293
|
1 |
// Copyright (c) 2002-2010 Nokia Corporation and/or its subsidiary(-ies).
|
189
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32test\heap\t_heaphybridstress.cpp
|
|
15 |
// Overview:
|
|
16 |
// Tests RHybridHeap class: stress test
|
|
17 |
// API Information:
|
|
18 |
// RHybridHeap/RHeap
|
|
19 |
// Details:
|
|
20 |
// - Stress test heap implementation that allocates, frees
|
|
21 |
// and reallocates cells in random patterns, and checks the heap.
|
|
22 |
// - Allocated/reallocated buffer content is verified, when buffer is freed/reallocated.
|
|
23 |
// - Stress test with a single thread
|
|
24 |
// - Stress test with two threads that run concurrently.
|
|
25 |
// - Tests configured for slab, doug lea, paged and hybrid allocators
|
|
26 |
// Platforms/Drives/Compatibility:
|
|
27 |
// All
|
|
28 |
// Assumptions/Requirement/Pre-requisites:
|
|
29 |
// Failures and causes:
|
|
30 |
// Base Port information:
|
|
31 |
//
|
|
32 |
//
|
|
33 |
|
|
34 |
#include <e32test.h>
|
|
35 |
#include <e32hal.h>
|
|
36 |
#include <e32def.h>
|
|
37 |
#include <e32def_private.h>
|
|
38 |
#include "dla.h"
|
|
39 |
#include "slab.h"
|
|
40 |
#include "page_alloc.h"
|
|
41 |
#include "heap_hybrid.h"
|
|
42 |
|
|
43 |
// Needed for KHeapShrinkHysRatio which is now ROM 'patchdata'
|
|
44 |
#include "TestRHeapShrink.h"
|
|
45 |
|
|
46 |
//-------------------------------------------
|
|
47 |
|
|
48 |
//#define TSTDBG_PRINTMETA(a) a
|
|
49 |
#define TSTDBG_PRINTMETA(a)
|
|
50 |
|
|
51 |
//-------------------------------------------
|
|
52 |
|
|
53 |
|
|
54 |
#ifdef __EABI__
|
|
55 |
IMPORT_D extern const TInt KHeapMinCellSize;
|
|
56 |
#else
|
|
57 |
const TInt KHeapMinCellSize = 0;
|
|
58 |
#endif
|
|
59 |
|
|
60 |
RTest test(_L("T_HEAPSTRESS"));
|
|
61 |
|
|
62 |
#define TEST_ALIGN(p,a) test((TLinAddr(p)&((a)-1))==0)
|
|
63 |
|
|
64 |
|
|
65 |
#define TST_HEAP_MAX_LTH 0x4000000 // 64M
|
|
66 |
#define MAX_CELL_COUNT 0x100000 // 0x100 0x1000 0x10000 0x100000
|
|
67 |
#define MAX_THREAD_COUNT 2
|
|
68 |
LOCAL_D TUint8* HeapStressCell[MAX_THREAD_COUNT][MAX_CELL_COUNT];
|
|
69 |
LOCAL_D TInt HeapStressLen[MAX_THREAD_COUNT][MAX_CELL_COUNT];
|
|
70 |
|
|
71 |
enum TTestHybridHeapFunc {ETstOnlySlab, ETstOnlyDl, ETstOnlyPaged, ETstHybrid};
|
|
72 |
enum TTestType {ETestE32Test, ETestForeverOne, ETestForeverAll};
|
|
73 |
|
|
74 |
LOCAL_D TTimeIntervalMicroSeconds32 TickPeriod;
|
|
75 |
|
|
76 |
//--------- config parameters - begin
|
|
77 |
LOCAL_D TTestType TestType;
|
|
78 |
LOCAL_D TInt TestTimeAsSeconds;
|
|
79 |
LOCAL_D TBool TestForeverMultiThreadTest;
|
|
80 |
LOCAL_D TTestHybridHeapFunc TestHybridHeapFunc;
|
|
81 |
LOCAL_D TInt CurrMaxCellCount;
|
|
82 |
LOCAL_D TInt HeapMaxLength;
|
|
83 |
//--------- config parameters - end
|
|
84 |
|
|
85 |
LOCAL_D TBool DlOnly;
|
|
86 |
|
|
87 |
LOCAL_D TInt SlabThreshold;
|
|
88 |
LOCAL_D TInt PageThreshold;
|
|
89 |
|
|
90 |
|
|
91 |
struct TMetaData
|
|
92 |
{
|
|
93 |
TBool iDLOnly;
|
|
94 |
RFastLock* iLock;
|
|
95 |
TInt iChunkSize;
|
|
96 |
TInt iSlabThreshold;
|
|
97 |
TInt iPageThreshold;
|
|
98 |
TInt iSlabInitThreshold;
|
|
99 |
TUint32 iSlabConfigBits;
|
|
100 |
slab* iPartialPage;
|
|
101 |
slab* iFullSlab;
|
|
102 |
page* iSparePage;
|
|
103 |
TUint8* iMemBase;
|
|
104 |
TUint8 iSizeMap[(MAXSLABSIZE>>2)+1];
|
|
105 |
slabset iSlabAlloc[MAXSLABSIZE>>2];
|
|
106 |
slab** iSlabAllocRealRootAddress[MAXSLABSIZE>>2];
|
|
107 |
};
|
|
108 |
|
|
109 |
class TestHybridHeap
|
|
110 |
{
|
|
111 |
public:
|
|
112 |
static void GetHeapMetaData(RHeap& aHeap, TMetaData& aMeta);
|
|
113 |
};
|
|
114 |
|
|
115 |
void TestHybridHeap::GetHeapMetaData(RHeap& aHeap, TMetaData& aMeta)
|
|
116 |
{
|
|
117 |
RHybridHeap::STestCommand cmd;
|
|
118 |
cmd.iCommand = RHybridHeap::EHeapMetaData;
|
|
119 |
TInt ret = aHeap.DebugFunction(RHeap::EHybridHeap, &cmd, 0);
|
|
120 |
test(ret == KErrNone);
|
|
121 |
|
|
122 |
RHybridHeap* hybridHeap = (RHybridHeap*)cmd.iData;
|
|
123 |
|
|
124 |
aMeta.iDLOnly = hybridHeap->iDLOnly;
|
|
125 |
aMeta.iLock = &hybridHeap->iLock;
|
|
126 |
aMeta.iChunkSize = hybridHeap->iChunkSize;
|
|
127 |
aMeta.iSlabThreshold = hybridHeap->iSlabThreshold;
|
|
128 |
aMeta.iPageThreshold = hybridHeap->iPageThreshold;
|
|
129 |
aMeta.iSlabInitThreshold = hybridHeap->iSlabInitThreshold;
|
|
130 |
aMeta.iSlabConfigBits = hybridHeap->iSlabConfigBits;
|
|
131 |
aMeta.iPartialPage = hybridHeap->iPartialPage;
|
|
132 |
aMeta.iFullSlab = hybridHeap->iFullSlab;
|
|
133 |
aMeta.iSparePage = hybridHeap->iSparePage;
|
|
134 |
aMeta.iMemBase = hybridHeap->iMemBase;
|
|
135 |
|
|
136 |
TInt i;
|
|
137 |
