author | Mike Kinghan <mikek@symbian.org> |
Thu, 25 Nov 2010 14:35:45 +0000 | |
branch | GCC_SURGE |
changeset 305 | 1ba12ef4ef89 |
parent 152 | 657f875b013e |
child 257 | 3e88ff8f41d5 |
permissions | -rw-r--r-- |
0 | 1 |
// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies). |
2 |
// All rights reserved. |
|
3 |
// This component and the accompanying materials are made available |
|
4 |
// under the terms of the License "Eclipse Public License v1.0" |
|
5 |
// which accompanies this distribution, and is available |
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 |
// |
|
8 |
// Initial Contributors: |
|
9 |
// Nokia Corporation - initial contribution. |
|
10 |
// |
|
11 |
// Contributors: |
|
12 |
// |
|
13 |
// Description: |
|
14 |
// template\template_assp\pa_usbc.cpp |
|
15 |
// Platform-dependent USB client controller layer (USB PSL). |
|
16 |
// |
|
17 |
// |
|
18 |
||
19 |
||
20 |
#include <template_assp.h> // /assp/template_assp/ |
|
21 |
#include <template_assp_priv.h> // /assp/template_assp/ |
|
22 |
||
23 |
#include <drivers/usbc.h> |
|
24 |
||
25 |
#include "pa_usbc.h" // . |
|
26 |
||
27 |
// Debug support |
|
28 |
#ifdef _DEBUG |
|
29 |
static const char KUsbPanicCat[] = "USB PSL"; |
|
30 |
#endif |
|
31 |
||
32 |
||
33 |
// Define USB_SUPPORTS_PREMATURE_STATUS_IN to enable proper handling of a premature STATUS_IN stage, i.e. a |
|
34 |
// situation where the host sends less data than first announced and instead of more data (OUT) will send an |
|
35 |
// IN token to start the status stage. What we do in order to implement this here is to prime the TX fifo with |
|
36 |
// a ZLP immediately when we find out that we're dealing with a DATA_OUT request. This way, as soon as the |
|
37 |
// premature IN token is received, we complete the transaction by sending off the ZLP. If we don't prime the |
|
38 |
// TX fifo then there is no way for us to recognise a premature status because the IN token itself doesn't |
|
39 |
// raise an interrupt. We would simply wait forever for more data, or rather we would time out and the host |
|
40 |
// would move on and send the next Setup packet. |
|
41 |
// The reason why we would not want to implement the proper behaviour is this: After having primed the TX fifo |
|
42 |
// with a ZLP, it is impossible for a user to reject such a (class/vendor specific) Setup request, basically |
|
43 |
// because the successful status stage happens automatically. At the time the user has received and decoded |
|
44 |
// the Setup request there's for her no way to stall Ep0 in order to show to the host that this Setup packet |
|
45 |
// is invalid or inappropriate or whatever, because she cannot prevent the status stage from happening. |
|
46 |
// (All this is strictly true only if the amount of data in the data stage is less than or equal to Ep0's max |
|
47 |
// packet size. However this is almost always the case.) |
|
48 |
//#define USB_SUPPORTS_PREMATURE_STATUS_IN |
|
49 |
||
50 |
||
51 |
static const TUsbcEndpointCaps DeviceEndpoints[KUsbTotalEndpoints] = |
|
52 |
{ |
|
53 |
// Hardware # iEndpoints index |
|
54 |
{KEp0MaxPktSzMask, (KUsbEpTypeControl | KUsbEpDirOut)}, // 0 - 0 |
|
55 |
{KEp0MaxPktSzMask, (KUsbEpTypeControl | KUsbEpDirIn )}, // 0 - 1 |
|
56 |
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present |
|
57 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 1 - 3 |
|
58 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 2 - 4 |
|
59 |
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present |
|
60 |
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present |
|
61 |
{KIsoMaxPktSzMask, (KUsbEpTypeIsochronous | KUsbEpDirIn )}, // 3 - 7 |
|
62 |
{KIsoMaxPktSzMask, (KUsbEpTypeIsochronous | KUsbEpDirOut)}, // 4 - 8 |
|
63 |
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present |
|
64 |
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present |
|
65 |
{KIntMaxPktSzMask, (KUsbEpTypeInterrupt | KUsbEpDirIn )}, // 5 - 11 |
|
66 |
}; |
|
67 |
||
68 |
||
69 |
// --- TEndpoint -------------------------------------------------------------- |
|
70 |
||
71 |
TEndpoint::TEndpoint() |
|
72 |
// |
|
73 |
// Constructor |
|
74 |
// |
|
75 |
: iRxBuf(NULL), iReceived(0), iLength(0), iZlpReqd(EFalse), iNoBuffer(EFalse), iDisabled(EFalse), |
|
76 |
iPackets(0), iLastError(KErrNone), iRequest(NULL), iRxTimer(RxTimerCallback, this), |
|
77 |
iRxTimerSet(EFalse), iRxMoreDataRcvd(EFalse), iPacketIndex(NULL), iPacketSize(NULL) |
|
78 |
{ |
|
79 |
__KTRACE_OPT(KUSB, Kern::Printf("TEndpoint::TEndpoint")); |
|
80 |
} |
|
81 |
||
82 |
||
83 |
void TEndpoint::RxTimerCallback(TAny* aPtr) |
|
84 |
// |
|
85 |
// (This function is static.) |
|
86 |
// |
|
87 |
{ |
|
88 |
__KTRACE_OPT(KUSB, Kern::Printf("TEndpoint::RxTimerCallback")); |
|
89 |
||
90 |
TEndpoint* const ep = static_cast<TEndpoint*>(aPtr); |
|
91 |
if (!ep) |
|
92 |
{ |
|
93 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !ep")); |
|
94 |
} |
|
95 |
else if (!ep->iRxTimerSet) |
|
96 |
{ |
|
97 |
// Timer 'stop' substitute (instead of stopping it, |
|
98 |
// we just let it expire after clearing iRxTimerSet) |
|
99 |
__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxTimerSet - returning")); |
|
100 |
} |
|
101 |
else if (!ep->iRxBuf) |
|
102 |
{ |
|
103 |
// Request already completed |
|
104 |
__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxBuf - returning")); |
|
105 |
} |
|
106 |
else if (ep->iRxMoreDataRcvd) |
|
107 |
{ |
|
108 |
__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: not yet completing...")); |
|
109 |
ep->iRxMoreDataRcvd = EFalse; |
|
110 |
ep->iRxTimer.Again(KRxTimerTimeout); |
|
111 |
} |
|
112 |
else |
|
113 |
{ |
|
114 |
__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: completing now...")); |
|
115 |
*ep->iPacketSize = ep->iReceived; |
|
116 |
ep->iController->RxComplete(ep); |
|
117 |
} |
|
118 |
} |
|
119 |
||
120 |
||
121 |
// --- TTemplateAsspUsbcc public --------------------------------------------------- |
|
122 |
||
123 |
TTemplateAsspUsbcc::TTemplateAsspUsbcc() |
|
124 |
// |
|
125 |
// Constructor. |
|
126 |
// |
|
127 |
: iCableConnected(ETrue), iBusIsPowered(EFalse), |
|
128 |
iInitialized(EFalse), iUsbClientConnectorCallback(UsbClientConnectorCallback), |
|
129 |
iEp0Configured(EFalse) |
|
130 |
{ |
|
131 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::TTemplateAsspUsbcc")); |
|
132 |
||
133 |
iAssp = static_cast<TemplateAssp*>(Arch::TheAsic()); |
|
134 |
||
135 |
iSoftwareConnectable = iAssp->UsbSoftwareConnectable(); |
|
136 |
||
137 |
iCableDetectable = iAssp->UsbClientConnectorDetectable(); |
|
138 |
||
139 |
if (iCableDetectable) |
|
140 |
{ |
|
141 |
// Register our callback for detecting USB cable insertion/removal. |
|
142 |
// We ignore the error code: if the registration fails, we just won't get any events. |
|
143 |
// (Which of course is bad enough...) |
|
144 |
(void) iAssp->RegisterUsbClientConnectorCallback(iUsbClientConnectorCallback, this); |
|
145 |
// Call the callback straight away so we get the proper PIL state from the beginning. |
|
146 |
(void) UsbClientConnectorCallback(this); |
|
147 |
} |
|
148 |
||
149 |
for (TInt i = 0; i < KUsbTotalEndpoints; i++) |
|
150 |
{ |
|
151 |
iEndpoints[i].iController = this; |
|
152 |
} |
|
153 |
} |
|
154 |
||
155 |
||
156 |
TInt TTemplateAsspUsbcc::Construct() |
|
157 |
// |
|
158 |
// Construct. |
|
159 |
// |
|
160 |
{ |
|
161 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Construct")); |
|
162 |
||
163 |
TUsbcDeviceDescriptor* DeviceDesc = TUsbcDeviceDescriptor::New( |
|
164 |
0x00, // aDeviceClass |
|
165 |
0x00, // aDeviceSubClass |
|
166 |
0x00, // aDeviceProtocol |
|
167 |
KEp0MaxPktSz, // aMaxPacketSize0 |
|
168 |
KUsbVendorId, // aVendorId |
|
169 |
KUsbProductId, // aProductId |
|
170 |
KUsbDevRelease, // aDeviceRelease |
|
171 |
1); // aNumConfigurations |
|
172 |
if (!DeviceDesc) |
|
173 |
{ |
|
174 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for dev desc failed.")); |
|
175 |
return KErrGeneral; |
|
176 |
} |
|
177 |
||
178 |
TUsbcConfigDescriptor* ConfigDesc = TUsbcConfigDescriptor::New( |
|
179 |
1, // aConfigurationValue |
|
180 |
ETrue, // aSelfPowered (see 12.4.2 "Bus-Powered Devices") |
|
181 |
ETrue, // aRemoteWakeup |
|
182 |
0); // aMaxPower (mA) |
|
183 |
if (!ConfigDesc) |
|
184 |
{ |
|
185 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for config desc failed.")); |
|
186 |
return KErrGeneral; |
|
187 |
} |
|
188 |
||
189 |
TUsbcLangIdDescriptor* StringDescLang = TUsbcLangIdDescriptor::New(KUsbLangId); |
|
190 |
if (!StringDescLang) |
|
191 |
{ |
|
192 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for lang id $ desc failed.")); |
|
193 |
return KErrGeneral; |
|
194 |
} |
|
195 |
||
196 |
// ('sizeof(x) - 2' because 'wchar_t KStringXyz' created a wide string that ends in '\0\0'.) |
|
197 |
||
198 |
TUsbcStringDescriptor* StringDescManu = |
|
199 |
TUsbcStringDescriptor::New(TPtr8( |
|
200 |
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringManufacturer)), |
