0
|
1 |
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32test\heap\t_heap.cpp
|
|
15 |
// Overview:
|
|
16 |
// Tests RHeap class.
|
|
17 |
// API Information:
|
|
18 |
// RHeap
|
|
19 |
// Details:
|
|
20 |
// - Test that the expected methods are in the DLL by calling each one.
|
|
21 |
// - Test heap auto expansion and compression by calling Alloc and Compress
|
|
22 |
// and verifying the results are as expected.
|
|
23 |
// - Verify the heap dump Base, Size, MinLength, Top and len values.
|
|
24 |
// - Test the RHeap AllocSize, Alloc, AllocLen, Count and Free methods. Verify
|
|
25 |
// results are as expected. Check heap object and confirm Invariant status.
|
|
26 |
// - For an RHeap object, test and verify the results of: allocate some cells,
|
|
27 |
// free them with Reset, allocate some cells again, free them with Free,
|
|
28 |
// allocate some cells again, free them backwards, allocate again, free the
|
|
29 |
// odd cells then the even cells, allocate again, free one half then the other.
|
|
30 |
// Check heap object and confirm Invariant status.
|
|
31 |
// - For an RHeap object, test and verify the results of: attempt to resize a
|
|
32 |
// block above the space available, resize the block to 0, resize positively,
|
|
33 |
// allocate a block, fill with data, allocate another block or two then resize
|
|
34 |
// the original block such that it has to be moved in memory, then check the
|
|
35 |
// blocks' contents, test data was copied on reallocation, resize blocks and
|
|
36 |
// verify data integrity, expand and shrink, verify data.
|
|
37 |
// Check heap object and confirm Invariant status.
|
|
38 |
// - For an RHeap object, test and verify the results of: Alloc some cells,
|
|
39 |
// verify the Count, Check the object, Free some cells, verify the Count,
|
|
40 |
// Check and Reset the object, corrupt the heap data and reset the object.
|
|
41 |
// - Test the leaving methods: AllocL and ReAllocL. Verify the results are as
|
|
42 |
// expected.
|
|
43 |
// - Test the RHeap methods: Alloc, Count, Size, Free and Close. Verify results
|
|
44 |
// are as expected.
|
|
45 |
// - Test sharing a chunk heap between two separate threads. Each thread
|
|
46 |
// accesses the shared heap in a timed loop, to ensure that some true
|
|
47 |
// concurrency.
|
|
48 |
// - Test sharing a chunk heap between two separate threads. Run each thread in
|
|
49 |
// a timed loop, to ensure that some true concurrency. Each thread accesses
|
|
50 |
// the shared heap and results are verified. The heap size is used to verify
|
|
51 |
// no leaks and that the largest available space is still available. The heap
|
|
52 |
// is checked to verify that no cells remain allocated after the tests are
|
|
53 |
// complete.
|
|
54 |
// - Test sharing a heap between two threads. The thread whose heap it was is
|
|
55 |
// killed first. Each thread accesses the shared heap and results are
|
|
56 |
// verified.
|
|
57 |
// Platforms/Drives/Compatibility:
|
|
58 |
// All
|
|
59 |
// Assumptions/Requirement/Pre-requisites:
|
|
60 |
// Failures and causes:
|
|
61 |
// Base Port information:
|
|
62 |
//
|
|
63 |
//
|
|
64 |
|
|
65 |
#include <e32test.h>
|
|
66 |
#include <e32hal.h>
|
|
67 |
#include <e32def.h>
|
|
68 |
#include <e32def_private.h>
|
189
|
69 |
#include "dla.h"
|
|
70 |
#include "slab.h"
|
|
71 |
#include "page_alloc.h"
|
|
72 |
#include "heap_hybrid.h"
|
0
|
73 |
|
|
74 |
// Sets data for Test6
|
|
75 |
#define SetData(size) pHeap->Reset();\
|
|
76 |
Cell1=pHeap->Alloc(size);\
|
|
77 |
Cell2=pHeap->Alloc(size);\
|
|
78 |
Cell3=pHeap->Alloc(size);\
|
|
79 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+pHeap->AllocLen(Cell1); *pC++='x');\
|
|
80 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+pHeap->AllocLen(Cell2); *pC++='y');\
|
|
81 |
for(pC=(TText8*)Cell3; pC<(TText8*)Cell3+pHeap->AllocLen(Cell3); *pC++='z');\
|
|
82 |
OrigLen=pHeap->AllocLen(Cell2);
|
|
83 |
|
|
84 |
// Tests cell contents for Test6
|
|
85 |
#define TestCells(Cell2Len) for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+pHeap->AllocLen(Cell1); test(*pC++=='x'));\
|
|
86 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+Cell2Len; test(*pC++=='y'));\
|
|
87 |
for(pC=(TText8*)Cell3; pC<(TText8*)Cell3+pHeap->AllocLen(Cell3); test(*pC++=='z'));\
|
|
88 |
pHeap->Check();
|
|
89 |
|
|
90 |
#ifdef __EABI__
|
|
91 |
IMPORT_D extern const TInt KHeapMinCellSize;
|
|
92 |
#else
|
|
93 |
const TInt KHeapMinCellSize = 0;
|
|
94 |
#endif
|
|
95 |
|
|
96 |
const TInt KHeadSize = (TInt)RHeap::EAllocCellSize;
|
189
|
97 |
|
|
98 |
const TInt KAlign = RHeap::ECellAlignment;
|
0
|
99 |
const TInt KMinCellLength = _ALIGN_UP((KHeapMinCellSize + Max(TInt(RHeap::EFreeCellSize),TInt(RHeap::EAllocCellSize))),KAlign) - RHeap::EAllocCellSize;
|
|
100 |
const TInt KMinFreeSize = _ALIGN_UP((KHeapMinCellSize + Max(TInt(RHeap::EFreeCellSize),TInt(RHeap::EAllocCellSize))),KAlign);
|
|
101 |
|
|
102 |
TInt PageSize;
|
|
103 |
|
|
104 |
class RTestHeap : public RHeap
|
|
105 |
{
|
|
106 |
public:
|
|
107 |
void __DbgTest(void* pRHeapDump) const;
|
|
108 |
};
|
|
109 |
|
|
110 |
struct RHeapDump
|
|
111 |
{
|
|
112 |
TUint iMinLength;
|
|
113 |
RChunk iChunk;
|
|
114 |
TUint8 *iBase;
|
|
115 |
TUint8 *iTop;
|
189
|
116 |
//RHeap::SCell iFree;
|
0
|
117 |
};
|
|
118 |
|
|
119 |
#pragma warning ( disable :4705 ) // statement has no effect
|
|
120 |
RHeapDump OrigDump;
|
|
121 |
#pragma warning ( default :4705 )
|
|
122 |
|
|
123 |
#if defined(_DEBUG)
|
|
124 |
void RTestHeap::__DbgTest(void* aPtr) const
|
|
125 |
{
|
189
|
126 |
(void) aPtr;
|
|
127 |
/*
|
0
|
128 |
RHeapDump& d = *(RHeapDump*)aPtr;
|
|
129 |
d.iMinLength=iMinLength;
|
|
130 |
d.iChunk.SetHandle(iChunkHandle);
|
|
131 |
d.iBase=iBase;
|
|
132 |
d.iTop=iTop;
|
|
133 |
d.iFree=iFree;
|
189
|
134 |
*/
|
0
|
135 |
}
|
|
136 |
#endif
|
|
137 |
|
|
138 |
|
|
139 |
#if defined(_DEBUG)
|
|
140 |
TBool Invariant(RHeap* aHeap)
|
|
141 |
{
|
189
|
142 |
(void) aHeap;
|
|
143 |
/*
|
0
|
144 |
RHeapDump dump;
|
|
145 |
((RTestHeap*)aHeap)->__DbgTest(&dump);
|
|
146 |
if(dump.iMinLength!=OrigDump.iMinLength) return(EFalse);
|
|
147 |
// Note: iChunk is a class
|
|
148 |
if(dump.iBase!=OrigDump.iBase) return(EFalse);
|
|
149 |
if(*dump.iBase!=*OrigDump.iBase) return(EFalse);
|
|
150 |
if(dump.iTop!=OrigDump.iTop) return(EFalse);
|
|
151 |
if(dump.iTop[-1]!=OrigDump.iTop[-1]) return(EFalse);
|
|
152 |
if(dump.iFree.len!=OrigDump.iFree.len) return(EFalse);
|
|
153 |
// iFree.Next changes during allocation/freeing etc.