TInt count;
|
|
138 |
count = sizeof(aMeta.iSizeMap)/sizeof(unsigned char);
|
|
139 |
for (i=0; i<count; ++i)
|
|
140 |
{
|
|
141 |
aMeta.iSizeMap[i] = hybridHeap->iSizeMap[i];
|
|
142 |
}
|
|
143 |
count = sizeof(aMeta.iSlabAlloc)/sizeof(slabset);
|
|
144 |
for (i=0; i<count; ++i)
|
|
145 |
{
|
|
146 |
aMeta.iSlabAlloc[i].iPartial = hybridHeap->iSlabAlloc[i].iPartial;
|
|
147 |
aMeta.iSlabAllocRealRootAddress[i] = &hybridHeap->iSlabAlloc[i].iPartial;
|
|
148 |
}
|
|
149 |
}
|
|
150 |
|
|
151 |
LOCAL_C void GetMeta(RHeap& aHeap, TMetaData& aMeta)
|
|
152 |
{
|
|
153 |
TestHybridHeap::GetHeapMetaData(aHeap, aMeta);
|
|
154 |
}
|
|
155 |
|
|
156 |
|
|
157 |
TSTDBG_PRINTMETA(
|
|
158 |
LOCAL_C void PrintMeta(const char* aText, TMetaData& aMeta)
|
|
159 |
{
|
|
160 |
RDebug::Printf("=========== HeapMetaData (local) - begin: %s", aText);
|
|
161 |
|
|
162 |
RDebug::Printf("iDLOnly: 0x%08x", aMeta.iDLOnly);
|
|
163 |
RDebug::Printf("iChunkSize: 0x%08x", aMeta.iChunkSize);
|
|
164 |
RDebug::Printf("iSlabThreshold: 0x%08x / %d", aMeta.iSlabThreshold, aMeta.iSlabThreshold);
|
|
165 |
RDebug::Printf("iPageThreshold: 0x%08x / %d", aMeta.iPageThreshold, aMeta.iPageThreshold);
|
|
166 |
RDebug::Printf("iSlabInitThreshold: 0x%08x / %d", aMeta.iSlabInitThreshold, aMeta.iSlabInitThreshold);
|
|
167 |
RDebug::Printf("iSlabConfigBits: 0x%08x", aMeta.iSlabConfigBits);
|
|
168 |
RDebug::Printf("iPartialPage: 0x%08x", aMeta.iPartialPage);
|
|
169 |
RDebug::Printf("iFullSlab: 0x%08x", aMeta.iFullSlab);
|
|
170 |
RDebug::Printf("iSparePage: 0x%08x", aMeta.iSparePage);
|
|
171 |
RDebug::Printf("iMemBase: 0x%08x", aMeta.iMemBase);
|
|
172 |
|
|
173 |
TInt i;
|
|
174 |
TInt count;
|
|
175 |
count = sizeof(aMeta.iSizeMap)/sizeof(unsigned char);
|
|
176 |
for (i=0; i<count; ++i)
|
|
177 |
{
|
|
178 |
RDebug::Printf("iSizeMap[%d]: %d", i, aMeta.iSizeMap[i]);
|
|
179 |
}
|
|
180 |
count = sizeof(aMeta.iSlabAlloc)/sizeof(slabset);
|
|
181 |
for (i=0; i<count; ++i)
|
|
182 |
{
|
|
183 |
RDebug::Printf("iSlabAlloc[%d].iPartial: 0x%08x", i, aMeta.iSlabAlloc[i].iPartial);
|
|
184 |
}
|
|
185 |
for (i=0; i<count; ++i)
|
|
186 |
{
|
|
187 |
RDebug::Printf("iSlabAllocRealRootAddress[%d]: 0x%08x", i, aMeta.iSlabAllocRealRootAddress[i]);
|
|
188 |
}
|
|
189 |
RDebug::Printf("=========== HeapMetaData (local) - end");
|
|
190 |
}
|
|
191 |
)
|
|
192 |
|
|
193 |
LOCAL_C void ConfHeap(RHeap* aHeap)
|
|
194 |
{
|
|
195 |
RHybridHeap::STestCommand cmd;
|
|
196 |
|
|
197 |
if (TestHybridHeapFunc == ETstOnlySlab)
|
|
198 |
{
|
|
199 |
cmd.iCommand = RHybridHeap::ESetConfig;
|
|
200 |
cmd.iConfig.iSlabBits = 0xabe;
|
|
201 |
cmd.iConfig.iDelayedSlabThreshold = 0; // 0 -> use slab at once from the beginning
|
|
202 |
cmd.iConfig.iPagePower = 0; // 0 -> no page allocator
|
|
203 |
}
|
|
204 |
else if (TestHybridHeapFunc == ETstOnlyDl)
|
|
205 |
{
|
|
206 |
cmd.iCommand = RHybridHeap::ESetConfig;
|
|
207 |
cmd.iConfig.iSlabBits = 0xabe;
|
|
208 |
cmd.iConfig.iDelayedSlabThreshold = 0x40000000; // 1G -> slab never used
|
|
209 |
cmd.iConfig.iPagePower = 0; // 0 -> no page allocator
|
|
210 |
}
|
|
211 |
else if (TestHybridHeapFunc == ETstOnlyPaged)
|
|
212 |
{
|
|
213 |
cmd.iCommand = RHybridHeap::ESetConfig;
|
|
214 |
cmd.iConfig.iSlabBits = 0xabe;
|
|
215 |
cmd.iConfig.iDelayedSlabThreshold = 0x40000000; // 1G -> slab never used
|
|
216 |
cmd.iConfig.iPagePower = 14; // min page 14 -> 16K
|
|
217 |
}
|
|
218 |
else if (TestHybridHeapFunc == ETstHybrid)
|
|
219 |
{
|
|
220 |
cmd.iCommand = RHybridHeap::ESetConfig;
|
|
221 |
cmd.iConfig.iSlabBits = 0xabe;
|
|
222 |
cmd.iConfig.iDelayedSlabThreshold = 0; // 0 -> use slab at once from the beginning
|
|
223 |
cmd.iConfig.iPagePower = 14; // min page 14 -> 16K
|
|
224 |
}
|
|
225 |
else
|
|
226 |
{
|
|
227 |
test(0);
|
|
228 |
}
|
|
229 |
|
|
230 |
TInt ret = aHeap->DebugFunction(RHeap::EHybridHeap, &cmd, 0);
|
|
231 |
test(ret == KErrNone);
|
|
232 |
}
|
|
233 |
|
|
234 |
LOCAL_C TInt MinPagedAllocLength(void)
|
|
235 |
{
|
|
236 |
return (1 << PageThreshold);
|
|
237 |
}
|
|
238 |
|
|
239 |
LOCAL_C TUint32 RandomPagedLength(TUint32 aRandom)
|
|
240 |
{
|
|
241 |
TUint32 ret;
|
|
242 |
ret = aRandom;
|
|
243 |
ret <<= PageThreshold;
|
|
244 |
if (TestHybridHeapFunc == ETstOnlyPaged)
|
|
245 |
{
|
|
246 |
//ret &= 0xfffff; // below 1M
|
|
247 |
ret &= 0x7ffff; // below 512K
|
|
248 |
}
|
|
249 |
else
|
|
250 |
{
|
|
251 |
ret &= 0x1ffff; // below 128K
|
|
252 |
}
|
|
253 |
if (ret == 0)
|
|
254 |
{
|
|
255 |
ret = MinPagedAllocLength();
|
|
256 |
}
|
|
257 |
return ret;
|
|
258 |
}
|
|
259 |
|
|
260 |
#if 0
|
|
261 |
LOCAL_C TUint TicksAsMilliSeconds(TUint aTicks)