|
201 |
sizeof(KStringManufacturer) - 2, sizeof(KStringManufacturer) - 2)); |
|
202 |
if (!StringDescManu) |
|
203 |
{ |
|
204 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for manufacturer $ desc failed.")); |
|
205 |
return KErrGeneral; |
|
206 |
} |
|
207 |
||
208 |
TUsbcStringDescriptor* StringDescProd = |
|
209 |
TUsbcStringDescriptor::New(TPtr8( |
|
210 |
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringProduct)), |
|
211 |
sizeof(KStringProduct) - 2, sizeof(KStringProduct) - 2)); |
|
212 |
if (!StringDescProd) |
|
213 |
{ |
|
214 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for product $ desc failed.")); |
|
215 |
return KErrGeneral; |
|
216 |
} |
|
217 |
||
218 |
TUsbcStringDescriptor* StringDescSer = |
|
219 |
TUsbcStringDescriptor::New(TPtr8( |
|
220 |
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringSerialNo)), |
|
221 |
sizeof(KStringSerialNo) - 2, sizeof(KStringSerialNo) - 2)); |
|
222 |
if (!StringDescSer) |
|
223 |
{ |
|
224 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for serial no $ desc failed.")); |
|
225 |
return KErrGeneral; |
|
226 |
} |
|
227 |
||
228 |
TUsbcStringDescriptor* StringDescConf = |
|
229 |
TUsbcStringDescriptor::New(TPtr8( |
|
230 |
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringConfig)), |
|
231 |
sizeof(KStringConfig) - 2, sizeof(KStringConfig) - 2)); |
|
232 |
if (!StringDescConf) |
|
233 |
{ |
|
234 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for config $ desc failed.")); |
|
235 |
return KErrGeneral; |
|
236 |
} |
|
237 |
||
238 |
const TBool r = InitialiseBaseClass(DeviceDesc, |
|
239 |
ConfigDesc, |
|
240 |
StringDescLang, |
|
241 |
StringDescManu, |
|
242 |
StringDescProd, |
|
243 |
StringDescSer, |
|
244 |
StringDescConf); |
|
245 |
if (!r) |
|
246 |
{ |
|
247 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UsbClientController::InitialiseBaseClass failed.")); |
|
248 |
return KErrGeneral; |
|
249 |
} |
|
250 |
||
251 |
return KErrNone; |
|
252 |
} |
|
253 |
||
254 |
||
255 |
TTemplateAsspUsbcc::~TTemplateAsspUsbcc() |
|
256 |
// |
|
257 |
// Destructor. |
|
258 |
// |
|
259 |
{ |
|
260 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::~TTemplateAsspUsbcc")); |
|
261 |
||
262 |
// Unregister our callback for detecting USB cable insertion/removal |
|
263 |
if (iCableDetectable) |
|
264 |
{ |
|
265 |
iAssp->UnregisterUsbClientConnectorCallback(); |
|
266 |
} |
|
267 |
if (iInitialized) |
|
268 |
{ |
|
269 |
// (The explicit scope operator is used against Lint warning #1506.) |
|
270 |
TTemplateAsspUsbcc::StopUdc(); |
|
271 |
} |
|
272 |
} |
|
273 |
||
274 |
||
275 |
TBool TTemplateAsspUsbcc::DeviceStateChangeCaps() const |
|
276 |
// |
|
277 |
// Returns capability of hardware to accurately track the device state (Chapter 9 state). |
|
278 |
// |
|
279 |
{ |
|
280 |
// TO DO: Return EFalse or ETrue here, depending on whether the UDC supports exact device state tracking |
|
281 |
// (most don't). |
|
282 |
return EFalse; |
|
283 |
} |
|
284 |
||
285 |
||
286 |
TInt TTemplateAsspUsbcc::SignalRemoteWakeup() |
|
287 |
// |
|
288 |
// Forces the UDC into a non-idle state to perform a remote wakeup operation. |
|
289 |
// |
|
290 |
{ |
|
291 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SignalRemoteWakeup")); |
|
292 |
||
293 |
// TO DO: Do here whatever is necessary for the UDC to signal remote wakeup. |
|
294 |
||
295 |
return KErrNone; |
|
296 |
} |
|
297 |
||
298 |
||
299 |
void TTemplateAsspUsbcc::DumpRegisters() |
|
300 |
// |
|
301 |
// Dumps the contents of a number of UDC registers to the screen (using Kern::Printf()). |
|
302 |
// Rarely used, but might prove helpful when needed. |
|
303 |
// |
|
304 |
{ |
|
305 |
Kern::Printf("TCotullaUsbcc::DumpRegisters:"); |
|
306 |
||
307 |
// TO DO: Print the contents of some (or all) UDC registers here. |
|
308 |
} |
|
309 |
||
310 |
||
311 |
TDfcQue* TTemplateAsspUsbcc::DfcQ(TInt /* aUnit */) |
|
312 |
// |
|
313 |
// Returns a pointer to the kernel DFC queue to be used buy the USB LDD. |
|
314 |
// |
|
315 |
{ |
|
316 |
return Kern::DfcQue0(); |
|
317 |
} |
|
318 |
||
319 |
||
320 |
// --- TTemplateAsspUsbcc private virtual ------------------------------------------ |
|
321 |
||
322 |
TInt TTemplateAsspUsbcc::SetDeviceAddress(TInt aAddress) |
|
323 |
// |
|
324 |
// Sets the PIL-provided device address manually (if possible - otherwise do nothing). |
|
325 |
// |
|
326 |
{ |
|
327 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetDeviceAddress: %d", aAddress)); |
|
328 |
||
329 |
// TO DO (optional): Set device address here. |
|
330 |
||
331 |
if (aAddress) |
|
332 |
{ |
|
333 |
// Address can be zero. |
|
334 |
MoveToAddressState(); |
|
335 |
} |
|
336 |
||
337 |
return KErrNone; |
|
338 |
} |
|
339 |
||
340 |
||
341 |
TInt TTemplateAsspUsbcc::ConfigureEndpoint(TInt aRealEndpoint, const TUsbcEndpointInfo& aEndpointInfo) |
|
342 |
// |
|
343 |
// Prepares (enables) an endpoint (incl. Ep0) for data transmission or reception. |
|
344 |
// |
|
345 |
{ |
|
346 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ConfigureEndpoint(%d)", aRealEndpoint)); |
|
347 |
||
348 |
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint); |
|
349 |
if (n < 0) |
|
350 |
return KErrArgument; |
|
351 |
||
352 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint]; |
|
353 |
if (ep->iDisabled == EFalse) |
|
354 |
{ |
|
355 |
EnableEndpointInterrupt(n); |
|
356 |
} |
|
357 |
ep->iNoBuffer = EFalse; |
|
358 |
if (n == 0) |
|
359 |
iEp0Configured = ETrue; |
|
360 |
||
361 |
return KErrNone; |
|
362 |
} |
|
363 |
||
364 |
||
365 |
TInt TTemplateAsspUsbcc::DeConfigureEndpoint(TInt aRealEndpoint) |
|
366 |
// |
|
367 |
// Disables an endpoint (incl. Ep0). |
|
368 |
// |
|
369 |
{ |
|
370 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeConfigureEndpoint(%d)", aRealEndpoint)); |
|
371 |
||
372 |
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint); |
|
373 |
if (n < 0) |
|
374 |
return KErrArgument; |
|
375 |
||
376 |
DisableEndpointInterrupt(n); |
|
377 |
if (n == 0) |
|
378 |
iEp0Configured = EFalse; |
|
379 |
||
380 |
return KErrNone; |
|
381 |
} |
|
382 |
||
383 |
||
384 |
TInt TTemplateAsspUsbcc::AllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource) |
|
385 |
// |
|
386 |
// Puts the requested endpoint resource to use, if possible. |
|
387 |
// |
|
388 |
{ |
|
389 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::AllocateEndpointResource(%d): %d", |
|
390 |
aRealEndpoint, aResource)); |
|
391 |
||
392 |
// TO DO: Allocate endpoint resource here. |
|
393 |
||
394 |
return KErrNone; |
|
395 |
} |
|
396 |
||
397 |
||
398 |
TInt TTemplateAsspUsbcc::DeAllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource) |
|
399 |
// |
|
400 |
// Stops the use of the indicated endpoint resource, if beneficial. |
|
401 |
// |
|
402 |
{ |
|
403 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeAllocateEndpointResource(%d): %d", |
|
404 |
aRealEndpoint, aResource)); |
|
405 |
||
406 |
// TO DO: Deallocate endpoint resource here. |
|
407 |
||
408 |
return KErrNone; |
|
409 |
} |
|
410 |
||
411 |
||
412 |
TBool TTemplateAsspUsbcc::QueryEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource) const |
|
413 |
// |
|
414 |
// Returns the status of the indicated resource and endpoint. |
|
415 |
// |
|
416 |
{ |
|
417 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::QueryEndpointResource(%d): %d", |
|
418 |
aRealEndpoint, aResource)); |
|
419 |
||
420 |
// TO DO: Query endpoint resource here. The return value should reflect the actual state. |
|
421 |
return ETrue; |
|
422 |
} |
|
423 |
||
424 |
||
425 |
TInt TTemplateAsspUsbcc::OpenDmaChannel(TInt aRealEndpoint) |
|
426 |
// |
|
427 |
// Opens a DMA channel for this endpoint. This function is always called during the creation of an endpoint |
|
428 |
// in the PIL. If DMA channels are a scarce resource, it's possible to do nothing here and wait for an |
|
429 |
// AllocateEndpointResource call instead. |
|
430 |
// |
|
431 |
{ |
|
432 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::OpenDmaChannel(%d)", aRealEndpoint)); |
|
433 |
||
434 |
// TO DO (optional): Open DMA channel here. |
|
435 |
||
436 |
// An error should only be returned in case of an actual DMA problem. |
|
437 |
return KErrNone; |
|
438 |
} |
|
439 |
||
440 |
||
441 |
void TTemplateAsspUsbcc::CloseDmaChannel(TInt aRealEndpoint) |
|
442 |
// |
|
443 |
// Closes a DMA channel for this endpoint. This function is always called during the destruction of an |
|
444 |
// endpoint in the PIL. |
|
445 |
// |
|
446 |
{ |
|
447 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::CloseDmaChannel(%d)", aRealEndpoint)); |
|
448 |
||
449 |
// TO DO (optional): Close DMA channel here (only if it was opened via OpenDmaChannel). |
|
450 |
} |
|
451 |
||
452 |
||
453 |
TInt TTemplateAsspUsbcc::SetupEndpointRead(TInt aRealEndpoint, TUsbcRequestCallback& aCallback) |
|
454 |
// |
|
455 |
// Sets up a read request for an endpoint on behalf of the LDD. |
