291
|
1 |
/*
|
|
2 |
* Portions Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
3 |
* All rights reserved.
|
|
4 |
* This component and the accompanying materials are made available
|
|
5 |
* under the terms of "Eclipse Public License v1.0"
|
|
6 |
* which accompanies this distribution, and is available
|
|
7 |
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
8 |
*
|
|
9 |
* Initial Contributors:
|
|
10 |
* Nokia Corporation - initial contribution.
|
|
11 |
*
|
|
12 |
* Contributors:
|
|
13 |
*
|
|
14 |
* Description:
|
|
15 |
* The original of this file was released into the public domain, see below for details
|
|
16 |
*/
|
|
17 |
|
|
18 |
|
|
19 |
/* Notes from RFB:
|
|
20 |
|
|
21 |
Looks like the user-level routines are:
|
|
22 |
|
|
23 |
Real FFT
|
|
24 |
|
|
25 |
void __ogg_fdrffti(int n, double *wsave, int *ifac)
|
|
26 |
void __ogg_fdrfftf(int n,double *r,double *wsave,int *ifac)
|
|
27 |
void __ogg_fdrfftb(int n, double *r, double *wsave, int *ifac)
|
|
28 |
|
|
29 |
__ogg_fdrffti == initialization
|
|
30 |
__ogg_fdrfftf == forward transform
|
|
31 |
__ogg_fdrfftb == backward transform
|
|
32 |
|
|
33 |
Parameters are
|
|
34 |
n == length of sequence
|
|
35 |
r == sequence to be transformed (input)
|
|
36 |
== transformed sequence (output)
|
|
37 |
wsave == work array of length 2n (allocated by caller)
|
|
38 |
ifac == work array of length 15 (allocated by caller)
|
|
39 |
|
|
40 |
Cosine quarter-wave FFT
|
|
41 |
|
|
42 |
void __ogg_fdcosqi(int n, double *wsave, int *ifac)
|
|
43 |
void __ogg_fdcosqf(int n,double *x,double *wsave,int *ifac)
|
|
44 |
void __ogg_fdcosqb(int n,double *x,double *wsave,int *ifac)
|
|
45 |
*/
|
|
46 |
|
|
47 |
/********************************************************************
|
|
48 |
* *
|
|
49 |
* THIS FILE IS PART OF THE OggSQUISH SOFTWARE CODEC SOURCE CODE. *
|
|
50 |
* *
|
|
51 |
********************************************************************
|
|
52 |
|
|
53 |
file: fft.c
|
|
54 |
function: Fast discrete Fourier and cosine transforms and inverses
|
|
55 |
author: Monty <xiphmont@mit.edu>
|
|
56 |
modifications by: Monty
|
|
57 |
last modification date: Jul 1 1996
|
|
58 |
|
|
59 |
********************************************************************/
|
|
60 |
|
|
61 |
/* These Fourier routines were originally based on the Fourier
|
|
62 |
routines of the same names from the NETLIB bihar and fftpack
|
|
63 |
fortran libraries developed by Paul N. Swarztrauber at the National
|
|
64 |
Center for Atmospheric Research in Boulder, CO USA. They have been
|
|
65 |
reimplemented in C and optimized in a few ways for OggSquish. */
|
|
66 |
|
|
67 |
/* As the original fortran libraries are public domain, the C Fourier
|
|
68 |
routines in this file are hereby released to the public domain as
|
|
69 |
well. The C routines here produce output exactly equivalent to the
|
|
70 |
original fortran routines. Of particular interest are the facts
|
|
71 |
that (like the original fortran), these routines can work on
|
|
72 |
arbitrary length vectors that need not be powers of two in
|
|
73 |
length. */
|
|
74 |
|
|
75 |
#include "openc.h"
|
|
76 |
#define STIN static
|
|
77 |
|
|
78 |
static void drfti1(int n, double *wa, int *ifac){
|
|
79 |
static int ntryh[4] = { 4,2,3,5 };
|
|
80 |
static double tpi = 6.28318530717958647692528676655900577;
|
|
81 |
double arg,argh,argld,fi;
|
|
82 |
int ntry=0,i,j=-1;
|
|
83 |
int k1, l1, l2, ib;
|
|
84 |
int ld, ii, ip, is, nq, nr;
|
|
85 |
int ido, ipm, nfm1;
|
|
86 |
int nl=n;
|
|
87 |
int nf=0;
|
|
88 |
|
|
89 |
L101:
|
|
90 |
j++;
|
|
91 |
if (j < 4)
|
|
92 |
ntry=ntryh[j];
|
|
93 |
else
|
|
94 |
ntry+=2;
|
|
95 |
|
|
96 |
L104:
|
|
97 |
nq=nl/ntry;
|
|
98 |
nr=nl-ntry*nq;
|
|
99 |
if (nr!=0) goto L101;
|
|
100 |
|
|
101 |
nf++;
|
|
102 |
ifac[nf+1]=ntry;
|
|
103 |
nl=nq;
|
|
104 |
if(ntry!=2)goto L107;
|
|
105 |
if(nf==1)goto L107;
|
|
106 |
|
|
107 |
for (i=1;i<nf;i++){
|
|
108 |
ib=nf-i+1;
|
|
109 |
ifac[ib+1]=ifac[ib];
|
|
110 |
}
|
|
111 |
ifac[2] = 2;
|
|
112 |
|
|
113 |
L107:
|
|
114 |
if(nl!=1)goto L104;
|
|
115 |
ifac[0]=n;
|
|
116 |
ifac[1]=nf;
|
|
117 |
argh=tpi/n;
|
|
118 |
is=0;
|
|
119 |
nfm1=nf-1;
|
|
120 |
l1=1;
|
|
121 |
|
|
122 |
if(nfm1==0)return;
|
|
123 |
|
|
124 |
for (k1=0;k1<nfm1;k1++){
|
|
125 |
ip=ifac[k1+2];
|
|
126 |
ld=0;