|
|
262 |
{
|
|
263 |
TUint time = TUint((TUint64)aTicks*(TUint64)TickPeriod.Int()/(TUint64)1000);
|
|
264 |
return time;
|
|
265 |
}
|
|
266 |
#endif
|
|
267 |
|
|
268 |
LOCAL_C TBool IsDlOnly(void)
|
|
269 |
{
|
|
270 |
TestHybridHeapFunc = ETstHybrid;
|
|
271 |
|
|
272 |
RHeap* heap;
|
|
273 |
heap = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x4000, 0x1000, 4);
|
|
274 |
test(heap != NULL);
|
|
275 |
|
|
276 |
ConfHeap(heap);
|
|
277 |
|
|
278 |
TMetaData metaData;
|
|
279 |
GetMeta(*heap, metaData);
|
|
280 |
|
|
281 |
heap->Close();
|
|
282 |
return metaData.iDLOnly;
|
|
283 |
}
|
|
284 |
|
|
285 |
LOCAL_C RHeap* CreateTestHeap(TInt aAlign)
|
|
286 |
{
|
|
287 |
if (HeapMaxLength > TST_HEAP_MAX_LTH)
|
|
288 |
{
|
|
289 |
HeapMaxLength = TST_HEAP_MAX_LTH;
|
|
290 |
}
|
|
291 |
|
|
292 |
if (CurrMaxCellCount > MAX_CELL_COUNT)
|
|
293 |
{
|
|
294 |
CurrMaxCellCount = MAX_CELL_COUNT;
|
|
295 |
}
|
|
296 |
|
|
297 |
RHeap* heap;
|
|
298 |
heap = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, HeapMaxLength, 0x1000, aAlign);
|
|
299 |
test(heap != NULL);
|
|
300 |
|
|
301 |
ConfHeap(heap);
|
|
302 |
|
|
303 |
TMetaData metaData;
|
|
304 |
GetMeta(*heap, metaData);
|
|
305 |
|
|
306 |
if (TestHybridHeapFunc == ETstOnlySlab)
|
|
307 |
{
|
|
308 |
SlabThreshold = metaData.iSlabThreshold;
|
|
309 |
test(SlabThreshold != 0);
|
|
310 |
}
|
|
311 |
else if (TestHybridHeapFunc == ETstOnlyDl)
|
|
312 |
{
|
|
313 |
}
|
|
314 |
else if (TestHybridHeapFunc == ETstOnlyPaged)
|
|
315 |
{
|
|
316 |
PageThreshold = metaData.iPageThreshold;
|
|
317 |
test(PageThreshold >= 14);
|
|
318 |
}
|
|
319 |
else if (TestHybridHeapFunc == ETstHybrid)
|
|
320 |
{
|
|
321 |
}
|
|
322 |
else
|
|
323 |
{
|
|
324 |
test(0);
|
|
325 |
}
|
|
326 |
|
|
327 |
return heap;
|
|
328 |
}
|
|
329 |
|
|
330 |
//-------------------------------------------------------------------
|
|
331 |
|
|
332 |
struct STestCell
|
|
333 |
{
|
|
334 |
enum {EMagic = 0xb8aa3b29};
|
|
335 |
|
|
336 |
TUint32 iLength;
|
|
337 |
TUint32 iData[1];
|
|
338 |
|
|
339 |
void Set(TInt aLength);
|
|
340 |
void Verify(TInt aLength);
|
|
341 |
void Verify(const TAny* aInitPtr, TInt aInitLength, TInt aLength);
|
|
342 |
};
|
|
343 |
|
|
344 |
void STestCell::Set(TInt aLength)
|
|
345 |
{
|
|
346 |
TInt i;
|
|
347 |
TUint32 x = (TUint32)this ^ (TUint32)aLength ^ (TUint32)EMagic;
|
|
348 |
if (aLength < (TInt) sizeof(iLength))
|
|
349 |
{
|
|
350 |
return;
|
|
351 |
}
|
|
352 |
iLength = x;
|
|
353 |
aLength /= sizeof(TUint32);
|
|
354 |
for (i=0; i<aLength-1; ++i)
|
|
355 |
{
|
|
356 |
x *= 69069;
|
|
357 |
x += 41;
|
|
358 |
iData[i] = x;
|
|
359 |
}
|
|
360 |
}
|
|
361 |
|
|
362 |
void STestCell::Verify(TInt aLength)
|
|
363 |
{
|
|
364 |
Verify(this, aLength, aLength);
|
|
365 |
}
|
|
366 |
|
|
367 |
void STestCell::Verify(const TAny* aInitPtr, TInt aInitLength, TInt aLength)
|
|
368 |
{
|
|
369 |
TInt i;
|
|
370 |
TUint32 x = (TUint32)aInitPtr ^ (TUint32)aInitLength ^ (TUint32)EMagic;
|
|
371 |
if (aLength < (TInt) sizeof(iLength))
|
|
372 |
{
|
|
373 |
return;
|
|
374 |
}
|
|
375 |
test(iLength == x);
|
|
376 |
aLength /= sizeof(TUint32);
|
|
377 |
for (i=0; i<aLength-1; ++i)
|
|
378 |
{
|
|
379 |
x *= 69069;
|
|
380 |
x += 41;
|
|
381 |
test(iData[i] == x);
|
|
382 |
}
|
|
383 |
}
|
|
384 |
|
|
385 |
class RTestHeap : public RHeap
|
|
386 |
{
|
|
387 |
public:
|
|
388 |
TInt CheckAllocatedCell(const TAny* aCell) const;
|
|
389 |
void FullCheckAllocatedCell(const TAny* aCell) const;
|
|
390 |
TAny* TestAlloc(TInt aSize);
|
|
391 |
void TestFree(TAny* aPtr);
|
|
392 |
TAny* TestReAlloc(TAny* aPtr, TInt aSize, TInt aMode=0);
|
|
393 |
void FullCheck();
|
|
394 |
static void WalkFullCheckCell(TAny* aPtr, TCellType aType, TAny* aCell, TInt aLen);
|
|
395 |
};
|
|
396 |
|
|
397 |
TInt RTestHeap::CheckAllocatedCell(const TAny* aCell) const
|
|
398 |
{
|
|
399 |
TInt len = AllocLen(aCell);
|
|
400 |
return len;
|
|
401 |
}
|
|
402 |
|
|
403 |
void RTestHeap::FullCheckAllocatedCell(const TAny* aCell) const
|
|
404 |
{
|
|
405 |
((STestCell*)aCell)->Verify(CheckAllocatedCell(aCell));
|
|
406 |
}
|
|
407 |
|
|
408 |
TAny* RTestHeap::TestAlloc(TInt aSize)
|
|
409 |
{
|
|
410 |
TAny* p = Alloc(aSize);
|
|
411 |
if (p)
|
|
412 |
{
|
|
413 |
TInt len = CheckAllocatedCell(p);
|
|
414 |
test(len>=aSize);
|
|
415 |
((STestCell*)p)->Set(len);
|
|
416 |
}
|
|
417 |
return p;
|
|
418 |
}
|
|
419 |
|
|
420 |
void RTestHeap::TestFree(TAny* aPtr)
|
|
421 |
{
|
|
422 |
if (aPtr)
|
|
423 |
{
|
|
424 |
FullCheckAllocatedCell(aPtr);
|
|
425 |
}
|
|
426 |
Free(aPtr);
|
|
427 |
}
|
|
428 |
|
|