|
189
|
154 |
*/
|
0
|
155 |
return(ETrue);
|
|
156 |
}
|
|
157 |
#define INV(x) x;
|
|
158 |
#else
|
|
159 |
#define INV(x)
|
|
160 |
#endif
|
|
161 |
|
|
162 |
LOCAL_D RTest test(_L("T_HEAP"));
|
|
163 |
LOCAL_D TInt heapCount=1;
|
|
164 |
LOCAL_D RHeap *gHeapPtr;
|
|
165 |
LOCAL_D RHeap *gHeapPtr2;
|
|
166 |
|
189
|
167 |
/*
|
|
168 |
Friend class of RHeapHybrid to access to hybrid heap metadata
|
|
169 |
*/
|
|
170 |
class TestHybridHeap
|
|
171 |
{
|
|
172 |
public:
|
|
173 |
static TBool IsHybrid(const RHybridHeap * aHybridHeap);
|
|
174 |
};
|
|
175 |
|
|
176 |
TBool TestHybridHeap::IsHybrid(const RHybridHeap * aHybridHeap)
|
|
177 |
{
|
|
178 |
if (aHybridHeap->iDLOnly)
|
|
179 |
return EFalse;
|
|
180 |
else
|
|
181 |
return ETrue;
|
|
182 |
}
|
|
183 |
|
0
|
184 |
class TestRHeap
|
|
185 |
{
|
|
186 |
public:
|
|
187 |
void Test1(void);
|
|
188 |
void Test2(void);
|
|
189 |
void Test3(void);
|
|
190 |
void Test4(void);
|
|
191 |
void Test5(void);
|
|
192 |
void Test7(void);
|
|
193 |
void Test8(void);
|
|
194 |
void TestCompressAll(void);
|
|
195 |
void TestOffset(void);
|
|
196 |
private:
|
|
197 |
TInt RHeapCalcReduce(TInt aCellSize, TInt aGrowBy);
|
|
198 |
};
|
|
199 |
|
|
200 |
LOCAL_C RHeap* allocHeap(TInt aSize)
|
|
201 |
//
|
|
202 |
// Allocate a chunk heap with max size aSize
|
|
203 |
//
|
|
204 |
{
|
|
205 |
|
|
206 |
TName n;
|
|
207 |
n.Format(_L("TESTHEAP%d"),heapCount++);
|
|
208 |
return(User::ChunkHeap(&n,aSize,aSize));
|
|
209 |
}
|
|
210 |
|
|
211 |
////////////////////////////////////////////////////////////////////////////////////////
|
|
212 |
// Test that methods are in the DLL
|
|
213 |
////////////////////////////////////////////////////////////////////////////////////////
|
|
214 |
void TestRHeap::Test1(void)
|
|
215 |
{
|
|
216 |
TAny* aCell;
|
|
217 |
TInt aVar;
|
|
218 |
RHeap* pHeap=allocHeap(3000); // tests first constructor indirectly
|
|
219 |
// constructor with Chunk not tested
|
|
220 |
pHeap->Base();
|
|
221 |
pHeap->Size();
|
|
222 |
pHeap->Available(aVar);
|
|
223 |
pHeap->Check();
|
|
224 |
pHeap->Count();
|
|
225 |
pHeap->Count(aVar);
|
|
226 |
aCell=pHeap->Alloc(50);
|
|
227 |
pHeap->Free(aCell);
|
|
228 |
aCell=pHeap->AllocL(50);
|
|
229 |
pHeap->AllocLen(aCell);
|
|
230 |
pHeap->ReAlloc(aCell, 100);
|
|
231 |
pHeap->ReAllocL(aCell, 150);
|
|
232 |
pHeap->Reset();
|
|
233 |
pHeap->Close();
|
|
234 |
}
|
|
235 |
|
|
236 |
///////////////////////////////////////////////////////////////////////////////
|
|
237 |
// Test Assorted Methods 1
|
|
238 |
//////////////////////////////////////////////////////////////////////////////
|
|
239 |
void TestRHeap::Test2(void)
|
|
240 |
{
|
|
241 |
#if defined(_DEBUG)
|
|
242 |
RHeapDump dump;
|
|
243 |
RHeap* pHeap=allocHeap(3000);
|
|
244 |
|
|
245 |
((RTestHeap*)pHeap)->__DbgTest(&OrigDump);
|
|
246 |
((RTestHeap*)pHeap)->__DbgTest(&dump);
|
189
|
247 |
|
|
248 |
// test(dump.iBase==pHeap->Base());
|
|
249 |
// test((dump.iTop-dump.iBase)==pHeap->Size());
|
0
|
250 |
pHeap->Check();
|
|
251 |
test(Invariant(pHeap));
|
|
252 |
pHeap->Close();
|
|
253 |
#endif
|
|
254 |
}
|
|
255 |
|
|
256 |
///////////////////////////////////////////////////////////////////////////////
|
|
257 |
// Test Assorted Methods 2
|
|
258 |
//////////////////////////////////////////////////////////////////////////////
|
|
259 |
void TestRHeap::Test3(void)
|
|
260 |
{
|
|
261 |
TInt CellLen;
|
|
262 |
TInt OrigBiggestBlock, BiggestBlock;
|
|
263 |
TAny* aCell;
|
|
264 |
TInt FreeCount, AllocCount, AllocSize;
|
|
265 |
RHeap* pHeap=allocHeap(5000);
|
|
266 |
|
|
267 |
#if defined(_DEBUG)
|
|
268 |
((RTestHeap*)pHeap)->__DbgTest(&OrigDump);
|
|
269 |
#endif
|
|
270 |
|
|
271 |
// test AllocSize
|
|
272 |
AllocCount=pHeap->Count(FreeCount);
|
|
273 |
test(pHeap->AllocSize(AllocSize)==pHeap->Count());
|
|
274 |
test(AllocSize==0);
|
|
275 |
test(AllocCount==pHeap->Count());
|
|
276 |
test(AllocCount==0);
|
|
277 |
test(FreeCount==1);
|
|
278 |
|
|
279 |
TAny* p1=pHeap->Alloc(1);
|
|
280 |
test(pHeap->AllocSize(AllocSize)==1);
|
|
281 |
test(AllocSize==pHeap->AllocLen(p1));
|
|
282 |
|
|
283 |
TAny* p2=pHeap->Alloc(8);
