0
|
1 |
// Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32test/device/t_usbapi.cpp
|
|
15 |
// Overview:
|
|
16 |
// USB API Test Program (a standalone USB test program).
|
|
17 |
// API Information:
|
|
18 |
// Details:
|
|
19 |
// - Query whether the platform is operating HS (or it is connected to a HS host) or not,
|
|
20 |
// and executes the appropiate tests in each case (see RunTests() for the actual code,
|
|
21 |
// state machine enclosed for clarity):
|
|
22 |
// - Load and open an EUSBC device driver (logical device)
|
|
23 |
// - Setup the USB interface: query device capabilities, setup interface.
|
|
24 |
// - Test allocating DMA and double buffering resources with
|
|
25 |
// AllocateEndpointResource results in their use being correctly reported by
|
|
26 |
// QueryEndpointResourceUse
|
|
27 |
// - Test descriptor manipulation: validate the device, configuration,
|
|
28 |
// interface, alternate interface, endpoint and string descriptor
|
|
29 |
// manipulation.
|
|
30 |
// HS: device_qualifier and other_speed_configuation descriptors.
|
|
31 |
// - Check and validate the EndpointZeroMaxPacketSizes.
|
|
32 |
// - Quick test that calling the following APIs doesn't generate errors: device
|
|
33 |
// control, AlternateDeviceStatusNotify, EndpointStatusNotify
|
|
34 |
// - Test HaltEndpoint and ClearHaltEndpoint correctly result in endpoint
|
|
35 |
// status being reported as stalled/not stalled.
|
|
36 |
// - Test OTG extensions: OTG descriptor manipulations; set/get OTG feature
|
|
37 |
// - Close and free the logical device.
|
|
38 |
// Platforms/Drives/Compatibility:
|
|
39 |
// All.
|
|
40 |
// Assumptions/Requirement/Pre-requisites:
|
|
41 |
// Failures and causes:
|
|
42 |
// Base Port information:
|
|
43 |
//
|
|
44 |
//
|
|
45 |
|
|
46 |
|
|
47 |
#include <e32test.h>
|
|
48 |
#include <e32debug.h>
|
|
49 |
#include <hal.h>
|
|
50 |
#include <d32usbc.h>
|
|
51 |
#include <d32otgdi.h>
|
|
52 |
|
|
53 |
#include "t_usblib.h"
|
|
54 |
|
|
55 |
|
|
56 |
// --- Local Top Level Variables
|
|
57 |
|
|
58 |
static RTest test(_L("T_USBAPI"));
|
|
59 |
static RDevUsbcClient gPort;
|
|
60 |
static RUsbOtgDriver gOTG;
|
|
61 |
static TBool gSupportsOtg;
|
|
62 |
static TBool gSupportsHighSpeed;
|
|
63 |
static TBool gUsingHighSpeed;
|
|
64 |
static TBool gSoak;
|
|
65 |
static TChar gKeychar = 'a';
|
|
66 |
|
|
67 |
// Store the actual endpoint number(s) of our alternate interface
|
|
68 |
static TInt INT_IN_ep = -1;
|
|
69 |
|
|
70 |
_LIT(KUsbLddFilename, "eusbc");
|
|
71 |
_LIT(KOtgdiLddFilename, "otgdi");
|
|
72 |
_LIT(KUsbDeviceName, "Usbc");
|
|
73 |
|
|
74 |
|
|
75 |
// --- Local Constants
|
|
76 |
|
|
77 |
static const TInt KUsbDesc_SizeOffset = 0;
|
|
78 |
static const TInt KUsbDesc_TypeOffset = 1;
|
|
79 |
|
|
80 |
static const TInt KDevDesc_SpecOffset = 2;
|
|
81 |
static const TInt KDevDesc_DevClassOffset = 4;
|
|
82 |
static const TInt KDevDesc_DevSubClassOffset = 5;
|
|
83 |
static const TInt KDevDesc_DevProtocolOffset = 6;
|
|
84 |
static const TInt KDevDesc_Ep0SizeOffset = 7;
|
|
85 |
static const TInt KDevDesc_VendorIdOffset = 8;
|
|
86 |
static const TInt KDevDesc_ProductIdOffset = 10;
|
|
87 |
static const TInt KDevDesc_DevReleaseOffset = 12;
|
|
88 |
|
|
89 |
static const TInt KConfDesc_AttribOffset = 7;
|
|
90 |
static const TInt KConfDesc_MaxPowerOffset = 8;
|
|
91 |
|
|
92 |
static const TInt KIfcDesc_SettingOffset = 2;
|
|
93 |
static const TInt KIfcDesc_ProtocolOffset = 7;
|
|
94 |
|
|
95 |
static const TInt KEpDesc_PacketSizeOffset = 4;
|
|
96 |
static const TInt KEpDesc_IntervalOffset = 6;
|
|
97 |
static const TInt KEpDesc_SynchAddressOffset = 8;
|
|
98 |
|
|
99 |
|
|
100 |
//
|
|
101 |
// Helper.
|
|
102 |
//
|
|
103 |
static TEndpointState QueryEndpointState(TEndpointNumber aEndpoint)
|
|
104 |
{
|
|
105 |
TEndpointState ep_state = EEndpointStateUnknown;
|
|
106 |
TInt r = gPort.EndpointStatus(aEndpoint, ep_state);
|
|
107 |
test(r == KErrNone);
|
|
108 |
test.Printf(_L("Endpoint %d state: %s\n"), aEndpoint,
|
|
109 |
(ep_state == EEndpointStateNotStalled) ? _S("Not stalled") :
|
|
110 |
((ep_state == EEndpointStateStalled) ? _S("Stalled") :
|
|
111 |
_S("Unknown...")));
|
|
112 |
return ep_state;
|
|
113 |
}
|
|
114 |
|
|
115 |
|
|
116 |
// --- Class CActiveKeypressNotifier
|
|
117 |
|
|
118 |
class CActiveKeypressNotifier : public CActive
|
|
119 |
{
|
|
120 |
public:
|
|
121 |
static CActiveKeypressNotifier* NewL(CConsoleBase* aConsole);
|
|
122 |
~CActiveKeypressNotifier();
|
|
123 |
void RequestCharacter();
|
|
124 |
void ProcessKeyPressL(TChar aChar);
|
|
125 |
private:
|
|
126 |
virtual void DoCancel();
|
|
127 |
virtual void RunL();
|
|
128 |
CActiveKeypressNotifier(CConsoleBase* aConsole);
|
|
129 |
void ConstructL() {};
|
|
130 |
private:
|
|
131 |
CConsoleBase* iConsole;
|
|
132 |
};
|
|
133 |
|
|
134 |
|
|
135 |
CActiveKeypressNotifier* CActiveKeypressNotifier::NewL(CConsoleBase* aConsole)
|
|
136 |
{
|
|
137 |
CActiveKeypressNotifier* self = new (ELeave) CActiveKeypressNotifier(aConsole);
|
|
138 |
CleanupStack::PushL(self);
|
|
139 |
self->ConstructL();
|
|
140 |
CActiveScheduler::Add(self);
|
|
141 |
CleanupStack::Pop();
|
|
142 |
return self;
|
|
143 |
}
|
|
144 |
|
|
145 |
|
|
146 |
CActiveKeypressNotifier::CActiveKeypressNotifier(CConsoleBase* aConsole)
|
|
147 |
: CActive(EPriorityNormal), iConsole(aConsole)
|
|
148 |
{}
|
|
149 |
|
|
150 |
|
|
151 |
CActiveKeypressNotifier::~CActiveKeypressNotifier()
|
|
152 |
{
|
|
153 |
Cancel(); // base class cancel -> calls our DoCancel
|
|
154 |
}
|
|
155 |
|
|
156 |
|
|
157 |
void CActiveKeypressNotifier::RunL()
|
|
158 |
{
|
|
159 |
gKeychar = (static_cast<TChar>(iConsole->KeyCode()));
|
|
160 |
RequestCharacter();
|
|
161 |
}
|
|
162 |
|
|
163 |
|
|
164 |
void CActiveKeypressNotifier::DoCancel()
|
|
165 |
{
|
|
166 |
iConsole->ReadCancel();
|
|
167 |
}
|
|
168 |
|
|
169 |
|
|
170 |
void CActiveKeypressNotifier::RequestCharacter()
|
|
171 |
{
|
|
172 |
// A request is issued to the CConsoleBase to accept a character from the keyboard.
|
|
173 |
if (IsActive())
|
|
174 |
{
|
|
175 |
return;
|
|
176 |
}
|
|
177 |
iConsole->Read(iStatus);
|
|
178 |
SetActive();
|
|
179 |
}
|
|
180 |
|
|
181 |
|
|
182 |
// --- Actual Test Functions
|
|
183 |
|
|
184 |
// 2nd Thread helper function
|
|
185 |
static TInt TestThreadFunction(TAny* aPtr)
|
|
186 |
{
|
|
187 |
RThread* other = static_cast<RThread*>(aPtr);
|
|
188 |
RDevUsbcClient port = gPort;
|
|
189 |
// Now try to duplicate the USB channel handle
|
|
190 |
TInt r = port.Duplicate(*other);
|
|
191 |
// Wait for 1 second
|
|
192 |
User::After(1000000);
|
|
193 |
return r;
|
|
194 |
}
|
|
195 |
|
|
196 |
|
|
197 |
static void OpenChannel()
|
|
198 |
{
|
|
199 |
test.Start(_L("Open Channel"));
|
|
200 |
|
|
201 |
test.Next(_L("Load USB LDD"));
|
|
202 |
TInt r = User::LoadLogicalDevice(KUsbLddFilename);
|
|
203 |
test(r == KErrNone || r == KErrAlreadyExists);
|
|
204 |
|
|
205 |
RDevUsbcClient port1;
|
|
206 |
test.Next(_L("Open local USB channel 1"));
|
|
207 |
r = port1.Open(0);
|
|
208 |
test(r == KErrNone);
|
|
209 |
|
|
210 |
test.Next(_L("Open global USB channel"));
|
|
211 |
r = gPort.Open(0);
|
|
212 |
test(r == KErrNone);
|
|
213 |
|
|
214 |
RDevUsbcClient port2;
|
|
215 |
test.Next(_L("Open local USB channel 2"));
|
|
216 |
r = port2.Open(0);
|
|
217 |
test(r == KErrNone);
|
|
218 |
|
|
219 |
test.Next(_L("Close USB channel 1"));
|
|
220 |
port1.Close();
|
|
221 |
|
|
222 |
RDevUsbcClient port3;
|
|
223 |
test.Next(_L("Open local USB channel 3"));
|
|
224 |
r = port3.Open(0);
|
|
225 |
test(r == KErrNone);
|
|
226 |
|
|
227 |
test.Next(_L("Close USB channel 2"));
|
|
228 |
port2.Close();
|
|
229 |
|
|
230 |
test.Next(_L("Close USB channel 3"));
|
|
231 |
port3.Close();
|
|
232 |
|
|
233 |
// Check for OTG support
|
|
234 |
TBuf8<KUsbDescSize_Otg> otg_desc;
|
|
235 |
r = gPort.GetOtgDescriptor(otg_desc);
|
|
236 |
test(r == KErrNotSupported || r == KErrNone);
|
|
237 |
gSupportsOtg = (r != KErrNotSupported) ? ETrue : EFalse;
|
|
238 |
|
|
239 |
// On an OTG device we have to start the OTG driver, otherwise the Client
|
|
240 |
// stack will remain disabled forever.
|
|
241 |
if (gSupportsOtg)
|
|
242 |
{
|
|
243 |
test.Printf(_L("Running on OTG device: loading OTG driver\n"));
|
|
244 |
test.Next(_L("Load OTG LDD"));
|
|
245 |
r = User::LoadLogicalDevice(KOtgdiLddFilename);
|
|
246 |
test((r == KErrNone) || (r == KErrAlreadyExists));
|
|
247 |
|
|
248 |
test.Next(_L("Open OTG channel"));
|
|
249 |
r = gOTG.Open();
|
|
250 |
test(r == KErrNone);
|
|
251 |
|
|
252 |
test.Next(_L("Start OTG stack"));
|
|
253 |
r = gOTG.StartStacks();
|
|
254 |
test(r == KErrNone);
|
|
255 |
}
|
|
256 |
|
|
257 |
// Try duplicating channel handle in a second thread
|
|
258 |
// (which should not work because we don't support it)
|
|
259 |
|
|
260 |
test.Next(_L("Create 2nd Thread"));
|
|
261 |
RThread me;
|
|
262 |
TThreadId me_id = me.Id();
|
|
263 |
// We need to open the RThread object, otherwise we'll only get the
|
|
264 |
// 'special' handle 0xFFFF8001.