429 |
TAny* RTestHeap::TestReAlloc(TAny* aPtr, TInt aSize, TInt aMode)
|
|
430 |
{
|
|
431 |
TInt old_len = aPtr ? CheckAllocatedCell(aPtr) : 0;
|
|
432 |
if (aPtr)
|
|
433 |
((STestCell*)aPtr)->Verify(old_len);
|
|
434 |
TAny* p = ReAlloc(aPtr, aSize, aMode);
|
|
435 |
if (!p)
|
|
436 |
{
|
|
437 |
((STestCell*)aPtr)->Verify(old_len);
|
|
438 |
return p;
|
|
439 |
}
|
|
440 |
TInt new_len = CheckAllocatedCell(p);
|
|
441 |
test(new_len>=aSize);
|
|
442 |
if (p == aPtr)
|
|
443 |
{
|
|
444 |
((STestCell*)p)->Verify(p, old_len, Min(old_len, new_len));
|
|
445 |
if (new_len != old_len)
|
|
446 |
((STestCell*)p)->Set(new_len);
|
|
447 |
return p;
|
|
448 |
}
|
|
449 |
test(!(aMode & ENeverMove));
|
|
450 |
test((new_len > old_len) || (aMode & EAllowMoveOnShrink));
|
|
451 |
if (old_len)
|
|
452 |
((STestCell*)p)->Verify(aPtr, old_len, Min(old_len, aSize));
|
|
453 |
((STestCell*)p)->Set(new_len);
|
|
454 |
return p;
|
|
455 |
}
|
|
456 |
|
|
457 |
struct SHeapCellInfo
|
|
458 |
{
|
|
459 |
RTestHeap* iHeap;
|
|
460 |
TInt iTotalAlloc;
|
|
461 |
TInt iTotalAllocSize;
|
|
462 |
TInt iTotalFree;
|
|
463 |
TUint8* iNextCell;
|
|
464 |
};
|
|
465 |
|
|
466 |
void RTestHeap::WalkFullCheckCell(TAny* aPtr, TCellType aType, TAny* aCell, TInt aLen)
|
|
467 |
{
|
|
468 |
(void)aCell;
|
|
469 |
::SHeapCellInfo& info = *(::SHeapCellInfo*)aPtr;
|
|
470 |
switch(aType)
|
|
471 |
{
|
|
472 |
case EGoodAllocatedCell:
|
|
473 |
{
|
|
474 |
TInt len = aLen;
|
|
475 |
info.iTotalAllocSize += len;
|
|
476 |
STestCell* pT = (STestCell*)aCell;
|
|
477 |
++info.iTotalAlloc;
|
|
478 |
pT->Verify(len);
|
|
479 |
break;
|
|
480 |
}
|
|
481 |
case EGoodFreeCell:
|
|
482 |
{
|
|
483 |
++info.iTotalFree;
|
|
484 |
break;
|
|
485 |
}
|
|
486 |
default:
|
|
487 |
test.Printf(_L("TYPE=%d ??\n"),aType);
|
|
488 |
test(0);
|
|
489 |
break;
|
|
490 |
}
|
|
491 |
}
|
|
492 |
|
|
493 |
void RTestHeap::FullCheck()
|
|
494 |
{
|
|
495 |
::SHeapCellInfo info;
|
|
496 |
Mem::FillZ(&info, sizeof(info));
|
|
497 |
info.iHeap = this;
|
|
498 |
DebugFunction(EWalk, (TAny*)&WalkFullCheckCell, &info);
|
|
499 |
TInt count = AllocSize(iTotalAllocSize);
|
|
500 |
test(info.iTotalAlloc == count);
|
|
501 |
test(info.iTotalAllocSize == iTotalAllocSize);
|
|
502 |
}
|
|
503 |
|
|
504 |
|
|
505 |
struct STestStress
|
|
506 |
{
|
|
507 |
RThread iThread;
|
|
508 |
volatile TBool iStop;
|
|
509 |
TInt iAllocs;
|
|
510 |
TInt iFailedAllocs;
|
|
511 |
TInt iFrees;
|
|
512 |
TInt iReAllocs;
|
|
513 |
TInt iFailedReAllocs;
|
|
514 |
TInt iChecks;
|
|
515 |
TUint32 iSeed;
|
|
516 |
RAllocator* iAllocator;
|
|
517 |
TInt iThreadIndex;
|
|
518 |
|
|
519 |
TUint32 Random();
|
|
520 |
};
|
|
521 |
|
|
522 |
TUint32 FirstSeed(TInt aThreadIndex)
|
|
523 |
{
|
|
524 |
static TUint32 seed0 = 0xb504f334;
|
|
525 |
static TUint32 seed1 = 0xddb3d743;
|
|
526 |
static TBool first = ETrue;
|
|
527 |
|
|
528 |
TUint32 ret;
|
|
529 |
|
|
530 |
if (aThreadIndex == 0)
|
|
531 |
{
|
|
532 |
ret = seed0;
|
|
533 |
}
|
|
534 |
else
|
|
535 |
{
|
|
536 |
ret = seed1;
|
|
537 |
}
|
|
538 |
|
|
539 |
if (first)
|
|
540 |
{
|
|
541 |
first = EFalse;
|
|
542 |
}
|
|
543 |
|
|
544 |
if (aThreadIndex == 0)
|
|
545 |
{
|
|
546 |
seed0 *= 69069;
|
|
547 |
seed0 += 41;
|
|
548 |
}
|
|
549 |
else
|
|
550 |
{
|
|
551 |
seed1 *= 69069;
|
|
552 |
seed1 += 41;
|
|
553 |
}
|
|
554 |
|
|
555 |
test.Printf(_L("FirstSeed: 0x%08x\n"), ret);
|
|
556 |
return ret;
|
|
557 |
}
|
|
558 |
|
|
559 |
TUint32 STestStress::Random()
|
|
560 |
{
|
|
561 |
iSeed *= 69069;
|
|
562 |
iSeed += 41;
|
|
563 |
return iSeed;
|
|
564 |
}
|
|
565 |
|
|
566 |
TInt RandomLength(TUint32 aRandom)
|
|
567 |
{
|
|
568 |
TUint32 ret = 0;
|
|
569 |
|
|
570 |
if (TestHybridHeapFunc == ETstOnlySlab)
|
|
571 |
{
|
|
572 |
test(SlabThreshold != 0);
|
|
573 |
ret = aRandom;
|
|
574 |
TInt realSlabThreshold = SlabThreshold;
|
|
575 |
#ifdef _DEBUG
|
|
576 |
realSlabThreshold -= RHeap::EDebugHdrSize;
|
|
577 |
#endif
|
|
578 |
ret %= realSlabThreshold;
|
|
579 |
}
|
|
580 |
else if (TestHybridHeapFunc == ETstOnlyDl)
|
|
581 |
{
|
|
582 |
TUint8 x = (TUint8)aRandom;
|
|
583 |
if (x & 0x80)
|
|
584 |
{
|
|
585 |
ret = x & 0x7f;
|
|
586 |
}
|
|
587 |
else
|
|
588 |
{
|
|
589 |
ret = (x & 0x7f) << 7;
|
|
590 |
}
|
|
591 |
}
|
|
592 |
else if (TestHybridHeapFunc == ETstOnlyPaged)
|
|
593 |
{
|
|
594 |
ret = RandomPagedLength(aRandom);
|
|
595 |
}
|
|
596 |
else if (TestHybridHeapFunc == ETstHybrid)
|
|
597 |
{
|
|
598 |
TUint8 x = (TUint8)aRandom;
|
|
599 |
if (x & 0x80)
|
|
600 |
{
|
|
601 |
ret = x & 0x7f;
|
|
602 |
}
|
|
603 |
else
|
|
604 |
{
|
|
605 |
if (x & 0x10)
|
|
606 |