|
|
284 |
test(pHeap->AllocSize(AllocSize)==2);
|
|
285 |
test(AllocSize==pHeap->AllocLen(p1)+pHeap->AllocLen(p2));
|
|
286 |
|
|
287 |
TAny* p3=pHeap->Alloc(127);
|
|
288 |
test(pHeap->AllocSize(AllocSize)==3);
|
|
289 |
test(AllocSize==pHeap->AllocLen(p1)+pHeap->AllocLen(p2)+pHeap->AllocLen(p3));
|
|
290 |
|
|
291 |
pHeap->Free(p2);
|
|
292 |
test(pHeap->AllocSize(AllocSize)==2);
|
|
293 |
test(AllocSize==pHeap->AllocLen(p1)+pHeap->AllocLen(p3));
|
|
294 |
|
|
295 |
pHeap->Free(p1);
|
|
296 |
test(pHeap->AllocSize(AllocSize)==1);
|
|
297 |
test(AllocSize==pHeap->AllocLen(p3));
|
|
298 |
|
|
299 |
pHeap->Free(p3);
|
|
300 |
test(pHeap->AllocSize(AllocSize)==0);
|
|
301 |
test(AllocSize==0);
|
|
302 |
|
|
303 |
pHeap->Available(OrigBiggestBlock);
|
|
304 |
|
|
305 |
// Request too large a block
|
|
306 |
test((aCell=pHeap->Alloc(OrigBiggestBlock+1))==NULL);
|
|
307 |
AllocCount=pHeap->Count(FreeCount);
|
|
308 |
test(AllocCount==0);
|
|
309 |
test(FreeCount==1);
|
|
310 |
|
|
311 |
|
|
312 |
// Request block same size as that available
|
|
313 |
test((aCell=pHeap->Alloc(OrigBiggestBlock))!=NULL);
|
|
314 |
test(pHeap->Available(BiggestBlock)==0);
|
|
315 |
test(BiggestBlock==0);
|
|
316 |
test(pHeap->AllocLen(aCell)==OrigBiggestBlock);
|
|
317 |
AllocCount=pHeap->Count(FreeCount);
|
|
318 |
test(AllocCount==pHeap->Count());
|
|
319 |
test(AllocCount==1);
|
|
320 |
test(FreeCount==0);
|
|
321 |
pHeap->Check();
|
|
322 |
// Free the block
|
|
323 |
pHeap->FreeZ(aCell);
|
|
324 |
test(aCell==NULL);
|
|
325 |
pHeap->Available(BiggestBlock);
|
|
326 |
test(BiggestBlock==OrigBiggestBlock);
|
|
327 |
AllocCount=pHeap->Count(FreeCount);
|
|
328 |
test(AllocCount==0);
|
|
329 |
test(FreeCount==1);
|
|
330 |
|
|
331 |
|
|
332 |
// Request a block much smaller than that available
|
|
333 |
test((aCell=pHeap->Alloc(1))!=NULL);
|
|
334 |
CellLen=pHeap->AllocLen(aCell);
|
|
335 |
pHeap->Available(BiggestBlock);
|
|
336 |
test(pHeap->Available(BiggestBlock)==BiggestBlock);
|
|
337 |
test((BiggestBlock+CellLen+KHeadSize)==OrigBiggestBlock);
|
|
338 |
// NOTE: if a block of 1000 was initially available, getting a cell of length 100 DOES NOT
|
|
339 |
// leave 900 available as some of the 1000(KHeadSize) is used up storing the length of the
|
|
340 |
// allocated block
|
|
341 |
AllocCount=pHeap->Count(FreeCount);
|
|
342 |
test(AllocCount==1);
|
|
343 |
test(FreeCount==1);
|
|
344 |
pHeap->Check();
|
|
345 |
// Free the block
|
|
346 |
pHeap->Free(aCell);
|
|
347 |
test(aCell!=NULL);
|
|
348 |
pHeap->Available(BiggestBlock);
|
|
349 |
test(BiggestBlock==OrigBiggestBlock);
|
|
350 |
AllocCount=pHeap->Count(FreeCount);
|
|
351 |
test(AllocCount==0);
|
|
352 |
test(FreeCount==1);
|
|
353 |
|
|
354 |
|
|
355 |
// Request a block only just smaller than that available
|
|
356 |
test((aCell=pHeap->Alloc(OrigBiggestBlock-1))!=NULL);
|
|
357 |
CellLen=pHeap->AllocLen(aCell);
|
|
358 |
AllocCount=pHeap->Count(FreeCount);
|
|
359 |
test(AllocCount==1);
|
|
360 |
test(FreeCount==0);
|
|
361 |
pHeap->Check();
|
|
362 |
// Free the block
|
|
363 |
pHeap->Free(aCell);
|
|
364 |
pHeap->Available(BiggestBlock);
|
|
365 |
test(BiggestBlock==OrigBiggestBlock);
|
|
366 |
AllocCount=pHeap->Count(FreeCount);
|
|
367 |
test(AllocCount==0);
|
|
368 |
test(FreeCount==1);
|
|
369 |
|
|
370 |
|
|
371 |
//Request a block of 0 size Note: 0 may not necessarily be allocated (probably will be 4)
|
|
372 |
test((aCell=pHeap->Alloc(0))!=NULL);
|
|
373 |
pHeap->Available(BiggestBlock);
|
|
374 |
AllocCount=pHeap->Count(FreeCount);
|
|
375 |
test(AllocCount==1);
|
|
376 |
test(FreeCount==1);
|
|
377 |
pHeap->Check();
|
|
378 |
//Free the block
|
|
379 |
pHeap->Free(aCell);
|
|
380 |
pHeap->Available(BiggestBlock);
|
|
381 |
test(BiggestBlock==OrigBiggestBlock);
|
|
382 |
AllocCount=pHeap->Count(FreeCount);
|
|
383 |
test(AllocCount==0);
|
|
384 |
test(FreeCount==1);
|
|
385 |
pHeap->Check();
|
|
386 |
INV(test(Invariant(pHeap)));
|
|
387 |
|
|
388 |
// close heap so we don't exceed chunk limit
|
|
389 |
pHeap->Close();
|
|
390 |
}
|
|
391 |
|
|
392 |
///////////////////////////////////////////////////////////////////////////////