|
|
265 |
test(me.Open(me_id) == KErrNone);
|
|
266 |
RThread test_thread;
|
|
267 |
TBuf<17> name = _L("tusbapitestthread");
|
|
268 |
test(test_thread.Create(name, TestThreadFunction, 0x1000, NULL, &me) == KErrNone);
|
|
269 |
test.Next(_L("Logon to 2nd Thread"));
|
|
270 |
TRequestStatus stat;
|
|
271 |
test_thread.Logon(stat);
|
|
272 |
test(stat == KRequestPending);
|
|
273 |
test_thread.Resume();
|
|
274 |
test.Next(_L("Wait for 2nd Thread to exit"));
|
|
275 |
User::WaitForRequest(stat);
|
|
276 |
// Check correct return value of RDevUsbcClient::Duplicate()
|
|
277 |
test(stat == KErrAccessDenied);
|
|
278 |
test.Next(_L("Close 2nd Thread"));
|
|
279 |
test_thread.Close();
|
|
280 |
|
|
281 |
test.End();
|
|
282 |
}
|
|
283 |
|
|
284 |
|
|
285 |
static void TestResourceAllocation()
|
|
286 |
{
|
|
287 |
test.Start(_L("Test Endpoint Resource Allocation"));
|
|
288 |
|
|
289 |
test.Next(_L("Request DMA resource"));
|
|
290 |
const TInt dma = gPort.AllocateEndpointResource(EEndpoint1, EUsbcEndpointResourceDMA);
|
|
291 |
TBool res = gPort.QueryEndpointResourceUse(EEndpoint1, EUsbcEndpointResourceDMA);
|
|
292 |
test.Printf(_L("DMA on endpoint 1 %s\n"),
|
|
293 |
res ? _S("now allocated") : _S("not allocated"));
|
|
294 |
if (dma == KErrNone)
|
|
295 |
// Only if DMA resource was successfully allocated should we expect truth here:
|
|
296 |
test(res);
|
|
297 |
else
|
|
298 |
test(!res);
|
|
299 |
|
|
300 |
test.Next(_L("Request Double Buffering resource"));
|
|
301 |
const TInt db = gPort.AllocateEndpointResource(EEndpoint1, EUsbcEndpointResourceDoubleBuffering);
|
|
302 |
res = gPort.QueryEndpointResourceUse(EEndpoint1, EUsbcEndpointResourceDoubleBuffering);
|
|
303 |
test.Printf(_L("Double Buffering on endpoint 1 %s\n"),
|
|
304 |
res ? _S("now allocated") : _S("not allocated"));
|
|
305 |
if (db == KErrNone)
|
|
306 |
// Only if DB resource was successfully allocated should we expect truth here:
|
|
307 |
test(res);
|
|
308 |
else
|
|
309 |
test(!res);
|
|
310 |
|
|
311 |
test.Next(_L("Deallocate Double Buffering resource"));
|
|
312 |
TInt r = gPort.DeAllocateEndpointResource(EEndpoint1, EUsbcEndpointResourceDoubleBuffering);
|
|
313 |
// Whether DB is dynamic or permanent - deallocation (if supported) should always return success:
|
|
314 |
if (db == KErrNone)
|
|
315 |
test(r == KErrNone);
|
|
316 |
else
|
|
317 |
test(r != KErrNone);
|
|
318 |
res = gPort.QueryEndpointResourceUse(EEndpoint1, EUsbcEndpointResourceDoubleBuffering);
|
|
319 |
test.Printf(_L("Double Buffering on endpoint 1 %s\n"),
|
|
320 |
res ? _S("still allocated") : _S("not (longer) allocated"));
|
|
321 |
|
|
322 |
test.Next(_L("Deallocate DMA resource"));
|
|
323 |
r = gPort.DeAllocateEndpointResource(EEndpoint1, EUsbcEndpointResourceDMA);
|
|
324 |
// Whether DMA is dynamic or permanent - deallocation (if supported) should always return success:
|
|
325 |
if (dma == KErrNone)
|
|
326 |
test(r == KErrNone);
|
|
327 |
else
|
|
328 |
test(r != KErrNone);
|
|
329 |
res = gPort.QueryEndpointResourceUse(EEndpoint1, EUsbcEndpointResourceDMA);
|
|
330 |
test.Printf(_L("DMA on endpoint 1 %s\n"),
|
|
331 |
res ? _S("still allocated") : _S("not (longer) allocated"));
|
|
332 |
|
|
333 |
test.End();
|
|
334 |
}
|
|
335 |
|
|
336 |
|
|
337 |
static void SetupInterface()
|
|
338 |
{
|
|
339 |
test.Start(_L("Query USB device caps and set up interface"));
|
|
340 |
|
|
341 |
// Device caps
|
|
342 |
test.Next(_L("Query USB device caps"));
|
|
343 |
TUsbDeviceCaps d_caps;
|
|
344 |
TInt r = gPort.DeviceCaps(d_caps);
|
|
345 |
test(r == KErrNone);
|
|
346 |
TInt n = d_caps().iTotalEndpoints;
|
|
347 |
|
|
348 |
// Global variable - we'll need this value later
|
|
349 |
gSupportsHighSpeed = d_caps().iHighSpeed;
|
|
350 |
|
|
351 |
test.Printf(_L("### USB device capabilities:\n"));
|
|
352 |
test.Printf(_L("Number of endpoints: %d\n"), n);
|
|
353 |
test.Printf(_L("Supports Software-Connect: %s\n"),
|
|
354 |
d_caps().iConnect ? _S("yes") : _S("no"));
|
|
355 |
test.Printf(_L("Device is Self-Powered: %s\n"),
|
|
356 |
d_caps().iSelfPowered ? _S("yes") : _S("no"));
|
|
357 |
test.Printf(_L("Supports Remote-Wakeup: %s\n"),
|
|
358 |
d_caps().iRemoteWakeup ? _S("yes") : _S("no"));
|
|
359 |
test.Printf(_L("Supports High-speed: %s\n"),
|
|
360 |
gSupportsHighSpeed ? _S("yes") : _S("no"));
|
|
361 |
test.Printf(_L("Supports OTG: %s\n"),
|
|
362 |
gSupportsOtg ? _S("yes") : _S("no"));
|
|
363 |
test.Printf(_L("Supports unpowered cable detection: %s\n"),
|
|
364 |
(d_caps().iFeatureWord1 & KUsbDevCapsFeatureWord1_CableDetectWithoutPower) ?
|
|
365 |
_S("yes") : _S("no"));
|
|
366 |
test.Printf(_L("Supports endpoint resource alloc scheme V2: %s\n"),
|
|
367 |
(d_caps().iFeatureWord1 & KUsbDevCapsFeatureWord1_EndpointResourceAllocV2) ?
|
|
368 |
_S("yes") : _S("no"));
|
|
369 |
|
|
370 |
test(n >= 2);
|
|
371 |
test.Printf(_L("(Device has sufficient endpoints.)\n"));
|
|
372 |
|
|
373 |
// Endpoint caps
|
|
374 |
test.Next(_L("Query USB endpoint caps"));
|
|
375 |
TUsbcEndpointData data[KUsbcMaxEndpoints];
|
|
376 |
TPtr8 dataptr(reinterpret_cast<TUint8*>(data), sizeof(data), sizeof(data));
|
|
377 |
r = gPort.EndpointCaps(dataptr);
|
|
378 |
test(r == KErrNone);
|
|
379 |
|
|
380 |
test.Printf(_L("### USB device endpoint capabilities:\n"));
|
|
381 |
for (TInt i = 0; i < n; i++)
|
|
382 |
{
|
|
383 |
const TUsbcEndpointCaps* caps = &data[i].iCaps;
|
|
384 |
test.Printf(_L("Endpoint: SizeMask = 0x%08x TypeDirMask = 0x%08x\n"),
|
|
385 |
caps->iSizes, caps->iTypesAndDir);
|
|
386 |
if (caps->iHighBandwidth)
|
|
387 |
{
|
|
388 |
test.Printf(_L(" (high-speed, high bandwidth endpoint)\n"));
|
|
389 |
// Must be HS Int or Iso ep
|
|
390 |
test(gSupportsHighSpeed);
|
|
391 |
test(caps->iTypesAndDir & (KUsbEpTypeIsochronous | KUsbEpTypeInterrupt));
|
|
392 |
}
|
|
393 |
}
|
|
394 |
|
|
395 |
test.Next(_L("Looking for suitable endpoints"));
|
|
396 |
// Set the active interface
|
|
397 |
TUsbcInterfaceInfoBuf ifc;
|
|
398 |
TInt ep_found = 0;
|
|
399 |
TBool foundBulkIN = EFalse;
|
|
400 |
TBool foundBulkOUT = EFalse;
|
|
401 |
for (TInt i = 0; i < n; i++)
|
|
402 |
{
|
|
403 |
const TUsbcEndpointCaps* caps = &data[i].iCaps;
|
|
404 |
const TInt mps = caps->MaxPacketSize();
|
|
405 |
if (!foundBulkIN &&
|
|
406 |
(caps->iTypesAndDir & (KUsbEpTypeBulk | KUsbEpDirIn)) ==
|
|
407 |
(KUsbEpTypeBulk | KUsbEpDirIn))
|
|
408 |
{
|
|
409 |
// EEndpoint1 is going to be our TX (IN, write) endpoint
|
|
410 |
ifc().iEndpointData[0].iType = KUsbEpTypeBulk;
|
|
411 |
ifc().iEndpointData[0].iDir = KUsbEpDirIn;
|
|
412 |
ifc().iEndpointData[0].iSize = mps;
|
|
413 |
foundBulkIN = ETrue;
|
|
414 |
if (++ep_found == 2)
|
|
415 |
break;
|
|
416 |
}
|
|
417 |
else if (!foundBulkOUT &&
|
|
418 |
(caps->iTypesAndDir & (KUsbEpTypeBulk | KUsbEpDirOut)) ==
|
|
419 |
(KUsbEpTypeBulk | KUsbEpDirOut))
|
|
420 |
{
|
|
421 |
// EEndpoint2 is going to be our RX (OUT, read) endpoint
|
|
422 |
ifc().iEndpointData[1].iType = KUsbEpTypeBulk;
|
|
423 |
ifc().iEndpointData[1].iDir = KUsbEpDirOut;
|
|
424 |
ifc().iEndpointData[1].iSize = mps;
|
|
425 |
foundBulkOUT = ETrue;
|
|
426 |
if (++ep_found == 2)
|
|
427 |
break;
|
|
428 |
}
|
|
429 |
}
|
|
430 |
test(ep_found == 2);
|
|
431 |
|
|
432 |
test.Next(_L("Setting up main interface"));
|
|
433 |
_LIT16(string, "T_USBAPI Test Interface (Setting 0)");
|
|
434 |
ifc().iString = const_cast<TDesC16*>(&string);
|
|
435 |
ifc().iTotalEndpointsUsed = 2;
|
|
436 |
ifc().iClass.iClassNum = 0xff;
|
|
437 |
ifc().iClass.iSubClassNum = 0xff;
|
|
438 |
ifc().iClass.iProtocolNum = 0xff;
|
|
439 |
// Set up the interface.
|
|
440 |
r = gPort.SetInterface(0, ifc);
|
|
441 |
test(r == KErrNone);
|
|
442 |
|
|
443 |
TInt ifc_no = -1;
|
|
444 |
r = gPort.GetAlternateSetting(ifc_no);
|
|
445 |
test(r == KErrUsbDeviceNotConfigured);
|
|
446 |
|
|
447 |
// Some UDCs won't allow endpoint resource manipulation once the hardware has been
|
|
448 |
// configured and turned on. So we do it here & now:
|
|
449 |
TestResourceAllocation();
|
|
450 |
|
|
451 |
// On the other hand, since some UDCs won't let us test many features which require
|
|
452 |
// register access until the USB hardware is powered up (and because it might start
|
|
453 |
// out unpowered), we should turn it on here explicitly.
|
|
454 |
// (It will be turned off automatically by the PIL after all tests have been run,
|
|
455 |
// when the interface gets deleted.)
|
|
456 |
test.Next(_L("Powering up UDC (1)"));
|
|
457 |
r = gPort.PowerUpUdc();
|
|
458 |
if (!gSupportsOtg)
|
|
459 |
{
|
|
460 |
test(r == KErrNone);
|
|
461 |
}
|
|
462 |
else
|
|
463 |
{
|
|
464 |
test((r == KErrNone) || (r == KErrNotReady));
|
|
465 |
}
|
|
466 |
if (gSupportsOtg && (r == KErrNotReady))
|
|
467 |
{
|
|
468 |
test.Printf(_L("OTG device but not connected to Host, stopping subtest here.\n"));
|
|
469 |
test.End();
|
|
470 |
return;
|
|
471 |
}
|
|
472 |
// The board might be attached to a PC with HS controller, thus enabling us
|
|
473 |
// to test some HS-specific features. For that to work we have to connect
|
|
474 |
// the board to the PC. The "Found new device" box that may pop up on the PC
|
|
475 |
// in response to this can be ignored (i.e. just closed).
|
|
476 |
test.Next(_L("Connecting to Host (1)"));
|
|
477 |
r = gPort.DeviceConnectToHost();
|
|
478 |
test(r == KErrNone);
|
|
479 |
// Suspend thread to let things get stable on the bus.
|
|
480 |
test.Printf(_L("Waiting a short moment..."));
|
|
481 |
User::After(2000000);
|
|
482 |
test.Printf(_L(" done.\n"));
|
|
483 |
|
|
484 |
// Check the speed of the physical connection (if any).
|
|
485 |
gUsingHighSpeed = gPort.CurrentlyUsingHighSpeed();
|
|
486 |
if (gUsingHighSpeed)
|
|
487 |
{
|
|
488 |
test(gSupportsHighSpeed); // sane?
|
|
489 |
test.Printf(_L("---> USB High-speed Testing\n"));
|
|
490 |
}
|
|
491 |
else
|
|
492 |
{
|
|
493 |
test.Printf(_L("---> USB Full-speed Testing\n"));
|
|
494 |
}
|
|
495 |
|
|
496 |
// By pulling down the interface/connection and bringing them up again we
|
|
497 |
// simulate a starting/stopping of the USB service by a control app.
|
|
498 |
|
|
499 |
test.Next(_L("Disconnecting from Host"));
|
|
500 |
r = gPort.DeviceDisconnectFromHost();
|
|
501 |
test(r == KErrNone);
|
|
502 |
|
|
503 |
test.Next(_L("Releasing interface"));
|
|
504 |
r = gPort.ReleaseInterface(0);
|
|
505 |
test(r == KErrNone);
|
|
506 |
|
|
507 |
test.Next(_L("Setting interface"));
|
|
508 |
r = gPort.SetInterface(0, ifc);
|
|
509 |
test(r == KErrNone);
|
|
510 |
|
|
511 |
// Suspend thread before connecting again.
|
|
512 |
test.Printf(_L("Waiting a short moment..."));
|
|
513 |
User::After(1000000);
|
|
514 |
test.Printf(_L(" done.\n"));
|
|
515 |
|
|
516 |
test.Next(_L("Powering up UDC (2)"));
|
|
517 |
r = gPort.PowerUpUdc();
|
|
518 |
if (!gSupportsOtg)
|
|
519 |
{
|
|
520 |
test(r == KErrNone);
|
|
521 |
}
|
|
522 |
else
|
|
523 |
{
|
|
524 |
test((r == KErrNone) || (r == KErrNotReady));
|
|
525 |
}
|
|
526 |
if (gSupportsOtg && (r == KErrNotReady))
|
|
527 |
{
|
|
528 |
test.Printf(_L("OTG device but not connected to Host, stopping subtest here.\n"));
|
|
529 |
test.End();
|
|
530 |
return;
|
|
531 |
}
|
|
532 |
|
|
533 |
test.Next(_L("Connecting to Host (2)"));
|
|
534 |
r = gPort.DeviceConnectToHost();
|
|
535 |
test(r == KErrNone);
|
|
536 |
// Suspend thread to let things get stable on the bus.