|
456 |
// |
|
457 |
{ |
|
458 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupEndpointRead(%d)", aRealEndpoint)); |
|
459 |
||
460 |
if (!IS_OUT_ENDPOINT(aRealEndpoint)) |
|
461 |
{ |
|
462 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint)); |
|
463 |
return KErrArgument; |
|
464 |
} |
|
465 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint]; |
|
466 |
if (ep->iRxBuf != NULL) |
|
467 |
{ |
|
468 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", aRealEndpoint)); |
|
469 |
return KErrGeneral; |
|
470 |
} |
|
471 |
ep->iRxBuf = aCallback.iBufferStart; |
|
472 |
ep->iReceived = 0; |
|
473 |
ep->iLength = aCallback.iLength; |
|
474 |
// For Bulk reads we start out with the assumption of 1 packet (see BulkReceive for why): |
|
475 |
ep->iPackets = IS_BULK_OUT_ENDPOINT(aRealEndpoint) ? 1 : 0; |
|
476 |
ep->iRequest = &aCallback; |
|
477 |
ep->iPacketIndex = aCallback.iPacketIndex; |
|
478 |
if (IS_BULK_OUT_ENDPOINT(aRealEndpoint)) |
|
479 |
*ep->iPacketIndex = 0; // a one-off optimization |
|
480 |
ep->iPacketSize = aCallback.iPacketSize; |
|
481 |
||
482 |
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint); |
|
483 |
if (ep->iDisabled) |
|
484 |
{ |
|
485 |
ep->iDisabled = EFalse; |
|
486 |
EnableEndpointInterrupt(n); |
|
487 |
} |
|
488 |
else if (ep->iNoBuffer) |
|
489 |
{ |
|
490 |
__KTRACE_OPT(KUSB, Kern::Printf(" > There had been no Rx buffer available: reading Rx FIFO now")); |
|
491 |
ep->iNoBuffer = EFalse; |
|
492 |
if (IS_BULK_OUT_ENDPOINT(aRealEndpoint)) |
|
493 |
{ |
|
494 |
BulkReadRxFifo(n); |
|
495 |
} |
|
496 |
else if (IS_ISO_OUT_ENDPOINT(aRealEndpoint)) |
|
497 |
{ |
|
498 |
IsoReadRxFifo(n); |
|
499 |
} |
|
500 |
else |
|
501 |
{ |
|
502 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found")); |
|
503 |
} |
|
504 |
} |
|
505 |
||
506 |
return KErrNone; |
|
507 |
} |
|
508 |
||
509 |
||
510 |
TInt TTemplateAsspUsbcc::SetupEndpointWrite(TInt aRealEndpoint, TUsbcRequestCallback& aCallback) |
|
511 |
// |
|
512 |
// Sets up a write request for an endpoint on behalf of the LDD. |
|
513 |
// |
|
514 |
{ |
|
515 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupEndpointWrite(%d)", aRealEndpoint)); |
|
516 |
||
517 |
if (!IS_IN_ENDPOINT(aRealEndpoint)) |
|
518 |
{ |
|
519 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint)); |
|
520 |
return KErrArgument; |
|
521 |
} |
|
522 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint]; |
|
523 |
if (ep->iTxBuf != NULL) |
|
524 |
{ |
|
525 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: iEndpoints[%d].iTxBuf != NULL", aRealEndpoint)); |
|
526 |
return KErrGeneral; |
|
527 |
} |
|
528 |
ep->iTxBuf = aCallback.iBufferStart; |
|
529 |
ep->iTransmitted = 0; |
|
530 |
ep->iLength = aCallback.iLength; |
|
531 |
ep->iPackets = 0; |
|
532 |
ep->iZlpReqd = aCallback.iZlpReqd; |
|
533 |
ep->iRequest = &aCallback; |
|
534 |
||
535 |
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint); |
|
536 |
if (IS_BULK_IN_ENDPOINT(aRealEndpoint)) |
|
537 |
{ |
|
538 |
if (ep->iDisabled) |
|
539 |
{ |
|
540 |
ep->iDisabled = EFalse; |
|
541 |
EnableEndpointInterrupt(n); |
|
542 |
} |
|
543 |
BulkTransmit(n); |
|
544 |
} |
|
545 |
else if (IS_ISO_IN_ENDPOINT(aRealEndpoint)) |
|
546 |
{ |
|
547 |
IsoTransmit(n); |
|
548 |
} |
|
549 |
else if (IS_INT_IN_ENDPOINT(aRealEndpoint)) |
|
550 |
{ |
|
551 |
IntTransmit(n); |
|
552 |
} |
|
553 |
else |
|
554 |
{ |
|
555 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found")); |
|
556 |
} |
|
557 |
||
558 |
return KErrNone; |
|
559 |
} |
|
560 |
||
561 |
||
562 |
TInt TTemplateAsspUsbcc::CancelEndpointRead(TInt aRealEndpoint) |
|
563 |
// |
|
564 |
// Cancels a read request for an endpoint on behalf of the LDD. |
|
565 |
// No completion to the PIL occurs. |
|
566 |
// |
|
567 |
{ |
|
568 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::CancelEndpointRead(%d)", aRealEndpoint)); |
|
569 |
||
570 |
if (!IS_OUT_ENDPOINT(aRealEndpoint)) |
|
571 |
{ |
|
572 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint)); |
|
573 |
return KErrArgument; |
|
574 |
} |
|
575 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint]; |
|
576 |
if (ep->iRxBuf == NULL) |
|
577 |
{ |
|
578 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf == NULL", aRealEndpoint)); |
|
579 |
return KErrNone; |
|
580 |
} |
|
581 |
ep->iRxBuf = NULL; |
|
582 |
ep->iReceived = 0; |
|
583 |
ep->iNoBuffer = EFalse; |
|
584 |
||
585 |
return KErrNone; |
|
586 |
} |
|
587 |
||
588 |
||
589 |
TInt TTemplateAsspUsbcc::CancelEndpointWrite(TInt aRealEndpoint) |
|
590 |
// |
|
591 |
// Cancels a write request for an endpoint on behalf of the LDD. |
|
592 |
// No completion to the PIL occurs. |
|
593 |
// |
|
594 |
{ |
|
595 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::CancelEndpointWrite(%d)", aRealEndpoint)); |
|
596 |
||
597 |
if (!IS_IN_ENDPOINT(aRealEndpoint)) |
|
598 |
{ |
|
599 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint)); |
|
600 |
return KErrArgument; |
|
601 |
} |
|
602 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint]; |
|
603 |
if (ep->iTxBuf == NULL) |
|
604 |
{ |
|
605 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iTxBuf == NULL", aRealEndpoint)); |
|
606 |
return KErrNone; |
|
607 |
} |
|
608 |
||
609 |
// TO DO (optional): Flush the Ep's Tx FIFO here, if possible. |
|
610 |
||
611 |
ep->iTxBuf = NULL; |
|
612 |
ep->iTransmitted = 0; |
|
613 |
ep->iNoBuffer = EFalse; |
|
614 |
||
615 |
return KErrNone; |
|
616 |
} |
|
617 |
||
618 |
||
619 |
TInt TTemplateAsspUsbcc::SetupEndpointZeroRead() |
|
620 |
// |
|
621 |
// Sets up an Ep0 read request (own function due to Ep0's special status). |
|
622 |
// |
|
623 |
{ |
|
624 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupEndpointZeroRead")); |
|
625 |
||
626 |
TEndpoint* const ep = &iEndpoints[KEp0_Out]; |
|
627 |
if (ep->iRxBuf != NULL) |
|
628 |
{ |
|
629 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", KEp0_Out)); |
|
630 |
return KErrGeneral; |
|
631 |
} |
|
632 |
ep->iRxBuf = iEp0_RxBuf; |
|
633 |
ep->iReceived = 0; |
|
634 |
||
635 |
return KErrNone; |
|
636 |
} |
|
637 |
||
638 |
||
639 |
TInt TTemplateAsspUsbcc::SetupEndpointZeroWrite(const TUint8* aBuffer, TInt aLength, TBool aZlpReqd) |
|
640 |
// |
|
641 |
// Sets up an Ep0 write request (own function due to Ep0's special status). |
|
642 |
// |
|
643 |
{ |
|
644 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupEndpointZeroWrite")); |
|
645 |
||
646 |
TEndpoint* const ep = &iEndpoints[KEp0_In]; |
|
647 |
if (ep->iTxBuf != NULL) |
|
648 |
{ |
|
649 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: iEndpoints[%d].iTxBuf != NULL", KEp0_In)); |
|
650 |
return KErrGeneral; |
|
651 |
} |
|
652 |
ep->iTxBuf = aBuffer; |
|
653 |
ep->iTransmitted = 0; |
|
654 |
ep->iLength = aLength; |
|
655 |
ep->iZlpReqd = aZlpReqd; |
|
656 |
ep->iRequest = NULL; |
|
657 |
Ep0Transmit(); |
|
658 |
||
659 |
return KErrNone; |
|
660 |
} |
|
661 |
||
662 |
||
663 |
TInt TTemplateAsspUsbcc::SendEp0ZeroByteStatusPacket() |
|
664 |
// |
|
665 |
// Sets up an Ep0 write request for zero bytes. |
|
666 |
// This is a separate function because no data transfer is involved here. |
|
667 |
// |
|
668 |
{ |
|
669 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SendEp0ZeroByteStatusPacket")); |
|
670 |
||
671 |
// This is possibly a bit tricky. When this function is called it just means that the higher layer wants a |
|
672 |
// ZLP to be sent. Whether we actually send one manually here depends on a number of factors, as the |
|
673 |
// current Ep0 state (i.e. the stage of the Ep0 Control transfer), and, in case the hardware handles some |
|
674 |
// ZLPs itself, whether it might already handle this one. |
|
675 |
||
676 |
// Here is an example of what the checking of the conditions might look like: |
|
677 |
||
678 |
#ifndef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST |
|
679 |
if ((!iEp0ReceivedNonStdRequest && iEp0State == EP0_IN_DATA_PHASE) || |
|
680 |
#else |
|
681 |
if ((!iEp0ReceivedNonStdRequest && iEp0State != EP0_IDLE) || |
|
682 |
#endif |
|
683 |
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN |
|
684 |
(iEp0ReceivedNonStdRequest && iEp0State != EP0_OUT_DATA_PHASE)) |
|
685 |
#else |
|
686 |
(iEp0ReceivedNonStdRequest)) |
|
687 |
#endif |
|
688 |
{ |
|
689 |
// TO DO: Arrange for the sending of a ZLP here. |
|
690 |
} |
|
691 |
||
692 |
return KErrNone; |
|
693 |
} |
|
694 |
||
695 |
||
696 |
TInt TTemplateAsspUsbcc::StallEndpoint(TInt aRealEndpoint) |
|
697 |
// |
|
698 |
// Stalls an endpoint. |
|
699 |
// |
|
700 |
{ |
|
701 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::StallEndpoint(%d)", aRealEndpoint)); |
|
702 |
||
703 |
if (IS_ISO_ENDPOINT(aRealEndpoint)) |
|
704 |
{ |
|
705 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint cannot be stalled")); |
|
706 |
return KErrArgument; |
|
707 |
} |
|
708 |
||
709 |
// TO DO: Stall the endpoint here. |
|
710 |
||
711 |
return KErrNone; |
|
712 |
} |
|
713 |
