLth, MaxLth));
|
|
289 |
}
|
|
290 |
}
|
|
291 |
|
|
292 |
// free some cells
|
|
293 |
TInt n = RandomNumber(2, aCount);
|
|
294 |
while (--n)
|
|
295 |
{
|
|
296 |
i = RandomNumber(2, aCount);
|
|
297 |
if (aBfrs[i])
|
|
298 |
{
|
|
299 |
Free(aBfrs[i]);
|
|
300 |
aBfrs[i] = NULL;
|
|
301 |
}
|
|
302 |
}
|
|
303 |
|
|
304 |
// realloc some cells
|
|
305 |
n = RandomNumber(2, aCount);
|
|
306 |
while (--n)
|
|
307 |
{
|
|
308 |
TInt new_len = RandomNumber(aMinLth, MaxLth);
|
|
309 |
if (aBfrs[i])
|
|
310 |
{
|
|
311 |
TUint8* p = (TUint8*)ReAlloc(aBfrs[i], new_len, Random());
|
|
312 |
if (p)
|
|
313 |
{
|
|
314 |
aBfrs[i] = p;
|
|
315 |
}
|
|
316 |
}
|
|
317 |
}
|
|
318 |
|
|
319 |
loop --;
|
|
320 |
}
|
|
321 |
|
|
322 |
}
|
|
323 |
|
|
324 |
TBool TestHybridHeap::PrintHeapInitData()
|
|
325 |
{
|
|
326 |
TInt total;
|
|
327 |
TInt count = AllocSize(total);
|
|
328 |
RDebug::Printf("Heap initialised for test, alloc count: %d , alloc size: %d\n", count, total);
|
|
329 |
if ( iHybridHeap )
|
|
330 |
RDebug::Printf("Heap initialised for test, iCellCount: %d , iTotalAllocSize: %d\n", iHybridHeap->iCellCount, iHybridHeap->iTotalAllocSize);
|
|
331 |
return (count != 0);
|
|
332 |
}
|
|
333 |
|
|
334 |
|
|
335 |
// Local Functions
|
|
336 |
LOCAL_D TInt HeapCheckTestThread(TAny* param)
|
|
337 |
{
|
|
338 |
TInt t = *((TInt*)param);
|
|
339 |
TUint8* bfrs[256];
|
|
340 |
Mem::FillZ(bfrs, sizeof(bfrs));
|
|
341 |
TestHybridHeap heap;
|
|
342 |
test(heap.Init());
|
|
343 |
|
|
344 |
switch( t )
|
|
345 |
{
|
|
346 |
case 1:
|
|
347 |
{
|
|
348 |
// Overwrite Doug Lea buffer and check()
|
|
349 |
heap.AllocateSomeBuffers(bfrs, 0x40, 0xfff0, 256);
|
|
350 |
test(heap.PrintHeapInitData());
|
|
351 |
TUint8 *p = heap.Alloc(64);
|
|
352 |
test( p != NULL );
|
|
353 |
Mem::FillZ(p, 80); // Heap corrupted
|
|
354 |
heap.Check(); // This should cause panic
|
|
355 |
break;
|
|
356 |
}
|
|
357 |
|
|
358 |
case 2:
|
|
359 |
// Corrupt a smallbin and check
|
|
360 |
{
|
|
361 |
TInt i = 0;
|
|
362 |
TBool smallbin_corrupted = EFalse;
|
|
363 |
while ( !smallbin_corrupted )
|
|
364 |
{
|
|
365 |
heap.AllocateSomeBuffers(bfrs, 0x4, 0xff, 256);
|
|
366 |
smallbin_corrupted = heap.CorruptSmallBin();
|
|
367 |
i ++;
|
|
368 |
if ( i > 9 )
|
|
369 |
break;
|
|
370 |
}
|
|
371 |
test(smallbin_corrupted);
|
|
372 |
test(heap.PrintHeapInitData());
|
|
373 |
heap.Check(); // This should cause panic
|
|
374 |
}
|
|
375 |
break;
|
|
376 |
|
|
377 |
case 3:
|
|
378 |
// Corrupt a treebin and check
|
|
379 |
{
|
|
380 |
TInt i = 0;
|
|
381 |
TBool treebin_corrupted = EFalse;
|
|
382 |
while ( !treebin_corrupted )
|
|
383 |
{
|
|
384 |