|
|
537 |
User::After(2000000);
|
|
538 |
|
|
539 |
test.End();
|
|
540 |
}
|
|
541 |
|
|
542 |
|
|
543 |
static void TestDeviceDescriptor()
|
|
544 |
{
|
|
545 |
test.Start(_L("Device Descriptor Manipulation"));
|
|
546 |
|
|
547 |
test.Next(_L("GetDeviceDescriptorSize()"));
|
|
548 |
TInt desc_size = 0;
|
|
549 |
gPort.GetDeviceDescriptorSize(desc_size);
|
|
550 |
test(static_cast<TUint>(desc_size) == KUsbDescSize_Device);
|
|
551 |
|
|
552 |
test.Next(_L("GetDeviceDescriptor()"));
|
|
553 |
TBuf8<KUsbDescSize_Device> descriptor;
|
|
554 |
TInt r = gPort.GetDeviceDescriptor(descriptor);
|
|
555 |
test(r == KErrNone);
|
|
556 |
|
|
557 |
test.Next(_L("SetDeviceDescriptor()"));
|
|
558 |
// Change the USB spec number to 2.30
|
|
559 |
descriptor[KDevDesc_SpecOffset] = 0x30;
|
|
560 |
descriptor[KDevDesc_SpecOffset+1] = 0x02;
|
|
561 |
// Change the device vendor ID (VID) to 0x1234
|
|
562 |
descriptor[KDevDesc_VendorIdOffset] = 0x34; // little endian
|
|
563 |
descriptor[KDevDesc_VendorIdOffset+1] = 0x12;
|
|
564 |
// Change the device product ID (PID) to 0x1111
|
|
565 |
descriptor[KDevDesc_ProductIdOffset] = 0x11;
|
|
566 |
descriptor[KDevDesc_ProductIdOffset+1] = 0x11;
|
|
567 |
// Change the device release number to 3.05
|
|
568 |
descriptor[KDevDesc_DevReleaseOffset] = 0x05;
|
|
569 |
descriptor[KDevDesc_DevReleaseOffset+1] = 0x03;
|
|
570 |
r = gPort.SetDeviceDescriptor(descriptor);
|
|
571 |
test(r == KErrNone);
|
|
572 |
|
|
573 |
test.Next(_L("GetDeviceDescriptor()"));
|
|
574 |
TBuf8<KUsbDescSize_Device> descriptor2;
|
|
575 |
r = gPort.GetDeviceDescriptor(descriptor2);
|
|
576 |
test(r == KErrNone);
|
|
577 |
|
|
578 |
test.Next(_L("Compare device descriptor with value set"));
|
|
579 |
r = descriptor2.Compare(descriptor);
|
|
580 |
test(r == KErrNone);
|
|
581 |
|
|
582 |
if (gUsingHighSpeed)
|
|
583 |
{
|
|
584 |
// HS only allows one possible packet size.
|
|
585 |
test(descriptor[KDevDesc_Ep0SizeOffset] == 64);
|
|
586 |
}
|
|
587 |
|
|
588 |
test.End();
|
|
589 |
}
|
|
590 |
|
|
591 |
|
|
592 |
static void TestDeviceQualifierDescriptor()
|
|
593 |
{
|
|
594 |
test.Start(_L("Device_Qualifier Descriptor Manipulation"));
|
|
595 |
|
|
596 |
if (!gSupportsHighSpeed)
|
|
597 |
{
|
|
598 |
test.Printf(_L("*** Not supported - skipping Device_Qualifier descriptor tests\n"));
|
|
599 |
test.End();
|
|
600 |
return;
|
|
601 |
}
|
|
602 |
|
|
603 |
test.Next(_L("GetDeviceQualifierDescriptor()"));
|
|
604 |
TBuf8<KUsbDescSize_DeviceQualifier> descriptor;
|
|
605 |
TInt r = gPort.GetDeviceQualifierDescriptor(descriptor);
|
|
606 |
test(r == KErrNone);
|
|
607 |
|
|
608 |
test.Next(_L("SetDeviceQualifierDescriptor()"));
|
|
609 |
// Change the USB spec number to 3.00
|
|
610 |
descriptor[KDevDesc_SpecOffset] = 0x00;
|
|
611 |
descriptor[KDevDesc_SpecOffset+1] = 0x03;
|
|
612 |
// Change the device class, subclass and protocol codes
|
|
613 |
descriptor[KDevDesc_DevClassOffset] = 0xA1;
|
|
614 |
descriptor[KDevDesc_DevSubClassOffset] = 0xB2;
|
|
615 |
descriptor[KDevDesc_DevProtocolOffset] = 0xC3;
|
|
616 |
r = gPort.SetDeviceQualifierDescriptor(descriptor);
|
|
617 |
test(r == KErrNone);
|
|
618 |
|
|
619 |
test.Next(_L("GetDeviceQualifierDescriptor()"));
|
|
620 |
TBuf8<KUsbDescSize_DeviceQualifier> descriptor2;
|
|
621 |
r = gPort.GetDeviceQualifierDescriptor(descriptor2);
|
|
622 |
test(r == KErrNone);
|
|
623 |
|
|
624 |
test.Next(_L("Compare Device_Qualifier desc with value set"));
|
|
625 |
r = descriptor2.Compare(descriptor);
|
|
626 |
test(r == 0);
|
|
627 |
|
|
628 |
if (!gUsingHighSpeed)
|
|
629 |
{
|
|
630 |
// HS only allows one possible packet size.
|
|
631 |
test(descriptor[KDevDesc_Ep0SizeOffset] == 64);
|
|
632 |
}
|
|
633 |
|
|
634 |
test.End();
|
|
635 |
}
|
|
636 |
|
|
637 |
|
|
638 |
static void TestConfigurationDescriptor()
|
|
639 |
{
|
|
640 |
test.Start(_L("Configuration Descriptor Manipulation"));
|
|
641 |
|
|
642 |
test.Next(_L("GetConfigurationDescriptorSize()"));
|
|
643 |
TInt desc_size = 0;
|
|
644 |
gPort.GetConfigurationDescriptorSize(desc_size);
|
|
645 |
test(static_cast<TUint>(desc_size) == KUsbDescSize_Config);
|
|
646 |
|
|
647 |
test.Next(_L("GetConfigurationDescriptor()"));
|
|
648 |
TBuf8<KUsbDescSize_Config> descriptor;
|
|
649 |
TInt r = gPort.GetConfigurationDescriptor(descriptor);
|
|
650 |
test(r == KErrNone);
|
|
651 |
|
|
652 |
test.Next(_L("SetConfigurationDescriptor()"));
|
|
653 |
// Invert Remote-Wakup support
|
|
654 |
descriptor[KConfDesc_AttribOffset] = (descriptor[KConfDesc_AttribOffset] ^ KUsbDevAttr_RemoteWakeup);
|
|
655 |
// Change the reported max power to 200mA (2 * 0x64)
|
|
656 |
descriptor[KConfDesc_MaxPowerOffset] = 0x64;
|
|
657 |
r = gPort.SetConfigurationDescriptor(descriptor);
|
|
658 |
test(r == KErrNone);
|
|
659 |
|
|
660 |
test.Next(_L("GetConfigurationDescriptor()"));
|
|
661 |
TBuf8<KUsbDescSize_Config> descriptor2;
|
|
662 |
r = gPort.GetConfigurationDescriptor(descriptor2);
|
|
663 |
test(r == KErrNone);
|
|
664 |
|
|
665 |
test.Next(_L("Compare configuration desc with value set"));
|
|
666 |
r = descriptor2.Compare(descriptor);
|
|
667 |
test(r == KErrNone);
|
|
668 |
|
|
669 |
test.End();
|
|
670 |
}
|
|
671 |
|
|
672 |
|
|
673 |
static void TestOtherSpeedConfigurationDescriptor()
|
|
674 |
{
|
|
675 |
test.Start(_L("Other_Speed_Configuration Desc Manipulation"));
|
|
676 |
|
|
677 |
if (!gSupportsHighSpeed)
|
|
678 |
{
|
|
679 |
test.Printf(_L("*** Not supported - skipping Other_Speed_Configuration desc tests\n"));
|
|
680 |
test.End();
|
|
681 |
return;
|
|
682 |
}
|
|
683 |
|
|
684 |
test.Next(_L("GetOtherSpeedConfigurationDescriptor()"));
|
|
685 |
TBuf8<KUsbDescSize_OtherSpeedConfig> descriptor;
|
|
686 |
TInt r = gPort.GetOtherSpeedConfigurationDescriptor(descriptor);
|
|
687 |
test(r == KErrNone);
|
|
688 |
|
|
689 |
test.Next(_L("SetOtherSpeedConfigurationDescriptor()"));
|
|
690 |
// Invert Remote-Wakup support
|
|
691 |
descriptor[KConfDesc_AttribOffset] = (descriptor[KConfDesc_AttribOffset] ^ KUsbDevAttr_RemoteWakeup);
|
|
692 |
// Change the reported max power to 330mA (2 * 0xA5)
|
|
693 |
descriptor[KConfDesc_MaxPowerOffset] = 0xA5;
|
|
694 |
r = gPort.SetOtherSpeedConfigurationDescriptor(descriptor);
|
|
695 |
test(r == KErrNone);
|
|
696 |
|
|
697 |
test.Next(_L("GetOtherSpeedConfigurationDescriptor()"));
|
|
698 |
TBuf8<KUsbDescSize_OtherSpeedConfig> descriptor2;
|
|
699 |
r = gPort.GetOtherSpeedConfigurationDescriptor(descriptor2);
|
|
700 |
test(r == KErrNone);
|
|
701 |
|
|
702 |
test.Next(_L("Compare O_S_Config desc with value set"));
|
|
703 |
r = descriptor2.Compare(descriptor);
|
|
704 |
test(r == KErrNone);
|
|
705 |
|
|
706 |
test.End();
|
|
707 |
}
|
|
708 |
|
|
709 |
|
|
710 |
static void TestInterfaceDescriptor()
|
|
711 |
{
|
|
712 |
test.Start(_L("Interface Descriptor Manipulation"));
|
|
713 |
|
|
714 |
// First the standard Interface descriptor
|
|
715 |
|
|
716 |
test.Next(_L("GetInterfaceDescriptorSize()"));
|
|
717 |
TInt desc_size = 0;
|
|
718 |
TInt r = gPort.GetInterfaceDescriptorSize(0, desc_size);
|
|
719 |
test(r == KErrNone);
|
|
720 |
test(static_cast<TUint>(desc_size) == KUsbDescSize_Interface);
|
|
721 |
|
|
722 |
test.Next(_L("GetInterfaceDescriptor()"));
|
|
723 |
TBuf8<KUsbDescSize_Interface> descriptor;
|
|
724 |
r = gPort.GetInterfaceDescriptor(0, descriptor);
|
|
725 |
test(r == KErrNone);
|
|
726 |
|
|
727 |
test.Next(_L("SetInterfaceDescriptor()"));
|
|
728 |
// Change the interface protocol to 0x78(+)
|
|
729 |
TUint8 prot = 0x78;
|
|
730 |
if (descriptor[KIfcDesc_ProtocolOffset] == prot)
|
|
731 |
prot++;
|
|
732 |
descriptor[KIfcDesc_ProtocolOffset] = prot;
|
|
733 |
r = gPort.SetInterfaceDescriptor(0, descriptor);
|
|
734 |
test(r == KErrNone);
|
|
735 |
|
|
736 |
test.Next(_L("GetInterfaceDescriptor()"));
|
|
737 |
TBuf8<KUsbDescSize_Interface> descriptor2;
|
|
738 |
r = gPort.GetInterfaceDescriptor(0, descriptor2);
|
|
739 |
test(r == KErrNone);
|
|
740 |
|
|
741 |
test.Next(_L("Compare interface descriptor with value set"));
|
|
742 |
r = descriptor2.Compare(descriptor);
|
|
743 |
test(r == KErrNone);
|
|
744 |
|
|
745 |
test.End();
|
|
746 |
}
|
|
747 |
|
|
748 |
|
|
749 |
static void TestClassSpecificDescriptors()
|
|
750 |
{
|
|
751 |
test.Start(_L("Class-specific Descriptor Manipulation"));
|
|
752 |
|
|
753 |
// First a class-specific Interface descriptor
|
|
754 |
|
|
755 |
test.Next(_L("SetCSInterfaceDescriptorBlock()"));
|
|
756 |
// choose arbitrary new descriptor size
|
|
757 |
const TInt KUsbDescSize_CS_Interface = KUsbDescSize_Interface + 10;
|
|
758 |
TBuf8<KUsbDescSize_CS_Interface> cs_ifc_descriptor;
|
|
759 |
cs_ifc_descriptor.FillZ(cs_ifc_descriptor.MaxLength());
|
|
760 |
cs_ifc_descriptor[KUsbDesc_SizeOffset] = KUsbDescSize_CS_Interface;
|
|
761 |
cs_ifc_descriptor[KUsbDesc_TypeOffset] = KUsbDescType_CS_Interface;
|
|
762 |
TInt r = gPort.SetCSInterfaceDescriptorBlock(0, cs_ifc_descriptor);
|
|
763 |
test(r == KErrNone);
|
|
764 |
|
|
765 |
test.Next(_L("GetCSInterfaceDescriptorBlockSize()"));
|
|
766 |
TInt desc_size = 0;
|
|
767 |
r = gPort.GetCSInterfaceDescriptorBlockSize(0, desc_size);
|
|
768 |
test(r == KErrNone);
|
|
769 |
test(desc_size == KUsbDescSize_CS_Interface);
|
|
770 |
|
|
771 |
test.Next(_L("GetCSInterfaceDescriptorBlock()"));
|
|
772 |
TBuf8<KUsbDescSize_CS_Interface> descriptor;
|
|
773 |
r = gPort.GetCSInterfaceDescriptorBlock(0, descriptor);
|
|
774 |
test(r == KErrNone);
|
|
775 |
|
|
776 |
test.Next(_L("Compare CS ifc descriptor with value set"));
|
|
777 |
r = descriptor.Compare(cs_ifc_descriptor);
|
|
778 |
test(r == KErrNone);
|
|
779 |
|
|
780 |
// Next a class-specific Endpoint descriptor
|
|
781 |
|
|
782 |
test.Next(_L("SetCSEndpointDescriptorBlock()"));
|
|
783 |
// choose arbitrary new descriptor size
|
|
784 |
const TInt KUsbDescSize_CS_Endpoint = KUsbDescSize_Endpoint + 5;
|
|
785 |
TBuf8<KUsbDescSize_CS_Endpoint> cs_ep_descriptor;
|
|
786 |
cs_ep_descriptor.FillZ(cs_ep_descriptor.MaxLength());
|
|
787 |
cs_ep_descriptor[KUsbDesc_SizeOffset] = KUsbDescSize_CS_Endpoint;
|
|
788 |
cs_ep_descriptor[KUsbDesc_TypeOffset] = KUsbDescType_CS_Endpoint;
|
|
789 |
r = gPort.SetCSEndpointDescriptorBlock(0, 2, cs_ep_descriptor);
|
|
790 |
test(r == KErrNone);
|
|
791 |
|
|
792 |
test.Next(_L("GetCSEndpointDescriptorBlockSize()"));
|
|
793 |
r = gPort.GetCSEndpointDescriptorBlockSize(0, 2, desc_size);
|
|
794 |
test(r == KErrNone);
|
|
795 |
test(desc_size == KUsbDescSize_CS_Endpoint);
|
|
796 |
|
|
797 |
test.Next(_L("GetCSEndpointDescriptorBlock()"));
|
|
798 |
TBuf8<KUsbDescSize_CS_Endpoint> descriptor2;
|
|
799 |
r = gPort.GetCSEndpointDescriptorBlock(0, 2, descriptor2);
|
|
800 |
test(r == KErrNone);
|
|
801 |
|
|
802 |
test.Next(_L("Compare CS ep descriptor with value set"));
|
|
803 |
r = descriptor2.Compare(cs_ep_descriptor);
|
|
804 |
test(r == KErrNone);
|
|
805 |
|
|
806 |
test.End();
|
|
807 |
}
|
|
808 |
|
|
809 |
|
|
810 |
static void TestAlternateInterfaceManipulation()
|
|
811 |
{
|
|
812 |
test.Start(_L("Alternate Interface Setting Manipulation"));
|
|
813 |
|
|
814 |
if (!SupportsAlternateInterfaces())
|
|
815 |
{
|
|
816 |
test.Printf(_L("*** Not supported - skipping alternate interface settings tests\n"));
|
|
817 |
test.End();
|
|
818 |
return;
|
|
819 |
}
|
|
820 |
|
|
821 |
// Fetch endpoint data (again)
|
|
822 |
test.Next(_L("Get endpoint capabilities"));
|
|
823 |
TUsbDeviceCaps d_caps;
|
|
824 |
TInt r = gPort.DeviceCaps(d_caps);
|
|
825 |
test(r == KErrNone);
|
|
826 |
const TInt n = d_caps().iTotalEndpoints;
|
|
827 |
TUsbcEndpointData data[KUsbcMaxEndpoints];
|
|
828 |
TPtr8 dataptr(reinterpret_cast<TUint8*>(data), sizeof(data), sizeof(data));
|
|
829 |
r = gPort.EndpointCaps(dataptr);
|
|
830 |
test(r == KErrNone);
|
|
831 |
|
|
832 |
// Find ep's for alternate ifc setting
|
|
833 |
test.Next(_L("Find suitable endpoints"));
|
|
834 |
TInt ep_found = 0;
|
|
835 |
TBool foundIsoIN = EFalse;
|
|
836 |
TBool foundIsoOUT = EFalse;
|
|
837 |
TBool foundIntIN = EFalse;
|
|
838 |
TUsbcInterfaceInfoBuf ifc;
|
|
839 |
|
|
840 |
// NB! We cannot assume that any specific device has any given set of
|
|
841 |
// capabilities, so whilst we try and set an assortment of endpoint types
|
|
842 |
// we may not get what we want.