||
714 |
||
715 |
TInt TTemplateAsspUsbcc::ClearStallEndpoint(TInt aRealEndpoint) |
|
716 |
// |
|
717 |
// Clears the stall condition of an endpoint. |
|
718 |
// |
|
719 |
{ |
|
720 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ClearStallEndpoint(%d)", aRealEndpoint)); |
|
721 |
||
722 |
if (IS_ISO_ENDPOINT(aRealEndpoint)) |
|
723 |
{ |
|
724 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint cannot be unstalled")); |
|
725 |
return KErrArgument; |
|
726 |
} |
|
727 |
||
728 |
// TO DO: De-stall the endpoint here. |
|
729 |
||
730 |
return KErrNone; |
|
731 |
} |
|
732 |
||
733 |
||
734 |
TInt TTemplateAsspUsbcc::EndpointStallStatus(TInt aRealEndpoint) const |
|
735 |
// |
|
736 |
// Reports the stall status of an endpoint. |
|
737 |
// |
|
738 |
{ |
|
739 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::EndpointStallStatus(%d)", aRealEndpoint)); |
|
740 |
||
741 |
if (IS_ISO_ENDPOINT(aRealEndpoint)) |
|
742 |
{ |
|
743 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint has no stall status")); |
|
744 |
return KErrArgument; |
|
745 |
} |
|
746 |
||
747 |
// TO DO: Query endpoint stall status here. The return value should reflect the actual state. |
|
748 |
return ETrue; |
|
749 |
} |
|
750 |
||
751 |
||
752 |
TInt TTemplateAsspUsbcc::EndpointErrorStatus(TInt aRealEndpoint) const |
|
753 |
// |
|
754 |
// Reports the error status of an endpoint. |
|
755 |
// |
|
756 |
{ |
|
757 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::EndpointErrorStatus(%d)", aRealEndpoint)); |
|
758 |
||
759 |
if (!IS_VALID_ENDPOINT(aRealEndpoint)) |
|
760 |
{ |
|
761 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_VALID_ENDPOINT(%d)", aRealEndpoint)); |
|
762 |
return KErrArgument; |
|
763 |
} |
|
764 |
||
765 |
// TO DO: Query endpoint error status here. The return value should reflect the actual state. |
|
766 |
// With some UDCs there is no way of inquiring the endpoint error status; say 'ETrue' in that case. |
|
767 |
return KErrNone; |
|
768 |
} |
|
769 |
||
770 |
||
771 |
TInt TTemplateAsspUsbcc::ResetDataToggle(TInt aRealEndpoint) |
|
772 |
// |
|
773 |
// Resets to zero the data toggle bit of an endpoint. |
|
774 |
// |
|
775 |
{ |
|
776 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ResetDataToggle(%d)", aRealEndpoint)); |
|
777 |
||
778 |
// TO DO: Reset the endpoint's data toggle bit here. |
|
779 |
// With some UDCs there is no way to individually reset the endpoint's toggle bits; just return KErrNone |
|
780 |
// in that case. |
|
781 |
||
782 |
return KErrNone; |
|
783 |
} |
|
784 |
||
785 |
||
786 |
TInt TTemplateAsspUsbcc::SynchFrameNumber() const |
|
787 |
// |
|
788 |
// For use with isochronous endpoints only. Causes the SOF frame number to be returned. |
|
789 |
// |
|
790 |
{ |
|
791 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SynchFrameNumber")); |
|
792 |
||
793 |
// TO DO: Query and return the SOF frame number here. |
|
794 |
return 0; |
|
795 |
} |
|
796 |
||
797 |
||
798 |
void TTemplateAsspUsbcc::SetSynchFrameNumber(TInt aFrameNumber) |
|
799 |
// |
|
800 |
// For use with isochronous endpoints only. Causes the SOF frame number to be stored. |
|
801 |
// |
|
802 |
{ |
|
803 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetSynchFrameNumber(%d)", aFrameNumber)); |
|
804 |
||
805 |
// We should actually store this number somewhere. But the PIL always sends '0x00' |
|
806 |
// in response to a SYNCH_FRAME request... |
|
807 |
// TO DO: Store the frame number. Alternatively (until SYNCH_FRAME request specification changes): Do |
|
808 |
// nothing. |
|
809 |
} |
|
810 |
||
811 |
||
812 |
TInt TTemplateAsspUsbcc::StartUdc() |
|
813 |
// |
|
814 |
// Called to initialize the device controller hardware before any operation can be performed. |
|
815 |
// |
|
816 |
{ |
|
817 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::StartUdc")); |
|
818 |
||
819 |
if (iInitialized) |
|
820 |
{ |
|
821 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UDC already initialised")); |
|
822 |
return KErrNone; |
|
823 |
} |
|
824 |
||
825 |
// Disable UDC (might also reset the entire design): |
|
826 |
UdcDisable(); |
|
827 |
||
828 |
// Enable UDC's clock: |
|
829 |
// TO DO: Enable UDC's clock here. |
|
830 |
||
831 |
// Even if only one USB feature has been enabled, we later need to undo it: |
|
832 |
iInitialized = ETrue; |
|
833 |
||
834 |
// Bind & enable the UDC interrupt |
|
835 |
if (SetupUdcInterrupt() != KErrNone) |
|
836 |
{ |
|
837 |
return KErrGeneral; |
|
838 |
} |
|
839 |
||
840 |
// Write meaningful values to some registers: |
|
841 |
InitialiseUdcRegisters(); |
|
842 |
||
843 |
// Finally, turn on the UDC: |
|
844 |
UdcEnable(); |
|
845 |
||
846 |
return KErrNone; |
|
847 |
} |
|
848 |
||
849 |
||
850 |
TInt TTemplateAsspUsbcc::StopUdc() |
|
851 |
// |
|
852 |
// Basically, makes undone what happened in StartUdc. |
|
853 |
// |
|
854 |
{ |
|
855 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::StopUdc")); |
|
856 |
||
857 |
if (!iInitialized) |
|
858 |
{ |
|
859 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UDC not initialized")); |
|
860 |
return KErrNone; |
|
861 |
} |
|
862 |
||
863 |
// Disable UDC: |
|
864 |
UdcDisable(); |
|
865 |
||
866 |
// Mask (disable) Reset interrupt: |
|
867 |
// TO DO: Mask (disable) the USB Reset interrupt here. |
|
868 |
||
869 |
// Disable & unbind the UDC interrupt: |
|
870 |
ReleaseUdcInterrupt(); |
|
871 |
||
872 |
// Finally turn off UDC's clock: |
|
873 |
// TO DO: Disable UDC's clock here. |
|
874 |
||
875 |
// Only when all USB features have been disabled we'll call it a day: |
|
876 |
iInitialized = EFalse; |
|
877 |
||
878 |
return KErrNone; |
|
879 |
} |
|
880 |
||
881 |
||
882 |
TInt TTemplateAsspUsbcc::UdcConnect() |
|
883 |
// |
|
884 |
// Connects the UDC to the bus under software control. How this is achieved depends on the UDC; the |
|
885 |
// functionality might also be part of the Variant component (instead of the ASSP). |
|
886 |
// |
|
887 |
{ |
|
888 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcConnect")); |
|
889 |
||
890 |
// Here: A call into the Variant-provided function. |
|
891 |
return iAssp->UsbConnect(); |
|
892 |
} |
|
893 |
||
894 |
||
895 |
TInt TTemplateAsspUsbcc::UdcDisconnect() |
|
896 |
// |
|
897 |
// Disconnects the UDC from the bus under software control. How this is achieved depends on the UDC; the |
|
898 |
// functionality might also be part of the Variant component (instead of the ASSP). |
|
899 |
// |
|
900 |
{ |
|
901 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcDisconnect")); |
|
902 |
||
903 |
// Here: A call into the Variant-provided function. |
|
904 |
return iAssp->UsbDisconnect(); |
|
905 |
} |
|
906 |
||
907 |
||
908 |
TBool TTemplateAsspUsbcc::UsbConnectionStatus() const |
|
909 |
// |
|
910 |
// Returns a value showing the USB cable connection status of the device. |
|
911 |
// |
|
912 |
{ |
|
913 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UsbConnectionStatus")); |
|
914 |
||
915 |
return iCableConnected; |
|
916 |
} |
|
917 |
||
918 |
||
919 |
TBool TTemplateAsspUsbcc::UsbPowerStatus() const |
|
920 |
// |
|
921 |
// Returns a truth value showing whether VBUS is currently powered or not. |
|
922 |
// |
|
923 |
{ |
|
924 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UsbPowerStatus")); |
|
925 |
||
926 |
return iBusIsPowered; |
|
927 |
} |
|
928 |
||
929 |
||
930 |
TBool TTemplateAsspUsbcc::DeviceSelfPowered() const |
|
931 |
// |
|
932 |
// Returns a truth value showing whether the device is currently self-powered or not. |
|
933 |
// |
|
934 |
{ |
|
935 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeviceSelfPowered")); |
|
936 |
||
937 |
// TO DO: Query and return self powered status here. The return value should reflect the actual state. |
|
938 |
// (This can be always 'ETrue' if the UDC does not support bus-powered devices.) |
|
939 |
return ETrue; |
|
940 |
} |
|
941 |
||
942 |
||
943 |
const TUsbcEndpointCaps* TTemplateAsspUsbcc::DeviceEndpointCaps() const |
|
944 |
// |
|
945 |
// Returns a pointer to an array of elements, each of which describes the capabilities of one endpoint. |
|
946 |
// |
|
947 |
{ |
|
948 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeviceEndpointCaps")); |
|
949 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Ep: Sizes Mask, Types Mask")); |
|
950 |
__KTRACE_OPT(KUSB, Kern::Printf(" > --------------------------")); |
|
951 |
for (TInt i = 0; i < KUsbTotalEndpoints; ++i) |
|
952 |
{ |
|
953 |
__KTRACE_OPT(KUSB, Kern::Printf(" > %02d: 0x%08x, 0x%08x", |
|
954 |
i, DeviceEndpoints[i].iSizes, DeviceEndpoints[i].iTypesAndDir)); |
|
955 |
} |
|
956 |
return DeviceEndpoints; |
|
957 |
} |
|
958 |
||
959 |
||
960 |
TInt TTemplateAsspUsbcc::DeviceTotalEndpoints() const |
|
961 |
// |
|
962 |
// Returns the element number of the endpoints array a pointer to which is returned by DeviceEndpointCaps. |
|
963 |
// |
|
964 |
{ |
|
965 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeviceTotalEndpoints")); |