|
|
127 |
l2=l1*ip;
|
|
128 |
ido=n/l2;
|
|
129 |
ipm=ip-1;
|
|
130 |
|
|
131 |
for (j=0;j<ipm;j++){
|
|
132 |
ld+=l1;
|
|
133 |
i=is;
|
|
134 |
argld=(double)ld*argh;
|
|
135 |
fi=0.;
|
|
136 |
for (ii=2;ii<ido;ii+=2){
|
|
137 |
fi+=1.;
|
|
138 |
arg=fi*argld;
|
|
139 |
wa[i++]=cos(arg);
|
|
140 |
wa[i++]=sin(arg);
|
|
141 |
}
|
|
142 |
is+=ido;
|
|
143 |
}
|
|
144 |
l1=l2;
|
|
145 |
}
|
|
146 |
}
|
|
147 |
|
|
148 |
void __ogg_fdrffti(int n, double *wsave, int *ifac){
|
|
149 |
|
|
150 |
if (n == 1) return;
|
|
151 |
drfti1(n, wsave+n, ifac);
|
|
152 |
}
|
|
153 |
|
|
154 |
void __ogg_fdcosqi(int n, double *wsave, int *ifac){
|
|
155 |
static double pih = 1.57079632679489661923132169163975;
|
|
156 |
static int k;
|
|
157 |
static double fk, dt;
|
|
158 |
|
|
159 |
dt=pih/n;
|
|
160 |
fk=0.;
|
|
161 |
for(k=0;k<n;k++){
|
|
162 |
fk+=1.;
|
|
163 |
wsave[k] = cos(fk*dt);
|
|
164 |
}
|
|
165 |
|
|
166 |
__ogg_fdrffti(n, wsave+n,ifac);
|
|
167 |
}
|
|
168 |
|
|
169 |
STIN void dradf2(int ido,int l1,double *cc,double *ch,double *wa1){
|
|
170 |
int i,k;
|
|
171 |
double ti2,tr2;
|
|
172 |
int t0,t1,t2,t3,t4,t5,t6;
|
|
173 |
|
|
174 |
t1=0;
|
|
175 |
t0=(t2=l1*ido);
|
|
176 |
t3=ido<<1;
|
|
177 |
for(k=0;k<l1;k++){
|
|
178 |
ch[t1<<1]=cc[t1]+cc[t2];
|
|
179 |
ch[(t1<<1)+t3-1]=cc[t1]-cc[t2];
|
|
180 |
t1+=ido;
|
|
181 |
t2+=ido;
|
|
182 |
}
|
|
183 |
|
|
184 |
if(ido<2)return;
|
|
185 |
if(ido==2)goto L105;
|
|
186 |
|
|
187 |
t1=0;
|
|
188 |
t2=t0;
|
|
189 |
for(k=0;k<l1;k++){
|
|
190 |
t3=t2;
|
|
191 |
t4=(t1<<1)+(ido<<1);
|
|
192 |
t5=t1;
|
|
193 |
t6=t1+t1;
|
|
194 |
for(i=2;i<ido;i+=2){
|
|
195 |
t3+=2;
|
|
196 |
t4-=2;
|
|
197 |
t5+=2;
|
|
198 |
t6+=2;
|
|
199 |
tr2=wa1[i-2]*cc[t3-1]+wa1[i-1]*cc[t3];
|
|
200 |
ti2=wa1[i-2]*cc[t3]-wa1[i-1]*cc[t3-1];
|
|
201 |
ch[t6]=cc[t5]+ti2;
|
|
202 |
ch[t4]=ti2-cc[t5];
|
|
203 |
ch[t6-1]=cc[t5-1]+tr2;
|
|
204 |
ch[t4-1]=cc[t5-1]-tr2;
|
|
205 |
}
|
|
206 |
t1+=ido;
|
|
207 |
t2+=ido;
|
|
208 |
}
|
|
209 |
|
|
210 |
if(ido%2==1)return;
|
|
211 |
|
|
212 |
L105:
|
|
213 |
t3=(t2=(t1=ido)-1);
|
|
214 |
t2+=t0;
|
|
215 |
for(k=0;k<l1;k++){
|
|
216 |
ch[t1]=-cc[t2];
|
|
217 |
ch[t1-1]=cc[t3];
|
|
218 |
t1+=ido<<1;
|
|
219 |
t2+=ido;
|
|
220 |
t3+=ido;
|
|
221 |
}
|
|
222 |
}
|
|
223 |
|
|
224 |
STIN void dradf4(int ido,int l1,double *cc,double *ch,double *wa1,
|
|
225 |
double *wa2,double *wa3){
|
|
226 |
static double hsqt2 = .70710678118654752440084436210485;
|
|
227 |
int i,k,t0,t1,t2,t3,t4,t5,t6;
|
|
228 |
double ci2,ci3,ci4,cr2,cr3,cr4,ti1,ti2,ti3,ti4,tr1,tr2,tr3,tr4;
|
|
229 |
t0=l1*ido;
|
|
230 |
|
|
231 |
t1=t0;
|
|
232 |
t4=t1<<1;
|
|
233 |
t2=t1+(t1<<1);
|
|
234 |
t3=0;
|
|
235 |
|
|
236 |
for(k=0;k<l1;k++){
|
|
237 |
tr1=cc[t1]+cc[t2];
|
|
238 |
tr2=cc[t3]+cc[t4];
|
|
239 |
ch[t5=t3<<2]=tr1+tr2;
|
|
240 |
ch[(ido<<2)+t5-1]=tr2-tr1;
|
|
241 |
ch[(t5+=(ido<<1))-1]=cc[t3]-cc[t4];
|
|
242 |
ch[t5]=cc[t2]-cc[t1];
|
|
243 |
|
|
244 |
t1+=ido;
|
|
245 |
t2+=ido;
|
|
246 |
t3+=ido;
|
|
247 |
t4+=ido;
|
|
248 |
}
|
|
249 |
|
|
250 |
if(ido<2)return;
|
|
251 |
if(ido==2)goto L105;
|
|
252 |
|
|
253 |
t1=0;
|
|
254 |
for(k=0;k<l1;k++){
|
|
255 |
t2=t1;
|
|
256 |
t4=t1<<2;
|
|
257 |
t5=(t6=ido<<1)+t4;
|
|
258 |
for(i=2;i<ido;i+=2){
|
|
259 |
t3=(t2+=2);
|
|
260 |
t4+=2;
|
|
261 |
t5-=2;
|
|
262 |
|
|
263 |
t3+=t0;
|
|
264 |
cr2=wa1[i-2]*cc[t3-1]+wa1[i-1]*cc[t3];
|
|
265 |
ci2=wa1[i-2]*cc[t3]-wa1[i-1]*cc[t3-1];
|
|
266 |
t3+=t0;
|
|
267 |
cr3=wa2[i-2]*cc[t3-1]+wa2[i-1]*cc[t3];
|
|
268 |
ci3=wa2[i-2]*cc[t3]-wa2[i-1]*cc[t3-1];
|
|
269 |
t3+=t0;
|
|
270 |
cr4=wa3[i-2]*cc[t3-1]+wa3[i-1]*cc[t3];
|
|
271 |
ci4=wa3[i-2]*cc[t3]-wa3[i-1]*cc[t3-1];
|
|
272 |
|
|
273 |
tr1=cr2+cr4;
|
|
274 |
tr4=cr4-cr2;
|
|
275 |
ti1=ci2+ci4;
|
|
276 |
ti4=ci2-ci4;
|
|
277 |
ti2=cc[t2]+ci3;
|
|
278 |
ti3=cc[t2]-ci3;
|
|
279 |
tr2=cc[t2-1]+cr3;
|
|
280 |
tr3=cc[t2-1]-cr3;
|
|
281 |
|
|
282 |
|
|
283 |
ch[t4-1]=tr1+tr2;
|
|
284 |
ch[t4]=ti1+ti2;
|
|
285 |
|
|
286 |
ch[t5-1]=tr3-ti4;
|
|
287 |
ch[t5]=tr4-ti3;
|
|
288 |
|
|
289 |
ch[t4+t6-1]=ti4+tr3;
|
|
290 |
ch[t4+t6]=tr4+ti3;
|
|
291 |
|
|
292 |
ch[t5+t6-1]=tr2-tr1;
|
|
293 |
ch[t5+t6]=ti1-ti2;
|
|
294 |
}
|
|
295 |
t1+=ido;
|
|
296 |
}
|
|
297 |
if(ido%2==1)return;
|
|
298 |
|
|
299 |
L105:
|
|
300 |
|
|
301 |
t2=(t1=t0+ido-1)+(t0<<1);
|
|
302 |
t3=ido<<2;
|
|
303 |
t4=ido;