|
|
843 |
|
|
844 |
// Also, note that the endpoint[] array in the interface descriptor
|
|
845 |
// must be filled from ep[0]...ep[n-1].
|
|
846 |
|
|
847 |
for (TInt i = 0; i < n; i++)
|
|
848 |
{
|
|
849 |
const TUsbcEndpointCaps* const caps = &data[i].iCaps;
|
|
850 |
const TInt mps = caps->MaxPacketSize();
|
|
851 |
if (!foundIsoIN &&
|
|
852 |
(caps->iTypesAndDir & (KUsbEpTypeIsochronous | KUsbEpDirIn)) ==
|
|
853 |
(KUsbEpTypeIsochronous | KUsbEpDirIn))
|
|
854 |
{
|
|
855 |
// This is going to be our Iso TX (IN) endpoint
|
|
856 |
ifc().iEndpointData[ep_found].iType = KUsbEpTypeIsochronous;
|
|
857 |
ifc().iEndpointData[ep_found].iDir = KUsbEpDirIn;
|
|
858 |
ifc().iEndpointData[ep_found].iSize = mps;
|
|
859 |
ifc().iEndpointData[ep_found].iInterval = 0x01; // 2^(bInterval-1)ms, bInterval must be [1..16]
|
|
860 |
ifc().iEndpointData[ep_found].iInterval_Hs = 0x01; // same as for FS
|
|
861 |
test.Printf(_L("ISO IN size = %4d (ep %d)\n"), mps, ep_found + 1);
|
|
862 |
foundIsoIN = ETrue;
|
|
863 |
if (++ep_found == 3)
|
|
864 |
break;
|
|
865 |
}
|
|
866 |
else if (!foundIsoOUT &&
|
|
867 |
(caps->iTypesAndDir & (KUsbEpTypeIsochronous | KUsbEpDirOut)) ==
|
|
868 |
(KUsbEpTypeIsochronous | KUsbEpDirOut))
|
|
869 |
{
|
|
870 |
// This is going to be our Iso RX (OUT) endpoint
|
|
871 |
ifc().iEndpointData[ep_found].iType = KUsbEpTypeIsochronous;
|
|
872 |
ifc().iEndpointData[ep_found].iDir = KUsbEpDirOut;
|
|
873 |
ifc().iEndpointData[ep_found].iSize = mps;
|
|
874 |
ifc().iEndpointData[ep_found].iInterval = 0x01; // 2^(bInterval-1)ms, bInterval must be [1..16]
|
|
875 |
test.Printf(_L("ISO OUT size = %4d (ep %d)\n"), mps, ep_found + 1);
|
|
876 |
foundIsoOUT = ETrue;
|
|
877 |
if (++ep_found == 3)
|
|
878 |
break;
|
|
879 |
}
|
|
880 |
else if (!foundIntIN &&
|
|
881 |
(caps->iTypesAndDir & (KUsbEpTypeInterrupt | KUsbEpDirIn)) ==
|
|
882 |
(KUsbEpTypeInterrupt | KUsbEpDirIn))
|
|
883 |
{
|
|
884 |
// This is going to be our Interrupt TX (IN) endpoint
|
|
885 |
ifc().iEndpointData[ep_found].iType = KUsbEpTypeInterrupt;
|
|
886 |
ifc().iEndpointData[ep_found].iDir = KUsbEpDirIn;
|
|
887 |
ifc().iEndpointData[ep_found].iSize = mps;
|
|
888 |
ifc().iEndpointData[ep_found].iInterval = 10; // interval = 10ms, valid range [1..255]
|
|
889 |
ifc().iEndpointData[ep_found].iInterval_Hs = 4; // interval = 2^(bInterval-1)ms = 8ms
|
|
890 |
ifc().iEndpointData[ep_found].iExtra = 2; // 2 extra bytes for Audio Class EP descriptor
|
|
891 |
test.Printf(_L("INT IN size = %4d (ep %d)\n"), mps, ep_found + 1);
|
|
892 |
foundIntIN = ETrue;
|
|
893 |
INT_IN_ep = ep_found + 1;
|
|
894 |
if (++ep_found == 3)
|
|
895 |
break;
|
|
896 |
}
|
|
897 |
}
|
|
898 |
|
|
899 |
// Let's try to add some more Bulk endpoints up to the max # of 5.
|
|
900 |
for (TInt i = 0; i < n; i++)
|
|
901 |
{
|
|
902 |
TUsbcEndpointCaps& caps = data[i].iCaps;
|
|
903 |
const TUint mps = caps.MaxPacketSize();
|
|
904 |
if (caps.iTypesAndDir & KUsbEpTypeBulk)
|
|
905 |
{
|
|
906 |
const TUint dir = (caps.iTypesAndDir & KUsbEpDirIn) ? KUsbEpDirIn : KUsbEpDirOut;
|
|
907 |
ifc().iEndpointData[ep_found].iType = KUsbEpTypeBulk;
|
|
908 |
ifc().iEndpointData[ep_found].iDir = dir;
|
|
909 |
if (gUsingHighSpeed)
|
|
910 |
{
|
|
911 |
test.Printf(_L("Checking if correct Bulk packet size is reported in HS case\n"));
|
|
912 |
test(mps == KUsbEpSize512); // sane?
|
|
913 |
}
|
|
914 |
// The PSL should in any case also offer the 'legacy' FS size:
|
|
915 |
test(caps.iSizes & KUsbEpSize64);
|
|
916 |
ifc().iEndpointData[ep_found].iSize = mps;
|
|
917 |
test.Printf(_L("BULK %s size = %4d (ep %d)\n"),
|
|
918 |
dir == KUsbEpDirIn ? _S("IN ") : _S("OUT"), mps, ep_found + 1);
|
|
919 |
if (++ep_found == 5)
|
|
920 |
break;
|
|
921 |
}
|
|
922 |
}
|
|
923 |
|
|
924 |
test.Printf(_L("Total: %d endpoints found for the alt. ifc setting\n"), ep_found);
|
|
925 |
if (ep_found < 3)
|
|
926 |
{
|
|
927 |
test.Printf(_L("(3 endpoints are at least required. Skipping test...)\n"));
|
|
928 |
test.End();
|
|
929 |
return;
|
|
930 |
}
|
|
931 |
|
|
932 |
if (!foundIsoIN && !foundIsoOUT)
|
|
933 |
{
|
|
934 |
test.Printf(_L("(No Isochronous endpoints found)\n"));
|
|
935 |
}
|
|
936 |
|
|
937 |
if (!foundIntIN)
|
|
938 |
{
|
|
939 |
test.Printf(_L("(No Interrupt endpoint found)\n"));
|
|
940 |
test.Printf(_L("Adjusting endpoint size for later test\n"));
|
|
941 |
// We want to make sure that at least one descriptor has the 2 extra bytes.
|
|
942 |
// It doesn't matter that this ep could be a Bulk one, or that the 2 Iso ep's might be missing -
|
|
943 |
// we just want to test some functionality and we're not going to use this interface in earnest.