|
966 |
||
967 |
return KUsbTotalEndpoints; |
|
968 |
} |
|
969 |
||
970 |
||
971 |
TBool TTemplateAsspUsbcc::SoftConnectCaps() const |
|
972 |
// |
|
973 |
// Returns a truth value showing whether or not there is the capability to disconnect and re-connect the D+ |
|
974 |
// line under software control. |
|
975 |
// |
|
976 |
{ |
|
977 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SoftConnectCaps")); |
|
978 |
||
979 |
return iSoftwareConnectable; |
|
980 |
} |
|
981 |
||
982 |
||
983 |
void TTemplateAsspUsbcc::Suspend() |
|
984 |
// |
|
985 |
// Called by the PIL after a Suspend event has been reported (by us). |
|
986 |
// |
|
987 |
{ |
|
988 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Suspend")); |
|
989 |
||
990 |
// TO DO (optional): Implement here anything the device might require after bus SUSPEND signalling. |
|
991 |
} |
|
992 |
||
993 |
||
994 |
void TTemplateAsspUsbcc::Resume() |
|
995 |
// |
|
996 |
// Called by the PIL after a Resume event has been reported (by us). |
|
997 |
// |
|
998 |
{ |
|
999 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Resume")); |
|
1000 |
||
1001 |
// TO DO (optional): Implement here anything the device might require after bus RESUME signalling. |
|
1002 |
} |
|
1003 |
||
1004 |
||
1005 |
void TTemplateAsspUsbcc::Reset() |
|
1006 |
// |
|
1007 |
// Called by the PIL after a Reset event has been reported (by us). |
|
1008 |
// |
|
1009 |
{ |
|
1010 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Reset")); |
|
1011 |
||
1012 |
// This does not really belong here, but has to do with the way the PIL sets |
|
1013 |
// up Ep0 reads and writes. |
|
1014 |
TEndpoint* ep = &iEndpoints[0]; |
|
1015 |
ep->iRxBuf = NULL; |
|
1016 |
++ep; |
|
1017 |
ep->iTxBuf = NULL; |
|
1018 |
// Idle |
|
1019 |
Ep0NextState(EP0_IDLE); |
|
1020 |
||
1021 |
// TO DO (optional): Implement here anything the device might require after bus RESET signalling. |
|
1022 |
||
1023 |
// Write meaningful values to some registers |
|
1024 |
InitialiseUdcRegisters(); |
|
1025 |
UdcEnable(); |
|
1026 |
if (iEp0Configured) |
|
1027 |
EnableEndpointInterrupt(0); |
|
1028 |
} |
|
1029 |
||
1030 |
||
1031 |
// --- TTemplateAsspUsbcc private -------------------------------------------------- |
|
1032 |
||
1033 |
void TTemplateAsspUsbcc::InitialiseUdcRegisters() |
|
1034 |
// |
|
1035 |
// Called after every USB Reset etc. |
|
1036 |
// |
|
1037 |
{ |
|
1038 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::InitialiseUdcRegisters")); |
|
1039 |
||
1040 |
// Unmask Suspend interrupt |
|
1041 |
// TO DO: Unmask Suspend interrupt here. |
|
1042 |
||
1043 |
// Unmask Resume interrupt |
|
1044 |
// TO DO: Unmask Resume interrupt here. |
|
1045 |
||
1046 |
// Unmask Start-of-Frame (SOF) interrupt |
|
1047 |
// TO DO (optional): Unmask SOF interrupt here. |
|
1048 |
||
1049 |
// Disable interrupt requests for all endpoints |
|
1050 |
// TO DO: Disable interrupt requests for all endpoints here. |
|
1051 |
} |
|
1052 |
||
1053 |
||
1054 |
void TTemplateAsspUsbcc::UdcEnable() |
|
1055 |
// |
|
1056 |
// Enables the UDC for USB transmission or reception. |
|
1057 |
// |
|
1058 |
{ |
|
1059 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcEnable")); |
|
1060 |
||
1061 |
// TO DO: Do whatever is necessary to enable the UDC here. This might include enabling (unmasking) |
|
1062 |
// the USB Reset interrupt, setting a UDC enable bit, etc. |
|
1063 |
} |
|
1064 |
||
1065 |
||
1066 |
void TTemplateAsspUsbcc::UdcDisable() |
|
1067 |
// |
|
1068 |
// Disables the UDC. |
|
1069 |
// |
|
1070 |
{ |
|
1071 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcDisable")); |
|
1072 |
||
1073 |
// TO DO: Do whatever is necessary to disable the UDC here. This might include disabling (masking) |
|
1074 |
// the USB Reset interrupt, clearing a UDC enable bit, etc. |
|
1075 |
} |
|
1076 |
||
1077 |
||
1078 |
void TTemplateAsspUsbcc::EnableEndpointInterrupt(TInt aEndpoint) |
|
1079 |
// |
|
1080 |
// Enables interrupt requests for an endpoint. |
|
1081 |
// |
|
1082 |
{ |
|
1083 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::EnableEndpointInterrupt(%d)", aEndpoint)); |
|
1084 |
||
1085 |
// Enable (unmask) interrupt requests for this endpoint: |
|
1086 |
// TO DO: Enable interrupt requests for aEndpoint here. |
|
1087 |
} |
|
1088 |
||
1089 |
||
1090 |
void TTemplateAsspUsbcc::DisableEndpointInterrupt(TInt aEndpoint) |
|
1091 |
// |
|
1092 |
// Disables interrupt requests for an endpoint. |
|
1093 |
// |
|
1094 |
{ |
|
1095 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DisableEndpointInterrupt(%d)", aEndpoint)); |
|
1096 |
||
1097 |
// Disable (mask) interrupt requests for this endpoint: |
|
1098 |
// TO DO: Disable interrupt requests for aEndpoint here. |
|
1099 |
} |
|
1100 |
||
1101 |
||
1102 |
void TTemplateAsspUsbcc::ClearEndpointInterrupt(TInt aEndpoint) |
|
1103 |
// |
|
1104 |
// Clears a pending interrupt request for an endpoint. |
|
1105 |
// |
|
1106 |
{ |
|
1107 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ClearEndpointInterrupt(%d)", aEndpoint)); |
|
1108 |
||
1109 |
// Clear (reset) pending interrupt request for this endpoint: |
|
1110 |
// TO DO: Clear interrupt request for aEndpoint here. |
|
1111 |
} |
|
1112 |
||
1113 |
||
1114 |
void TTemplateAsspUsbcc::Ep0IntService() |
|
1115 |
// |
|
1116 |
// ISR for endpoint zero interrupt. |
|
1117 |
// |
|
1118 |
{ |
|
1119 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0IntService")); |
|
1120 |
||
1121 |
// TO DO: Enquire about Ep0 status & the interrupt cause here. Depending on the event and the Ep0 state, |
|
1122 |
// one or more of the following functions might then be called: |
|
1123 |
Ep0Cancel(); |
|
1124 |
Ep0ReadSetupPkt(); |
|
1125 |
Ep0EndXfer(); |
|
1126 |
Ep0PrematureStatusOut(); |
|
1127 |
Ep0Transmit(); |
|
1128 |
Ep0StatusIn(); |
|
1129 |
Ep0Receive(); |
|
1130 |
ClearStallEndpoint(0); |
|
1131 |
||
1132 |
ClearEndpointInterrupt(0); |
|
1133 |
return; |
|
1134 |
} |
|
1135 |
||
1136 |
||
1137 |
void TTemplateAsspUsbcc::Ep0ReadSetupPkt() |
|
1138 |
// |
|
1139 |
// Called from the Ep0 ISR when a new Setup packet has been received. |
|
1140 |
// |
|
1141 |
{ |
|
1142 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0ReadSetupPkt")); |
|
1143 |
||
1144 |
TEndpoint* const ep = &iEndpoints[KEp0_Out]; |
|
1145 |
TUint8* buf = ep->iRxBuf; |
|
1146 |
if (!buf) |
|
1147 |
{ |
|
1148 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Ep0 Rx buffer available (1)")); |
|
1149 |
StallEndpoint(KEp0_Out); |
|
1150 |
return; |
|
1151 |
} |
|
1152 |
||
1153 |
// TO DO: Read Setup packet data from Rx FIFO into 'buf' here. |
|
1154 |
// (In this function we don't need to use "ep->iReceived" since Setup packets |
|
1155 |
// are always 8 bytes long.) |
|
1156 |
||
1157 |
// Upcall into PIL to determine next Ep0 state: |
|
1158 |
TUsbcEp0State state = EnquireEp0NextState(ep->iRxBuf); |
|
1159 |
||
1160 |
if (state == EEp0StateStatusIn) |
|
1161 |
{ |
|
1162 |
Ep0NextState(EP0_IDLE); // Ep0 No Data |
|
1163 |
} |
|
1164 |
else if (state == EEp0StateDataIn) |
|
1165 |
{ |
|
1166 |
Ep0NextState(EP0_IN_DATA_PHASE); // Ep0 Control Read |
|
1167 |
} |
|
1168 |
else |
|
1169 |
{ |
|
1170 |
Ep0NextState(EP0_OUT_DATA_PHASE); // Ep0 Control Write |
|
1171 |
} |
|
1172 |
||
1173 |
ep->iRxBuf = NULL; |
|
1174 |
const TInt r = Ep0RequestComplete(KEp0_Out, 8, KErrNone); |
|
1175 |
||
1176 |
// Don't finish (proceed) if request completion returned 'KErrNotFound'! |
|
1177 |
if (!(r == KErrNone || r == KErrGeneral)) |
|
1178 |
{ |
|
1179 |
DisableEndpointInterrupt(0); |
|
1180 |
} |
|
1181 |
||
1182 |
// TO DO (optional): Clear Ep0 Setup condition flags here. |
|
1183 |
||
1184 |
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN |
|
1185 |
if (iEp0State == EP0_OUT_DATA_PHASE) |
|
1186 |
{ |
|
1187 |
// Allow for a premature STATUS IN |
|
1188 |
// TO DO: Arrange for the sending of a ZLP here. |
|
1189 |
} |
|
1190 |
#endif |
|
1191 |
} |
|
1192 |
||
1193 |
||
1194 |
void TTemplateAsspUsbcc::Ep0ReadSetupPktProceed() |
|
1195 |
// |
|
1196 |
// Called by the PIL to signal that it has finished processing a received Setup packet and that the PSL can |
|
1197 |
// now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 interrupt). |
|
1198 |
// |
|
1199 |
{ |
|
1200 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0ReadSetupPktProceed")); |
|
1201 |
||
1202 |
EnableEndpointInterrupt(0); |
|
1203 |
} |
|
1204 |
||
1205 |
||
1206 |
void TTemplateAsspUsbcc::Ep0Receive() |
|
1207 |
// |
|
1208 |
// Called from the Ep0 ISR when a data packet has been received. |
|
1209 |
// |
|
1210 |
{ |
|
1211 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0Receive")); |
|
1212 |
||
1213 |
TEndpoint* const ep = &iEndpoints[KEp0_Out]; |
|
1214 |
TUint8* buf = ep->iRxBuf; |
|
1215 |
if (!buf) |
|
1216 |
{ |
|
1217 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Ep0 Rx buffer available (2)")); |
|
1218 |
StallEndpoint(KEp0_Out); |
|