|
|
304 |
t5=ido<<1;
|
|
305 |
t6=ido;
|
|
306 |
|
|
307 |
for(k=0;k<l1;k++){
|
|
308 |
ti1=-hsqt2*(cc[t1]+cc[t2]);
|
|
309 |
tr1=hsqt2*(cc[t1]-cc[t2]);
|
|
310 |
ch[t4-1]=tr1+cc[t6-1];
|
|
311 |
ch[t4+t5-1]=cc[t6-1]-tr1;
|
|
312 |
ch[t4]=ti1-cc[t1+t0];
|
|
313 |
ch[t4+t5]=ti1+cc[t1+t0];
|
|
314 |
t1+=ido;
|
|
315 |
t2+=ido;
|
|
316 |
t4+=t3;
|
|
317 |
t6+=ido;
|
|
318 |
}
|
|
319 |
}
|
|
320 |
|
|
321 |
STIN void dradfg(int ido,int ip,int l1,int idl1,double *cc,double *c1,
|
|
322 |
double *c2,double *ch,double *ch2,double *wa){
|
|
323 |
|
|
324 |
static double tpi=6.28318530717958647692528676655900577;
|
|
325 |
int idij,ipph,i,j,k,l,ic,ik,is;
|
|
326 |
int t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10;
|
|
327 |
double dc2,ai1,ai2,ar1,ar2,ds2;
|
|
328 |
int nbd;
|
|
329 |
double dcp,arg,dsp,ar1h,ar2h;
|
|
330 |
int idp2,ipp2;
|
|
331 |
|
|
332 |
arg=tpi/(double)ip;
|
|
333 |
dcp=cos(arg);
|
|
334 |
dsp=sin(arg);
|
|
335 |
ipph=(ip+1)>>1;
|
|
336 |
ipp2=ip;
|
|
337 |
idp2=ido;
|
|
338 |
nbd=(ido-1)>>1;
|
|
339 |
t0=l1*ido;
|
|
340 |
t10=ip*ido;
|
|
341 |
|
|
342 |
if(ido==1)goto L119;
|
|
343 |
for(ik=0;ik<idl1;ik++)ch2[ik]=c2[ik];
|
|
344 |
|
|
345 |
t1=0;
|
|
346 |
for(j=1;j<ip;j++){
|
|
347 |
t1+=t0;
|
|
348 |
t2=t1;
|
|
349 |
for(k=0;k<l1;k++){
|
|
350 |
ch[t2]=c1[t2];
|
|
351 |
t2+=ido;
|
|
352 |
}
|
|
353 |
}
|
|
354 |
|
|
355 |
is=-ido;
|
|
356 |
t1=0;
|
|
357 |
if(nbd>l1){
|
|
358 |
for(j=1;j<ip;j++){
|
|
359 |
t1+=t0;
|
|
360 |
is+=ido;
|
|
361 |
t2= -ido+t1;
|
|
362 |
for(k=0;k<l1;k++){
|
|
363 |
idij=is-1;
|
|
364 |
t2+=ido;
|
|
365 |
t3=t2;
|
|
366 |
for(i=2;i<ido;i+=2){
|
|
367 |
idij+=2;
|
|
368 |
t3+=2;
|
|
369 |
ch[t3-1]=wa[idij-1]*c1[t3-1]+wa[idij]*c1[t3];
|
|
370 |
ch[t3]=wa[idij-1]*c1[t3]-wa[idij]*c1[t3-1];
|
|
371 |
}
|
|
372 |
}
|
|
373 |
}
|
|
374 |
}else{
|
|
375 |
|
|
376 |
for(j=1;j<ip;j++){
|
|
377 |
is+=ido;
|
|
378 |
idij=is-1;
|
|
379 |
t1+=t0;
|
|
380 |
t2=t1;
|
|
381 |
for(i=2;i<ido;i+=2){
|
|
382 |
idij+=2;
|
|
383 |
t2+=2;
|
|
384 |
t3=t2;
|
|
385 |
for(k=0;k<l1;k++){
|
|
386 |
ch[t3-1]=wa[idij-1]*c1[t3-1]+wa[idij]*c1[t3];
|
|
387 |
ch[t3]=wa[idij-1]*c1[t3]-wa[idij]*c1[t3-1];
|
|
388 |
t3+=ido;
|
|
389 |
}
|
|
390 |
}
|
|
391 |
}
|
|
392 |
}
|
|
393 |
|
|
394 |
t1=0;
|
|
395 |
t2=ipp2*t0;
|
|
396 |
if(nbd<l1){
|
|
397 |
for(j=1;j<ipph;j++){
|
|
398 |
t1+=t0;
|
|
399 |
t2-=t0;
|
|
400 |
t3=t1;
|
|
401 |
t4=t2;
|
|
402 |
for(i=2;i<ido;i+=2){
|
|
403 |
t3+=2;
|
|
404 |
t4+=2;
|
|
405 |
t5=t3-ido;
|
|
406 |
t6=t4-ido;
|
|
407 |
for(k=0;k<l1;k++){
|
|
408 |
t5+=ido;
|
|
409 |
t6+=ido;
|
|
410 |
c1[t5-1]=ch[t5-1]+ch[t6-1];
|
|
411 |
c1[t6-1]=ch[t5]-ch[t6];
|
|
412 |
c1[t5]=ch[t5]+ch[t6];
|
|
413 |
c1[t6]=ch[t6-1]-ch[t5-1];
|
|
414 |
}
|
|
415 |
}
|
|
416 |
}
|
|
417 |
}else{
|
|
418 |
for(j=1;j<ipph;j++){
|
|
419 |
t1+=t0;
|
|
420 |
t2-=t0;
|
|
421 |
t3=t1;
|
|
422 |
t4=t2;
|
|
423 |
for(k=0;k<l1;k++){
|
|
424 |
t5=t3;
|
|
425 |
t6=t4;
|
|
426 |
for(i=2;i<ido;i+=2){
|
|
427 |
t5+=2;
|
|
428 |
t6+=2;
|
|
429 |
c1[t5-1]=ch[t5-1]+ch[t6-1];
|
|
430 |
c1[t6-1]=ch[t5]-ch[t6];
|
|
431 |
c1[t5]=ch[t5]+ch[t6];
|
|
432 |
c1[t6]=ch[t6-1]-ch[t5-1];
|
|
433 |
}
|
|
434 |
t3+=ido;
|
|
435 |
t4+=ido;
|
|
436 |
}
|
|
437 |
}
|
|
438 |
}
|
|
439 |
|
|
440 |
L119:
|
|
441 |
for(ik=0;ik<idl1;ik++)c2[ik]=ch2[ik];
|
|
442 |
|
|
443 |
t1=0;
|
|
444 |
t2=ipp2*idl1;
|
|
445 |
for(j=1;j<ipph;j++){
|
|
446 |
t1+=t0;
|
|
447 |
t2-=t0;
|
|
448 |
t3=t1-ido;
|
|
449 |
t4=t2-ido;
|
|
450 |
for(k=0;k<l1;k++){
|
|
451 |
t3+=ido;
|
|
452 |
t4+=ido;
|
|
453 |
c1[t3]=ch[t3]+ch[t4];
|
|
454 |
c1[t4]=ch[t4]-ch[t3];
|
|
455 |
}
|
|
456 |
}
|
|
457 |
|
|
458 |
ar1=1.;
|
|
459 |
ai1=0.;
|
|
460 |
t1=0;
|
|
461 |
t2=ipp2*idl1;
|
|
462 |
t3=(ip-1)*idl1;
|
|
463 |
for(l=1;l<ipph;l++){
|
|
464 |
t1+=idl1;
|
|
465 |
t2-=idl1;
|
|
466 |
ar1h=dcp*ar1-dsp*ai1;
|
|
467 |
ai1=dcp*ai1+dsp*ar1;
|
|
468 |
ar1=ar1h;
|
|
469 |
t4=t1;
|
|
470 |
t5=t2;
|
|
471 |
t6=t3;
|
|
472 |
t7=idl1;
|
|
473 |
|
|
474 |
for(ik=0;ik<idl1;ik++){
|
|
475 |
ch2[t4++]=c2[ik]+ar1*c2[t7++];
|
|
476 |
ch2[t5++]=ai1*c2[t6++];
|
|
477 |
}
|
|
478 |
|
|
479 |
dc2=ar1;
|
|
480 |
ds2=ai1;
|
|
481 |
ar2=ar1;
|
|
482 |
ai2=ai1;
|
|
483 |
|
|
484 |
t4=idl1;
|
|
485 |
t5=(ipp2-1)*idl1;
|
|
486 |
for(j=2;j<ipph;j++){
|
|
487 |
t4+=idl1;
|
|
488 |
t5-=idl1;
|
|
489 |
|
|
490 |