|
|
393 |
// Test Assorted Methods 3 - Here we go loopy loo, here we go loopy li
|
|
394 |
//////////////////////////////////////////////////////////////////////////////
|
|
395 |
void TestRHeap::Test4(void)
|
|
396 |
{
|
|
397 |
TInt OrigBiggestBlock, BiggestBlock, FreeCount, AllocCount;
|
|
398 |
RHeap* pHeap=allocHeap(5000);
|
|
399 |
|
|
400 |
pHeap->Available(OrigBiggestBlock);
|
|
401 |
#if defined(_DEBUG)
|
|
402 |
((RTestHeap*)pHeap)->__DbgTest(&OrigDump);
|
|
403 |
#endif
|
|
404 |
|
|
405 |
for(TInt ArraySize=1; ArraySize<=100; ArraySize++)
|
|
406 |
{
|
|
407 |
TAny** ArrayOfCells;
|
|
408 |
ArrayOfCells= new TAny*[ArraySize];
|
|
409 |
TInt ArrayIndex;
|
|
410 |
|
|
411 |
// Allocate some cells
|
|
412 |
for(ArrayIndex=0; ArrayIndex<ArraySize;ArrayIndex++)
|
|
413 |
ArrayOfCells[ArrayIndex]=pHeap->Alloc(OrigBiggestBlock/(ArraySize*3));
|
|
414 |
pHeap->Available(BiggestBlock);
|
|
415 |
test(BiggestBlock!=OrigBiggestBlock);
|
|
416 |
AllocCount=pHeap->Count(FreeCount);
|
|
417 |
test((TInt)AllocCount==ArraySize);
|
|
418 |
test(FreeCount==1);
|
|
419 |
pHeap->Check();
|
|
420 |
// Now free them with Reset
|
|
421 |
pHeap->Reset();
|
|
422 |
pHeap->Available(BiggestBlock);
|
|
423 |
test(BiggestBlock==OrigBiggestBlock);
|
|
424 |
AllocCount=pHeap->Count(FreeCount);
|
|
425 |
test(AllocCount==0);
|
|
426 |
test(FreeCount==1);
|
|
427 |
|
|
428 |
|
|
429 |
// Allocate some cells again
|
|
430 |
for(ArrayIndex=0; ArrayIndex<ArraySize;ArrayIndex++)
|
|
431 |
ArrayOfCells[ArrayIndex]=pHeap->Alloc(OrigBiggestBlock/(ArraySize*3));
|
|
432 |
pHeap->Available(BiggestBlock);
|
|
433 |
test(BiggestBlock!=OrigBiggestBlock);
|
|
434 |
AllocCount=pHeap->Count(FreeCount);
|
|
435 |
test((TInt)AllocCount==ArraySize);
|
|
436 |
test(FreeCount==1);
|
|
437 |
pHeap->Check();
|
|
438 |
// Free them with Free
|
|
439 |
for(ArrayIndex=0; ArrayIndex<ArraySize;ArrayIndex++)
|
|
440 |
pHeap->Free(ArrayOfCells[ArrayIndex]);
|
|
441 |
pHeap->Available(BiggestBlock);
|
|
442 |
test(BiggestBlock==OrigBiggestBlock);
|
|
443 |
AllocCount=pHeap->Count(FreeCount);
|
|
444 |
test(AllocCount==0);
|
|
445 |
test(FreeCount==1);
|
|
446 |
|
|
447 |
|
|
448 |
// Allocate some cells again
|
|
449 |
for(ArrayIndex=0; ArrayIndex<ArraySize;ArrayIndex++)
|
|
450 |
ArrayOfCells[ArrayIndex]=pHeap->Alloc(OrigBiggestBlock/(ArraySize*3));
|
|
451 |
pHeap->Available(BiggestBlock);
|
|
452 |
test(BiggestBlock!=OrigBiggestBlock);
|
|
453 |
AllocCount=pHeap->Count(FreeCount);
|
|
454 |
test((TInt)AllocCount==ArraySize);
|
|
455 |
test(FreeCount==1);
|
|
456 |
pHeap->Check();
|
|
457 |
// Free them backwards
|
|
458 |
for(ArrayIndex=ArraySize-1; ArrayIndex>=0; ArrayIndex--)
|
|
459 |
pHeap->Free(ArrayOfCells[ArrayIndex]);
|
|
460 |
pHeap->Available(BiggestBlock);
|
|
461 |
test(BiggestBlock==OrigBiggestBlock);
|
|
462 |
AllocCount=pHeap->Count(FreeCount);
|
|
463 |
test(AllocCount==0);
|
|
464 |
test(FreeCount==1);
|
|
465 |
|
|
466 |
|
|
467 |
// Allocate some cells again
|
|
468 |
for(ArrayIndex=0; ArrayIndex<ArraySize;ArrayIndex++)
|
|
469 |
ArrayOfCells[ArrayIndex]=pHeap->Alloc(OrigBiggestBlock/(ArraySize*3));
|
|
470 |
pHeap->Available(BiggestBlock);
|
|
471 |
test(BiggestBlock!=OrigBiggestBlock);
|
|
472 |
AllocCount=pHeap->Count(FreeCount);
|
|
473 |
test((TInt)AllocCount==ArraySize);
|
|
474 |
test(FreeCount==1);
|
|
475 |
pHeap->Check();
|
|
476 |
// Free the odd cells then the even cells
|
|
477 |
for(ArrayIndex=0; ArrayIndex<ArraySize; ArrayIndex+=2)
|
|
478 |
pHeap->Free(ArrayOfCells[ArrayIndex]);
|
|
479 |
pHeap->Check();
|
|
480 |
for(ArrayIndex=1; ArrayIndex<ArraySize; ArrayIndex+=2)
|
|
481 |
pHeap->Free(ArrayOfCells[ArrayIndex]);
|
|
482 |
pHeap->Check();
|
|
483 |
pHeap->Available(BiggestBlock);
|
|
484 |
test(BiggestBlock==OrigBiggestBlock);
|
|
485 |
AllocCount=pHeap->Count(FreeCount);
|
|
486 |
test(AllocCount==0);
|
|
487 |
test(FreeCount==1);
|
|
488 |
|
|
489 |
|
|
490 |
// Allocate some cells again
|
|
491 |
for(ArrayIndex=0; ArrayIndex<ArraySize;ArrayIndex++)
|
|
492 |
ArrayOfCells[ArrayIndex]=pHeap->Alloc(OrigBiggestBlock/(ArraySize*3));
|
|
493 |
pHeap->Available(BiggestBlock);