heap.AllocateSomeBuffers(bfrs, 0x100, 0x4000, 256);
|
|
385 |
treebin_corrupted = heap.CorruptTreeBin();
|
|
386 |
i ++;
|
|
387 |
if ( i > 9 )
|
|
388 |
break;
|
|
389 |
}
|
|
390 |
test(treebin_corrupted);
|
|
391 |
test(heap.PrintHeapInitData());
|
|
392 |
heap.Check(); // This should cause panic
|
|
393 |
break;
|
|
394 |
}
|
|
395 |
|
|
396 |
case 10:
|
|
397 |
// Overwrite slab buffer and check
|
|
398 |
{
|
|
399 |
TInt i = 0;
|
|
400 |
TBool slabs_created = EFalse;
|
|
401 |
if ( !heap.SlabAllocatorExists() )
|
|
402 |
{
|
|
403 |
User::Panic(KLitHeapCheck, ETHeapDebugUnmatchedCallToCheckHeap);
|
|
404 |
}
|
|
405 |
|
|
406 |
while ( !slabs_created )
|
|
407 |
{
|
|
408 |
// Allocate enough buffers to cause slab allocator to be
|
|
409 |
// initialised
|
|
410 |
heap.AllocateSomeBuffers(bfrs, 0x4, 0x2000, 256);
|
|
411 |
slabs_created = heap.SlabsCreated();
|
|
412 |
i ++;
|
|
413 |
if ( i > 9 )
|
|
414 |
break;
|
|
415 |
}
|
|
416 |
test(slabs_created);
|
|
417 |
test(heap.PrintHeapInitData());
|
|
418 |
i = 0;
|
|
419 |
TUint8* p[10];
|
|
420 |
while ( i < 10 )
|
|
421 |
{
|
|
422 |
p[i] = heap.Alloc(24);
|
|
423 |
test( p[i] != NULL );
|
|
424 |
i ++;
|
|
425 |
}
|
|
426 |
i = 0;
|
|
427 |
while ( i < 10 )
|
|
428 |
{
|
|
429 |
heap.Free(p[i]);
|
|
430 |
i +=2;
|
|
431 |
}
|
|
432 |
p[0] = heap.Alloc(24);
|
|
433 |
test( p[0] != NULL );
|
|
434 |
memset((TUint8*)(Floor(p[0], SLABSIZE) + sizeof(slabhdr)), 0xee, KMaxSlabPayload); // Heap corrupted
|
|
435 |
heap.Check(); // This should cause panic
|
|
436 |
break;
|
|
437 |
}
|
|
438 |
|
|
439 |
case 11:
|
|
440 |
// Corrupt slab header
|
|
441 |
{
|
|
442 |
TInt i = 0;
|
|
443 |
TBool slabs_created = EFalse;
|
|
444 |
if ( !heap.SlabAllocatorExists() )
|
|
445 |
{
|
|
446 |
User::Panic(KLitHeapCheck, ETHeapDebugUnmatchedCallToCheckHeap);
|
|
447 |
}
|
|
448 |
|
|
449 |
while ( !slabs_created )
|
|
450 |
{
|
|
451 |
// Allocate enough buffers to cause slab allocator to be
|
|
452 |
// initialised
|
|
453 |
heap.AllocateSomeBuffers(bfrs, 0x4, 0x2000, 256);
|
|
454 |
slabs_created = heap.SlabsCreated();
|
|
455 |
i ++;
|
|
456 |
if ( i > 9 )
|
|
457 |
break;
|
|
458 |
}
|
|
459 |
test(slabs_created);
|
|
460 |
test(heap.PrintHeapInitData());
|
|
461 |
TUint8* p = heap.Alloc(28);
|
|
462 |
test(p != NULL);
|
|
463 |
p = Floor(p, SLABSIZE);
|
|
464 |
*(TUint32*)p = 0xffeeddcc;
|
|
465 |
heap.Check(); // This should cause panic
|
|
466 |
break;
|
|
467 |
}
|
|
468 |
|
|
469 |
case 20:
|
|
470 |
// Corrupt page bitmap data and check
|
|
471 |
{
|
|
472 |
if ( !heap.PageAllocatorExists() )
|
|
473 |
{
|
|
474 |
User::Panic(KLitHeapCheck, ETHeapDebugUnmatchedCallToCheckHeap);