|
|
944 |
ifc().iEndpointData[2].iExtra = 2; // 2 extra bytes for Audio Class Ep descriptor
|
|
945 |
INT_IN_ep = 3; // pretend it's an INT ep
|
|
946 |
}
|
|
947 |
|
|
948 |
test.Next(_L("Create alternate interface setting"));
|
|
949 |
_LIT16(string, "T_USBAPI Test Interface (Setting 1: Audio)");
|
|
950 |
ifc().iString = const_cast<TDesC16*>(&string);
|
|
951 |
ifc().iTotalEndpointsUsed = ep_found;
|
|
952 |
ifc().iClass.iClassNum = KUsbAudioInterfaceClassCode;
|
|
953 |
ifc().iClass.iSubClassNum = KUsbAudioInterfaceSubclassCode_Audiostreaming;
|
|
954 |
ifc().iClass.iProtocolNum = KUsbAudioInterfaceProtocolCode_Pr_Protocol_Undefined;
|
|
955 |
r = gPort.SetInterface(1, ifc);
|
|
956 |
test(r == KErrNone);
|
|
957 |
|
|
958 |
test.Next(_L("Set alternate setting number to 8"));
|
|
959 |
TBuf8<KUsbDescSize_Interface> descriptor;
|
|
960 |
r = gPort.GetInterfaceDescriptor(1, descriptor);
|
|
961 |
test(r == KErrNone);
|
|
962 |
descriptor[KIfcDesc_SettingOffset] = 8;
|
|
963 |
r = gPort.SetInterfaceDescriptor(1, descriptor);
|
|
964 |
test(r != KErrNone);
|
|
965 |
|
|
966 |
test.Next(_L("Change ifc # in def setting whith alt ifcs"));
|
|
967 |
r = gPort.GetInterfaceDescriptor(0, descriptor);
|
|
968 |
test(r == KErrNone);
|
|
969 |
descriptor[KIfcDesc_SettingOffset] = 8;
|
|
970 |
r = gPort.SetInterfaceDescriptor(0, descriptor);
|
|
971 |
test(r != KErrNone);
|
|
972 |
|
|
973 |
test.Next(_L("Change the ifc # in default setting to 8"));
|
|
974 |
r = gPort.ReleaseInterface(1);
|
|
975 |
test(r == KErrNone);
|
|
976 |
r = gPort.SetInterfaceDescriptor(0, descriptor);
|
|
977 |
test(r == KErrNone);
|
|
978 |
|
|
979 |
test.Next(_L("Create new setting - this should also get #8"));
|
|
980 |
r = gPort.SetInterface(1, ifc);
|
|
981 |
test(r == KErrNone);
|
|
982 |
r = gPort.GetInterfaceDescriptor(1, descriptor);
|
|
983 |
test(r == KErrNone);
|
|
984 |
test(descriptor[KIfcDesc_SettingOffset] == 8);
|
|
985 |
|
|
986 |
test.Next(_L("Change the ifc # in default setting to 0"));
|
|
987 |
r = gPort.ReleaseInterface(1);
|
|
988 |
test(r == KErrNone);
|
|
989 |
r = gPort.GetInterfaceDescriptor(0, descriptor);
|
|
990 |
test(r == KErrNone);
|
|
991 |
descriptor[KIfcDesc_SettingOffset] = 0;
|
|
992 |
r = gPort.SetInterfaceDescriptor(0, descriptor);
|
|
993 |
test(r == KErrNone);
|
|
994 |
|
|
995 |
test.Next(_L("Create new setting - this should also get #0"));
|
|
996 |
r = gPort.SetInterface(1, ifc);
|
|
997 |
test(r == KErrNone);
|
|
998 |
r = gPort.GetInterfaceDescriptor(1, descriptor);
|
|
999 |
test(r == KErrNone);
|
|
1000 |
test(descriptor[KIfcDesc_SettingOffset] == 0);
|
|
1001 |
|
|
1002 |
test.End();
|
|
1003 |
}
|
|
1004 |
|
|
1005 |
|
|
1006 |
static void TestEndpointDescriptor()
|
|
1007 |
{
|
|
1008 |
test.Start(_L("Endpoint Descriptor Manipulation"));
|
|
1009 |
|
|
1010 |
test.Next(_L("GetEndpointDescriptorSize(1)"));
|
|
1011 |
TInt epNumber = 1;
|
|
1012 |
TInt desc_size = 0;
|
|
1013 |
TInt r = gPort.GetEndpointDescriptorSize(0, epNumber, desc_size);
|
|
1014 |
test(r == KErrNone);
|
|
1015 |
test(static_cast<TUint>(desc_size) == KUsbDescSize_Endpoint);
|
|
1016 |
|
|
1017 |
test.Next(_L("GetEndpointDescriptor(1)"));
|
|
1018 |
TBuf8<KUsbDescSize_Endpoint> descriptor;
|
|
1019 |
r = gPort.GetEndpointDescriptor(0, epNumber, descriptor);
|
|
1020 |
test(r == KErrNone);
|
|
1021 |
|
|
1022 |
test.Next(_L("SetEndpointDescriptor(1)"));
|
|
1023 |
// Change the endpoint poll interval
|
|
1024 |
TUint8 ival = 0x66;
|
|
1025 |
if (descriptor[KEpDesc_IntervalOffset] == ival)
|
|
1026 |
ival++;
|
|
1027 |
descriptor[KEpDesc_IntervalOffset] = ival;
|
|
1028 |
r = gPort.SetEndpointDescriptor(0, epNumber, descriptor);
|
|
1029 |
test(r == KErrNone);
|
|
1030 |
|
|
1031 |
test.Next(_L("GetEndpointDescriptor(1)"));
|
|
1032 |
TBuf8<KUsbDescSize_Endpoint> descriptor2;
|
|
1033 |
r = gPort.GetEndpointDescriptor(0, epNumber, descriptor2);
|
|
1034 |
test(r == KErrNone);
|
|
1035 |
|
|
1036 |
test.Next(_L("Compare endpoint descriptor with value set"));
|
|
1037 |
r = descriptor2.Compare(descriptor);
|
|
1038 |
test(r == KErrNone);
|
|
1039 |
|
|
1040 |
test.Next(_L("Check endpoint max packet size"));
|
|
1041 |
const TUint16 ep_size = EpSize(descriptor[KEpDesc_PacketSizeOffset],
|
|
1042 |
descriptor[KEpDesc_PacketSizeOffset+1]);
|
|
1043 |
test.Printf(_L(" Size: %d\n"), ep_size);
|
|
1044 |
if (gUsingHighSpeed)
|
|
1045 |
{
|
|
1046 |
// HS Bulk ep can only have one possible packet size.
|
|
1047 |
test(ep_size == 512);
|
|
1048 |
}
|
|
1049 |
else
|
|
1050 |
{
|
|
1051 |
// FS Bulk ep cannot be larger than 64 bytes.
|
|
1052 |
test(ep_size <= 64);
|
|
1053 |
}
|
|
1054 |
|
|
1055 |
test.End();
|
|
1056 |
}
|
|
1057 |
|
|
1058 |
|
|
1059 |
static void TestExtendedEndpointDescriptor()
|
|
1060 |
{
|
|
1061 |
test.Start(_L("Extended Endpoint Descriptor Manipulation"));
|
|
1062 |
|
|
1063 |
if (!SupportsAlternateInterfaces())
|
|
1064 |
{
|
|
1065 |
test.Printf(_L("*** Not supported - skipping Extended Endpoint descriptor tests\n"));
|
|
1066 |
test.End();
|
|
1067 |
return;
|
|
1068 |
}
|
|
1069 |
|
|
1070 |
// Extended Endpoint Descriptor manipulation (Audio class endpoint)
|
|
1071 |
|
|
1072 |
test.Next(_L("GetEndpointDescriptorSize()"));
|
|
1073 |
TInt epNumber = INT_IN_ep;
|
|
1074 |
TInt desc_size = 0;
|
|
1075 |
TInt r = gPort.GetEndpointDescriptorSize(1, epNumber, desc_size);
|
|
1076 |
test(r == KErrNone);
|
|
1077 |
test(static_cast<TUint>(desc_size) == KUsbDescSize_AudioEndpoint);
|
|
1078 |
|
|
1079 |
test.Next(_L("GetEndpointDescriptor()"));
|
|
1080 |
TBuf8<KUsbDescSize_AudioEndpoint> descriptor;
|
|
1081 |
r = gPort.GetEndpointDescriptor(1, epNumber, descriptor);
|
|
1082 |
test(r == KErrNone);
|
|
1083 |
|
|
1084 |
test.Next(_L("SetEndpointDescriptor()"));
|
|
1085 |
// Change the Audio Endpoint bSynchAddress field
|
|
1086 |
TUint8 addr = 0x85; // bogus address
|
|
1087 |
if (descriptor[KEpDesc_SynchAddressOffset] == addr)
|
|
1088 |
addr++;
|
|
1089 |
descriptor[KEpDesc_SynchAddressOffset] = addr;
|
|
1090 |
r = gPort.SetEndpointDescriptor(1, epNumber, descriptor);
|
|
1091 |
test(r == KErrNone);
|
|
1092 |
|
|
1093 |
test.Next(_L("GetEndpointDescriptor()"));
|
|
1094 |
TBuf8<KUsbDescSize_AudioEndpoint> descriptor2;
|
|
1095 |
r = gPort.GetEndpointDescriptor(1, epNumber, descriptor2);
|
|
1096 |
test(r == KErrNone);
|
|
1097 |
|
|
1098 |
test.Next(_L("Compare endpoint descriptor with value set"));
|
|
1099 |
r = descriptor2.Compare(descriptor);
|
|
1100 |
test(r == KErrNone);
|
|
1101 |
|
|
1102 |
test.Next(_L("Check endpoint max packet size"));
|
|
1103 |
const TUint16 ep_size = EpSize(descriptor[KEpDesc_PacketSizeOffset],
|
|
1104 |
descriptor[KEpDesc_PacketSizeOffset+1]);
|
|
1105 |
if (gUsingHighSpeed)
|
|
1106 |
{
|
|
1107 |
// HS Interrupt ep.
|
|
1108 |
test(ep_size <= 1024);
|
|
1109 |
}
|
|
1110 |
else
|
|
1111 |
{
|
|
1112 |
// FS Interrupt ep cannot be larger than 64 bytes.
|
|
1113 |
test(ep_size <= 64);
|
|
1114 |
}
|
|
1115 |
|
|
1116 |
test.End();
|
|
1117 |
}
|
|
1118 |
|
|
1119 |
|
|
1120 |
static void TestStandardStringDescriptors()
|
|
1121 |
{
|
|
1122 |
test.Start(_L("String Descriptor Manipulation"));
|
|
1123 |
|
|
1124 |
//
|
|
1125 |
// --- LANGID code
|
|
1126 |
//
|
|
1127 |
|
|
1128 |
test.Next(_L("GetStringDescriptorLangId()"));
|
|
1129 |
TUint16 rd_langid_orig;
|
|
1130 |
TInt r = gPort.GetStringDescriptorLangId(rd_langid_orig);
|
|
1131 |
test(r == KErrNone);
|
|
1132 |
test.Printf(_L("Original LANGID code: 0x%04X\n"), rd_langid_orig);
|
|
1133 |
|
|
1134 |
test.Next(_L("SetStringDescriptorLangId()"));
|
|
1135 |
TUint16 wr_langid = 0x0809; // English (UK) Language ID
|
|
1136 |
if (wr_langid == rd_langid_orig)
|
|
1137 |
wr_langid = 0x0444; // Tatar Language ID
|
|
1138 |
r = gPort.SetStringDescriptorLangId(wr_langid);
|
|
1139 |
test(r == KErrNone);
|
|
1140 |
|
|
1141 |
test.Next(_L("GetStringDescriptorLangId()"));
|
|
1142 |
TUint16 rd_langid;
|
|
1143 |
r = gPort.GetStringDescriptorLangId(rd_langid);
|
|
1144 |
test(r == KErrNone);
|
|
1145 |
test.Printf(_L("New LANGID code: 0x%04X\n"), rd_langid);
|
|
1146 |
|
|
1147 |
test.Next(_L("Compare LANGID codes"));
|
|
1148 |
test(rd_langid == wr_langid);
|
|
1149 |
|
|
1150 |
test.Next(_L("Restore original LANGID code"));
|
|
1151 |
r = gPort.SetStringDescriptorLangId(rd_langid_orig);
|
|
1152 |
test(r == KErrNone);
|
|
1153 |
r = gPort.GetStringDescriptorLangId(rd_langid);
|
|
1154 |
test(r == KErrNone);
|
|
1155 |
test(rd_langid == rd_langid_orig);
|
|
1156 |
|
|
1157 |
//
|
|
1158 |
// --- Manufacturer string
|
|
1159 |
//
|
|
1160 |
|
|
1161 |
test.Next(_L("GetManufacturerStringDescriptor()"));
|
|
1162 |
TBuf16<KUsbStringDescStringMaxSize / 2> rd_str_orig;
|
|
1163 |
r = gPort.GetManufacturerStringDescriptor(rd_str_orig);
|
|
1164 |
test(r == KErrNone || r == KErrNotFound);
|
|
1165 |
TBool restore_string;
|
|
1166 |
if (r == KErrNone)
|
|
1167 |
{
|
|
1168 |
test.Printf(_L("Original Manufacturer string: \"%lS\"\n"), &rd_str_orig);
|
|
1169 |
restore_string = ETrue;
|
|
1170 |
}
|
|
1171 |
else
|
|
1172 |
{
|
|
1173 |
test.Printf(_L("No Manufacturer string set\n"));
|
|
1174 |
restore_string = EFalse;
|
|
1175 |
}
|
|
1176 |
|
|
1177 |
test.Next(_L("SetManufacturerStringDescriptor()"));
|
|
1178 |
_LIT16(manufacturer, "Manufacturer Which Manufactures Devices");
|
|
1179 |
TBuf16<KUsbStringDescStringMaxSize / 2> wr_str(manufacturer);
|
|
1180 |
r = gPort.SetManufacturerStringDescriptor(wr_str);
|
|
1181 |
test(r == KErrNone);
|
|
1182 |
|
|
1183 |
test.Next(_L("GetManufacturerStringDescriptor()"));
|
|
1184 |
TBuf16<KUsbStringDescStringMaxSize / 2> rd_str;
|
|
1185 |
r = gPort.GetManufacturerStringDescriptor(rd_str);
|
|
1186 |
test(r == KErrNone);
|
|
1187 |
test.Printf(_L("New Manufacturer string: \"%lS\"\n"), &rd_str);
|
|
1188 |
|
|
1189 |
test.Next(_L("Compare Manufacturer strings"));
|
|
1190 |
r = rd_str.Compare(wr_str);
|
|
1191 |
test(r == KErrNone);
|
|
1192 |
|
|
1193 |
test.Next(_L("SetManufacturerStringDescriptor()"));
|
|
1194 |
_LIT16(manufacturer2, "Different Manufacturer Which Manufactures Different Devices");
|
|
1195 |
wr_str.FillZ(wr_str.MaxLength());
|
|
1196 |
wr_str = manufacturer2;
|
|
1197 |
r = gPort.SetManufacturerStringDescriptor(wr_str);
|
|
1198 |
test(r == KErrNone);
|
|
1199 |
|
|
1200 |
test.Next(_L("GetManufacturerStringDescriptor()"));
|
|
1201 |
rd_str.FillZ(rd_str.MaxLength());
|
|
1202 |
r = gPort.GetManufacturerStringDescriptor(rd_str);
|
|
1203 |
test(r == KErrNone);
|
|
1204 |
test.Printf(_L("New Manufacturer string: \"%lS\"\n"), &rd_str);
|
|
1205 |
|
|
1206 |
test.Next(_L("Compare Manufacturer strings"));
|
|
1207 |
r = rd_str.Compare(wr_str);
|
|
1208 |
test(r == KErrNone);
|
|
1209 |
|
|
1210 |
test.Next(_L("RemoveManufacturerStringDescriptor()"));
|
|
1211 |
r = gPort.RemoveManufacturerStringDescriptor();
|
|
1212 |
test(r == KErrNone);
|
|
1213 |
r = gPort.GetManufacturerStringDescriptor(rd_str);
|
|
1214 |
test(r == KErrNotFound);
|
|
1215 |
|
|
1216 |
if (restore_string)
|
|
1217 |
{
|
|
1218 |