{
|
|
607 |
ret = (x & 0x7f) << 7;
|
|
608 |
}
|
|
609 |
else
|
|
610 |
{
|
|
611 |
ret = RandomPagedLength(aRandom);
|
|
612 |
}
|
|
613 |
}
|
|
614 |
}
|
|
615 |
else
|
|
616 |
{
|
|
617 |
test(0);
|
|
618 |
}
|
|
619 |
|
|
620 |
return (TInt)ret;
|
|
621 |
}
|
|
622 |
|
|
623 |
TInt HeapStress(TAny* aPtr)
|
|
624 |
{
|
|
625 |
STestStress& stress = *(STestStress*)aPtr;
|
|
626 |
RTestHeap* heap = (RTestHeap*)&User::Allocator();
|
|
627 |
TUint8** cell;
|
|
628 |
TInt* len;
|
|
629 |
|
|
630 |
if (stress.iThreadIndex >= MAX_THREAD_COUNT)
|
|
631 |
{
|
|
632 |
test(0);
|
|
633 |
}
|
|
634 |
cell = &HeapStressCell[stress.iThreadIndex][0];
|
|
635 |
len = &HeapStressLen[stress.iThreadIndex][0];
|
|
636 |
|
|
637 |
Mem::FillZ(cell, sizeof(*cell)*CurrMaxCellCount);
|
|
638 |
Mem::FillZ(len, sizeof(*len)*CurrMaxCellCount);
|
|
639 |
|
|
640 |
RThread::Rendezvous(KErrNone);
|
|
641 |
while (!stress.iStop)
|
|
642 |
{
|
|
643 |
// allocate all cells
|
|
644 |
TInt i;
|
|
645 |
for (i=0; i<CurrMaxCellCount; ++i)
|
|
646 |
{
|
|
647 |
if (!cell[i])
|
|
648 |
{
|
|
649 |
++stress.iAllocs;
|
|
650 |
cell[i] = (TUint8*)heap->TestAlloc(RandomLength(stress.Random()));
|
|
651 |
if (cell[i])
|
|
652 |
len[i] = heap->AllocLen(cell[i]);
|
|
653 |
else
|
|
654 |
++stress.iFailedAllocs;
|
|
655 |
}
|
|
656 |
}
|
|
657 |
|
|
658 |
// free some cells
|
|
659 |
TInt n = (CurrMaxCellCount/4) + (stress.Random() & (CurrMaxCellCount/2-1));
|
|
660 |
while (--n)
|
|
661 |
{
|
|
662 |
i = stress.Random() & (CurrMaxCellCount-1);
|
|
663 |
if (cell[i])
|
|
664 |
{
|
|
665 |
test(heap->AllocLen(cell[i]) == len[i]);
|
|
666 |
heap->TestFree(cell[i]);
|
|
667 |
cell[i] = NULL;
|
|
668 |
len[i] = 0;
|
|
669 |
++stress.iFrees;
|
|
670 |
}
|
|
671 |
}
|
|
672 |
|
|
673 |
// realloc some cells
|
|
674 |
n = (CurrMaxCellCount/4) + (stress.Random() & (CurrMaxCellCount/2-1));
|
|
675 |
while (--n)
|
|
676 |
{
|
|
677 |
TUint32 rn = stress.Random();
|
|
678 |
i = (rn >> 8) & (CurrMaxCellCount-1);
|
|
679 |
TInt new_len = RandomLength(rn);
|
|
680 |
if (cell[i])
|
|
681 |
{
|
|
682 |
test(heap->AllocLen(cell[i]) == len[i]);
|
|
683 |
++stress.iReAllocs;
|
|
684 |
TUint8* p = (TUint8*)heap->TestReAlloc(cell[i], new_len, rn >> 16);
|
|
685 |
if (p)
|
|
686 |
{
|
|
687 |
cell[i] = p;
|
|
688 |
len[i] = heap->AllocLen(p);
|
|
689 |
}
|
|
690 |
else
|
|
691 |
{
|
|
692 |
++stress.iFailedReAllocs;
|
|
693 |
}
|
|
694 |
}
|
|
695 |
}
|
|
696 |
|
|
697 |
// check the heap
|
|
698 |
heap->Check();
|
|
699 |
++stress.iChecks;
|
|
700 |
}
|
|
701 |
|
|
702 |
return 0;
|
|
703 |
}
|
|
704 |
|
|
705 |
void PrintSummary(STestStress& aStress)
|
|
706 |
{
|
|
707 |
test.Printf(_L("Total Allocs : %11d\n"), aStress.iAllocs);
|
|
708 |
test.Printf(_L("Failed Allocs : %11d\n"), aStress.iFailedAllocs);
|
|
709 |
test.Printf(_L("Total Frees : %11d\n"), aStress.iFrees);
|
|
710 |
test.Printf(_L("Total ReAllocs : %11d\n"), aStress.iReAllocs);
|
|
711 |
test.Printf(_L("Failed ReAllocs : %11d\n"), aStress.iFailedReAllocs);
|
|
712 |
test.Printf(_L("Heap checks : %11d\n"), aStress.iChecks);
|
|
713 |
}
|
|
714 |
|
|
715 |
void CreateStressThread(STestStress& aStress)
|
|
716 |
{
|
|
717 |
RThread& thread = aStress.iThread;
|
|
718 |
TInt err = thread.Create(KNullDesC(), &HeapStress, 0x2000, aStress.iAllocator, &aStress);
|
|
719 |
test(err==KErrNone);
|
|
720 |
thread.SetPriority(EPriorityLess);
|
|
721 |
TRequestStatus status;
|
|
722 |
thread.Rendezvous(status);
|
|
723 |
test(status == KRequestPending);
|
|
724 |
thread.Resume();
|
|
725 |
User::WaitForRequest(status);
|
|
726 |
test(status == KErrNone);
|
|
727 |
test(thread.ExitType() == EExitPending);
|
|
728 |
thread.SetPriority(EPriorityMuchLess);
|
|
729 |
}
|
|
730 |
|
|
731 |
void StopStressThread(STestStress& aStress)
|
|
732 |
{
|
|
733 |
RThread& thread = aStress.iThread;
|
|
734 |
TRequestStatus status;
|
|
735 |
thread.Logon(status);
|
|
736 |
aStress.iStop = ETrue;
|
|
737 |
User::WaitForRequest(status);
|
|
738 |
const TDesC& exitCat = thread.ExitCategory();
|
|
739 |
TInt exitReason = thread.ExitReason();
|
|
740 |
TInt exitType = thread.ExitType();
|
|
741 |
test.Printf(_L("Exit type %d,%d,%S\n"), exitType, exitReason, &exitCat);
|
|
742 |
test(exitType == EExitKill);
|
|
743 |
test(exitReason == KErrNone);
|
|
744 |
test(status == KErrNone);
|
|
745 |
PrintSummary(aStress);
|
|
746 |
}
|
|
747 |
|
|
748 |
void WaitForKey(STestStress* aStress1, STestStress* aStress2)
|
|
749 |
{
|
|
750 |
TRequestStatus keyStatus;
|
|
751 |
CConsoleBase* console = test.Console();
|
|
752 |
console->Read(keyStatus);
|
|
753 |
|
|
754 |
for (;;)
|
|
