291
|
1 |
/*
|
|
2 |
* Portions Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
3 |
* All rights reserved.
|
|
4 |
* This component and the accompanying materials are made available
|
|
5 |
* under the terms of "Eclipse Public License v1.0"
|
|
6 |
* which accompanies this distribution, and is available
|
|
7 |
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
8 |
*
|
|
9 |
* Initial Contributors:
|
|
10 |
* Nokia Corporation - initial contribution.
|
|
11 |
*
|
|
12 |
* Contributors:
|
|
13 |
*
|
|
14 |
* Description:
|
|
15 |
* The original NIST Statistical Test Suite code is placed in public domain.
|
|
16 |
* (http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html)
|
|
17 |
*
|
|
18 |
* This software was developed at the National Institute of Standards and Technology by
|
|
19 |
* employees of the Federal Government in the course of their official duties. Pursuant
|
|
20 |
* to title 17 Section 105 of the United States Code this software is not subject to
|
|
21 |
* copyright protection and is in the public domain. The NIST Statistical Test Suite is
|
|
22 |
* an experimental system. NIST assumes no responsibility whatsoever for its use by other
|
|
23 |
* parties, and makes no guarantees, expressed or implied, about its quality, reliability,
|
|
24 |
* or any other characteristic. We would appreciate acknowledgment if the software is used.
|
|
25 |
*/
|
|
26 |
|
|
27 |
#include "openc.h"
|
|
28 |
#include "../include/externs.h"
|
|
29 |
#include "../include/utilities.h"
|
|
30 |
#include "../include/cephes.h"
|
|
31 |
|
|
32 |
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
|
33 |
U N I V E R S A L T E S T
|
|
34 |
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
|
|
35 |
|
|
36 |
void
|
|
37 |
Universal(int n)
|
|
38 |
{
|
|
39 |
int i, j, p, L, Q, K;
|
|
40 |
double arg, sqrt2, sigma, phi, sum, p_value, c;
|
|
41 |
long *T, decRep;
|
|
42 |
double expected_value[17] = { 0, 0, 0, 0, 0, 0, 5.2177052, 6.1962507, 7.1836656,
|
|
43 |
8.1764248, 9.1723243, 10.170032, 11.168765,
|
|
44 |
12.168070, 13.167693, 14.167488, 15.167379 };
|
|
45 |
double variance[17] = { 0, 0, 0, 0, 0, 0, 2.954, 3.125, 3.238, 3.311, 3.356, 3.384,
|
|
46 |
3.401, 3.410, 3.416, 3.419, 3.421 };
|
|
47 |
|
|
48 |
/* * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
|
49 |
* THE FOLLOWING REDEFINES L, SHOULD THE CONDITION: n >= 1010*2^L*L *
|
|
50 |
* NOT BE MET, FOR THE BLOCK LENGTH L. *
|
|
51 |
* * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * */
|
|
52 |
L = 5;
|
|
53 |
if ( n >= 387840 ) L = 6;
|
|
54 |
if ( n >= 904960 ) L = 7;
|
|
55 |
if ( n >= 2068480 ) L = 8;
|
|
56 |
if ( n >= 4654080 ) L = 9;
|
|
57 |
if ( n >= 10342400 ) L = 10;
|
|
58 |
if ( n >= 22753280 ) L = 11;
|
|
59 |
if ( n >= 49643520 ) L = 12;
|
|
60 |
if ( n >= 107560960 ) L = 13;
|
|
61 |
if ( n >= 231669760 ) L = 14;
|
|
62 |
if ( n >= 496435200 ) L = 15;
|
|
63 |
if ( n >= 1059061760 ) L = 16;
|
|
64 |
|
|
65 |
Q = 10*(int)pow(2, L);
|
|
66 |
K = (int) (floor(n/L) - (double)Q); /* BLOCKS TO TEST */