test.Next(_L("Restore original string"));
|
|
1219 |
r = gPort.SetManufacturerStringDescriptor(rd_str_orig);
|
|
1220 |
test(r == KErrNone);
|
|
1221 |
r = gPort.GetManufacturerStringDescriptor(rd_str);
|
|
1222 |
test(r == KErrNone);
|
|
1223 |
r = rd_str.Compare(rd_str_orig);
|
|
1224 |
test(r == KErrNone);
|
|
1225 |
}
|
|
1226 |
|
|
1227 |
//
|
|
1228 |
// --- Product string
|
|
1229 |
//
|
|
1230 |
|
|
1231 |
test.Next(_L("GetProductStringDescriptor()"));
|
|
1232 |
rd_str_orig.FillZ(rd_str.MaxLength());
|
|
1233 |
r = gPort.GetProductStringDescriptor(rd_str_orig);
|
|
1234 |
test(r == KErrNone || r == KErrNotFound);
|
|
1235 |
if (r == KErrNone)
|
|
1236 |
{
|
|
1237 |
test.Printf(_L("Old Product string: \"%lS\"\n"), &rd_str_orig);
|
|
1238 |
restore_string = ETrue;
|
|
1239 |
}
|
|
1240 |
else
|
|
1241 |
restore_string = EFalse;
|
|
1242 |
|
|
1243 |
test.Next(_L("SetProductStringDescriptor()"));
|
|
1244 |
_LIT16(product, "Product That Was Produced By A Manufacturer");
|
|
1245 |
wr_str.FillZ(wr_str.MaxLength());
|
|
1246 |
wr_str = product;
|
|
1247 |
r = gPort.SetProductStringDescriptor(wr_str);
|
|
1248 |
test(r == KErrNone);
|
|
1249 |
|
|
1250 |
test.Next(_L("GetProductStringDescriptor()"));
|
|
1251 |
rd_str.FillZ(rd_str.MaxLength());
|
|
1252 |
r = gPort.GetProductStringDescriptor(rd_str);
|
|
1253 |
test(r == KErrNone);
|
|
1254 |
test.Printf(_L("New Product string: \"%lS\"\n"), &rd_str);
|
|
1255 |
|
|
1256 |
test.Next(_L("Compare Product strings"));
|
|
1257 |
r = rd_str.Compare(wr_str);
|
|
1258 |
test(r == KErrNone);
|
|
1259 |
|
|
1260 |
test.Next(_L("SetProductStringDescriptor()"));
|
|
1261 |
_LIT16(product2, "Different Product That Was Produced By A Different Manufacturer");
|
|
1262 |
wr_str.FillZ(wr_str.MaxLength());
|
|
1263 |
wr_str = product2;
|
|
1264 |
r = gPort.SetProductStringDescriptor(wr_str);
|
|
1265 |
test(r == KErrNone);
|
|
1266 |
|
|
1267 |
test.Next(_L("GetProductStringDescriptor()"));
|
|
1268 |
rd_str.FillZ(rd_str.MaxLength());
|
|
1269 |
r = gPort.GetProductStringDescriptor(rd_str);
|
|
1270 |
test(r == KErrNone);
|
|
1271 |
test.Printf(_L("New Product string: \"%lS\"\n"), &rd_str);
|
|
1272 |
|
|
1273 |
test.Next(_L("Compare Product strings"));
|
|
1274 |
r = rd_str.Compare(wr_str);
|
|
1275 |
test(r == KErrNone);
|
|
1276 |
|
|
1277 |
test.Next(_L("RemoveProductStringDescriptor()"));
|
|
1278 |
r = gPort.RemoveProductStringDescriptor();
|
|
1279 |
test(r == KErrNone);
|
|
1280 |
r = gPort.GetProductStringDescriptor(rd_str);
|
|
1281 |
test(r == KErrNotFound);
|
|
1282 |
|
|
1283 |
if (restore_string)
|
|
1284 |
{
|
|
1285 |
test.Next(_L("Restore original string"));
|
|
1286 |
r = gPort.SetProductStringDescriptor(rd_str_orig);
|
|
1287 |
test(r == KErrNone);
|
|
1288 |
r = gPort.GetProductStringDescriptor(rd_str);
|
|
1289 |
test(r == KErrNone);
|
|
1290 |
r = rd_str.Compare(rd_str_orig);
|
|
1291 |
test(r == KErrNone);
|
|
1292 |
}
|
|
1293 |
|
|
1294 |
//
|
|
1295 |
// --- Serial Number string
|
|
1296 |
//
|
|
1297 |
|
|
1298 |
test.Next(_L("GetSerialNumberStringDescriptor()"));
|
|
1299 |
rd_str_orig.FillZ(rd_str.MaxLength());
|
|
1300 |
r = gPort.GetSerialNumberStringDescriptor(rd_str_orig);
|
|
1301 |
test(r == KErrNone || r == KErrNotFound);
|
|
1302 |
if (r == KErrNone)
|
|
1303 |
{
|
|
1304 |
test.Printf(_L("Old Serial Number: \"%lS\"\n"), &rd_str_orig);
|
|
1305 |
restore_string = ETrue;
|
|
1306 |
}
|
|
1307 |
else
|
|
1308 |
restore_string = EFalse;
|
|
1309 |
|
|
1310 |
test.Next(_L("SetSerialNumberStringDescriptor()"));
|
|
1311 |
_LIT16(serial, "000666000XYZ");
|
|
1312 |
wr_str.FillZ(wr_str.MaxLength());
|
|
1313 |
wr_str = serial;
|
|
1314 |
r = gPort.SetSerialNumberStringDescriptor(wr_str);
|
|
1315 |
test(r == KErrNone);
|
|
1316 |
|
|
1317 |
test.Next(_L("GetSerialNumberStringDescriptor()"));
|
|
1318 |
rd_str.FillZ(rd_str.MaxLength());
|
|
1319 |
r = gPort.GetSerialNumberStringDescriptor(rd_str);
|
|
1320 |
test(r == KErrNone);
|
|
1321 |
test.Printf(_L("New Serial Number: \"%lS\"\n"), &rd_str);
|
|
1322 |
|
|
1323 |
test.Next(_L("Compare Serial Number strings"));
|
|
1324 |
r = rd_str.Compare(wr_str);
|
|
1325 |
test(r == KErrNone);
|
|
1326 |
|
|
1327 |
test.Next(_L("SetSerialNumberStringDescriptor()"));
|
|
1328 |
_LIT16(serial2, "Y11611193111711111Y");
|
|
1329 |
wr_str.FillZ(wr_str.MaxLength());
|
|
1330 |
wr_str = serial2;
|
|
1331 |
r = gPort.SetSerialNumberStringDescriptor(wr_str);
|
|
1332 |
test(r == KErrNone);
|
|
1333 |
|
|
1334 |
test.Next(_L("GetSerialNumberStringDescriptor()"));
|
|
1335 |
rd_str.FillZ(rd_str.MaxLength());
|
|
1336 |
r = gPort.GetSerialNumberStringDescriptor(rd_str);
|
|
1337 |
test(r == KErrNone);
|
|
1338 |
test.Printf(_L("New Serial Number: \"%lS\"\n"), &rd_str);
|
|
1339 |
|
|
1340 |
test.Next(_L("Compare Serial Number strings"));
|
|
1341 |
r = rd_str.Compare(wr_str);
|
|
1342 |
test(r == KErrNone);
|
|
1343 |
|
|
1344 |
test.Next(_L("RemoveSerialNumberStringDescriptor()"));
|
|
1345 |
r = gPort.RemoveSerialNumberStringDescriptor();
|
|
1346 |
test(r == KErrNone);
|
|
1347 |
r = gPort.GetSerialNumberStringDescriptor(rd_str);
|
|
1348 |
test(r == KErrNotFound);
|
|
1349 |
|
|
1350 |
if (restore_string)
|
|
1351 |
{
|
|
1352 |
test.Next(_L("Restore original string"));
|
|
1353 |
r = gPort.SetSerialNumberStringDescriptor(rd_str_orig);
|
|
1354 |
test(r == KErrNone);
|
|
1355 |
r = gPort.GetSerialNumberStringDescriptor(rd_str);
|
|
1356 |
test(r == KErrNone);
|
|
1357 |
r = rd_str.Compare(rd_str_orig);
|
|
1358 |
test(r == KErrNone);
|
|
1359 |
}
|
|
1360 |
|
|
1361 |
//
|
|
1362 |
// --- Configuration string
|
|
1363 |
//
|
|
1364 |
|
|
1365 |
test.Next(_L("GetConfigurationStringDescriptor()"));
|
|
1366 |
rd_str_orig.FillZ(rd_str.MaxLength());
|
|
1367 |
r = gPort.GetConfigurationStringDescriptor(rd_str_orig);
|
|
1368 |
test(r == KErrNone || r == KErrNotFound);
|
|
1369 |
if (r == KErrNone)
|
|
1370 |
{
|
|
1371 |
test.Printf(_L("Old Configuration string: \"%lS\"\n"), &rd_str_orig);
|
|
1372 |
restore_string = ETrue;
|
|
1373 |
}
|
|
1374 |
else
|
|
1375 |
restore_string = EFalse;
|
|
1376 |
|
|
1377 |
test.Next(_L("SetConfigurationStringDescriptor()"));
|
|
1378 |
_LIT16(config, "Relatively Simple Configuration That Is Still Useful");
|
|
1379 |
wr_str.FillZ(wr_str.MaxLength());
|
|
1380 |
wr_str = config;
|
|
1381 |
r = gPort.SetConfigurationStringDescriptor(wr_str);
|
|
1382 |
test(r == KErrNone);
|
|
1383 |
|
|
1384 |
test.Next(_L("GetConfigurationStringDescriptor()"));
|
|
1385 |
rd_str.FillZ(rd_str.MaxLength());
|
|
1386 |
r = gPort.GetConfigurationStringDescriptor(rd_str);
|
|
1387 |
test(r == KErrNone);
|
|
1388 |
test.Printf(_L("New Configuration string: \"%lS\"\n"), &rd_str);
|
|
1389 |
|
|
1390 |
test.Next(_L("Compare Configuration strings"));
|
|
1391 |
r = rd_str.Compare(wr_str);
|
|
1392 |
test(r == KErrNone);
|
|
1393 |
|
|
1394 |
test.Next(_L("SetConfigurationStringDescriptor()"));
|
|
1395 |
_LIT16(config2, "Convenient Configuration That Can Be Very Confusing");
|
|
1396 |
wr_str.FillZ(wr_str.MaxLength());
|
|
1397 |
wr_str = config2;
|
|
1398 |
r = gPort.SetConfigurationStringDescriptor(wr_str);
|
|
1399 |
test(r == KErrNone);
|
|
1400 |
|
|
1401 |
test.Next(_L("GetConfigurationStringDescriptor()"));
|
|
1402 |
rd_str.FillZ(rd_str.MaxLength());
|
|
1403 |
r = gPort.GetConfigurationStringDescriptor(rd_str);
|
|
1404 |
test(r == KErrNone);
|
|
1405 |
test.Printf(_L("New Configuration string: \"%lS\"\n"), &rd_str);
|
|
1406 |
|
|
1407 |
test.Next(_L("Compare Configuration strings"));
|
|
1408 |
r = rd_str.Compare(wr_str);
|
|
1409 |
test(r == KErrNone);
|
|
1410 |
|
|
1411 |
test.Next(_L("RemoveConfigurationStringDescriptor()"));
|
|
1412 |
r = gPort.RemoveConfigurationStringDescriptor();
|
|
1413 |
test(r == KErrNone);
|
|
1414 |
r = gPort.GetConfigurationStringDescriptor(rd_str);
|
|
1415 |
test(r == KErrNotFound);
|
|
1416 |
|
|
1417 |
if (restore_string)
|
|
1418 |
{
|
|
1419 |
test.Next(_L("Restore original string"));
|
|
1420 |
r = gPort.SetConfigurationStringDescriptor(rd_str_orig);
|
|
1421 |
test(r == KErrNone);
|
|
1422 |
r = gPort.GetConfigurationStringDescriptor(rd_str);
|
|
1423 |
test(r == KErrNone);
|
|
1424 |
r = rd_str.Compare(rd_str_orig);
|
|
1425 |
test(r == KErrNone);
|
|
1426 |
}
|
|
1427 |
|
|
1428 |
test.End();
|
|
1429 |
}
|
|
1430 |
|
|
1431 |
|
|
1432 |
//---------------------------------------------
|
|
1433 |
//! @SYMTestCaseID KBASE-T_USBAPI-0041
|
|
1434 |
//! @SYMTestType UT
|
|
1435 |
//! @SYMREQ REQ5662
|
|
1436 |
//! @SYMTestCaseDesc USB Device Driver API extension to support setting of a string descriptor at a specific index
|
|
1437 |
//! @SYMTestActions Tests GetStringDescriptor(), SetStringDescriptor() and RemoveStringDescriptor() to verify
|
|
1438 |
//! the right values are retrieved, set and deleted at specific positions
|
|
1439 |
//! @SYMTestExpectedResults KErrNone in positive testing and KErrNotFound in negative one
|
|
1440 |
//! @SYMTestPriority High
|
|
1441 |
//! @SYMTestStatus Implemented
|
|
1442 |
//---------------------------------------------
|
|
1443 |
static void TestArbitraryStringDescriptors()
|
|
1444 |
{
|
|
1445 |
test.Start(_L("Arbitrary String Descriptor Manipulation"));
|
|
1446 |
|
|
1447 |
const TUint8 stridx1 = 0xEE;
|
|
1448 |
const TUint8 stridx2 = 0xCC;
|
|
1449 |
const TUint8 stridx3 = 0xDD;
|
|
1450 |
const TUint8 stridx4 = 0xFF;
|
|
1451 |
|
|
1452 |
// First test string
|
|
1453 |
|
|
1454 |
test.Next(_L("GetStringDescriptor() 1"));
|
|
1455 |
TBuf16<KUsbStringDescStringMaxSize / 2> rd_str;
|
|
1456 |
TInt r = gPort.GetStringDescriptor(stridx1, rd_str);
|
|
1457 |
test(r == KErrNotFound);
|
|
1458 |
|
|
1459 |
test.Next(_L("SetStringDescriptor() 1"));
|
|
1460 |
_LIT16(string_one, "Arbitrary String Descriptor Test String 1");
|
|
1461 |
TBuf16<KUsbStringDescStringMaxSize / 2> wr_str(string_one);
|
|
1462 |
r = gPort.SetStringDescriptor(stridx1, wr_str);
|
|
1463 |
test(r == KErrNone);
|
|
1464 |
|
|
1465 |
test.Next(_L("GetStringDescriptor() 1"));
|
|
1466 |
r = gPort.GetStringDescriptor(stridx1, rd_str);
|
|
1467 |
test(r == KErrNone);
|
|
1468 |
test.Printf(_L("New test string @ idx %d: \"%lS\"\n"), stridx1, &rd_str);
|
|
1469 |
|
|
1470 |
test.Next(_L("Compare test strings 1"));
|
|
1471 |
r = rd_str.Compare(wr_str);
|
|
1472 |
test(r == KErrNone);
|
|
1473 |
|
|
1474 |
// Second test string
|
|
1475 |
|
|
1476 |
test.Next(_L("GetStringDescriptor() 2"));
|
|
1477 |
rd_str.FillZ(rd_str.MaxLength());
|
|
1478 |
r = gPort.GetStringDescriptor(stridx2, rd_str);
|
|
1479 |
test(r == KErrNotFound);
|
|
1480 |
|
|
1481 |
test.Next(_L("SetStringDescriptor() 2"));
|
|
1482 |
_LIT16(string_two, "Arbitrary String Descriptor Test String 2");
|
|
1483 |
wr_str.FillZ(wr_str.MaxLength());
|
|
1484 |
wr_str = string_two;
|
|
1485 |
r = gPort.SetStringDescriptor(stridx2, wr_str);
|
|
1486 |
test(r == KErrNone);
|
|
1487 |
|
|
1488 |
// In between we create another interface setting to see what happens
|
|
1489 |
// to the existing string descriptor indices.