755 |
{
|
|
756 |
User::WaitForRequest(keyStatus);
|
|
757 |
if (keyStatus != KRequestPending)
|
|
758 |
{
|
|
759 |
test(keyStatus == KErrNone);
|
|
760 |
if (console->KeyCode() == EKeyEscape)
|
|
761 |
{
|
|
762 |
test.Printf(_L("Forever test aborted by user\n"));
|
|
763 |
break;
|
|
764 |
}
|
|
765 |
else if (console->KeyCode() == EKeySpace)
|
|
766 |
{
|
|
767 |
if (aStress1 != NULL)
|
|
768 |
{
|
|
769 |
PrintSummary(*aStress1);
|
|
770 |
}
|
|
771 |
if (aStress2 != NULL)
|
|
772 |
{
|
|
773 |
PrintSummary(*aStress2);
|
|
774 |
}
|
|
775 |
}
|
|
776 |
}
|
|
777 |
console->Read(keyStatus);
|
|
778 |
}
|
|
779 |
}
|
|
780 |
|
|
781 |
TBool WaitForTimeoutOrKey(STestStress* aStress1, STestStress* aStress2)
|
|
782 |
{
|
|
783 |
TBool abortedByUser = EFalse;
|
|
784 |
RTimer timer;
|
|
785 |
TRequestStatus timerStatus;
|
|
786 |
TInt err = timer.CreateLocal();
|
|
787 |
test(err == KErrNone);
|
|
788 |
timer.After(timerStatus, TestTimeAsSeconds*1000000);
|
|
789 |
|
|
790 |
TRequestStatus keyStatus;
|
|
791 |
CConsoleBase* console = test.Console();
|
|
792 |
console->Read(keyStatus);
|
|
793 |
|
|
794 |
for (;;)
|
|
795 |
{
|
|
796 |
User::WaitForRequest(keyStatus, timerStatus);
|
|
797 |
if (keyStatus != KRequestPending)
|
|
798 |
{
|
|
799 |
test(keyStatus == KErrNone);
|
|
800 |
if (console->KeyCode() == EKeyEscape)
|
|
801 |
{
|
|
802 |
abortedByUser = ETrue;
|
|
803 |
timer.Cancel();
|
|
804 |
test.Printf(_L("Forever test aborted by user\n"));
|
|
805 |
break;
|
|
806 |
}
|
|
807 |
else if (console->KeyCode() == EKeySpace)
|
|
808 |
{
|
|
809 |
if (aStress1 != NULL)
|
|
810 |
{
|
|
811 |
PrintSummary(*aStress1);
|
|
812 |
}
|
|
813 |
if (aStress2 != NULL)
|
|
814 |
{
|
|
815 |
PrintSummary(*aStress2);
|
|
816 |
}
|
|
817 |
}
|
|
818 |
console->Read(keyStatus);
|
|
819 |
}
|
|
820 |
if (timerStatus != KRequestPending)
|
|
821 |
{
|
|
822 |
if (timerStatus != KErrNone)
|
|
823 |
{
|
|
824 |
test(0);
|
|
825 |
}
|
|
826 |
console->ReadCancel();
|
|
827 |
break;
|
|
828 |
}
|
|
829 |
}
|
|
830 |
timer.Close();
|
|
831 |
return abortedByUser;
|
|
832 |
}
|
|
833 |
|
|
834 |
TBool DoStressTest1(RAllocator* aAllocator)
|
|
835 |
{
|
|
836 |
TBool abortedByUser = EFalse;
|
|
837 |
|
|
838 |
RTestHeap* heap = (RTestHeap*)aAllocator;
|
|
839 |
//test.Printf(_L("Test Stress 1: max=0x%x\n"), heap->MaxLength());
|
|
840 |
|
|
841 |
STestStress stress;
|
|
842 |
Mem::FillZ(&stress, sizeof(STestStress));
|
|
843 |
stress.iAllocator = aAllocator;
|
|
844 |
stress.iThreadIndex = 0;
|
|
845 |
if (TestType == ETestForeverAll)
|
|
846 |
{
|
|
847 |
stress.iSeed = FirstSeed(stress.iThreadIndex);
|
|
848 |
}
|
|
849 |
else
|
|
850 |
{
|
|
851 |
stress.iSeed = 0xb504f334;;
|
|
852 |
}
|
|
853 |
|
|
854 |
CreateStressThread(stress);
|
|
855 |
|
|
856 |
if (TestType == ETestE32Test)
|
|
857 |
{
|
|
858 |
User::After(TestTimeAsSeconds*1000000);
|
|
859 |
}
|
|
860 |
else if (TestType == ETestForeverAll)
|
|
861 |
{
|
|
862 |
abortedByUser = WaitForTimeoutOrKey(&stress, NULL);
|
|
863 |
}
|
|
864 |
else if (TestType == ETestForeverOne)
|
|
865 |
{
|
|
866 |
WaitForKey(&stress, NULL);
|
|
867 |
abortedByUser = ETrue;
|
|
868 |
}
|
|
869 |
else
|
|
870 |
{
|
|
871 |
test(0);
|
|
872 |
}
|
|
873 |
|
|
874 |
StopStressThread(stress);
|
|
875 |
CLOSE_AND_WAIT(stress.iThread);
|
|
876 |
heap->FullCheck();
|
|
877 |
return abortedByUser;
|
|
878 |
}
|
|
879 |
|
|
880 |
TBool DoStressTest2(RAllocator* aAllocator)
|
|
881 |
{
|
|
882 |
TBool abortedByUser = EFalse;
|
|
883 |
|
|
884 |
RTestHeap* heap = (RTestHeap*)aAllocator;
|
|
885 |
//test.Printf(_L("Test Stress 2: max=0x%x\n"), heap->MaxLength());
|
|
886 |
|
|
887 |
STestStress stress1;
|
|
888 |
Mem::FillZ(&stress1, sizeof(STestStress));
|
|
889 |
stress1.iAllocator = aAllocator;
|
|
890 |
stress1.iThreadIndex = 0;
|
|
891 |
|
|
892 |
STestStress stress2;
|
|
893 |
Mem::FillZ(&stress2, sizeof(STestStress));
|
|
894 |
stress2.iAllocator = aAllocator;
|
|
895 |
stress2.iThreadIndex = 1;
|
|
896 |
|
|
897 |
if (TestType == ETestForeverAll)
|
|
898 |
{
|
|
899 |
stress1.iSeed = FirstSeed(stress1.iThreadIndex);
|
|
900 |
stress2.iSeed = FirstSeed(stress2.iThreadIndex);
|
|
901 |
}
|
|
902 |
else
|
|
903 |
{
|
|
904 |
stress1.iSeed = 0xb504f334;
|
|
905 |
stress2.iSeed = 0xddb3d743;
|
|
906 |
}
|
|
907 |
CreateStressThread(stress1);
|
|
908 |
CreateStressThread(stress2);
|
|
909 |
|
|
910 |
if (TestType == ETestE32Test)
|
|
911 |
{
|
|
912 |
User::After(2*TestTimeAsSeconds*1000000);
|
|
913 |
}
|
|
914 |
else if (TestType == ETestForeverAll)
|
|
915 |
{
|
|
916 |
abortedByUser = WaitForTimeoutOrKey(&stress1, &stress2);