|
|
475 |
}
|
|
476 |
test(heap.ConfigurePageAllocator());
|
|
477 |
// Allocate some buffers to cause slab allocator to be
|
|
478 |
// initialised
|
|
479 |
heap.AllocateSomeBuffers(bfrs, 0x4000, 0x10000, 16);
|
|
480 |
test(heap.PrintHeapInitData());
|
|
481 |
TUint8* bitmap = heap.Alloc(128); // For saved bitmap
|
|
482 |
test(bitmap != NULL);
|
|
483 |
TInt bit_lth = heap.CopyPageBitmap(bitmap, 128);
|
|
484 |
test(bit_lth != 0);
|
|
485 |
memset(bitmap, 0xee, (bit_lth>>3)); // corrupt bitmap data
|
|
486 |
heap.RestorePageBitmap(bitmap, bit_lth);
|
|
487 |
heap.Check(); // This should cause panic
|
|
488 |
break;
|
|
489 |
}
|
|
490 |
|
|
491 |
case 21:
|
|
492 |
// Corrupt page bitmap with a earlier freed "ghost" buffer info
|
|
493 |
{
|
|
494 |
if ( !heap.PageAllocatorExists() )
|
|
495 |
{
|
|
496 |
User::Panic(KLitHeapCheck, ETHeapDebugUnmatchedCallToCheckHeap);
|
|
497 |
}
|
|
498 |
test(heap.ConfigurePageAllocator());
|
|
499 |
// Allocate some buffers to cause slab allocator to be
|
|
500 |
// initialised
|
|
501 |
heap.AllocateSomeBuffers(bfrs, 0x4000, 0x10000, 16);
|
|
502 |
test(heap.PrintHeapInitData());
|
|
503 |
TUint8* bitmap = heap.Alloc(128); // For saved bitmap
|
|
504 |
test(bitmap != NULL);
|
|
505 |
TUint8* p = heap.Alloc(0x8000); // One more page buffer
|
|
506 |
TInt bit_lth = heap.CopyPageBitmap(bitmap, 128);
|
|
507 |
test(bit_lth != 0);
|
|
508 |
heap.Free(p);
|
|
509 |
heap.RestorePageBitmap(bitmap, bit_lth);
|
|
510 |
heap.Check(); // This should cause panic
|
|
511 |
break;
|
|
512 |
}
|
|
513 |
|
|
514 |
default:
|
|
515 |
break;
|
|
516 |
}
|
|
517 |
|
|
518 |
User::Invariant(); // Should not reach here
|
|
519 |
return 0;
|
|
520 |
}
|
|
521 |
|
|
522 |
|
|
523 |
class TestHeapCheck
|
|
524 |
{
|
|
525 |
public:
|
|
526 |
void TestCheck(void);
|
|
527 |
TInt TestThreadExit(RThread& aThread, TExitType aExitType, TInt aExitReason);
|
|
528 |
};
|
|
529 |
|
|
530 |
|
|
531 |
TInt TestHeapCheck::TestThreadExit(RThread& aThread, TExitType aExitType, TInt aExitReason)
|
|
532 |
{
|
|
533 |
// Disable JIT debugging.
|
|
534 |
TBool justInTime=User::JustInTime();
|
|
535 |
User::SetJustInTime(EFalse);
|
|
536 |
|
|
537 |
TRequestStatus status;
|
|
538 |
aThread.Logon(status);
|
|
539 |
aThread.Resume();
|
|
540 |
User::WaitForRequest(status);
|
|
541 |
if (aExitType != aThread.ExitType())
|
|
542 |
return KErrGeneral;
|
|
543 |
|
|
544 |
if ( (status.Int() == ETHeapDebugUnmatchedCallToCheckHeap) && (aThread.ExitReason() == ETHeapDebugUnmatchedCallToCheckHeap))
|
|
545 |
{
|
|
546 |
CLOSE_AND_WAIT(aThread);
|
|
547 |
// Put JIT debugging back to previous status.