|
|
1490 |
// (We don't have to test this on every platform -
|
|
1491 |
// besides, those that don't support alt settings
|
|
1492 |
// are by now very rare.)
|
|
1493 |
if (SupportsAlternateInterfaces())
|
|
1494 |
{
|
|
1495 |
TUsbcInterfaceInfoBuf ifc;
|
|
1496 |
_LIT16(string, "T_USBAPI Bogus Test Interface (Setting 2)");
|
|
1497 |
ifc().iString = const_cast<TDesC16*>(&string);
|
|
1498 |
ifc().iTotalEndpointsUsed = 0;
|
|
1499 |
TInt r = gPort.SetInterface(2, ifc);
|
|
1500 |
test(r == KErrNone);
|
|
1501 |
}
|
|
1502 |
|
|
1503 |
test.Next(_L("GetStringDescriptor() 2"));
|
|
1504 |
r = gPort.GetStringDescriptor(stridx2, rd_str);
|
|
1505 |
test(r == KErrNone);
|
|
1506 |
test.Printf(_L("New test string @ idx %d: \"%lS\"\n"), stridx2, &rd_str);
|
|
1507 |
|
|
1508 |
test.Next(_L("Compare test strings 2"));
|
|
1509 |
r = rd_str.Compare(wr_str);
|
|
1510 |
test(r == KErrNone);
|
|
1511 |
|
|
1512 |
// Third test string
|
|
1513 |
|
|
1514 |
test.Next(_L("GetStringDescriptor() 3"));
|
|
1515 |
rd_str.FillZ(rd_str.MaxLength());
|
|
1516 |
r = gPort.GetStringDescriptor(stridx3, rd_str);
|
|
1517 |
test(r == KErrNotFound);
|
|
1518 |
|
|
1519 |
test.Next(_L("SetStringDescriptor() 3"));
|
|
1520 |
_LIT16(string_three, "Arbitrary String Descriptor Test String 3");
|
|
1521 |
wr_str.FillZ(wr_str.MaxLength());
|
|
1522 |
wr_str = string_three;
|
|
1523 |
r = gPort.SetStringDescriptor(stridx3, wr_str);
|
|
1524 |
test(r == KErrNone);
|
|
1525 |
|
|
1526 |
test.Next(_L("GetStringDescriptor() 3"));
|
|
1527 |
r = gPort.GetStringDescriptor(stridx3, rd_str);
|
|
1528 |
test(r == KErrNone);
|
|
1529 |
test.Printf(_L("New test string @ idx %d: \"%lS\"\n"), stridx3, &rd_str);
|
|
1530 |
|
|
1531 |
test.Next(_L("Compare test strings 3"));
|
|
1532 |
r = rd_str.Compare(wr_str);
|
|
1533 |
test(r == KErrNone);
|
|
1534 |
|
|
1535 |
// Remove string descriptors
|
|
1536 |
|
|
1537 |
test.Next(_L("RemoveStringDescriptor() 4"));
|
|
1538 |
r = gPort.RemoveStringDescriptor(stridx4);
|
|
1539 |
test(r == KErrNotFound);
|
|
1540 |
|
|
1541 |
test.Next(_L("RemoveStringDescriptor() 3"));
|
|
1542 |
r = gPort.RemoveStringDescriptor(stridx3);
|
|
1543 |
test(r == KErrNone);
|
|
1544 |
r = gPort.GetStringDescriptor(stridx3, rd_str);
|
|
1545 |
test(r == KErrNotFound);
|
|
1546 |
|
|
1547 |
test.Next(_L("RemoveStringDescriptor() 2"));
|
|
1548 |
r = gPort.RemoveStringDescriptor(stridx2);
|
|
1549 |
test(r == KErrNone);
|
|
1550 |
r = gPort.GetStringDescriptor(stridx2, rd_str);
|
|
1551 |
test(r == KErrNotFound);
|
|
1552 |
|
|
1553 |
test.Next(_L("RemoveStringDescriptor() 1"));
|
|
1554 |
r = gPort.RemoveStringDescriptor(stridx1);
|
|
1555 |
test(r == KErrNone);
|
|
1556 |
r = gPort.GetStringDescriptor(stridx1, rd_str);
|
|
1557 |
test(r == KErrNotFound);
|
|
1558 |
|
|
1559 |
test.End();
|
|
1560 |
}
|
|
1561 |
|
|
1562 |
|
|
1563 |
static void TestDescriptorManipulation()
|
|
1564 |
{
|
|
1565 |
test.Start(_L("Test USB Descriptor Manipulation"));
|
|
1566 |
|
|
1567 |
TestDeviceDescriptor();
|
|
1568 |
|
|
1569 |
TestDeviceQualifierDescriptor();
|
|
1570 |
|
|
1571 |
TestConfigurationDescriptor();
|
|
1572 |
|
|
1573 |
TestOtherSpeedConfigurationDescriptor();
|
|
1574 |
|
|
1575 |
TestInterfaceDescriptor();
|
|
1576 |
|
|
1577 |
TestClassSpecificDescriptors();
|
|
1578 |
|
|
1579 |
TestAlternateInterfaceManipulation();
|
|
1580 |
|
|
1581 |
TestEndpointDescriptor();
|
|
1582 |
|
|
1583 |
TestExtendedEndpointDescriptor();
|
|
1584 |
|
|
1585 |
TestStandardStringDescriptors();
|
|
1586 |
|
|
1587 |
TestArbitraryStringDescriptors();
|
|
1588 |
|
|
1589 |
test.End();
|
|
1590 |
}
|
|
1591 |
|
|
1592 |
|
|
1593 |
//---------------------------------------------
|
|
1594 |
//! @SYMTestCaseID KBASE-T_USBAPI-0040
|
|
1595 |
//! @SYMTestType UT
|
|
1596 |
//! @SYMTestCaseDesc Test OTG extensions
|
|
1597 |
//! @SYMTestExpectedResults All APIs behave as expected
|
|
1598 |
//! @SYMTestPriority Medium
|
|
1599 |
//! @SYMTestStatus Implemented
|
|
1600 |
//---------------------------------------------
|
|
1601 |
static void TestOtgExtensions()
|
|
1602 |
{
|
|
1603 |
test.Start(_L("Test Some OTG API Extensions"));
|
|
1604 |
|
|
1605 |
// Test OTG descriptor manipulation
|
|
1606 |
test.Next(_L("Get OTG Descriptor Size"));
|
|
1607 |
TInt size;
|
|
1608 |
gPort.GetOtgDescriptorSize(size);
|
|
1609 |
test(static_cast<TUint>(size) == KUsbDescSize_Otg);
|
|
1610 |
|
|
1611 |
test.Next(_L("Get OTG Descriptor"));
|
|
1612 |
TBuf8<KUsbDescSize_Otg> otgDesc;
|
|
1613 |
TInt r = gPort.GetOtgDescriptor(otgDesc);
|
|
1614 |
test(r == KErrNotSupported || r == KErrNone);
|
|
1615 |
|
|
1616 |
test.Next(_L("Set OTG Descriptor"));
|
|
1617 |
if (r == KErrNotSupported)
|
|
1618 |
{
|
|
1619 |
r = gPort.SetOtgDescriptor(otgDesc);
|
|
1620 |
test(r == KErrNotSupported);
|
|
1621 |
}
|
|
1622 |
else
|
|
1623 |
{
|
|
1624 |
otgDesc[0] = KUsbDescSize_Otg;
|
|
1625 |
otgDesc[1] = KUsbDescType_Otg;
|
|
1626 |
// The next step is likely to reset KUsbOtgAttr_HnpSupp
|
|
1627 |
otgDesc[2] = KUsbOtgAttr_SrpSupp;
|
|
1628 |
r = gPort.SetOtgDescriptor(otgDesc);
|
|
1629 |
test(r == KErrNone);
|
|
1630 |
TBuf8<KUsbDescSize_Otg> desc;
|
|
1631 |
r = gPort.GetOtgDescriptor(desc);
|
|
1632 |
test(r == KErrNone);
|
|
1633 |
test(desc.Compare(otgDesc) == 0);
|
|
1634 |
}
|
|
1635 |
|
|
1636 |
// Test get OTG features
|
|
1637 |
test.Next(_L("Get OTG Features"));
|
|
1638 |
TUint8 features;
|
|
1639 |
r = gPort.GetOtgFeatures(features);
|
|
1640 |
if (gSupportsOtg)
|
|
1641 |
{
|
|
1642 |
test(r == KErrNone);
|
|
1643 |
TBool b_HnpEnable = (features & KUsbOtgAttr_B_HnpEnable) ? ETrue : EFalse;
|
|
1644 |
TBool a_HnpSupport = (features & KUsbOtgAttr_A_HnpSupport) ? ETrue : EFalse;
|
|
1645 |
TBool a_AltHnpSupport = (features & KUsbOtgAttr_A_AltHnpSupport) ? ETrue : EFalse;
|
|
1646 |
test.Printf(_L("### OTG Features:\nB_HnpEnable(%d)\nA_HnpSupport(%d)\nA_Alt_HnpSupport(%d)\n"),
|
|
1647 |
b_HnpEnable, a_HnpSupport, a_AltHnpSupport);
|
|
1648 |
}
|
|
1649 |
else
|
|
1650 |
{
|
|
1651 |
test(r == KErrNotSupported);
|
|
1652 |
test.Printf(_L("GetOtgFeatures() not supported\n"));
|
|
1653 |
}
|
|
1654 |
|
|
1655 |
test.End();
|
|
1656 |
}
|
|
1657 |
|
|
1658 |
|
|
1659 |
static void TestEndpoint0MaxPacketSizes()
|
|
1660 |
{
|
|
1661 |
test.Start(_L("Test Endpoint0 MaxPacketSizes"));
|
|
1662 |
|
|
1663 |
TUint32 sizes = gPort.EndpointZeroMaxPacketSizes();
|
|
1664 |
TInt r = KErrNone;
|
|
1665 |
TBool good;
|
|
1666 |
TInt mpsize = 0;
|
|
1667 |
for (TInt i = 0; i < 32; i++)
|
|
1668 |
{
|
|
1669 |
TUint bit = sizes & (1 << i);
|
|
1670 |
if (bit != 0)
|
|
1671 |
{
|
|
1672 |
switch (bit)
|
|
1673 |
{
|
|
1674 |
case KUsbEpSizeCont:
|
|
1675 |
good = EFalse;
|
|
1676 |
break;
|
|
1677 |
case KUsbEpSize8:
|
|
1678 |
mpsize = 8;
|
|
1679 |
good = ETrue;
|
|
1680 |
break;
|
|
1681 |
case KUsbEpSize16:
|
|
1682 |
mpsize = 16;
|
|
1683 |
good = ETrue;
|
|
1684 |
break;
|
|
1685 |
case KUsbEpSize32:
|
|
1686 |
mpsize = 32;
|
|
1687 |
good = ETrue;
|
|
1688 |
break;
|
|
1689 |
case KUsbEpSize64:
|
|
1690 |
mpsize = 64;
|
|
1691 |
good = ETrue;
|
|
1692 |
break;
|
|
1693 |
case KUsbEpSize128:
|
|
1694 |
case KUsbEpSize256:
|
|
1695 |
case KUsbEpSize512:
|
|
1696 |
case KUsbEpSize1023:
|
|
1697 |
default:
|
|
1698 |
good = EFalse;
|
|
1699 |
break;
|
|
1700 |
}
|
|
1701 |
if (good)
|
|
1702 |
{
|
|
1703 |
test.Printf(_L("Ep0 supports %d bytes MaxPacketSize\n"), mpsize);
|
|
1704 |
}
|
|
1705 |
else
|
|
1706 |
{
|
|
1707 |
test.Printf(_L("Bad Ep0 size: 0x%08x, failure will occur\n"), bit);
|
|
1708 |
r = KErrGeneral;
|
|
1709 |
}
|
|
1710 |
}
|
|
1711 |
}
|
|
1712 |
test(r == KErrNone);
|
|
1713 |
|
|
1714 |
test.End();
|
|
1715 |
}
|
|
1716 |
|
|
1717 |
|
|
1718 |
static void TestDeviceControl()
|
|
1719 |
{
|
|
1720 |
test.Start(_L("Test Device Control"));
|
|
1721 |
|
|
1722 |
// This is a quick and crude test, to make sure that we don't get a steaming heap
|
|
1723 |
// as a result of calling the device control API's.