1219 |
return; |
|
1220 |
} |
|
1221 |
||
1222 |
TInt n = 0; |
|
1223 |
// TO DO: Read packet data from Rx FIFO into 'buf' and update 'n' (# of received bytes) here. |
|
1224 |
||
1225 |
ep->iReceived = n; |
|
1226 |
ep->iRxBuf = NULL; |
|
1227 |
const TInt r = Ep0RequestComplete(KEp0_Out, n, KErrNone); |
|
1228 |
||
1229 |
// Don't finish (proceed) if request was 'KErrNotFound'! |
|
1230 |
if (!(r == KErrNone || r == KErrGeneral)) |
|
1231 |
{ |
|
1232 |
DisableEndpointInterrupt(0); |
|
1233 |
} |
|
1234 |
||
1235 |
// TO DO (optional): Clear Ep0 Rx condition flags here. |
|
1236 |
||
1237 |
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN |
|
1238 |
// Allow for a premature STATUS IN |
|
1239 |
// TO DO: Arrange for the sending of a ZLP here. |
|
1240 |
#endif |
|
1241 |
} |
|
1242 |
||
1243 |
||
1244 |
void TTemplateAsspUsbcc::Ep0ReceiveProceed() |
|
1245 |
// |
|
1246 |
// Called by the PIL to signal that it has finished processing a received Ep0 data packet and that the PSL can |
|
1247 |
// now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 interrupt). |
|
1248 |
// |
|
1249 |
{ |
|
1250 |
Ep0ReadSetupPktProceed(); |
|
1251 |
} |
|
1252 |
||
1253 |
||
1254 |
void TTemplateAsspUsbcc::Ep0Transmit() |
|
1255 |
// |
|
1256 |
// Called from either the Ep0 ISR or the PIL when a data packet has been or is to be transmitted. |
|
1257 |
// |
|
1258 |
{ |
|
1259 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0Transmit")); |
|
1260 |
||
1261 |
if (iEp0State != EP0_IN_DATA_PHASE) |
|
1262 |
{ |
|
1263 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: Invalid Ep0 state when trying to handle EP0 IN")); |
|
1264 |
// TO DO (optional): Do something about this warning. |
|
1265 |
} |
|
1266 |
||
1267 |
TEndpoint* const ep = &iEndpoints[KEp0_In]; |
|
1268 |
const TUint8* buf = ep->iTxBuf; |
|
1269 |
if (!buf) |
|
1270 |
{ |
|
1271 |
__KTRACE_OPT(KUSB, Kern::Printf(" > No Tx buffer available: returning")); |
|
1272 |
return; |
|
1273 |
} |
|
1274 |
const TInt t = ep->iTransmitted; // already transmitted |
|
1275 |
buf += t; |
|
1276 |
TInt n = 0; // now transmitted |
|
1277 |
||
1278 |
// TO DO: Write packet data (if any) into Tx FIFO from 'buf' and update 'n' (# of tx'ed bytes) here. |
|
1279 |
||
1280 |
ep->iTransmitted += n; |
|
1281 |
||
1282 |
// coverity[dead_error_condition] |
|
1283 |
// The next line should be reachable when this template file is edited for use |
|
1284 |
if (n == KEp0MaxPktSz) |
|
1285 |
{ |
|
1286 |
if (ep->iTransmitted == ep->iLength && !(ep->iZlpReqd)) |
|
1287 |
Ep0NextState(EP0_END_XFER); |
|
1288 |
} |
|
1289 |
else if (n && n != KEp0MaxPktSz) |
|
1290 |
{ |
|
1291 |
// Send off the data |
|
1292 |
__ASSERT_DEBUG((ep->iTransmitted == ep->iLength), |
|
1293 |
Kern::Printf(" > ERROR: Short packet in mid-transfer")); |
|
1294 |
Ep0NextState(EP0_END_XFER); |
|
1295 |
// TO DO: Send off the data here. |
|
1296 |
} |
|
1297 |
else // if (n == 0) |
|
1298 |
{ |
|
1299 |
__ASSERT_DEBUG((ep->iTransmitted == ep->iLength), |
|
1300 |
Kern::Printf(" > ERROR: Nothing transmitted but still not finished")); |
|
1301 |
if (ep->iZlpReqd) |
|
1302 |
{ |
|
1303 |
// Send a zero length packet |
|
1304 |
ep->iZlpReqd = EFalse; |
|
1305 |
Ep0NextState(EP0_END_XFER); |
|
1306 |
// TO DO: Arrange for the sending of a ZLP here. |
|
1307 |
} |
|
1308 |
else |
|
1309 |
{ |
|
1310 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: nothing transmitted & no ZLP req'd")); |
|
1311 |
} |
|
1312 |
} |
|
1313 |
} |
|
1314 |
||
1315 |
||
1316 |
void TTemplateAsspUsbcc::Ep0EndXfer() |
|
1317 |
// |
|
1318 |
// Called at the end of a Ep0 Control transfer. |
|
1319 |
// |
|
1320 |
{ |
|
1321 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0EndXfer")); |
|
1322 |
||
1323 |
// TO DO (optional): Clear Ep0 Rx condition flags here. |
|
1324 |
||
1325 |
Ep0NextState(EP0_IDLE); |
|
1326 |
TEndpoint* const ep = &iEndpoints[KEp0_In]; |
|
1327 |
ep->iTxBuf = NULL; |
|
1328 |
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrNone); |
|
1329 |
} |
|
1330 |
||
1331 |
||
1332 |
void TTemplateAsspUsbcc::Ep0Cancel() |
|
1333 |
// |
|
1334 |
// Called when an ongoing Ep0 Control transfer has to be aborted prematurely (for instance when receiving a |
|
1335 |
// new Setup packet before the processing of the old one has completed). |
|
1336 |
// |
|
1337 |
{ |
|
1338 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0Cancel")); |
|
1339 |
||
1340 |
Ep0NextState(EP0_IDLE); |
|
1341 |
TEndpoint* const ep = &iEndpoints[KEp0_In]; |
|
1342 |
if (ep->iTxBuf) |
|
1343 |
{ |
|
1344 |
ep->iTxBuf = NULL; |
|
1345 |
const TInt err = (ep->iTransmitted == ep->iLength) ? KErrNone : KErrCancel; |
|
1346 |
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, err); |
|
1347 |
} |
|
1348 |
} |
|
1349 |
||
1350 |
||
1351 |
void TTemplateAsspUsbcc::Ep0PrematureStatusOut() |
|
1352 |
// |
|
1353 |
// Called when an ongoing Ep0 Control transfer encounters a premature Status OUT condition. |
|
1354 |
// |
|
1355 |
{ |
|
1356 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0PrematureStatusOut")); |
|
1357 |
||
1358 |
// TO DO (optional): Clear Ep0 Rx condition flags here. |
|
1359 |
||
1360 |
Ep0NextState(EP0_IDLE); |
|
1361 |
||
1362 |
// TO DO (optional): Flush the Ep0 Tx FIFO here, if possible. |
|
1363 |
||
1364 |
TEndpoint* const ep = &iEndpoints[KEp0_In]; |
|
1365 |
if (ep->iTxBuf) |
|
1366 |
{ |
|
1367 |
ep->iTxBuf = NULL; |
|
1368 |
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrPrematureEnd); |
|
1369 |
} |
|
1370 |
} |
|
1371 |
||
1372 |
||
1373 |
void TTemplateAsspUsbcc::Ep0StatusIn() |
|
1374 |
// |
|
1375 |
// Called when an ongoing Ep0 Control transfer moves to a Status IN stage. |
|
1376 |
// |
|
1377 |
{ |
|
1378 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0StatusIn")); |
|
1379 |
||
1380 |
Ep0NextState(EP0_IDLE); |
|
1381 |
} |
|
1382 |
||
1383 |
||
1384 |
void TTemplateAsspUsbcc::BulkTransmit(TInt aEndpoint) |
|
1385 |
// |
|
1386 |
// Endpoint 1 (BULK IN). |
|
1387 |
// Called from either the Ep ISR or the PIL when a data packet has been or is to be transmitted. |
|
1388 |
// |
|
1389 |
{ |
|
1390 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::BulkTransmit(%d)", aEndpoint)); |
|
1391 |
||
1392 |
// TO DO: Enquire about Ep status here. |
|
1393 |
||
1394 |
const TInt idx = 3; // only in our special case of course! |
|
1395 |
TEndpoint* const ep = &iEndpoints[idx]; |
|
1396 |
const TUint8* buf = ep->iTxBuf; |
|
1397 |
if (!buf) |
|
1398 |
{ |
|
1399 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Tx buffer has been set up")); |
|
1400 |
DisableEndpointInterrupt(aEndpoint); |
|
1401 |
ep->iDisabled = ETrue; |
|
1402 |
ClearEndpointInterrupt(aEndpoint); |
|
1403 |
return; |
|
1404 |
} |
|
1405 |
const TInt t = ep->iTransmitted; // already transmitted |
|
1406 |
const TInt len = ep->iLength; // to be sent in total |
|
1407 |
// (len || ep->iPackets): Don't complete for a zero bytes request straight away. |
|
1408 |
if (t >= len && (len || ep->iPackets)) |
|
1409 |
{ |
|
1410 |
if (ep->iZlpReqd) |
|
1411 |
{ |
|
1412 |
__KTRACE_OPT(KUSB, Kern::Printf(" > 'Transmit Short Packet' explicitly")); |
|
1413 |
// TO DO: Arrange for the sending of a ZLP here. |
|
1414 |
ep->iZlpReqd = EFalse; |
|
1415 |
} |
|
1416 |
else |
|
1417 |
{ |
|
1418 |
__KTRACE_OPT(KUSB, Kern::Printf(" > All data sent: %d --> completing", len)); |
|
1419 |
ep->iTxBuf = NULL; |
|
1420 |
ep->iRequest->iTxBytes = ep->iTransmitted; |
|
1421 |
ep->iRequest->iError = KErrNone; |
|
1422 |
EndpointRequestComplete(ep->iRequest); |
|
1423 |
ep->iRequest = NULL; |
|
1424 |
} |
|
1425 |
} |
|
1426 |
else |
|
1427 |
{ |
|
1428 |
buf += t; |
|
1429 |
TInt left = len - t; // left in total |
|
1430 |
TInt n = (left >= KBlkMaxPktSz) ? KBlkMaxPktSz : left; // now to be transmitted |
|
1431 |
__KTRACE_OPT(KUSB, Kern::Printf(" > About to send %d bytes (%d bytes left in total)", n, left)); |
|
1432 |
||
1433 |
// TO DO: Write data into Tx FIFO from 'buf' here. |
|
1434 |
||
1435 |
ep->iTransmitted += n; |
|
1436 |
ep->iPackets++; // only used for (len == 0) case |
|
1437 |
left -= n; // (still) left in total |
|
1438 |
if (n < KBlkMaxPktSz) |
|
1439 |
{ |
|
1440 |
__KTRACE_OPT(KUSB, Kern::Printf(" > 'Transmit Short Packet' implicitly")); |
|
1441 |
// TO DO: Arrange for the sending of a ZLP here. |
|
1442 |
ep->iZlpReqd = EFalse; |
|
1443 |
} |
|
1444 |
// If double-buffering is available, it might be possible to stick a second packet |
|
1445 |
// into the FIFO here. |
|
1446 |
||
1447 |
// TO DO (optional): Send another packet if possible (& available) here. |
|
1448 |
} |
|
1449 |
||
1450 |
ClearEndpointInterrupt(aEndpoint); |
|
1451 |
} |
|
1452 |
||
1453 |
||
1454 |
||
1455 |
void TTemplateAsspUsbcc::BulkReceive(TInt aEndpoint) |
|
1456 |
// |
|
1457 |
// Endpoint 2 (BULK OUT) (This one is called in an ISR.) |
|
1458 |
// |
|
1459 |
{ |
|
1460 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::BulkReceive(%d)", aEndpoint)); |
|
1461 |
||
1462 |