|
|
494 |
test(BiggestBlock!=OrigBiggestBlock);
|
|
495 |
AllocCount=pHeap->Count(FreeCount);
|
|
496 |
test((TInt)AllocCount==ArraySize);
|
|
497 |
test(FreeCount==1);
|
|
498 |
pHeap->Check();
|
|
499 |
// Free one half then the other
|
|
500 |
for(ArrayIndex=ArraySize-1; ArrayIndex>=ArraySize/2; ArrayIndex--)
|
|
501 |
pHeap->Free(ArrayOfCells[ArrayIndex]);
|
|
502 |
for(ArrayIndex=0; ArrayIndex<ArraySize/2; ArrayIndex++)
|
|
503 |
pHeap->Free(ArrayOfCells[ArrayIndex]);
|
|
504 |
AllocCount=pHeap->Count(FreeCount);
|
|
505 |
test(AllocCount==0);
|
|
506 |
test(FreeCount==1);
|
|
507 |
|
|
508 |
delete [] ArrayOfCells;
|
|
509 |
pHeap->Check();
|
|
510 |
INV(test(Invariant(pHeap)))
|
|
511 |
}
|
|
512 |
|
|
513 |
// close heap so we don't exceed chunk limit
|
|
514 |
pHeap->Close();
|
|
515 |
}
|
|
516 |
|
|
517 |
|
|
518 |
///////////////////////////////////////////////////////////////////////////////
|
|
519 |
// Test ReAlloc
|
|
520 |
//////////////////////////////////////////////////////////////////////////////
|
|
521 |
void TestRHeap::Test5(void)
|
|
522 |
{
|
|
523 |
TInt BiggestBlock, CellSize;
|
|
524 |
|
|
525 |
RHeap* pHeap=allocHeap(5000);
|
|
526 |
#if defined(_DEBUG)
|
|
527 |
((RTestHeap*)pHeap)->__DbgTest(&OrigDump);
|
|
528 |
#endif
|
|
529 |
pHeap->Available(BiggestBlock);
|
|
530 |
TAny* aCell=pHeap->Alloc(BiggestBlock);
|
|
531 |
|
|
532 |
// Attempt to resize the block above the space available
|
|
533 |
test(pHeap->ReAlloc(aCell, BiggestBlock*2)==NULL);
|
|
534 |
|
|
535 |
// Resize the block to 0
|
|
536 |
aCell=pHeap->ReAlloc(aCell, 0);
|
|
537 |
CellSize=pHeap->AllocLen(aCell); // test?
|
|
538 |
|
|
539 |
// Resize positively
|
|
540 |
for(TInt aSize=0; aSize<=BiggestBlock; aSize++, pHeap->Available(BiggestBlock))
|
|
541 |
{
|
189
|
542 |
aCell = pHeap->ReAlloc(aCell, aSize);
|
|
543 |
test(aCell!=NULL);
|
0
|
544 |
CellSize=pHeap->AllocLen(aCell);
|
|
545 |
test(CellSize>=aSize);
|
|
546 |
}
|
|
547 |
|
|
548 |
pHeap->Check();
|
|
549 |
pHeap->Reset();
|
|
550 |
// Allocate a block, fill with data, allocate another block or two then resize the original
|
|
551 |
// block such that it has to be moved in memory, then check the blocks' contents
|
|
552 |
TAny* Cell1=pHeap->Alloc(16);
|
|
553 |
TText8* pC;
|
|
554 |
TInt Cell1Size=pHeap->AllocLen(Cell1);
|
|
555 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+Cell1Size; *pC++='x')
|
|
556 |
;
|
|
557 |
TAny* Cell2=pHeap->Alloc(16);
|
|
558 |
TInt Cell2Size=pHeap->AllocLen(Cell2);
|
|
559 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+pHeap->AllocLen(Cell2); *pC++='y')
|
|
560 |
;
|
|
561 |
Cell1=pHeap->ReAlloc(Cell1, 128);
|
|
562 |
// Test data was copied on reallocation
|
|
563 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+Cell1Size; test(*pC++=='x'))
|
|
564 |
;
|
|
565 |
// Test other data wasn't corrupted
|
|
566 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+pHeap->AllocLen(Cell2); test(*pC++=='y'))
|
|
567 |
;
|
|
568 |
|
|
569 |
// Allocate another block
|
|
570 |
TAny* Cell3=pHeap->Alloc(8);
|
|
571 |
for(pC=(TText8*)Cell3; pC<(TText8*)Cell3+pHeap->AllocLen(Cell3); *pC++='z')
|
|
572 |
;
|
|
573 |
// test existing blocks to be safe
|
|
574 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+Cell1Size; test(*pC++=='x'))
|
|
575 |
;
|
|
576 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+Cell2Size; test(*pC++=='y'))
|
|
577 |
;
|
|
578 |
// Resize previous blocks
|
|
579 |
Cell1=pHeap->ReAlloc(Cell1, 16); // Shrink previously expanded block
|
|
580 |
Cell2=pHeap->ReAlloc(Cell2, 64);
|
|
581 |
// Now test data
|
|
582 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+Cell1Size; test(*pC++=='x'))
|
|
583 |
;
|
|
584 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+Cell2Size; test(*pC++=='y'))
|
|
585 |
;
|
|
586 |
for(pC=(TText8*)Cell3; pC<(TText8*)Cell3+pHeap->AllocLen(Cell3); test(*pC++=='z'))
|
|
587 |
;
|
|
588 |
|
|
589 |
// Re-expand Cell1
|
|
590 |
Cell1=pHeap->ReAlloc(Cell1, 1028);
|
|
591 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+Cell1Size; test(*pC++=='x'))
|
|
592 |
;
|
|
593 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+Cell2Size; test(*pC++=='y'))