ar2h=dc2*ar2-ds2*ai2;
|
|
491 |
ai2=dc2*ai2+ds2*ar2;
|
|
492 |
ar2=ar2h;
|
|
493 |
|
|
494 |
t6=t1;
|
|
495 |
t7=t2;
|
|
496 |
t8=t4;
|
|
497 |
t9=t5;
|
|
498 |
for(ik=0;ik<idl1;ik++){
|
|
499 |
ch2[t6++]+=ar2*c2[t8++];
|
|
500 |
ch2[t7++]+=ai2*c2[t9++];
|
|
501 |
}
|
|
502 |
}
|
|
503 |
}
|
|
504 |
|
|
505 |
t1=0;
|
|
506 |
for(j=1;j<ipph;j++){
|
|
507 |
t1+=idl1;
|
|
508 |
t2=t1;
|
|
509 |
for(ik=0;ik<idl1;ik++)ch2[ik]+=c2[t2++];
|
|
510 |
}
|
|
511 |
|
|
512 |
if(ido<l1)goto L132;
|
|
513 |
|
|
514 |
t1=0;
|
|
515 |
t2=0;
|
|
516 |
for(k=0;k<l1;k++){
|
|
517 |
t3=t1;
|
|
518 |
t4=t2;
|
|
519 |
for(i=0;i<ido;i++)cc[t4++]=ch[t3++];
|
|
520 |
t1+=ido;
|
|
521 |
t2+=t10;
|
|
522 |
}
|
|
523 |
|
|
524 |
goto L135;
|
|
525 |
|
|
526 |
L132:
|
|
527 |
for(i=0;i<ido;i++){
|
|
528 |
t1=i;
|
|
529 |
t2=i;
|
|
530 |
for(k=0;k<l1;k++){
|
|
531 |
cc[t2]=ch[t1];
|
|
532 |
t1+=ido;
|
|
533 |
t2+=t10;
|
|
534 |
}
|
|
535 |
}
|
|
536 |
|
|
537 |
L135:
|
|
538 |
t1=0;
|
|
539 |
t2=ido<<1;
|
|
540 |
t3=0;
|
|
541 |
t4=ipp2*t0;
|
|
542 |
for(j=1;j<ipph;j++){
|
|
543 |
|
|
544 |
t1+=t2;
|
|
545 |
t3+=t0;
|
|
546 |
t4-=t0;
|
|
547 |
|
|
548 |
t5=t1;
|
|
549 |
t6=t3;
|
|
550 |
t7=t4;
|
|
551 |
|
|
552 |
for(k=0;k<l1;k++){
|
|
553 |
cc[t5-1]=ch[t6];
|
|
554 |
cc[t5]=ch[t7];
|
|
555 |
t5+=t10;
|
|
556 |
t6+=ido;
|
|
557 |
t7+=ido;
|
|
558 |
}
|
|
559 |
}
|
|
560 |
|
|
561 |
if(ido==1)return;
|
|
562 |
if(nbd<l1)goto L141;
|
|
563 |
|
|
564 |
t1=-ido;
|
|
565 |
t3=0;
|
|
566 |
t4=0;
|
|
567 |
t5=ipp2*t0;
|
|
568 |
for(j=1;j<ipph;j++){
|
|
569 |
t1+=t2;
|
|
570 |
t3+=t2;
|
|
571 |
t4+=t0;
|
|
572 |
t5-=t0;
|
|
573 |
t6=t1;
|
|
574 |
t7=t3;
|
|
575 |
t8=t4;
|
|
576 |
t9=t5;
|
|
577 |
for(k=0;k<l1;k++){
|
|
578 |
for(i=2;i<ido;i+=2){
|
|
579 |
ic=idp2-i;
|
|
580 |
cc[i+t7-1]=ch[i+t8-1]+ch[i+t9-1];
|
|
581 |
cc[ic+t6-1]=ch[i+t8-1]-ch[i+t9-1];
|
|
582 |
cc[i+t7]=ch[i+t8]+ch[i+t9];
|
|
583 |
cc[ic+t6]=ch[i+t9]-ch[i+t8];
|
|
584 |
}
|
|
585 |
t6+=t10;
|
|
586 |
t7+=t10;
|
|
587 |
t8+=ido;
|
|
588 |
t9+=ido;
|
|
589 |
}
|
|
590 |
}
|
|
591 |
return;
|
|
592 |
|
|
593 |
L141:
|
|
594 |
|
|
595 |
t1=-ido;
|
|
596 |
t3=0;
|
|
597 |
t4=0;
|
|
598 |
t5=ipp2*t0;
|
|
599 |
for(j=1;j<ipph;j++){
|
|
600 |
t1+=t2;
|
|
601 |
t3+=t2;
|
|
602 |
t4+=t0;
|
|
603 |
t5-=t0;
|
|
604 |
for(i=2;i<ido;i+=2){
|
|
605 |
t6=idp2+t1-i;
|
|
606 |
t7=i+t3;
|
|
607 |
t8=i+t4;
|
|
608 |
t9=i+t5;
|
|
609 |
for(k=0;k<l1;k++){
|
|
610 |
cc[t7-1]=ch[t8-1]+ch[t9-1];
|
|
611 |
cc[t6-1]=ch[t8-1]-ch[t9-1];
|
|
612 |
cc[t7]=ch[t8]+ch[t9];
|
|
613 |
cc[t6]=ch[t9]-ch[t8];
|
|
614 |
t6+=t10;
|
|
615 |
t7+=t10;
|
|
616 |
t8+=ido;
|
|
617 |
t9+=ido;
|
|
618 |
}
|
|
619 |
}
|
|
620 |
}
|
|
621 |
}
|
|
622 |
|
|
623 |
STIN void drftf1(int n,double *c,double *ch,double *wa,int *ifac){
|
|
624 |
int i,k1,l1,l2;
|
|
625 |
int na,kh,nf;
|
|
626 |
int ip,iw,ido,idl1,ix2,ix3;
|
|
627 |
|
|
628 |
nf=ifac[1];
|
|
629 |
na=1;
|
|
630 |
l2=n;
|
|
631 |
iw=n;
|
|
632 |
|
|
633 |
for(k1=0;k1<nf;k1++){
|
|
634 |
kh=nf-k1;
|
|
635 |
ip=ifac[kh+1];
|
|
636 |
l1=l2/ip;
|
|
637 |
ido=n/l2;
|
|
638 |
idl1=ido*l1;
|
|
639 |
iw-=(ip-1)*ido;
|
|
640 |
na=1-na;
|
|
641 |
|
|
642 |
if(ip!=4)goto L102;
|
|
643 |
|
|
644 |
ix2=iw+ido;
|
|
645 |
ix3=ix2+ido;
|
|
646 |
if(na!=0)
|
|
647 |
dradf4(ido,l1,ch,c,wa+iw-1,wa+ix2-1,wa+ix3-1);
|
|
648 |
else
|
|
649 |
dradf4(ido,l1,c,ch,wa+iw-1,wa+ix2-1,wa+ix3-1);
|
|
650 |
goto L110;
|
|
651 |
|
|
652 |
L102:
|
|
653 |
if(ip!=2)goto L104;
|
|
654 |
if(na!=0)goto L103;
|
|
655 |
|
|
656 |
dradf2(ido,l1,c,ch,wa+iw-1);
|
|
657 |
goto L110;
|
|
658 |
|
|
659 |
L103:
|
|
660 |
dradf2(ido,l1,ch,c,wa+iw-1);
|
|
661 |
goto L110;
|
|
662 |
|
|
663 |
L104:
|
|
664 |
if(ido==1)na=1-na;
|
|
665 |
if(na!=0)goto L109;
|
|
666 |
|
|
667 |
dradfg(ido,ip,l1,idl1,c,c,c,ch,ch,wa+iw-1);
|
|
668 |
na=1;
|
|
669 |
goto L110;
|
|
670 |
|
|
671 |
L109:
|
|
672 |
dradfg(ido,ip,l1,idl1,ch,ch,ch,c,c,wa+iw-1);
|
|
673 |
na=0;
|
|
674 |
|
|
675 |
L110:
|
|
676 |
l2=l1;
|
|
677 |
}
|
|
678 |
|
|
679 |
if(na==1)return;
|
|
680 |
|
|
681 |
for(i=0;i<n;i++)c[i]=ch[i];
|
|
682 |
}
|
|
683 |
|
|
684 |
void __ogg_fdrfftf(int n,double *r,double *wsave,int *ifac){
|
|
685 |
if(n==1)return;
|
|
686 |
drftf1(n,r,wsave,wsave+n,ifac);
|
|
687 |
}
|
|
688 |
|
|
689 |
STIN void dcsqf1(int n,double *x,double *w,double *xh,int *ifac){