// TO DO: Enquire about Ep status here. |
|
1463 |
const TUint32 status = *(TUint32*)0xdefaced; // bogus |
|
1464 |
||
1465 |
const TInt idx = 4; // only in our special case of course! |
|
1466 |
TEndpoint* const ep = &iEndpoints[idx]; |
|
1467 |
TUint8* buf = ep->iRxBuf; |
|
1468 |
if (!buf) |
|
1469 |
{ |
|
1470 |
__KTRACE_OPT(KUSB, Kern::Printf(" > No Rx buffer available: setting iNoBuffer")); |
|
1471 |
ep->iNoBuffer = ETrue; |
|
1472 |
DisableEndpointInterrupt(aEndpoint); |
|
1473 |
ep->iDisabled = ETrue; |
|
1474 |
ClearEndpointInterrupt(aEndpoint); |
|
1475 |
return; |
|
1476 |
} |
|
1477 |
TInt bytes = 0; |
|
1478 |
const TInt r = ep->iReceived; // already received |
|
1479 |
// TO DO: Check whether a ZLP was received here: |
|
1480 |
if (status & 1) // some condition |
|
1481 |
{ |
|
1482 |
__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet")); |
|
1483 |
} |
|
1484 |
else if (status & 2) // some other condition |
|
1485 |
{ |
|
1486 |
// TO DO: Get number of bytes received here. |
|
1487 |
bytes = *(TUint32*)0xdadadada; // bogus |
|
1488 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes)); |
|
1489 |
if (r + bytes > ep->iLength) |
|
1490 |
{ |
|
1491 |
__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer")); |
|
1492 |
ep->iNoBuffer = ETrue; |
|
1493 |
StopRxTimer(ep); |
|
1494 |
*ep->iPacketSize = ep->iReceived; |
|
1495 |
RxComplete(ep); |
|
1496 |
||
1497 |
// TO DO (optional): Clear Ep Rx condition flags here. |
|
1498 |
||
1499 |
ClearEndpointInterrupt(aEndpoint); |
|
1500 |
return; |
|
1501 |
} |
|
1502 |
buf += r; // set buffer pointer |
|
1503 |
||
1504 |
// TO DO: Read 'bytes' bytes from Rx FIFO into 'buf' here. |
|
1505 |
||
1506 |
ep->iReceived += bytes; |
|
1507 |
} |
|
1508 |
else |
|
1509 |
{ |
|
1510 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Inconsistent Ep%d state", aEndpoint)); |
|
1511 |
||
1512 |
// TO DO (optional): Clear Ep Rx condition flags here. |
|
1513 |
||
1514 |
ClearEndpointInterrupt(aEndpoint); |
|
1515 |
return; |
|
1516 |
} |
|
1517 |
||
1518 |
if (bytes == 0) |
|
1519 |
{ |
|
1520 |
// ZLPs must be recorded separately |
|
1521 |
const TInt i = ep->iReceived ? 1 : 0; |
|
1522 |
ep->iPacketIndex[i] = r; |
|
1523 |
ep->iPacketSize[i] = 0; |
|
1524 |
// If there were data packets before: total packets reported 1 -> 2 |
|
1525 |
ep->iPackets += i; |
|
1526 |
} |
|
1527 |
||
1528 |
if ((bytes < KBlkMaxPktSz) || |
|
1529 |
(ep->iReceived == ep->iLength)) |
|
1530 |
{ |
|
1531 |
StopRxTimer(ep); |
|
1532 |
*ep->iPacketSize = ep->iReceived; |
|
1533 |
RxComplete(ep); |
|
1534 |
// since we have no buffer any longer we disable interrupts: |
|
1535 |
DisableEndpointInterrupt(aEndpoint); |
|
1536 |
ep->iDisabled = ETrue; |
|
1537 |
} |
|
1538 |
else |
|
1539 |
{ |
|
1540 |
if (!ep->iRxTimerSet) |
|
1541 |
{ |
|
1542 |
__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer")); |
|
1543 |
ep->iRxTimerSet = ETrue; |
|
1544 |
ep->iRxTimer.OneShot(KRxTimerTimeout); |
|
1545 |
} |
|
1546 |
else |
|
1547 |
{ |
|
1548 |
ep->iRxMoreDataRcvd = ETrue; |
|
1549 |
} |
|
1550 |
} |
|
1551 |
||
1552 |
// TO DO (optional): Clear Ep Rx condition flags here. |
|
1553 |
||
1554 |
ClearEndpointInterrupt(aEndpoint); |
|
1555 |
} |
|
1556 |
||
1557 |
||
1558 |
void TTemplateAsspUsbcc::BulkReadRxFifo(TInt aEndpoint) |
|
1559 |
// |
|
1560 |
// Endpoint 2 (BULK OUT) (This one is called w/o interrupt to be served.) |
|
1561 |
// |
|
1562 |
{ |
|
1563 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::BulkReadRxFifo(%d)", aEndpoint)); |
|
1564 |
||
1565 |
// TO DO: Enquire about Ep status here. |
|
1566 |
const TUint32 status = *(TUint32*)0xdefaced; // bogus |
|
1567 |
||
1568 |
const TInt idx = 4; // only in our special case of course! |
|
1569 |
TEndpoint* const ep = &iEndpoints[idx]; |
|
1570 |
TUint8* buf = ep->iRxBuf; |
|
1571 |
if (!buf) |
|
1572 |
{ |
|
1573 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Rx buffer has been set up")); |
|
1574 |
return; |
|
1575 |
} |
|
1576 |
TInt bytes = 0; |
|
1577 |
const TInt r = ep->iReceived; // already received |
|
1578 |
// TO DO: Check whether a ZLP was received here: |
|
1579 |
if (status & 1) // some condition |
|
1580 |
{ |
|
1581 |
__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet")); |
|
1582 |
} |
|
1583 |
else if (status & 2) // some other condition |
|
1584 |
{ |
|
1585 |
// TO DO: Get number of bytes received here. |
|
1586 |
bytes = *(TUint32*)0xdadadada; // bogus |
|
1587 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes)); |
|
1588 |
if (r + bytes > ep->iLength) |
|
1589 |
{ |
|
1590 |
__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer")); |
|
1591 |
ep->iNoBuffer = ETrue; |
|
1592 |
*ep->iPacketSize = ep->iReceived; |
|
1593 |
RxComplete(ep); |
|
1594 |
return; |
|
1595 |
} |
|
1596 |
buf += r; // set buffer pointer |
|
1597 |
||
1598 |
// TO DO: Read 'bytes' bytes from Rx FIFO into 'buf' here. |
|
1599 |
||
1600 |
ep->iReceived += bytes; |
|
1601 |
} |
|
1602 |
else |
|
1603 |
{ |
|
1604 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Inconsistent Ep%d state", aEndpoint)); |
|
1605 |
return; |
|
1606 |
} |
|
1607 |
||
1608 |
if (bytes == 0) |
|
1609 |
{ |
|
1610 |
// ZLPs must be recorded separately |
|
1611 |
const TInt i = ep->iReceived ? 1 : 0; |
|
1612 |
ep->iPacketIndex[i] = r; |
|
1613 |
ep->iPacketSize[i] = 0; |
|
1614 |
// If there were data packets before: total packets reported 1 -> 2 |
|
1615 |
ep->iPackets += i; |
|
1616 |
} |
|
1617 |
||
1618 |
if ((bytes < KBlkMaxPktSz) || |
|
1619 |
(ep->iReceived == ep->iLength)) |
|
1620 |
{ |
|
1621 |
*ep->iPacketSize = ep->iReceived; |
|
1622 |
RxComplete(ep); |
|
1623 |
} |
|
1624 |
else |
|
1625 |
{ |
|
1626 |
if (!ep->iRxTimerSet) |
|
1627 |
{ |
|
1628 |
__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer")); |
|
1629 |
ep->iRxTimerSet = ETrue; |
|
1630 |
ep->iRxTimer.OneShot(KRxTimerTimeout); |
|
1631 |
} |
|
1632 |
else |
|
1633 |
{ |
|
1634 |
ep->iRxMoreDataRcvd = ETrue; |
|
1635 |
} |
|
1636 |
} |
|
1637 |
||
1638 |
// TO DO (optional): Clear Ep Rx condition flags here. |
|
1639 |
||
1640 |
} |
|
1641 |
||
1642 |
||
1643 |
void TTemplateAsspUsbcc::IsoTransmit(TInt aEndpoint) |
|
1644 |
// |
|
1645 |
// Endpoint 3 (ISOCHRONOUS IN). |
|
1646 |
// |
|
1647 |
{ |
|
1648 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::IsoTransmit(%d)", aEndpoint)); |
|
1649 |
||
1650 |
// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit. |
|
1651 |
||
1652 |
} |
|
1653 |
||
1654 |
||
1655 |
void TTemplateAsspUsbcc::IsoReceive(TInt aEndpoint) |
|
1656 |
// |
|
1657 |
// Endpoint 4 (ISOCHRONOUS OUT) (This one is called in an ISR.) |
|
1658 |
// |
|
1659 |
{ |
|
1660 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::IsoReceive(%d)", aEndpoint)); |
|
1661 |
||
1662 |
// TO DO: Read data from endpoint FIFO. Might be similar to BulkReceive. |
|
1663 |
} |
|
1664 |
||
1665 |
||
1666 |
void TTemplateAsspUsbcc::IsoReadRxFifo(TInt aEndpoint) |
|
1667 |
// |
|
1668 |
// Endpoint 4 (ISOCHRONOUS OUT) (This one is called w/o interrupt to be served.) |
|
1669 |
// |
|
1670 |
{ |
|
1671 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::IsoReadRxFifo(%d)", aEndpoint)); |
|
1672 |
||
1673 |
// TO DO: Read data from endpoint FIFO. Might be similar to BulkReadRxFifo. |
|
1674 |
} |
|
1675 |
||
1676 |
||
1677 |
void TTemplateAsspUsbcc::IntTransmit(TInt aEndpoint) |
|
1678 |
// |
|
1679 |
// Endpoint 5 (INTERRUPT IN). |
|
1680 |
// |
|
1681 |
{ |
|
1682 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::IntTransmit(%d)", aEndpoint)); |
|
1683 |
||
1684 |
// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit. |
|
1685 |
} |
|
1686 |
||
1687 |
||
1688 |
void TTemplateAsspUsbcc::RxComplete(TEndpoint* aEndpoint) |
|
1689 |
// |
|
1690 |
// Called at the end of an Rx (OUT) transfer to complete to the PIL. |
|
1691 |
// |
|
1692 |
{ |
|
1693 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::RxComplete")); |
|
1694 |
||
1695 |
TUsbcRequestCallback* const req = aEndpoint->iRequest; |
|
1696 |
||
1697 |
__ASSERT_DEBUG((req != NULL), Kern::Fault(KUsbPanicCat, __LINE__)); |
|
1698 |
||
1699 |
aEndpoint->iRxBuf = NULL; |
|
1700 |
aEndpoint->iRxTimerSet = EFalse; |
|
1701 |
aEndpoint->iRxMoreDataRcvd = EFalse; |
|
1702 |
req->iRxPackets = aEndpoint->iPackets; |
|
1703 |
req->iError = aEndpoint->iLastError; |
|
1704 |
EndpointRequestComplete(req); |
|
1705 |
aEndpoint->iRequest = NULL; |
|
1706 |
} |
|
1707 |
||
1708 |
||
1709 |
void TTemplateAsspUsbcc::StopRxTimer(TEndpoint* aEndpoint) |
|
1710 |
// |
|
1711 |
// Stops (cancels) the Rx timer for an endpoint. |
|
1712 |
// |
|
1713 |
{ |
|
1714 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::StopRxTimer")); |
|
1715 |
||
1716 |
if (aEndpoint->iRxTimerSet) |
|
1717 |
{ |
|
1718 |
__KTRACE_OPT(KUSB, Kern::Printf(" > stopping rx timer")); |
|
1719 |
aEndpoint->iRxTimer.Cancel(); |
|
1720 |
aEndpoint->iRxTimerSet = EFalse; |
|
1721 |
} |
|
1722 |
} |
|
1723 |
||
1724 |
||
1725 |