|
|
594 |
;
|
|
595 |
for(pC=(TText8*)Cell3; pC<(TText8*)Cell3+pHeap->AllocLen(Cell3); test(*pC++=='z'))
|
|
596 |
;
|
|
597 |
|
|
598 |
// Shrink cells back to original size
|
|
599 |
Cell1=pHeap->ReAlloc(Cell1, Cell1Size);
|
|
600 |
Cell2=pHeap->ReAlloc(Cell2, Cell2Size);
|
|
601 |
for(pC=(TText8*)Cell1; pC<(TText8*)Cell1+Cell1Size; test(*pC++=='x'))
|
|
602 |
;
|
|
603 |
for(pC=(TText8*)Cell2; pC<(TText8*)Cell2+Cell2Size; test(*pC++=='y'))
|
|
604 |
;
|
|
605 |
for(pC=(TText8*)Cell3; pC<(TText8*)Cell3+pHeap->AllocLen(Cell3); test(*pC++=='z'))
|
|
606 |
;
|
|
607 |
|
|
608 |
pHeap->Check();
|
|
609 |
INV(test(Invariant(pHeap)));
|
|
610 |
|
|
611 |
// close heap so we don't exceed chunk limit
|
|
612 |
pHeap->Close();
|
|
613 |
}
|
|
614 |
|
|
615 |
|
|
616 |
///////////////////////////////////////////////////////////////////////////////
|
|
617 |
// Test walking methods (more thoroughly than previously)
|
|
618 |
//////////////////////////////////////////////////////////////////////////////
|
|
619 |
void TestRHeap::Test7(void)
|
|
620 |
{
|
|
621 |
TInt NumAllocated=0, NumFree=1, i;
|
|
622 |
RHeap* pHeap=allocHeap(5000);
|
|
623 |
|
|
624 |
TAny** ArrayOfCells;
|
|
625 |
ArrayOfCells= new TAny*[100];
|
|
626 |
|
|
627 |
for(i=0; i<100; i++)
|
|
628 |
{
|
|
629 |
ArrayOfCells[i]=pHeap->Alloc(8);
|
|
630 |
NumAllocated++;
|
|
631 |
test(NumAllocated==pHeap->Count(NumFree));
|
|
632 |
test(NumFree==1);
|
|
633 |
}
|
|
634 |
pHeap->Check();
|
|
635 |
|
|
636 |
for(i=0; i<100; i+=2)
|
|
637 |
{
|
|
638 |
TInt temp;
|
|
639 |
pHeap->Free(ArrayOfCells[i]);
|
|
640 |
NumAllocated--;
|
|
641 |
NumFree++;
|
|
642 |
test(NumAllocated==pHeap->Count(temp));
|
|
643 |
test(NumFree==temp);
|
|
644 |
}
|
|
645 |
pHeap->Check();
|
|
646 |
pHeap->Reset();
|
|
647 |
|
|
648 |
|
|
649 |
///////////////////////////////////////////
|
|
650 |
// Corrupt data and see what happens
|
|
651 |
///////////////////////////////////////////
|
|
652 |
// Corrupt allocated cell header
|
|
653 |
ArrayOfCells[0]=pHeap->Alloc(32);
|
|
654 |
TUint32* pC=(TUint32*)ArrayOfCells[0]-KHeadSize;
|
|
655 |
*pC=0xa5a5a5a5u;
|
|
656 |
// pHeap->Check();
|
|
657 |
|
|
658 |
// Corrupt free cell header
|
|
659 |
pHeap->Reset();
|
|
660 |
ArrayOfCells[0]=pHeap->Alloc(32);
|
|
661 |
pC=(TUint32*)ArrayOfCells[0]+(pHeap->AllocLen(ArrayOfCells[0])>>2);
|
|
662 |
*pC=0xa1a1a1a1u;
|
|
663 |
//pHeap->Check(); // Check doesn't pick it up but an access violation is generated
|
|
664 |
|
|
665 |
// Write past end of heap
|
|
666 |
pHeap->Reset();
|
|
667 |
TInt Avail;
|
|
668 |
ArrayOfCells[0]=pHeap->Alloc(pHeap->Available(Avail));
|
|
669 |
pC=(TUint32*)ArrayOfCells[0]+(pHeap->AllocLen(ArrayOfCells[0])>>2);
|
|
670 |
//*pC=0xa1a1a1a1u; // This line isn't picked up by Check (wouldn't expect it to) but the call
|
|
671 |
//pHeap->Check(); // to delete below consequently crashes
|
|
672 |
|
|
673 |
delete [] ArrayOfCells;
|
|
674 |
|
|
675 |
// close heap so we don't exceed chunk limit
|
|
676 |
pHeap->Close();
|
|
677 |
}
|
|
678 |
|
|
679 |
//////////////////////////////////////
|
|
680 |
// Test the leave methods
|
|
681 |
//////////////////////////////////////
|
|
682 |
void TestRHeap::Test8(void)
|
|
683 |
{
|
|
684 |
|
|
685 |
TAny* aCell=NULL;
|
|
686 |
RHeap* pHeap=allocHeap(1000);
|
|
687 |
TRAPD(ret,aCell=pHeap->AllocL(100))
|
|
688 |
test(ret==KErrNone);
|
|
689 |
TRAP(ret,aCell=pHeap->AllocL(PageSize))
|
|
690 |
test(ret==KErrNoMemory);
|
|
691 |
TRAP(ret,aCell=pHeap->ReAllocL(aCell,32))
|
|
692 |
test(ret==KErrNone);
|
|
693 |
TRAP(ret,aCell=pHeap->ReAllocL(NULL,10000))
|
|
694 |
test(ret==KErrNoMemory);
|
|
695 |
|
|
696 |
// close heap so we don't exceed chunk limit
|
|
697 |
pHeap->Close();
|
|
698 |
}
|
|
699 |
|
|
700 |
class RMyHeap : public RHeap
|
|
701 |
{
|
|
702 |
public:
|
|
703 |
void MyCompressAll(){}
|
|
704 |
private:
|
|
705 |
RMyHeap();
|
|
706 |
};
|
|
707 |
|
|
708 |
#include "TestRHeapShrink.h"
|
|
709 |
|
|
710 |
/**
|
|
711 |
Calculates whether or not the heap with iGrowBy=aGrowBy will be reduced if a
|
|
712 |
cell of size aCellSize bytes is the top free cell.