|
|
917 |
}
|
|
918 |
else if (TestType == ETestForeverOne)
|
|
919 |
{
|
|
920 |
WaitForKey(&stress1, &stress2);
|
|
921 |
abortedByUser = ETrue;
|
|
922 |
}
|
|
923 |
else
|
|
924 |
{
|
|
925 |
test(0);
|
|
926 |
}
|
|
927 |
|
|
928 |
StopStressThread(stress1);
|
|
929 |
StopStressThread(stress2);
|
|
930 |
CLOSE_AND_WAIT(stress1.iThread);
|
|
931 |
CLOSE_AND_WAIT(stress2.iThread);
|
|
932 |
heap->FullCheck();
|
|
933 |
return abortedByUser;
|
|
934 |
}
|
|
935 |
|
|
936 |
TBool StressTests(void)
|
|
937 |
{
|
|
938 |
TBool abortedByUser = EFalse;
|
|
939 |
RHeap* heap = 0;
|
|
940 |
|
|
941 |
for (;;)
|
|
942 |
{
|
|
943 |
if (TestType == ETestE32Test ||
|
|
944 |
TestType == ETestForeverAll)
|
|
945 |
{
|
|
946 |
heap = CreateTestHeap(4);
|
|
947 |
test(heap != NULL);
|
|
948 |
test.Next(_L("one thread, align 4"));
|
|
949 |
abortedByUser = DoStressTest1(heap);
|
|
950 |
if (abortedByUser)
|
|
951 |
{
|
|
952 |
break;
|
|
953 |
}
|
|
954 |
heap->Close();
|
|
955 |
|
|
956 |
heap = CreateTestHeap(4);
|
|
957 |
test.Next(_L("two threads, align 4"));
|
|
958 |
abortedByUser = DoStressTest2(heap);
|
|
959 |
if (abortedByUser)
|
|
960 |
{
|
|
961 |
break;
|
|
962 |
}
|
|
963 |
heap->Close();
|
|
964 |
|
|
965 |
heap = CreateTestHeap(8);
|
|
966 |
test(heap != NULL);
|
|
967 |
test.Next(_L("one thread, align 8"));
|
|
968 |
abortedByUser = DoStressTest1(heap);
|
|
969 |
if (abortedByUser)
|
|
970 |
{
|
|
971 |
break;
|
|
972 |
}
|
|
973 |
heap->Close();
|
|
974 |
|
|
975 |
heap = CreateTestHeap(8);
|
|
976 |
test.Next(_L("two threads, align 8"));
|
|
977 |
abortedByUser = DoStressTest2(heap);
|
|
978 |
}
|
|
979 |
else if (TestType == ETestForeverOne)
|
|
980 |
{
|
|
981 |
heap = CreateTestHeap(4);
|
|
982 |
test(heap != NULL);
|
|
983 |
if (TestForeverMultiThreadTest)
|
|
984 |
{
|
|
985 |
test.Next(_L("two threads, align 4"));
|
|
986 |
abortedByUser = DoStressTest2(heap);
|
|
987 |
}
|
|
988 |
else
|
|
989 |
{
|
|
990 |
test.Next(_L("one thread, align 4"));
|
|
991 |
abortedByUser = DoStressTest1(heap);
|
|
992 |
}
|
|
993 |
}
|
|
994 |
else
|
|
995 |
{
|
|
996 |
test(0);
|
|
997 |
}
|
|
998 |
break;
|
|
999 |
}
|
|
1000 |
heap->Close();
|
|
1001 |
|
|
1002 |
return abortedByUser;
|
|
1003 |
}
|
|
1004 |
|
|
1005 |
|
|
1006 |
void ForeverOneTest(void)
|
|
1007 |
{
|
|
1008 |
//--------- config parameters - begin
|
|
1009 |
TestForeverMultiThreadTest = ETrue; // EFalse
|
|
1010 |
TestHybridHeapFunc = ETstOnlySlab; // ETstOnlySlab // ETstOnlyDl // ETstOnlyPaged // ETstHybrid
|
|
1011 |
//--------- config parameters - end
|
|
1012 |
|
|
1013 |
if (TestHybridHeapFunc == ETstOnlySlab && !DlOnly)
|
|
1014 |
{
|
|
1015 |
// slab tests
|
|
1016 |
#ifdef __WINS__
|
|
1017 |
test.Next(_L("slab test 48M"));
|
|
1018 |
CurrMaxCellCount = 0x100000; //0x10000; 0x100000
|
|
1019 |
HeapMaxLength = 0x3000000; // 48M
|
|
1020 |
#else
|
|
1021 |
test.Next(_L("slab test 3M"));
|
|
1022 |
CurrMaxCellCount = 0x10000; //0x10000; 0x100000
|
|
1023 |
HeapMaxLength = 0x300000; // 3M
|
|
1024 |
#endif
|
|
1025 |
StressTests();
|
|
1026 |
}
|
|
1027 |
else if (TestHybridHeapFunc == ETstOnlyDl)
|
|
1028 |
{
|
|
1029 |
// DL tests
|
|
1030 |
test.Next(_L("DL test 32M"));
|
|
1031 |
CurrMaxCellCount = 0x1000; //0x10000;
|
|
1032 |
HeapMaxLength = 0x2000000; // 32M
|
|
1033 |
StressTests();
|
|
1034 |
}
|
|
1035 |
else if (TestHybridHeapFunc == ETstOnlyPaged && !DlOnly)
|
|
1036 |
{
|
|
1037 |
// paged tests
|
|
1038 |
test.Next(_L("paged test 64M"));
|
|
1039 |
CurrMaxCellCount = 0x100; //0x10000;
|
|
1040 |
HeapMaxLength = 0x4000000; // 64M
|
|
1041 |
StressTests();
|
|
1042 |
}
|
|
1043 |
else if (TestHybridHeapFunc == ETstHybrid && !DlOnly)
|
|
1044 |
{
|
|
1045 |
// hybrid tests
|
|
1046 |
test.Next(_L("hybrid test 64M"));
|
|
1047 |
CurrMaxCellCount = 0x1000; //0x10000;
|
|
1048 |
HeapMaxLength = 0x4000000; // 64M
|
|
1049 |
StressTests();
|
|
1050 |
}
|
|
1051 |
else
|
|
1052 |
{
|
|
1053 |
test(0);
|
|
1054 |
}
|
|
1055 |
}
|
|
1056 |
|
|
1057 |
void ForeverAllTests(void)
|
|
1058 |
{
|
|
1059 |
//--------- config parameters - begin
|
|
1060 |
TInt basicTimeAsSeconds = 30; //10;
|
|
1061 |
//--------- config parameters - end
|
|
1062 |
|
|
1063 |
for (;;)
|
|
1064 |
{
|
|
1065 |
if (!DlOnly)
|
|
1066 |
{
|
|
1067 |
// slab tests
|
|
1068 |
TestHybridHeapFunc = ETstOnlySlab;
|
|
1069 |
TestTimeAsSeconds = basicTimeAsSeconds * 3;
|
|
1070 |
#ifdef __WINS__
|
|
1071 |
test.Next(_L("slab test 48M"));
|
|
1072 |
CurrMaxCellCount = 0x100000; //0x10000; 0x100000
|
|
1073 |
HeapMaxLength = 0x3000000; // 48M
|
|
1074 |
#else
|
|
1075 |
test.Next(_L("slab test 3M"));