|
|
690 |
int modn,i,k,kc;
|
|
691 |
int np2,ns2;
|
|
692 |
double xim1;
|
|
693 |
|
|
694 |
ns2=(n+1)>>1;
|
|
695 |
np2=n;
|
|
696 |
|
|
697 |
kc=np2;
|
|
698 |
for(k=1;k<ns2;k++){
|
|
699 |
kc--;
|
|
700 |
xh[k]=x[k]+x[kc];
|
|
701 |
xh[kc]=x[k]-x[kc];
|
|
702 |
}
|
|
703 |
|
|
704 |
modn=n%2;
|
|
705 |
if(modn==0)xh[ns2]=x[ns2]+x[ns2];
|
|
706 |
|
|
707 |
for(k=1;k<ns2;k++){
|
|
708 |
kc=np2-k;
|
|
709 |
x[k]=w[k-1]*xh[kc]+w[kc-1]*xh[k];
|
|
710 |
x[kc]=w[k-1]*xh[k]-w[kc-1]*xh[kc];
|
|
711 |
}
|
|
712 |
|
|
713 |
if(modn==0)x[ns2]=w[ns2-1]*xh[ns2];
|
|
714 |
|
|
715 |
__ogg_fdrfftf(n,x,xh,ifac);
|
|
716 |
|
|
717 |
for(i=2;i<n;i+=2){
|
|
718 |
xim1=x[i-1]-x[i];
|
|
719 |
x[i]=x[i-1]+x[i];
|
|
720 |
x[i-1]=xim1;
|
|
721 |
}
|
|
722 |
}
|
|
723 |
|
|
724 |
void __ogg_fdcosqf(int n,double *x,double *wsave,int *ifac){
|
|
725 |
static double sqrt2=1.4142135623730950488016887242097;
|
|
726 |
double tsqx;
|
|
727 |
|
|
728 |
switch(n){
|
|
729 |
case 0:case 1:
|
|
730 |
return;
|
|
731 |
case 2:
|
|
732 |
tsqx=sqrt2*x[1];
|
|
733 |
x[1]=x[0]-tsqx;
|
|
734 |
x[0]+=tsqx;
|
|
735 |
return;
|
|
736 |
default:
|
|
737 |
dcsqf1(n,x,wsave,wsave+n,ifac);
|
|
738 |
return;
|
|
739 |
}
|
|
740 |
}
|
|
741 |
|
|
742 |
STIN void dradb2(int ido,int l1,double *cc,double *ch,double *wa1){
|
|
743 |
int i,k,t0,t1,t2,t3,t4,t5,t6;
|
|
744 |
double ti2,tr2;
|
|
745 |
|
|
746 |
t0=l1*ido;
|
|
747 |
|
|
748 |
t1=0;
|
|
749 |
t2=0;
|
|
750 |
t3=(ido<<1)-1;
|
|
751 |
for(k=0;k<l1;k++){
|
|
752 |
ch[t1]=cc[t2]+cc[t3+t2];
|
|
753 |
ch[t1+t0]=cc[t2]-cc[t3+t2];
|
|
754 |
t2=(t1+=ido)<<1;
|
|
755 |
}
|
|
756 |
|
|
757 |
if(ido<2)return;
|
|
758 |
if(ido==2)goto L105;
|
|
759 |
|
|
760 |
t1=0;
|
|
761 |
t2=0;
|
|
762 |
for(k=0;k<l1;k++){
|
|
763 |
t3=t1;
|
|
764 |
t5=(t4=t2)+(ido<<1);
|
|
765 |
t6=t0+t1;
|
|
766 |
for(i=2;i<ido;i+=2){
|
|
767 |
t3+=2;
|
|
768 |
t4+=2;
|
|
769 |
t5-=2;
|
|
770 |
t6+=2;
|
|
771 |
ch[t3-1]=cc[t4-1]+cc[t5-1];
|
|
772 |
tr2=cc[t4-1]-cc[t5-1];
|
|
773 |
ch[t3]=cc[t4]-cc[t5];
|
|
774 |
ti2=cc[t4]+cc[t5];
|
|
775 |
ch[t6-1]=wa1[i-2]*tr2-wa1[i-1]*ti2;
|
|
776 |
ch[t6]=wa1[i-2]*ti2+wa1[i-1]*tr2;
|
|
777 |
}
|
|
778 |
t2=(t1+=ido)<<1;
|
|
779 |
}
|
|
780 |
|
|
781 |
if(ido%2==1)return;
|
|
782 |
|
|
783 |
L105:
|
|
784 |
t1=ido-1;
|
|
785 |
t2=ido-1;
|
|
786 |
for(k=0;k<l1;k++){
|
|
787 |
ch[t1]=cc[t2]+cc[t2];
|
|
788 |
ch[t1+t0]=-(cc[t2+1]+cc[t2+1]);
|
|
789 |
t1+=ido;
|
|
790 |
t2+=ido<<1;
|
|
791 |
}
|
|
792 |
}
|
|
793 |
|
|
794 |
STIN void dradb3(int ido,int l1,double *cc,double *ch,double *wa1,
|
|
795 |
double *wa2){
|
|
796 |
static double taur = -.5;
|
|
797 |
static double taui = .86602540378443864676372317075293618;
|
|
798 |
int i,k,t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10;
|
|
799 |
double ci2,ci3,di2,di3,cr2,cr3,dr2,dr3,ti2,tr2;
|
|
800 |
t0=l1*ido;
|
|
801 |
|
|
802 |
t1=0;
|
|
803 |
t2=t0<<1;
|
|
804 |
t3=ido<<1;
|
|
805 |
t4=ido+(ido<<1);
|
|
806 |
t5=0;
|
|
807 |
for(k=0;k<l1;k++){
|
|
808 |
tr2=cc[t3-1]+cc[t3-1];
|
|
809 |
cr2=cc[t5]+(taur*tr2);
|
|
810 |
ch[t1]=cc[t5]+tr2;
|
|
811 |
ci3=taui*(cc[t3]+cc[t3]);
|
|
812 |
ch[t1+t0]=cr2-ci3;
|
|
813 |
ch[t1+t2]=cr2+ci3;
|
|
814 |
t1+=ido;
|
|
815 |
t3+=t4;
|
|
816 |
t5+=t4;
|
|
817 |
}
|
|
818 |
|
|
819 |
if(ido==1)return;
|
|
820 |
|
|
821 |
t1=0;
|
|
822 |
t3=ido<<1;
|
|
823 |
for(k=0;k<l1;k++){
|
|
824 |
t7=t1+(t1<<1);
|
|
825 |
t6=(t5=t7+t3);
|
|
826 |
t8=t1;
|
|
827 |
t10=(t9=t1+t0)+t0;
|
|
828 |
|
|
829 |
for(i=2;i<ido;i+=2){
|
|
830 |
t5+=2;
|
|
831 |
t6-=2;
|
|
832 |
t7+=2;
|
|
833 |
t8+=2;
|
|
834 |
t9+=2;
|
|
835 |
t10+=2;
|
|
836 |
tr2=cc[t5-1]+cc[t6-1];
|
|
837 |
cr2=cc[t7-1]+(taur*tr2);
|
|
838 |
ch[t8-1]=cc[t7-1]+tr2;
|
|
839 |
ti2=cc[t5]-cc[t6];
|
|
840 |
ci2=cc[t7]+(taur*ti2);
|
|
841 |
ch[t8]=cc[t7]+ti2;
|
|
842 |
cr3=taui*(cc[t5-1]-cc[t6-1]);
|
|
843 |
ci3=taui*(cc[t5]+cc[t6]);
|
|
844 |
dr2=cr2-ci3;
|
|
845 |
dr3=cr2+ci3;
|
|
846 |
di2=ci2+cr3;
|
|
847 |
di3=ci2-cr3;
|
|
848 |
ch[t9-1]=wa1[i-2]*dr2-wa1[i-1]*di2;
|
|
849 |
ch[t9]=wa1[i-2]*di2+wa1[i-1]*dr2;
|
|
850 |
ch[t10-1]=wa2[i-2]*dr3-wa2[i-1]*di3;
|
|
851 |
ch[t10]=wa2[i-2]*di3+wa2[i-1]*dr3;
|
|
852 |
}
|
|
853 |
t1+=ido;
|
|
854 |
}
|
|
855 |
}
|
|
856 |
|
|
857 |
STIN void dradb4(int ido,int l1,double *cc,double *ch,double *wa1,
|
|
858 |
double *wa2,double *wa3){
|
|
859 |