|
|
713 |
It must be calculated as both the page size and min cell size could vary
|
|
714 |
between different platforms/builds. Also, KHeapMinCellSize is 'patchdata' and can be
|
|
715 |
different for particular ROM builds
|
|
716 |
ASSUMPTIONS:-
|
|
717 |
1 - The cell of aCellSize starts past the RHeap's iMinLength (i.e. all of it can be
|
|
718 |
removed without the RHeap becoming smaller than iMinLength
|
|
719 |
2 - The default value of aAlign was passed to RHeap contructor
|
|
720 |
These should be safe as this is onl used by t_heap TestRHeap::CompressAll()
|
|
721 |
@return The number of bytes the heap will be reduced by
|
|
722 |
*/
|
|
723 |
TInt TestRHeap::RHeapCalcReduce(TInt aCellSize, TInt aGrowBy)
|
|
724 |
{
|
|
725 |
TInt ret = 0;
|
|
726 |
TInt pageSize = 0;
|
|
727 |
test(UserHal::PageSizeInBytes(pageSize)==KErrNone);
|
|
728 |
|
|
729 |
// adjust aGrowBy to match what RHeap would have aligned its iGrowBy to
|
|
730 |
// see RHeap::RHeap()
|
|
731 |
aGrowBy = _ALIGN_UP(aGrowBy, pageSize);
|
|
732 |
if (aCellSize >= KHeapShrinkHysRatio*(aGrowBy>>8))
|
|
733 |
{
|
|
734 |
//calc for amount to reduce heap from RHeap::Reduce()
|
|
735 |
// assumes that cell of aCellSize starts past the RHeap's iMinLength
|
|
736 |
ret=_ALIGN_DOWN(aCellSize, pageSize);
|
|
737 |
}
|
|
738 |
return ret;
|
|
739 |
}
|
|
740 |
|
|
741 |
void TestRHeap::TestCompressAll()
|
|
742 |
{
|
|
743 |
|
|
744 |
TPtrC myHeapName=_L("MyHeap");
|
|
745 |
// myHeap will have default GrowBy of KMinHeapGrowBy
|
|
746 |
RMyHeap* myHeap=(RMyHeap*)User::ChunkHeap(&myHeapName,0x100,0x2000);
|
|
747 |
const TInt KnormHeapGrowBy = 0x2000;
|
|
748 |
RHeap* normHeap=User::ChunkHeap(NULL,0x100,0x20000,KnormHeapGrowBy);
|
189
|
749 |
//
|
|
750 |
// Configure paged heap threshold 128 Kb (pagepower 17)
|
|
751 |
//
|
|
752 |
RHybridHeap::STestCommand conf;
|
|
753 |
conf.iCommand = RHybridHeap::EGetConfig;
|
|
754 |
if ( normHeap->DebugFunction(RHeap::EHybridHeap, (TAny*)&conf ) == KErrNone )
|
|
755 |
{
|
|
756 |
test.Printf(_L("New allocator detected, configuring paged threshold to 128 kb\r\n"));
|
|
757 |
conf.iCommand = RHybridHeap::ESetConfig;
|
|
758 |
conf.iConfig.iPagePower = 17;
|
|
759 |
test( normHeap->DebugFunction(RHeap::EHybridHeap, (TAny*)&conf ) == KErrNone);
|
|
760 |
}
|
0
|
761 |
|
|
762 |
TAny* ptrMy1=myHeap->Alloc(0x102);
|
|
763 |
test(ptrMy1!=NULL);
|
|
764 |
TAny* ptrMy2=myHeap->Alloc(0x1001);
|
|
765 |
test(ptrMy2!=NULL);
|
|
766 |
TInt r=myHeap->Count();
|
|
767 |
test(r==2);
|
|
768 |
|
|
769 |
TAny* ptrNorm1=normHeap->Alloc(0x8002);
|
|
770 |
test(ptrNorm1!=NULL);
|
|
771 |
TAny* ptrNorm2=normHeap->Alloc(0x12fff);
|
|
772 |
test(ptrNorm2!=NULL);
|
|
773 |
TAny* ptrNorm3=normHeap->Alloc(0x334f);
|
|
774 |
test(ptrNorm3!=NULL);
|
|
775 |
r=normHeap->Count();
|
|
776 |
test(r==3);
|
|
777 |
|
|
778 |
TInt oldMyHeapSize=myHeap->Size();
|
|
779 |
TInt oldNormHeapSize=normHeap->Size();
|
|
780 |
|
|
781 |
myHeap->MyCompressAll();
|
|
782 |
|
|
783 |
r=myHeap->Count();
|
|
784 |
test(r==2);
|
|
785 |
r=myHeap->Size();
|
|
786 |
test(r==oldMyHeapSize);
|
|
787 |
r=normHeap->Count();
|
|
788 |
test(r==3);
|
|
789 |
r=normHeap->Size();
|
|
790 |
test(r==oldNormHeapSize);
|
|
791 |
|
|
792 |
// Remove the cell on the top of the normHeap
|
|
793 |
normHeap->Free(ptrNorm3);
|
|
794 |
// check myHeap unaffected
|
|
795 |
r=myHeap->Count();
|
|
796 |
test(r==2);
|
|
797 |
r=myHeap->Size();
|
|
798 |
test(r==oldMyHeapSize);
|
|
799 |
//check normHeap updated after free of top cell
|
|
800 |
r=normHeap->Count();
|
|
801 |
test(r==2);
|
|
802 |
r=normHeap->Size();
|
|
803 |
|
|
804 |
// Calc the amount, if any, the overall size of normHeap will have been shrunk by
|
|
805 |
// will depend on value of KHeapShrinkHysRatio.
|
|
806 |
// 1st calc current total size of the allocated cells
|
189
|
807 |
TInt normAllocdSize = normHeap->AllocLen(ptrNorm1)+KHeadSize +
|
|
808 |
normHeap->AllocLen(ptrNorm2)+KHeadSize;
|
0
|
809 |
TInt normReduce = RHeapCalcReduce(oldNormHeapSize-normAllocdSize,KnormHeapGrowBy);
|
|
810 |
oldNormHeapSize -= normReduce;
|
|
811 |
test(r==oldNormHeapSize);
|
|
812 |
|
|
813 |
normHeap->Free(ptrNorm2);
|
|
814 |
myHeap->Free(ptrMy2);
|
|
815 |
r=myHeap->Count();
|
|
816 |
test(r==1);
|
|
817 |
r=myHeap->Size();
|
|
818 |
|
|
819 |
// Calc the current total size of the allocated cells
|
189
|
820 |
TInt myAllocdSize = myHeap->AllocLen(ptrMy1)+KHeadSize;
|
0
|
821 |
TInt myReduce=RHeapCalcReduce(oldMyHeapSize-myAllocdSize,1);
|
|
822 |
oldMyHeapSize -= myReduce;
|
|
823 |
test(r==oldMyHeapSize);
|
|
824 |
|
|
825 |
r=normHeap->Count();
|
|
826 |
test(r==1);
|
|
827 |
r=normHeap->Size();
|
|
828 |
|
|
829 |
// cell represented by ptrNorm3 may have already caused the heap
|
|
830 |
// size to be reduced so ensure normReduce is factored into calcs
|
|
831 |
test(r==oldNormHeapSize-(0x16000-normReduce));
|
|
832 |
|
|
833 |
myHeap->Close();
|
|
834 |
normHeap->Close();
|
|
835 |
}
|
|
836 |
|
|
837 |
|
|
838 |
void TestRHeap::TestOffset()
|
|
839 |
{
|
|
840 |
TInt size = 0x100000;
|
|
841 |
const TInt offset = 0x8;
|
|
842 |
const TUint8 magic = 0x74; // arbitrary magic value
|
|
843 |
RChunk chunk;
|
|
844 |
RHeap* heap;
|
|
845 |
|
|
846 |
chunk.CreateLocal(0, size);
|
|
847 |
size = chunk.MaxSize(); // X86 has 4MB chunk size
|
|
848 |
|
|
849 |
// try and create a heap with a large offset - no room to make RHeap, should fail
|
|
850 |
heap = UserHeap::OffsetChunkHeap(chunk, 0, size);
|
|
851 |
test(heap==NULL);
|
|
852 |
|
|
853 |
// write some magic numbers into the offset-reserved area
|
|
854 |
chunk.Adjust(offset);
|
|
855 |
TUint8* reserved = chunk.Base();
|
|
856 |
TUint8* limit = reserved + offset;
|
|
857 |
for (; reserved<limit; reserved++)
|
|
858 |
*reserved = magic;
|
|
859 |
|
|
860 |
// make a heap with an offset
|
|
861 |
heap = UserHeap::OffsetChunkHeap(chunk, 0, offset);
|
|
862 |
test(heap!=NULL);
|
|
863 |
test(chunk.Base() + offset == (TUint8*)heap);
|
|
864 |
TInt origsize = heap->Size();
|
|
865 |
|
|
866 |
// force the heap to grow to the maximum size by allocating 1kb blocks
|
|
867 |
// and then allocating whatever is left. Check this really is the end
|
|
868 |
// of the chunk.