|
|
1724 |
test.Next(_L("SetDeviceControl()"));
|
|
1725 |
TInt r = gPort.SetDeviceControl();
|
|
1726 |
test(r == KErrNone);
|
|
1727 |
test.Next(_L("ReleaseDeviceControl()"));
|
|
1728 |
r = gPort.ReleaseDeviceControl();
|
|
1729 |
test(r == KErrNone);
|
|
1730 |
|
|
1731 |
test.End();
|
|
1732 |
}
|
|
1733 |
|
|
1734 |
|
|
1735 |
static void TestAlternateDeviceStatusNotify()
|
|
1736 |
{
|
|
1737 |
test.Start(_L("Test Alternate Device Status Notification"));
|
|
1738 |
|
|
1739 |
TRequestStatus dev_status;
|
|
1740 |
TUint deviceState = 0xffffffff; // put in a nonsense value
|
|
1741 |
test.Next(_L("AlternateDeviceStatusNotify()"));
|
|
1742 |
gPort.AlternateDeviceStatusNotify(dev_status, deviceState);
|
|
1743 |
test.Next(_L("AlternateDeviceStatusNotifyCancel()"));
|
|
1744 |
gPort.AlternateDeviceStatusNotifyCancel();
|
|
1745 |
User::WaitForRequest(dev_status);
|
|
1746 |
test(dev_status == KErrCancel || dev_status == KErrNone);
|
|
1747 |
if (deviceState & KUsbAlternateSetting)
|
|
1748 |
{
|
|
1749 |
TUint setting = (deviceState & ~KUsbAlternateSetting);
|
|
1750 |
test.Printf(_L("Alternate setting change to setting %d - unexpected"), setting);
|
|
1751 |
test(EFalse);
|
|
1752 |
}
|
|
1753 |
else
|
|
1754 |
{
|
|
1755 |
switch (deviceState)
|
|
1756 |
{
|
|
1757 |
case EUsbcDeviceStateUndefined:
|
|
1758 |
test.Printf(_L("TestAlternateDeviceStatusNotify: Undefined state\n"));
|
|
1759 |
break;
|
|
1760 |
case EUsbcDeviceStateAttached:
|
|
1761 |
test.Printf(_L("TestAlternateDeviceStatusNotify: Attached state\n"));
|
|
1762 |
break;
|
|
1763 |
case EUsbcDeviceStatePowered:
|
|
1764 |
test.Printf(_L("TestAlternateDeviceStatusNotify: Powered state\n"));
|
|
1765 |
break;
|
|
1766 |
case EUsbcDeviceStateDefault:
|
|
1767 |
test.Printf(_L("TestAlternateDeviceStatusNotify: Default state\n"));
|
|
1768 |
break;
|
|
1769 |
case EUsbcDeviceStateAddress:
|
|
1770 |
test.Printf(_L("TestAlternateDeviceStatusNotify: Address state\n"));
|
|
1771 |
break;
|
|
1772 |
case EUsbcDeviceStateConfigured:
|
|
1773 |
test.Printf(_L("TestAlternateDeviceStatusNotify: Configured state\n"));
|
|
1774 |
break;
|
|
1775 |
case EUsbcDeviceStateSuspended:
|
|
1776 |
test.Printf(_L("TestAlternateDeviceStatusNotify: Suspended state\n"));
|
|
1777 |
break;
|
|
1778 |
case EUsbcNoState:
|
|
1779 |
test.Printf(_L("TestAlternateDeviceStatusNotify: State buffering error\n"));
|
|
1780 |
test(EFalse);
|
|
1781 |
break;
|
|
1782 |
default:
|
|
1783 |
test.Printf(_L("TestAlternateDeviceStatusNotify: Unknown state\n"));
|
|
1784 |
test(EFalse);
|
|
1785 |
}
|
|
1786 |
}
|
|
1787 |
|
|
1788 |
test.End();
|
|
1789 |
}
|
|
1790 |
|
|
1791 |
|
|
1792 |
static void TestEndpointStatusNotify()
|
|
1793 |
{
|
|
1794 |
test.Start(_L("Test Endpoint Status Notification"));
|
|
1795 |
|
|
1796 |
TRequestStatus ep_status;
|
|
1797 |
TUint epStateBitmap = 0xffffffff; // put in a nonsense value
|
|
1798 |
test.Next(_L("EndpointStatusNotify()"));
|
|
1799 |
gPort.EndpointStatusNotify(ep_status, epStateBitmap);
|
|
1800 |
test.Next(_L("EndpointStatusNotifyCancel()"));
|
|
1801 |
gPort.EndpointStatusNotifyCancel();
|
|
1802 |
User::WaitForRequest(ep_status);
|
|
1803 |
test(ep_status.Int() == KErrCancel);
|
|
1804 |
test.Next(_L("Check endpoint state bitmap returned"));
|
|
1805 |
// Our ifc only uses 2 eps + ep0 is automatically granted:
|
|
1806 |
const TUint usedEpBitmap = (1 << EEndpoint0 | 1 << EEndpoint1 | 1 << EEndpoint2);
|
|
1807 |
// Must not return info about non existent Eps:
|
|
1808 |
test((epStateBitmap & ~usedEpBitmap) == 0);
|
|
1809 |
for (TInt i = 0; i <= 2; i++)
|
|
1810 |
{
|
|
1811 |
if ((epStateBitmap & (1 << i)) == EEndpointStateNotStalled)
|
|
1812 |
{
|
|
1813 |
test.Printf(_L("EndpointStatusNotify: Ep %d NOT STALLED\n"), i);
|
|
1814 |
}
|
|
1815 |
else
|
|
1816 |
{
|
|
1817 |
test.Printf(_L("EndpointStatusNotify: Ep %d STALLED\n"), i);
|
|
1818 |
}
|
|
1819 |
}
|
|
1820 |
|
|
1821 |
test.End();
|
|
1822 |
}
|
|
1823 |
|
|
1824 |
|
|
1825 |
static void TestEndpointStallStatus()
|
|
1826 |
{
|
|
1827 |
test.Start(_L("Test Endpoint Stall Status"));
|
|
1828 |
|
|
1829 |
if (!SupportsEndpointStall())
|
|
1830 |
{
|
|
1831 |
test.Printf(_L("*** Not supported - skipping endpoint stall status tests\n"));
|
|
1832 |
test.End();
|
|
1833 |
return;
|
|
1834 |
}
|
|
1835 |
|
|
1836 |
test.Next(_L("Endpoint stall status"));
|
|
1837 |
TEndpointState epState = EEndpointStateUnknown;
|
|
1838 |
QueryEndpointState(EEndpoint1);
|
|
1839 |
QueryEndpointState(EEndpoint2);
|
|
1840 |
|
|
1841 |
test.Next(_L("Stall Ep1"));
|
|
1842 |
gPort.HaltEndpoint(EEndpoint1);
|
|
1843 |
epState = QueryEndpointState(EEndpoint1);
|
|
1844 |
test(epState == EEndpointStateStalled);
|
|
1845 |
|
|
1846 |
test.Next(_L("Clear Stall Ep1"));
|
|
1847 |
gPort.ClearHaltEndpoint(EEndpoint1);
|
|
1848 |
epState = QueryEndpointState(EEndpoint1);
|
|
1849 |
test(epState == EEndpointStateNotStalled);
|
|
1850 |
|
|
1851 |
test.Next(_L("Stall Ep2"));
|
|
1852 |
gPort.HaltEndpoint(EEndpoint2);
|
|
1853 |
epState = QueryEndpointState(EEndpoint2);
|
|
1854 |
test(epState == EEndpointStateStalled);
|
|
1855 |
|
|
1856 |
test.Next(_L("Clear Stall Ep2"));
|
|
1857 |
gPort.ClearHaltEndpoint(EEndpoint2);
|
|
1858 |
epState = QueryEndpointState(EEndpoint2);
|
|
1859 |
test(epState == EEndpointStateNotStalled);
|
|
1860 |
|
|
1861 |
test.End();
|
|
1862 |
}
|
|
1863 |
|
|
1864 |
|
|
1865 |
static void CloseChannel()
|
|
1866 |
{
|
|
1867 |
test.Start(_L("Close Channel"));
|
|
1868 |
|
|
1869 |
test.Next(_L("Disconnect Device from Host"));
|
|
1870 |
TInt r = gPort.DeviceDisconnectFromHost();
|
|
1871 |
test(r != KErrGeneral);
|
|
1872 |
|
|
1873 |
if (gSupportsOtg)
|
|
1874 |
{
|
|
1875 |
test.Next(_L("Stop OTG stack"));
|
|
1876 |
gOTG.StopStacks();
|
|
1877 |
test.Next(_L("Close OTG Channel"));
|
|
1878 |
gOTG.Close();
|
|
1879 |
test.Next(_L("Free OTG LDD"));
|
|
1880 |
r = User::FreeLogicalDevice(RUsbOtgDriver::Name());
|
|
1881 |
test(r == KErrNone);
|
|
1882 |
}
|
|
1883 |
|
|
1884 |
test.Next(_L("Close USB Channel"));
|
|
1885 |
gPort.Close();
|
|
1886 |
test.Next(_L("Free USB LDD"));
|
|
1887 |
r = User::FreeLogicalDevice(KUsbDeviceName);
|
|
1888 |
test(r == KErrNone);
|
|
1889 |
|
|
1890 |
test.End();
|
|
1891 |
}
|
|
1892 |
|
|
1893 |
|
|
1894 |
static const TInt KPrologue = 0;
|
|
1895 |
static const TInt KMain = 1;
|
|
1896 |
static const TInt KEpilogue = 2;
|
|
1897 |
|
|
1898 |
static TInt RunTests(void* /*aArg*/)
|
|
1899 |
{
|
|
1900 |
static TInt step = KPrologue;
|
|
1901 |
static TReal loops = 0;
|
|
1902 |
|
|
1903 |
switch (step)
|
|
1904 |
{
|
|
1905 |
case KPrologue:
|
|
1906 |
test.Title();
|
|
1907 |
// outermost test begin
|
|
1908 |
test.Start(_L("Test of USB APIs not requiring a host connection\n"));
|
|
1909 |
if (SupportsUsb())
|
|
1910 |
{
|
|
1911 |
step = KMain;
|
|
1912 |
}
|
|
1913 |
else
|
|
1914 |
{
|
|
1915 |
step = KEpilogue;
|
|
1916 |
test.Printf(_L("*** Test platform does not support USB - skipping all tests\n"));
|
|
1917 |
}
|
|
1918 |
return ETrue;
|
|
1919 |
case KMain:
|
|
1920 |
OpenChannel();
|
|
1921 |
SetupInterface();
|
|
1922 |
TestDescriptorManipulation();
|
|
1923 |
TestOtgExtensions();
|
|
1924 |
TestEndpoint0MaxPacketSizes();
|
|
1925 |
TestDeviceControl();
|
|
1926 |
TestAlternateDeviceStatusNotify();
|
|
1927 |
TestEndpointStatusNotify();
|
|
1928 |
TestEndpointStallStatus();
|
|
1929 |
CloseChannel();
|
|
1930 |
loops++;
|
|
1931 |
if (gSoak && (gKeychar != EKeyEscape))
|
|
1932 |
{
|
|
1933 |
step = KMain;
|
|
1934 |
}
|
|
1935 |
else
|
|
1936 |
{
|
|
1937 |
step = KEpilogue;
|
|
1938 |
}
|
|
1939 |
return ETrue;
|
|
1940 |
case KEpilogue:
|
|
1941 |
test.Printf(_L("USBAPI tests were run %.0f time(s)\n"), loops);
|
|
1942 |
// outermost test end
|
|
1943 |
test.End();
|
|
1944 |
CActiveScheduler::Stop();
|
|
1945 |
return EFalse;
|
|
1946 |
}
|
|
1947 |
return EFalse;
|
|
1948 |
}
|
|
1949 |
|
|
1950 |
|
|
1951 |
static void RunAppL()
|
|
1952 |
{
|
|
1953 |
// Create the active scheduler
|
|
1954 |
CActiveScheduler* scheduler = new (ELeave) CActiveScheduler();
|
|
1955 |
// Push active scheduler onto the cleanup stack
|
|
1956 |
CleanupStack::PushL(scheduler);
|
|
1957 |
// Install as the active scheduler
|
|
1958 |
CActiveScheduler::Install(scheduler);
|
|
1959 |
|
|
1960 |
// Create console handler
|
|
1961 |
CConsoleBase* console =
|
|
1962 |
Console::NewL(_L("T_USBAPI - USB Client Test Program"), TSize(KConsFullScreen, KConsFullScreen));
|
|
1963 |
CleanupStack::PushL(console);
|
|
1964 |
// Make this one also RTest's console
|
|
1965 |
test.SetConsole(console);
|
|
1966 |
|
|
1967 |
// Create keypress notifier active object
|
|
1968 |
CActiveKeypressNotifier* keypress_notifier = CActiveKeypressNotifier::NewL(console);
|
|
1969 |
test(keypress_notifier != NULL);
|
|
1970 |
CleanupStack::PushL(keypress_notifier);
|
|
1971 |
keypress_notifier->RequestCharacter();
|
|
1972 |
|
|
1973 |
// Create long-running test task active object
|
|
1974 |
CIdle* active_test = CIdle::NewL(CActive::EPriorityIdle);
|
|
1975 |
test(active_test != NULL);
|
|
1976 |
CleanupStack::PushL(active_test);
|
|
1977 |
active_test->Start(TCallBack(RunTests));
|
|
1978 |
|
|
1979 |
// Start active scheduler
|
|
1980 |
CActiveScheduler::Start();
|
|
1981 |
|
|
1982 |
// Suspend thread for a short while
|
|
1983 |
User::After(1000000);
|
|
1984 |
|
|
1985 |
// active_test, keypress_notifier, console, scheduler
|
|
1986 |
CleanupStack::PopAndDestroy(4);
|
|
1987 |
|
|
1988 |
return;
|
|
1989 |
}
|
|
1990 |
|
|
1991 |
|
|
1992 |
GLDEF_C TInt E32Main()
|
|
1993 |
{
|
|
1994 |
|
|
1995 |
CTrapCleanup* cleanup = CTrapCleanup::New(); // get clean-up stack
|
|
1996 |
|
|
1997 |
__UHEAP_MARK;
|
|
1998 |
|
|
1999 |
_LIT(KArg, "soak");
|
|
2000 |
TBuf<64> c;
|
|
2001 |
User::CommandLine(c);
|
|
2002 |
if (c.CompareF(KArg) == 0)
|
|
2003 |
gSoak = ETrue;
|
|
2004 |
else
|
|
2005 |
gSoak = EFalse;
|
|
2006 |
TRAPD(r, RunAppL());
|
|
2007 |
__ASSERT_ALWAYS(!r, User::Panic(_L("E32EX"), r));
|
|
2008 |
|
|
2009 |
__UHEAP_MARKEND;
|
|
2010 |
|
|
2011 |
delete cleanup; // destroy clean-up stack
|
|
2012 |
return KErrNone;
|
|
2013 |
}
|