static double sqrt2=1.4142135623730950488016887242097;
|
|
860 |
int i,k,t0,t1,t2,t3,t4,t5,t6,t7,t8;
|
|
861 |
double ci2,ci3,ci4,cr2,cr3,cr4,ti1,ti2,ti3,ti4,tr1,tr2,tr3,tr4;
|
|
862 |
t0=l1*ido;
|
|
863 |
|
|
864 |
t1=0;
|
|
865 |
t2=ido<<2;
|
|
866 |
t3=0;
|
|
867 |
t6=ido<<1;
|
|
868 |
for(k=0;k<l1;k++){
|
|
869 |
t4=t3+t6;
|
|
870 |
t5=t1;
|
|
871 |
tr3=cc[t4-1]+cc[t4-1];
|
|
872 |
tr4=cc[t4]+cc[t4];
|
|
873 |
tr1=cc[t3]-cc[(t4+=t6)-1];
|
|
874 |
tr2=cc[t3]+cc[t4-1];
|
|
875 |
ch[t5]=tr2+tr3;
|
|
876 |
ch[t5+=t0]=tr1-tr4;
|
|
877 |
ch[t5+=t0]=tr2-tr3;
|
|
878 |
ch[t5+=t0]=tr1+tr4;
|
|
879 |
t1+=ido;
|
|
880 |
t3+=t2;
|
|
881 |
}
|
|
882 |
|
|
883 |
if(ido<2)return;
|
|
884 |
if(ido==2)goto L105;
|
|
885 |
|
|
886 |
t1=0;
|
|
887 |
for(k=0;k<l1;k++){
|
|
888 |
t5=(t4=(t3=(t2=t1<<2)+t6))+t6;
|
|
889 |
t7=t1;
|
|
890 |
for(i=2;i<ido;i+=2){
|
|
891 |
t2+=2;
|
|
892 |
t3+=2;
|
|
893 |
t4-=2;
|
|
894 |
t5-=2;
|
|
895 |
t7+=2;
|
|
896 |
ti1=cc[t2]+cc[t5];
|
|
897 |
ti2=cc[t2]-cc[t5];
|
|
898 |
ti3=cc[t3]-cc[t4];
|
|
899 |
tr4=cc[t3]+cc[t4];
|
|
900 |
tr1=cc[t2-1]-cc[t5-1];
|
|
901 |
tr2=cc[t2-1]+cc[t5-1];
|
|
902 |
ti4=cc[t3-1]-cc[t4-1];
|
|
903 |
tr3=cc[t3-1]+cc[t4-1];
|
|
904 |
ch[t7-1]=tr2+tr3;
|
|
905 |
cr3=tr2-tr3;
|
|
906 |
ch[t7]=ti2+ti3;
|
|
907 |
ci3=ti2-ti3;
|
|
908 |
cr2=tr1-tr4;
|
|
909 |
cr4=tr1+tr4;
|
|
910 |
ci2=ti1+ti4;
|
|
911 |
ci4=ti1-ti4;
|
|
912 |
|
|
913 |
ch[(t8=t7+t0)-1]=wa1[i-2]*cr2-wa1[i-1]*ci2;
|
|
914 |
ch[t8]=wa1[i-2]*ci2+wa1[i-1]*cr2;
|
|
915 |
ch[(t8+=t0)-1]=wa2[i-2]*cr3-wa2[i-1]*ci3;
|
|
916 |
ch[t8]=wa2[i-2]*ci3+wa2[i-1]*cr3;
|
|
917 |
ch[(t8+=t0)-1]=wa3[i-2]*cr4-wa3[i-1]*ci4;
|
|
918 |
ch[t8]=wa3[i-2]*ci4+wa3[i-1]*cr4;
|
|
919 |
}
|
|
920 |
t1+=ido;
|
|
921 |
}
|
|
922 |
|
|
923 |
if(ido%2 == 1)return;
|
|
924 |
|
|
925 |
L105:
|
|
926 |
|
|
927 |
t1=ido;
|
|
928 |
t2=ido<<2;
|
|
929 |
t3=ido-1;
|
|
930 |
t4=ido+(ido<<1);
|
|
931 |
for(k=0;k<l1;k++){
|
|
932 |
t5=t3;
|
|
933 |
ti1=cc[t1]+cc[t4];
|
|
934 |
ti2=cc[t4]-cc[t1];
|
|
935 |
tr1=cc[t1-1]-cc[t4-1];
|
|
936 |
tr2=cc[t1-1]+cc[t4-1];
|
|
937 |
ch[t5]=tr2+tr2;
|
|
938 |
ch[t5+=t0]=sqrt2*(tr1-ti1);
|
|
939 |
ch[t5+=t0]=ti2+ti2;
|
|
940 |
ch[t5+=t0]=-sqrt2*(tr1+ti1);
|
|
941 |
|
|
942 |
t3+=ido;
|
|
943 |
t1+=t2;
|
|
944 |
t4+=t2;
|
|
945 |
}
|
|
946 |
}
|
|
947 |
|
|
948 |
STIN void dradbg(int ido,int ip,int l1,int idl1,double *cc,double *c1,
|
|
949 |
double *c2,double *ch,double *ch2,double *wa){
|
|
950 |
static double tpi=6.28318530717958647692528676655900577;
|
|
951 |
int idij,ipph,i,j,k,l,ik,is,t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,
|
|
952 |
t11,t12;
|
|
953 |
double dc2,ai1,ai2,ar1,ar2,ds2;
|
|
954 |
int nbd;
|
|
955 |
double dcp,arg,dsp,ar1h,ar2h;
|
|
956 |
int ipp2;
|
|
957 |
|
|
958 |
t10=ip*ido;
|
|
959 |
t0=l1*ido;
|
|
960 |
arg=tpi/(double)ip;
|
|
961 |
dcp=cos(arg);
|
|
962 |
dsp=sin(arg);
|
|
963 |
nbd=(ido-1)>>1;
|
|
964 |
ipp2=ip;
|
|
965 |
ipph=(ip+1)>>1;
|
|
966 |
if(ido<l1)goto L103;
|
|
967 |
|
|
968 |
t1=0;
|
|
969 |
t2=0;
|
|
970 |
for(k=0;k<l1;k++){
|
|
971 |
t3=t1;
|
|
972 |
t4=t2;
|
|
973 |
for(i=0;i<ido;i++){
|
|
974 |
ch[t3]=cc[t4];
|
|
975 |
t3++;
|
|
976 |
t4++;
|
|
977 |
}
|
|
978 |
t1+=ido;
|
|
979 |
t2+=t10;
|
|
980 |
}
|
|
981 |
goto L106;
|
|
982 |
|
|
983 |
L103:
|
|
984 |
t1=0;
|
|
985 |
for(i=0;i<ido;i++){
|
|
986 |
t2=t1;
|
|
987 |
t3=t1;
|
|
988 |
for(k=0;k<l1;k++){
|
|
989 |
ch[t2]=cc[t3];
|
|
990 |
t2+=ido;
|
|
991 |
t3+=t10;
|
|
992 |
}
|
|
993 |
t1++;
|
|
994 |
}
|
|
995 |
|
|
996 |
L106:
|
|
997 |
t1=0;
|
|
998 |
t2=ipp2*t0;
|
|
999 |
t7=(t5=ido<<1);
|
|
1000 |
for(j=1;j<ipph;j++){
|
|
1001 |
t1+=t0;
|
|
1002 |
t2-=t0;
|
|
1003 |
t3=t1;
|
|
1004 |
t4=t2;
|
|
1005 |
t6=t5;
|
|
1006 |
for(k=0;k<l1;k++){
|
|
1007 |
ch[t3]=cc[t6-1]+cc[t6-1];
|
|
1008 |
ch[t4]=cc[t6]+cc[t6];
|
|
1009 |
t3+=ido;
|
|
1010 |
t4+=ido;
|
|
1011 |
t6+=t10;
|
|
1012 |
}
|
|
1013 |
t5+=t7;
|
|
1014 |
}
|
|
1015 |
|
|
1016 |
if (ido == 1)goto L116;
|
|
1017 |
if(nbd<l1)goto L112;
|
|
1018 |
|
|
1019 |
t1=0;
|
|
1020 |
t2=ipp2*t0;
|
|
1021 |
t7=0;
|
|
1022 |
for(j=1;j<ipph;j++){
|
|
1023 |
t1+=t0;
|
|
1024 |
t2-=t0;
|
|
1025 |
t3=t1;
|
|
1026 |
t4=t2;
|
|
1027 |
|
|
1028 |
t7+=(ido<<1);
|
|
1029 |
t8=t7;
|
|
1030 |
for(k=0;k<l1;k++){
|
|
1031 |
t5=t3;
|
|
1032 |
t6=t4;
|
|
1033 |
t9=t8;
|
|
1034 |
t11=t8;
|
|
1035 |