|
|
1076 |
CurrMaxCellCount = 0x10000; //0x10000; 0x100000
|
|
1077 |
HeapMaxLength = 0x300000; // 3M
|
|
1078 |
#endif
|
|
1079 |
if (StressTests())
|
|
1080 |
{
|
|
1081 |
break;
|
|
1082 |
}
|
|
1083 |
}
|
|
1084 |
|
|
1085 |
// DL tests
|
|
1086 |
TestHybridHeapFunc = ETstOnlyDl;
|
|
1087 |
TestTimeAsSeconds = basicTimeAsSeconds;
|
|
1088 |
|
|
1089 |
test.Next(_L("DL test 32M"));
|
|
1090 |
CurrMaxCellCount = 0x1000; //0x10000;
|
|
1091 |
HeapMaxLength = 0x2000000; // 32M
|
|
1092 |
if (StressTests())
|
|
1093 |
{
|
|
1094 |
break;
|
|
1095 |
}
|
|
1096 |
|
|
1097 |
test.Next(_L("DL test 16M"));
|
|
1098 |
CurrMaxCellCount = 0x1000; //0x10000;
|
|
1099 |
HeapMaxLength = 0x1000000; // 16M
|
|
1100 |
if (StressTests())
|
|
1101 |
{
|
|
1102 |
break;
|
|
1103 |
}
|
|
1104 |
|
|
1105 |
if (!DlOnly)
|
|
1106 |
{
|
|
1107 |
// paged tests
|
|
1108 |
TestHybridHeapFunc = ETstOnlyPaged;
|
|
1109 |
TestTimeAsSeconds = basicTimeAsSeconds;
|
|
1110 |
|
|
1111 |
test.Next(_L("paged test 64M"));
|
|
1112 |
CurrMaxCellCount = 0x100; //0x10000;
|
|
1113 |
HeapMaxLength = 0x4000000; // 64M
|
|
1114 |
if (StressTests())
|
|
1115 |
{
|
|
1116 |
break;
|
|
1117 |
}
|
|
1118 |
}
|
|
1119 |
|
|
1120 |
if (!DlOnly)
|
|
1121 |
{
|
|
1122 |
// hybrid tests
|
|
1123 |
TestHybridHeapFunc = ETstHybrid;
|
|
1124 |
TestTimeAsSeconds = basicTimeAsSeconds * 2;
|
|
1125 |
|
|
1126 |
test.Next(_L("hybrid test 64M"));
|
|
1127 |
CurrMaxCellCount = 0x1000; //0x10000;
|
|
1128 |
HeapMaxLength = 0x4000000; // 64M
|
|
1129 |
if (StressTests())
|
|
1130 |
{
|
|
1131 |
break;
|
|
1132 |
}
|
|
1133 |
}
|
|
1134 |
}
|
|
1135 |
}
|
|
1136 |
|
|
1137 |
void TestUsedInE32Tests(void)
|
|
1138 |
{
|
|
1139 |
//--------- config parameters - begin
|
|
1140 |
TInt basicTimeAsSeconds = 10;
|
|
1141 |
//--------- config parameters - end
|
|
1142 |
|
|
1143 |
if (!DlOnly)
|
|
1144 |
{
|
|
1145 |
// slab tests
|
|
1146 |
TestHybridHeapFunc = ETstOnlySlab;
|
|
1147 |
TestTimeAsSeconds = basicTimeAsSeconds * 3;
|
|
1148 |
#ifdef __WINS__
|
|
1149 |
test.Next(_L("slab test 48M"));
|
|
1150 |
CurrMaxCellCount = 0x100000; //0x10000; 0x100000
|
|
1151 |
HeapMaxLength = 0x3000000; // 48M
|
|
1152 |
#else
|
|
1153 |
test.Next(_L("slab test 3M"));
|
|
1154 |
CurrMaxCellCount = 0x10000; //0x10000; 0x100000
|
|
1155 |
HeapMaxLength = 0x300000; // 3M
|
|
1156 |
#endif
|
|
1157 |
StressTests();
|
|
1158 |
}
|
|
1159 |
|
|
1160 |
// DL tests
|
|
1161 |
TestHybridHeapFunc = ETstOnlyDl;
|
|
1162 |
TestTimeAsSeconds = basicTimeAsSeconds;
|
|
1163 |
|
|
1164 |
test.Next(_L("DL test 32M"));
|
|
1165 |
CurrMaxCellCount = 0x1000; //0x10000;
|
|
1166 |
HeapMaxLength = 0x2000000; // 32M
|
|
1167 |
StressTests();
|
|
1168 |
|
|
1169 |
test.Next(_L("DL test 16M"));
|
|
1170 |
CurrMaxCellCount = 0x1000; //0x10000;
|
|
1171 |
HeapMaxLength = 0x1000000; // 16M
|
|
1172 |
StressTests();
|
|
1173 |
|
|
1174 |
if (!DlOnly)
|
|
1175 |
{
|
|
1176 |
// paged tests
|
|
1177 |
TestHybridHeapFunc = ETstOnlyPaged;
|
|
1178 |
TestTimeAsSeconds = basicTimeAsSeconds;
|
|
1179 |
|
|
1180 |
test.Next(_L("paged test 64M"));
|
|
1181 |
CurrMaxCellCount = 0x100; //0x10000;
|
|
1182 |
HeapMaxLength = 0x4000000; // 64M
|
|
1183 |
StressTests();
|
|
1184 |
}
|
|
1185 |
|
|
1186 |
if (!DlOnly)
|
|
1187 |
{
|
|
1188 |
// hybrid tests
|
|
1189 |
TestHybridHeapFunc = ETstHybrid;
|
|
1190 |
TestTimeAsSeconds = basicTimeAsSeconds * 2;
|
|
1191 |
|
|
1192 |
test.Next(_L("hybrid test 64M"));
|
|
1193 |
CurrMaxCellCount = 0x1000; //0x10000;
|
|
1194 |
HeapMaxLength = 0x4000000; // 64M
|
|
1195 |
StressTests();
|
|
1196 |
}
|
|
1197 |
}
|
|
1198 |
|
|
1199 |
TInt E32Main()
|
|
1200 |
{
|
293
|
1201 |
COMPLETE_POST_BOOT_SYSTEM_TASKS();
|
189
|
1202 |
test.Title();
|
|
1203 |
__KHEAP_MARK;
|
|
1204 |
test.Start(_L("Testing heaps"));
|
|
1205 |
|
|
1206 |
TInt err = UserHal::TickPeriod(TickPeriod);
|
|
1207 |
test(err == KErrNone);
|
|
1208 |
|
|
1209 |
DlOnly = IsDlOnly();
|
|
1210 |
|
|
1211 |
TestType = ETestE32Test; //ETestE32Test // ETestForeverOne // ETestForeverAll
|
|
1212 |
// see other config parameters: TestUsedInE32Tests()/ForeverOneTest()/ForeverAllTests()
|
|
1213 |
|
|
1214 |
if (TestType == ETestE32Test)
|
|
1215 |
{
|
|
1216 |
TestUsedInE32Tests();
|
|
1217 |
}
|
|
1218 |
else if (TestType == ETestForeverOne)
|
|
1219 |
{
|
|
1220 |
ForeverOneTest();
|
|
1221 |
}
|
|
1222 |
else if (TestType == ETestForeverAll)
|
|
1223 |
{
|
|
1224 |
ForeverAllTests();
|
|
1225 |
}
|
|
1226 |
else
|
|
1227 |
{
|
|
1228 |
test(0);
|
|
1229 |
}
|
|
1230 |
|
|
1231 |
test.End();
|
|
1232 |
__KHEAP_MARKEND;
|
|
1233 |
return 0;
|
|
1234 |
}
|