|
|
548 |
User::SetJustInTime(justInTime);
|
|
549 |
return KErrNotSupported;
|
|
550 |
}
|
|
551 |
|
|
552 |
if ( status.Int() == ERTestFailed )
|
|
553 |
return KErrGeneral;
|
|
554 |
|
|
555 |
if ( aExitReason > 0 )
|
|
556 |
{
|
|
557 |
if (aExitReason != status.Int())
|
|
558 |
return KErrGeneral;
|
|
559 |
|
|
560 |
if (aExitReason != aThread.ExitReason())
|
|
561 |
return KErrGeneral;
|
|
562 |
}
|
|
563 |
|
|
564 |
CLOSE_AND_WAIT(aThread);
|
|
565 |
|
|
566 |
// Put JIT debugging back to previous status.
|
|
567 |
User::SetJustInTime(justInTime);
|
|
568 |
return KErrNone;
|
|
569 |
|
|
570 |
}
|
|
571 |
|
|
572 |
void TestHeapCheck::TestCheck()
|
|
573 |
{
|
|
574 |
TInt type;
|
|
575 |
TInt r;
|
|
576 |
|
|
577 |
test.Next(_L("Testing Doug Lea allocator check"));
|
|
578 |
{
|
|
579 |
type = 1;
|
|
580 |
RThread thread;
|
|
581 |
test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x400000, (TAny*) &type)== KErrNone);
|
|
582 |
test(TestThreadExit(thread, EExitPanic, ETHeapBadCellAddress)==KErrNone);
|
|
583 |
|
|
584 |
type = 2;
|
|
585 |
test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x400000, (TAny*) &type)==KErrNone);
|
|
586 |
test(TestThreadExit(thread, EExitPanic, ETHeapBadCellAddress)==KErrNone);
|
|
587 |
|
|
588 |
type = 3;
|
|
589 |
test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x400000, (TAny*) &type)==KErrNone);
|
|
590 |
test(TestThreadExit(thread, EExitPanic, ETHeapBadCellAddress)==KErrNone);
|
|
591 |
|
|
592 |
}
|
|
593 |
|
|
594 |
test.Next(_L("Testing Slab allocator check"));
|
|
595 |
{
|
|
596 |
type = 10;
|
|
597 |
RThread thread;
|
|
598 |
test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x400000, (TAny*) &type)==KErrNone);
|
|
599 |
r = TestThreadExit(thread, EExitPanic, ETHeapBadCellAddress);
|
|
600 |
if ( r != KErrNotSupported )
|
|
601 |
{
|
|
602 |
test(r==KErrNone);
|
|
603 |
|
|
604 |
type = 11;
|
|
605 |
RThread thread;
|
|
606 |
test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x400000, (TAny*) &type)==KErrNone);
|
|
607 |
test(TestThreadExit(thread, EExitPanic, ETHeapBadCellAddress)==KErrNone);
|
|
608 |
}
|
|
609 |
else test.Printf(_L("Slab allocator does not exist, testes bypassed\n"));
|
|
610 |
}
|
|
611 |
|
|
612 |
test.Next(_L("Testing Page allocator check"));
|
|
613 |
{
|
|
614 |
type = 20;
|
|
615 |
RThread thread;
|
|
616 |
test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x800000, (TAny*) &type)==KErrNone);
|
|
617 |
r = TestThreadExit(thread, EExitPanic, KErrNone); // Accept any panic reason here
|
|
618 |
if ( r != KErrNotSupported )
|
|
619 |
{
|
|
620 |
test(r==KErrNone);
|
|
621 |
|
|
622 |
type = 21;
|
|
623 |
RThread thread;
|
|
624 |
test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x800000, (TAny*) &type)==KErrNone);
|
|
625 |
test(TestThreadExit(thread, EExitPanic, KErrNone)==KErrNone); // Accept any panic reason here
|
|
626 |
}
|
|
627 |
else test.Printf(_L("Page allocator does not exist, testes bypassed\n"));
|
|
628 |
}
|
|
629 |
|
|
630 |
}
|
|
631 |
|
|
632 |
|
|
633 |
|
|
634 |
|
|
635 |
// Global Functions
|
|
636 |
|
|
637 |
GLDEF_C TInt E32Main(void)
|
|
638 |
{
|
|
639 |
|
|
640 |
test.Title();
|
|
641 |
|
|
642 |
test.Start(_L("Testing Heap Check function"));
|
|
643 |
|
|
644 |
TestHeapCheck T;
|
|
645 |
|
|
646 |
T.TestCheck();
|
|
647 |
|
|
648 |
test.End();
|
|
649 |
|
|
650 |
return(0);
|
|
651 |
}
|
|
652 |
|