for(i=2;i<ido;i+=2){
|
|
1036 |
t5+=2;
|
|
1037 |
t6+=2;
|
|
1038 |
t9+=2;
|
|
1039 |
t11-=2;
|
|
1040 |
ch[t5-1]=cc[t9-1]+cc[t11-1];
|
|
1041 |
ch[t6-1]=cc[t9-1]-cc[t11-1];
|
|
1042 |
ch[t5]=cc[t9]-cc[t11];
|
|
1043 |
ch[t6]=cc[t9]+cc[t11];
|
|
1044 |
}
|
|
1045 |
t3+=ido;
|
|
1046 |
t4+=ido;
|
|
1047 |
t8+=t10;
|
|
1048 |
}
|
|
1049 |
}
|
|
1050 |
goto L116;
|
|
1051 |
|
|
1052 |
L112:
|
|
1053 |
t1=0;
|
|
1054 |
t2=ipp2*t0;
|
|
1055 |
t7=0;
|
|
1056 |
for(j=1;j<ipph;j++){
|
|
1057 |
t1+=t0;
|
|
1058 |
t2-=t0;
|
|
1059 |
t3=t1;
|
|
1060 |
t4=t2;
|
|
1061 |
t7+=(ido<<1);
|
|
1062 |
t8=t7;
|
|
1063 |
t9=t7;
|
|
1064 |
for(i=2;i<ido;i+=2){
|
|
1065 |
t3+=2;
|
|
1066 |
t4+=2;
|
|
1067 |
t8+=2;
|
|
1068 |
t9-=2;
|
|
1069 |
t5=t3;
|
|
1070 |
t6=t4;
|
|
1071 |
t11=t8;
|
|
1072 |
t12=t9;
|
|
1073 |
for(k=0;k<l1;k++){
|
|
1074 |
ch[t5-1]=cc[t11-1]+cc[t12-1];
|
|
1075 |
ch[t6-1]=cc[t11-1]-cc[t12-1];
|
|
1076 |
ch[t5]=cc[t11]-cc[t12];
|
|
1077 |
ch[t6]=cc[t11]+cc[t12];
|
|
1078 |
t5+=ido;
|
|
1079 |
t6+=ido;
|
|
1080 |
t11+=t10;
|
|
1081 |
t12+=t10;
|
|
1082 |
}
|
|
1083 |
}
|
|
1084 |
}
|
|
1085 |
|
|
1086 |
L116:
|
|
1087 |
ar1=1.;
|
|
1088 |
ai1=0.;
|
|
1089 |
t1=0;
|
|
1090 |
t9=(t2=ipp2*idl1);
|
|
1091 |
t3=(ip-1)*idl1;
|
|
1092 |
for(l=1;l<ipph;l++){
|
|
1093 |
t1+=idl1;
|
|
1094 |
t2-=idl1;
|
|
1095 |
|
|
1096 |
ar1h=dcp*ar1-dsp*ai1;
|
|
1097 |
ai1=dcp*ai1+dsp*ar1;
|
|
1098 |
ar1=ar1h;
|
|
1099 |
t4=t1;
|
|
1100 |
t5=t2;
|
|
1101 |
t6=0;
|
|
1102 |
t7=idl1;
|
|
1103 |
t8=t3;
|
|
1104 |
for(ik=0;ik<idl1;ik++){
|
|
1105 |
c2[t4++]=ch2[t6++]+ar1*ch2[t7++];
|
|
1106 |
c2[t5++]=ai1*ch2[t8++];
|
|
1107 |
}
|
|
1108 |
dc2=ar1;
|
|
1109 |
ds2=ai1;
|
|
1110 |
ar2=ar1;
|
|
1111 |
ai2=ai1;
|
|
1112 |
|
|
1113 |
t6=idl1;
|
|
1114 |
t7=t9-idl1;
|
|
1115 |
for(j=2;j<ipph;j++){
|
|
1116 |
t6+=idl1;
|
|
1117 |
t7-=idl1;
|
|
1118 |
ar2h=dc2*ar2-ds2*ai2;
|
|
1119 |
ai2=dc2*ai2+ds2*ar2;
|
|
1120 |
ar2=ar2h;
|
|
1121 |
t4=t1;
|
|
1122 |
t5=t2;
|
|
1123 |
t11=t6;
|
|
1124 |
t12=t7;
|
|
1125 |
for(ik=0;ik<idl1;ik++){
|
|
1126 |
c2[t4++]+=ar2*ch2[t11++];
|
|
1127 |
c2[t5++]+=ai2*ch2[t12++];
|
|
1128 |
}
|
|
1129 |
}
|
|
1130 |
}
|
|
1131 |
|
|
1132 |
t1=0;
|
|
1133 |
for(j=1;j<ipph;j++){
|
|
1134 |
t1+=idl1;
|
|
1135 |
t2=t1;
|
|
1136 |
for(ik=0;ik<idl1;ik++)ch2[ik]+=ch2[t2++];
|
|
1137 |
}
|
|
1138 |
|
|
1139 |
t1=0;
|
|
1140 |
t2=ipp2*t0;
|
|
1141 |
for(j=1;j<ipph;j++){
|
|
1142 |
t1+=t0;
|
|
1143 |
t2-=t0;
|
|
1144 |
t3=t1;
|
|
1145 |
t4=t2;
|
|
1146 |
for(k=0;k<l1;k++){
|
|
1147 |
ch[t3]=c1[t3]-c1[t4];
|
|
1148 |
ch[t4]=c1[t3]+c1[t4];
|
|
1149 |
t3+=ido;
|
|
1150 |
t4+=ido;
|
|
1151 |
}
|
|
1152 |
}
|
|
1153 |
|
|
1154 |
if(ido==1)goto L132;
|
|
1155 |
if(nbd<l1)goto L128;
|
|
1156 |
|
|
1157 |
t1=0;
|
|
1158 |
t2=ipp2*t0;
|
|
1159 |
for(j=1;j<ipph;j++){
|
|
1160 |
t1+=t0;
|
|
1161 |
t2-=t0;
|
|
1162 |
t3=t1;
|
|
1163 |
t4=t2;
|
|
1164 |
for(k=0;k<l1;k++){
|
|
1165 |
t5=t3;
|
|
1166 |
t6=t4;
|
|
1167 |
for(i=2;i<ido;i+=2){
|
|
1168 |
t5+=2;
|
|
1169 |
t6+=2;
|
|
1170 |
ch[t5-1]=c1[t5-1]-c1[t6];
|
|
1171 |
ch[t6-1]=c1[t5-1]+c1[t6];
|
|
1172 |
ch[t5]=c1[t5]+c1[t6-1];
|
|
1173 |
ch[t6]=c1[t5]-c1[t6-1];
|
|
1174 |
}
|
|
1175 |
t3+=ido;
|
|
1176 |
t4+=ido;
|
|
1177 |
}
|
|
1178 |
}
|
|
1179 |
goto L132;
|
|
1180 |
|
|
1181 |
L128:
|
|
1182 |
t1=0;
|
|
1183 |
t2=ipp2*t0;
|
|
1184 |
for(j=1;j<ipph;j++){
|
|
1185 |
t1+=t0;
|
|
1186 |
t2-=t0;
|
|
1187 |
t3=t1;
|
|
1188 |
t4=t2;
|
|
1189 |
for(i=2;i<ido;i+=2){
|
|
1190 |
t3+=2;
|
|
1191 |
t4+=2;
|
|
1192 |
t5=t3;
|
|
1193 |
t6=t4;
|
|
1194 |
for(k=0;k<l1;k++){
|
|
1195 |
ch[t5-1]=c1[t5-1]-c1[t6];
|
|
1196 |
ch[t6-1]=c1[t5-1]+c1[t6];
|
|
1197 |
ch[t5]=c1[t5]+c1[t6-1];
|
|
1198 |
ch[t6]=c1[t5]-c1[t6-1];
|
|
1199 |
t5+=ido;
|
|
1200 |
t6+=ido;
|
|
1201 |
}
|
|
1202 |
}
|
|
1203 |
}
|
|
1204 |
|
|
1205 |
L132:
|
|
1206 |
if(ido==1)return;
|
|
1207 |
|
|
1208 |
for(ik=0;ik<idl1;ik++)c2[ik]=ch2[ik];
|
|
1209 |
|
|
1210 |
t1=0;
|
|
1211 |
for(j=1;j<ip;j++){
|
|
1212 |
t2=(t1+=t0);
|
|
1213 |
for(k=0;k<l1;k++){
|
|
1214 |
c1[t2]=ch[t2];
|
|
1215 |
t2+=ido;
|
|
1216 |
}
|
|
1217 |
}
|
|
1218 |
|
|
1219 |
if(nbd>l1)goto L139;
|
|
1220 |
|
|
1221 |
is= -ido-1;
|
|
1222 |
t1=0;
|
|
1223 |
for(j=1;j<ip;j++){
|
|
1224 |
is+=ido;
|
|
1225 |
t1+=t0;
|
|
1226 |
idij=is;
|
|
1227 |
t2=t1;
|
|
1228 |
for(i=2;i<ido;i+=2){
|
|
1229 |
t2+=2;