|
|
67 |
|
|
68 |
p = (int)pow(2, L);
|
|
69 |
if ( (L < 6) || (L > 16) || ((double)Q < 10*pow(2, L)) ||
|
|
70 |
((T = (long *)calloc(p, sizeof(long))) == NULL) ) {
|
|
71 |
fprintf(stats[TEST_UNIVERSAL], "\t\tUNIVERSAL STATISTICAL TEST\n");
|
|
72 |
fprintf(stats[TEST_UNIVERSAL], "\t\t---------------------------------------------\n");
|
|
73 |
fprintf(stats[TEST_UNIVERSAL], "\t\tERROR: L IS OUT OF RANGE.\n");
|
|
74 |
fprintf(stats[TEST_UNIVERSAL], "\t\t-OR- : Q IS LESS THAN %f.\n", 10*pow(2, L));
|
|
75 |
fprintf(stats[TEST_UNIVERSAL], "\t\t-OR- : Unable to allocate T.\n");
|
|
76 |
return;
|
|
77 |
}
|
|
78 |
|
|
79 |
/* COMPUTE THE EXPECTED: Formula 16, in Marsaglia's Paper */
|
|
80 |
c = 0.7 - 0.8/(double)L + (4 + 32/(double)L)*pow(K, -3/(double)L)/15;
|
|
81 |
sigma = c * sqrt(variance[L]/(double)K);
|
|
82 |
sqrt2 = sqrt(2);
|
|
83 |
sum = 0.0;
|
|
84 |
for ( i=0; i<p; i++ )
|
|
85 |
T[i] = 0;
|
|
86 |
for ( i=1; i<=Q; i++ ) { /* INITIALIZE TABLE */
|
|
87 |
decRep = 0;
|
|
88 |
for ( j=0; j<L; j++ )
|
|
89 |
decRep += epsilon[(i-1)*L+j] * (long)pow(2, L-1-j);
|
|
90 |
T[decRep] = i;
|
|
91 |
}
|
|
92 |
for ( i=Q+1; i<=Q+K; i++ ) { /* PROCESS BLOCKS */
|
|
93 |
decRep = 0;
|
|
94 |
for ( j=0; j<L; j++ )
|
|
95 |
decRep += epsilon[(i-1)*L+j] * (long)pow(2, L-1-j);
|
|
96 |
sum += log(i - T[decRep])/log(2);
|
|
97 |
T[decRep] = i;
|
|
98 |
}
|
|
99 |
phi = (double)(sum/(double)K);
|
|
100 |
|
|
101 |
fprintf(stats[TEST_UNIVERSAL], "\t\tUNIVERSAL STATISTICAL TEST\n");
|
|
102 |
fprintf(stats[TEST_UNIVERSAL], "\t\t--------------------------------------------\n");
|
|
103 |
fprintf(stats[TEST_UNIVERSAL], "\t\tCOMPUTATIONAL INFORMATION:\n");
|
|
104 |
fprintf(stats[TEST_UNIVERSAL], "\t\t--------------------------------------------\n");
|
|
105 |
fprintf(stats[TEST_UNIVERSAL], "\t\t(a) L = %d\n", L);
|
|
106 |
fprintf(stats[TEST_UNIVERSAL], "\t\t(b) Q = %d\n", Q);
|
|
107 |
fprintf(stats[TEST_UNIVERSAL], "\t\t(c) K = %d\n", K);
|
|
108 |
fprintf(stats[TEST_UNIVERSAL], "\t\t(d) sum = %f\n", sum);
|
|
109 |
fprintf(stats[TEST_UNIVERSAL], "\t\t(e) sigma = %f\n", sigma);
|
|
110 |
fprintf(stats[TEST_UNIVERSAL], "\t\t(f) variance = %f\n", variance[L]);
|
|
111 |
fprintf(stats[TEST_UNIVERSAL], "\t\t(g) exp_value = %f\n", expected_value[L]);
|
|
112 |
fprintf(stats[TEST_UNIVERSAL], "\t\t(h) phi = %f\n", phi);
|
|
113 |
fprintf(stats[TEST_UNIVERSAL], "\t\t(i) WARNING: %d bits were discarded.\n", n-(Q+K)*L);
|
|
114 |
fprintf(stats[TEST_UNIVERSAL], "\t\t-----------------------------------------\n");
|
|
115 |
|
|
116 |
arg = fabs(phi-expected_value[L])/(sqrt2 * sigma);
|
|
117 |
p_value = erfc(arg);
|
|
118 |
if ( isNegative(p_value) || isGreaterThanOne(p_value) )
|
|
119 |
fprintf(stats[TEST_UNIVERSAL], "\t\tWARNING: P_VALUE IS OUT OF RANGE\n");
|
|
120 |
|
|
121 |
fprintf(stats[TEST_UNIVERSAL], "%s\t\tp_value = %f\n\n", p_value < ALPHA ? "FAILURE" : "SUCCESS", p_value);
|
|
122 |
fprintf(results[TEST_UNIVERSAL], "%f\n", p_value);
|
|
123 |
|
|
124 |
free(T);
|
|
125 |
}
|