void TTemplateAsspUsbcc::EndpointIntService(TInt aEndpoint) |
|
1726 |
// |
|
1727 |
// ISR for endpoint interrupts. |
|
1728 |
// Note: the aEndpoint here is a "hardware endpoint", not a aRealEndpoint. |
|
1729 |
// |
|
1730 |
{ |
|
1731 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::EndpointIntService(%d)", aEndpoint)); |
|
1732 |
||
1733 |
switch (aEndpoint) |
|
1734 |
{ |
|
1735 |
case 0: |
|
1736 |
Ep0IntService(); |
|
1737 |
break; |
|
1738 |
case 1: |
|
1739 |
BulkTransmit(aEndpoint); |
|
1740 |
break; |
|
1741 |
case 2: |
|
1742 |
BulkReceive(aEndpoint); |
|
1743 |
break; |
|
1744 |
case 3: |
|
1745 |
IsoTransmit(aEndpoint); |
|
1746 |
break; |
|
1747 |
case 4: |
|
1748 |
IsoReceive(aEndpoint); |
|
1749 |
break; |
|
1750 |
case 5: |
|
1751 |
IntTransmit(aEndpoint); |
|
1752 |
break; |
|
1753 |
default: |
|
1754 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found")); |
|
1755 |
break; |
|
1756 |
} |
|
1757 |
} |
|
1758 |
||
1759 |
||
1760 |
TInt TTemplateAsspUsbcc::ResetIntService() |
|
1761 |
// |
|
1762 |
// ISR for a USB Reset event interrupt. |
|
1763 |
// This function returns a value which can be used on the calling end to decide how to proceed. |
|
1764 |
// |
|
1765 |
{ |
|
1766 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ResetIntService")); |
|
1767 |
||
1768 |
// Clear an interrupt: |
|
1769 |
// TO DO: Clear reset interrupt flag here. |
|
1770 |
||
1771 |
// TO DO (optional): Enquire about special conditions and possibly return here. |
|
1772 |
||
1773 |
DeviceEventNotification(EUsbEventReset); |
|
1774 |
||
1775 |
return KErrNone; |
|
1776 |
} |
|
1777 |
||
1778 |
||
1779 |
void TTemplateAsspUsbcc::SuspendIntService() |
|
1780 |
// |
|
1781 |
// ISR for a USB Suspend event interrupt. |
|
1782 |
// |
|
1783 |
{ |
|
1784 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SuspendIntService")); |
|
1785 |
||
1786 |
// Clear an interrupt: |
|
1787 |
// TO DO: Clear suspend interrupt flag here. |
|
1788 |
||
1789 |
DeviceEventNotification(EUsbEventSuspend); |
|
1790 |
} |
|
1791 |
||
1792 |
||
1793 |
void TTemplateAsspUsbcc::ResumeIntService() |
|
1794 |
// |
|
1795 |
// ISR for a USB Resume event interrupt. |
|
1796 |
// |
|
1797 |
{ |
|
1798 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ResumeIntService")); |
|
1799 |
||
1800 |
// Clear an interrupt: |
|
1801 |
// TO DO: Clear resume interrupt flag here. |
|
1802 |
||
1803 |
DeviceEventNotification(EUsbEventResume); |
|
1804 |
} |
|
1805 |
||
1806 |
||
1807 |
void TTemplateAsspUsbcc::SofIntService() |
|
1808 |
// |
|
1809 |
// ISR for a USB Start-of-Frame event interrupt. |
|
1810 |
// |
|
1811 |
{ |
|
1812 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SofIntService")); |
|
1813 |
||
1814 |
// Clear an interrupt: |
|
1815 |
// TO DO: Clear SOF interrupt flag here. |
|
1816 |
||
1817 |
// TO DO (optional): Do something about the SOF condition. |
|
1818 |
} |
|
1819 |
||
1820 |
||
1821 |
void TTemplateAsspUsbcc::UdcInterruptService() |
|
1822 |
// |
|
1823 |
// Main UDC ISR - determines the cause of the interrupt, clears the condition, dispatches further for service. |
|
1824 |
// |
|
1825 |
{ |
|
1826 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::InterruptService")); |
|
1827 |
||
1828 |
// TO DO: Find the cause of the interrupt (possibly querying a number of status registers) here. |
|
1829 |
||
1830 |
// Determine the type of UDC interrupt & then serve it: |
|
1831 |
// (The following operations are of course EXAMPLES only.) |
|
1832 |
volatile const TUint32* const status_reg = (TUint32*) 0xdefaced; |
|
1833 |
const TUint32 status = *status_reg; |
|
1834 |
enum {reset_interrupt, suspend_interrupt, resume_interrupt, sof_interrupt, ep_interrupt}; |
|
1835 |
||
1836 |
// Reset interrupt |
|
1837 |
if (status & reset_interrupt) |
|
1838 |
{ |
|
1839 |
ResetIntService(); |
|
1840 |
} |
|
1841 |
||
1842 |
// Suspend interrupt |
|
1843 |
if (status & suspend_interrupt) |
|
1844 |
{ |
|
1845 |
SuspendIntService(); |
|
1846 |
} |
|
1847 |
||
1848 |
// Resume interrupt |
|
1849 |
if (status & resume_interrupt) |
|
1850 |
{ |
|
1851 |
ResumeIntService(); |
|
1852 |
} |
|
1853 |
||
1854 |
// Start-of-Frame interrupt |
|
1855 |
if (status & sof_interrupt) |
|
1856 |
{ |
|
1857 |
SofIntService(); |
|
1858 |
} |
|
1859 |
||
1860 |
// Endpoint interrupt |
|
1861 |
if (status & ep_interrupt) |
|
1862 |
{ |
|
1863 |
const TInt ep = status & 0xffff0000; |
|
1864 |
{ |
|
1865 |
EndpointIntService(ep); |
|
1866 |
} |
|
1867 |
} |
|
1868 |
} |
|
1869 |
||
1870 |
||
1871 |
void TTemplateAsspUsbcc::Ep0NextState(TEp0State aNextState) |
|
1872 |
// |
|
1873 |
// Moves the Ep0 state to aNextState. |
|
1874 |
// |
|
1875 |
{ |
|
1876 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0NextState")); |
|
1877 |
||
1878 |
iEp0State = aNextState; |
|
1879 |
} |
|
1880 |
||
1881 |
||
1882 |
void TTemplateAsspUsbcc::UdcIsr(TAny* aPtr) |
|
1883 |
// |
|
1884 |
// This is the static ASSP first-level UDC interrupt service routine. It dispatches the call to the |
|
1885 |
// actual controller's ISR. |
|
1886 |
// |
|
1887 |
{ |
|
1888 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcIsr")); |
|
1889 |
||
1890 |
static_cast<TTemplateAsspUsbcc*>(aPtr)->UdcInterruptService(); |
|
1891 |
} |
|
1892 |
||
1893 |
||
1894 |
TInt TTemplateAsspUsbcc::UsbClientConnectorCallback(TAny* aPtr) |
|
1895 |
// |
|
1896 |
// This function is called in ISR context by the Variant's UsbClientConnectorInterruptService. |
|
1897 |
// (This function is static.) |
|
1898 |
// |
|
1899 |
{ |
|
1900 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UsbClientConnectorCallback")); |
|
1901 |
||
1902 |
TTemplateAsspUsbcc* const ptr = static_cast<TTemplateAsspUsbcc*>(aPtr); |
|
1903 |
ptr->iCableConnected = ptr->iAssp->UsbClientConnectorInserted(); |
|
1904 |
#ifdef _DEBUG |
|
1905 |
_LIT(KIns, "inserted"); |
|
1906 |
_LIT(KRem, "removed"); |
|
152
657f875b013e
Revision: 201023
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
1907 |
__KTRACE_OPT(KUSB, Kern::Printf(" > USB cable now %S", ptr->iCableConnected ? &KIns : &KRem)); |
0 | 1908 |
#endif |
1909 |
if (ptr->iCableConnected) |
|
1910 |
{ |
|
1911 |
ptr->DeviceEventNotification(EUsbEventCableInserted); |
|
1912 |
} |
|
1913 |
else |
|
1914 |
{ |
|
1915 |
ptr->DeviceEventNotification(EUsbEventCableRemoved); |
|
1916 |
} |
|
1917 |
||
1918 |
return KErrNone; |
|
1919 |
} |
|
1920 |
||
1921 |
||
1922 |
TInt TTemplateAsspUsbcc::SetupUdcInterrupt() |
|
1923 |
// |
|
1924 |
// Registers and enables the UDC interrupt (ASSP first level interrupt). |
|
1925 |
// |
|
1926 |
{ |
|
1927 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupUdcInterrupt")); |
|
1928 |
||
1929 |
// Register UDC interrupt: |
|
1930 |
const TInt error = Interrupt::Bind(EAsspIntIdUsb, UdcIsr, this); |
|
1931 |
if (error != KErrNone) |
|
1932 |
{ |
|
1933 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Binding UDC interrupt failed")); |
|
1934 |
return error; |
|
1935 |
} |
|
1936 |
||
1937 |
// Enable UDC interrupt: |
|
1938 |
Interrupt::Enable(EAsspIntIdUsb); |
|
1939 |
||
1940 |
return KErrNone; |
|
1941 |
} |
|
1942 |
||
1943 |
||
1944 |
void TTemplateAsspUsbcc::ReleaseUdcInterrupt() |
|
1945 |
// |
|
1946 |
// Disables and unbinds the UDC interrupt. |
|
1947 |
// |
|
1948 |
{ |
|
1949 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ReleaseUdcInterrupt")); |
|
1950 |
||
1951 |
// Disable UDC interrupt: |
|
1952 |
Interrupt::Disable(EAsspIntIdUsb); |
|
1953 |
||
1954 |
// Unregister UDC interrupt: |
|
1955 |
Interrupt::Unbind(EAsspIntIdUsb); |
|
1956 |
} |
|
1957 |
||
1958 |
||
1959 |
// |
|
1960 |
// --- DLL Exported Function -------------------------------------------------- |
|
1961 |
// |
|
1962 |
||
1963 |
DECLARE_STANDARD_EXTENSION() |
|
1964 |
// |
|
1965 |
// Creates and initializes a new USB client controller object on the kernel heap. |
|
1966 |
// |
|
1967 |
{ |
|
1968 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support (Udcc)...")); |
|
1969 |
||
1970 |
TTemplateAsspUsbcc* const usbcc = new TTemplateAsspUsbcc(); |
|
1971 |
if (!usbcc) |
|
1972 |
{ |
|
1973 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for TTemplateAsspUsbcc failed")); |
|
1974 |
return KErrNoMemory; |
|
1975 |
} |
|
1976 |
||
1977 |
TInt r; |
|
1978 |
if ((r = usbcc->Construct()) != KErrNone) |
|
1979 |
{ |
|
1980 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Construction of TTemplateAsspUsbcc failed (%d)", r)); |
|
1981 |
delete usbcc; |
|
1982 |
return r; |
|
1983 |
} |
|
1984 |
||
1985 |
if (usbcc->RegisterUdc(0) == NULL) |
|
1986 |
{ |
|
1987 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: PIL registration of PSL failed")); |
|
1988 |
delete usbcc; |
|
1989 |
return KErrGeneral; |
|
1990 |
} |
|
1991 |
||
1992 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support: Done")); |
|
1993 |
||
1994 |
return KErrNone; |
|
1995 |
} |
|
1996 |
||
1997 |
||
1998 |
// --- EOF -------------------------------------------------------------------- |