|
|
1230 |
idij+=2;
|
|
1231 |
t3=t2;
|
|
1232 |
for(k=0;k<l1;k++){
|
|
1233 |
c1[t3-1]=wa[idij-1]*ch[t3-1]-wa[idij]*ch[t3];
|
|
1234 |
c1[t3]=wa[idij-1]*ch[t3]+wa[idij]*ch[t3-1];
|
|
1235 |
t3+=ido;
|
|
1236 |
}
|
|
1237 |
}
|
|
1238 |
}
|
|
1239 |
return;
|
|
1240 |
|
|
1241 |
L139:
|
|
1242 |
is= -ido-1;
|
|
1243 |
t1=0;
|
|
1244 |
for(j=1;j<ip;j++){
|
|
1245 |
is+=ido;
|
|
1246 |
t1+=t0;
|
|
1247 |
t2=t1;
|
|
1248 |
for(k=0;k<l1;k++){
|
|
1249 |
idij=is;
|
|
1250 |
t3=t2;
|
|
1251 |
for(i=2;i<ido;i+=2){
|
|
1252 |
idij+=2;
|
|
1253 |
t3+=2;
|
|
1254 |
c1[t3-1]=wa[idij-1]*ch[t3-1]-wa[idij]*ch[t3];
|
|
1255 |
c1[t3]=wa[idij-1]*ch[t3]+wa[idij]*ch[t3-1];
|
|
1256 |
}
|
|
1257 |
t2+=ido;
|
|
1258 |
}
|
|
1259 |
}
|
|
1260 |
}
|
|
1261 |
|
|
1262 |
STIN void drftb1(int n, double *c, double *ch, double *wa, int *ifac){
|
|
1263 |
int i,k1,l1,l2;
|
|
1264 |
int na;
|
|
1265 |
int nf,ip,iw,ix2,ix3,ido,idl1;
|
|
1266 |
|
|
1267 |
nf=ifac[1];
|
|
1268 |
na=0;
|
|
1269 |
l1=1;
|
|
1270 |
iw=1;
|
|
1271 |
|
|
1272 |
for(k1=0;k1<nf;k1++){
|
|
1273 |
ip=ifac[k1 + 2];
|
|
1274 |
l2=ip*l1;
|
|
1275 |
ido=n/l2;
|
|
1276 |
idl1=ido*l1;
|
|
1277 |
if(ip!=4)goto L103;
|
|
1278 |
ix2=iw+ido;
|
|
1279 |
ix3=ix2+ido;
|
|
1280 |
|
|
1281 |
if(na!=0)
|
|
1282 |
dradb4(ido,l1,ch,c,wa+iw-1,wa+ix2-1,wa+ix3-1);
|
|
1283 |
else
|
|
1284 |
dradb4(ido,l1,c,ch,wa+iw-1,wa+ix2-1,wa+ix3-1);
|
|
1285 |
na=1-na;
|
|
1286 |
goto L115;
|
|
1287 |
|
|
1288 |
L103:
|
|
1289 |
if(ip!=2)goto L106;
|
|
1290 |
|
|
1291 |
if(na!=0)
|
|
1292 |
dradb2(ido,l1,ch,c,wa+iw-1);
|
|
1293 |
else
|
|
1294 |
dradb2(ido,l1,c,ch,wa+iw-1);
|
|
1295 |
na=1-na;
|
|
1296 |
goto L115;
|
|
1297 |
|
|
1298 |
L106:
|
|
1299 |
if(ip!=3)goto L109;
|
|
1300 |
|
|
1301 |
ix2=iw+ido;
|
|
1302 |
if(na!=0)
|
|
1303 |
dradb3(ido,l1,ch,c,wa+iw-1,wa+ix2-1);
|
|
1304 |
else
|
|
1305 |
dradb3(ido,l1,c,ch,wa+iw-1,wa+ix2-1);
|
|
1306 |
na=1-na;
|
|
1307 |
goto L115;
|
|
1308 |
|
|
1309 |
L109:
|
|
1310 |
/* The radix five case can be translated later..... */
|
|
1311 |
/* if(ip!=5)goto L112;
|
|
1312 |
|
|
1313 |
ix2=iw+ido;
|
|
1314 |
ix3=ix2+ido;
|
|
1315 |
ix4=ix3+ido;
|
|
1316 |
if(na!=0)
|
|
1317 |
dradb5(ido,l1,ch,c,wa+iw-1,wa+ix2-1,wa+ix3-1,wa+ix4-1);
|
|
1318 |
else
|
|
1319 |
dradb5(ido,l1,c,ch,wa+iw-1,wa+ix2-1,wa+ix3-1,wa+ix4-1);
|
|
1320 |
na=1-na;
|
|
1321 |
goto L115;
|
|
1322 |
|
|
1323 |
L112:*/
|
|
1324 |
if(na!=0)
|
|
1325 |
dradbg(ido,ip,l1,idl1,ch,ch,ch,c,c,wa+iw-1);
|
|
1326 |
else
|
|
1327 |
dradbg(ido,ip,l1,idl1,c,c,c,ch,ch,wa+iw-1);
|
|
1328 |
if(ido==1)na=1-na;
|
|
1329 |
|
|
1330 |
L115:
|
|
1331 |
l1=l2;
|
|
1332 |
iw+=(ip-1)*ido;
|
|
1333 |
}
|
|
1334 |
|
|
1335 |
if(na==0)return;
|
|
1336 |
|
|
1337 |
for(i=0;i<n;i++)c[i]=ch[i];
|
|
1338 |
}
|
|
1339 |
|
|
1340 |
void __ogg_fdrfftb(int n, double *r, double *wsave, int *ifac){
|
|
1341 |
if (n == 1)return;
|
|
1342 |
drftb1(n, r, wsave, wsave+n, ifac);
|
|
1343 |
}
|
|
1344 |
|
|
1345 |
STIN void dcsqb1(int n,double *x,double *w,double *xh,int *ifac){
|
|
1346 |
int modn,i,k,kc;
|
|
1347 |
int np2,ns2;
|
|
1348 |
double xim1;
|
|
1349 |
|
|
1350 |
ns2=(n+1)>>1;
|
|
1351 |
np2=n;
|
|
1352 |
|
|
1353 |
for(i=2;i<n;i+=2){
|
|
1354 |
xim1=x[i-1]+x[i];
|
|
1355 |
x[i]-=x[i-1];
|
|
1356 |
x[i-1]=xim1;
|
|
1357 |
}
|
|
1358 |
|
|
1359 |
x[0]+=x[0];
|
|
1360 |
modn=n%2;
|
|
1361 |
if(modn==0)x[n-1]+=x[n-1];
|
|
1362 |
|
|
1363 |
__ogg_fdrfftb(n,x,xh,ifac);
|
|
1364 |
|
|
1365 |
kc=np2;
|
|
1366 |
for(k=1;k<ns2;k++){
|
|
1367 |
kc--;
|
|
1368 |
xh[k]=w[k-1]*x[kc]+w[kc-1]*x[k];
|
|
1369 |
xh[kc]=w[k-1]*x[k]-w[kc-1]*x[kc];
|
|
1370 |
}
|
|
1371 |
|
|
1372 |
if(modn==0)x[ns2]=w[ns2-1]*(x[ns2]+x[ns2]);
|
|
1373 |
|
|
1374 |
kc=np2;
|
|
1375 |
for(k=1;k<ns2;k++){
|
|
1376 |
kc--;
|
|
1377 |
x[k]=xh[k]+xh[kc];
|
|
1378 |
x[kc]=xh[k]-xh[kc];
|
|
1379 |
}
|
|
1380 |
x[0]+=x[0];
|
|
1381 |
}
|
|
1382 |
|
|
1383 |
void __ogg_fdcosqb(int n,double *x,double *wsave,int *ifac){
|
|
1384 |
static double tsqrt2 = 2.8284271247461900976033774484194;
|
|
1385 |
double x1;
|
|
1386 |
|
|
1387 |
if(n<2){
|
|
1388 |
x[0]*=4;
|
|
1389 |
return;
|
|
1390 |
}
|
|
1391 |
if(n==2){
|
|
1392 |
x1=(x[0]+x[1])*4;
|
|
1393 |
x[1]=tsqrt2*(x[0]-x[1]);
|
|
1394 |
x[0]=x1;
|
|
1395 |
return;
|
|
1396 |
}
|
|
1397 |
|
|
1398 |
dcsqb1(n,x,wsave,wsave+n,ifac);
|
|
1399 |
}
|