|
|
869 |
TUint8* temp = NULL;
|
|
870 |
TUint8* last = NULL;
|
|
871 |
do
|
|
872 |
{
|
|
873 |
last = temp;
|
|
874 |
temp = (TUint8*)heap->Alloc(1024);
|
|
875 |
}
|
|
876 |
while (temp != NULL);
|
|
877 |
TInt biggestblock, space;
|
|
878 |
space = heap->Available(biggestblock);
|
|
879 |
if (space>0)
|
|
880 |
{
|
|
881 |
last = (TUint8*)heap->Alloc(space);
|
|
882 |
test(last!=NULL);
|
|
883 |
// Check that the last allocation doesn't pass the end of the chunk
|
|
884 |
test(last+space <= chunk.Base()+size);
|
|
885 |
// but that it is within the alignment requirement, as less than this
|
|
886 |
// would be short of the end
|
|
887 |
}
|
|
888 |
else
|
|
889 |
{
|
|
890 |
test(last+1024 == chunk.Base()+size);
|
|
891 |
}
|
|
892 |
|
|
893 |
// try writing at the top end of it to make sure it's backed
|
|
894 |
*(chunk.Base()+size-1) = 1;
|
|
895 |
|
|
896 |
// test resetting the heap
|
|
897 |
heap->Reset();
|
|
898 |
test(origsize == heap->Size());
|
|
899 |
|
|
900 |
// check reducing the heap works
|
|
901 |
last = (TUint8*)heap->Alloc(size>>2);
|
|
902 |
TInt midsize = heap->Size();
|
|
903 |
temp = (TUint8*)heap->Alloc(size>>2);
|
|
904 |
heap->Free(temp);
|
|
905 |
heap->Compress();
|
|
906 |
test(midsize == heap->Size());
|
|
907 |
heap->Free(last);
|
|
908 |
heap->Compress();
|
|
909 |
test(origsize == heap->Size());
|
|
910 |
|
|
911 |
// check the magic numbers are still there
|
|
912 |
for (reserved = chunk.Base(); reserved<limit; reserved++)
|
|
913 |
test(*reserved==magic);
|
|
914 |
|
|
915 |
heap->Close();
|
|
916 |
}
|
|
917 |
|
|
918 |
|
|
919 |
RSemaphore sem;
|
|
920 |
LOCAL_C void syncThreads(TAny* anArg)
|
|
921 |
//
|
|
922 |
// get the threads both running at the same time
|
|
923 |
//
|
|
924 |
{
|
|
925 |
if ((TInt)anArg==1)
|
|
926 |
sem.Wait();
|
|
927 |
else
|
|
928 |
sem.Signal();
|
|
929 |
}
|
|
930 |
|
|
931 |
TInt comeInNumber=0;
|
|
932 |
LOCAL_C TInt sharedHeapTest1(TAny* anArg)
|
|
933 |
//
|
|
934 |
// Shared heap test thread.
|
|
935 |
//
|
|
936 |
{
|
|
937 |
|
|
938 |
RHeap* pH = (RHeap*)&User::Allocator();
|
|
939 |
if (gHeapPtr && pH!=gHeapPtr)
|
|
940 |
return(KErrGeneral);
|
|
941 |
gHeapPtr2 = pH;
|
|
942 |
|
|
943 |
syncThreads(anArg);
|
|
944 |
|
|
945 |
TAny* a[0x100];
|
|
946 |
TInt mod=((TInt)anArg)*3;
|
|
947 |
|
|
948 |
// Run in a timed loop, to ensure that we get some true concurrency
|
|
949 |
RTimer timer;
|
|
950 |
TTime now;
|
|
951 |
TRequestStatus done;
|
|
952 |
test(timer.CreateLocal()==KErrNone);
|
|
953 |
now.HomeTime();
|
|
954 |
timer.At(done,now+TTimeIntervalSeconds(20));
|
|
955 |
|
|
956 |
while (done==KRequestPending && comeInNumber!=(TInt)anArg)
|
|
957 |
{
|
|
958 |
TInt i=0;
|
|
959 |
for (;i<0x100;i++)
|
|
960 |
{
|
|
961 |
a[i]=User::Alloc(0x10);
|
|
962 |
test(a[i]!=NULL);
|
|
963 |
Mem::Fill(a[i],0x10,(((TInt)anArg)<<4)|(i&0x0F)); // marker
|
|
964 |
if ((i%mod)==0)
|
|
965 |
pH->Check();
|
|
966 |
}
|
|
967 |
for (i=0;i<0x100;i++)
|
|
968 |
{
|
|
969 |
User::Free(a[i]);
|
|
970 |
if ((i%mod)==0)
|
|
971 |
pH->Check();
|
|
972 |
}
|
|
973 |
}
|
|
974 |
timer.Cancel();
|
|
975 |
return((TInt)anArg);
|
|
976 |
}
|
|
977 |
|
|
978 |
LOCAL_C void bumpKernelGranularity()
|
|
979 |
//
|
|
980 |
// Push up the kernels granularities
|
|
981 |
//
|
|
982 |
{
|
|
983 |
|
|
984 |
RThread t[4];
|
|
985 |
TInt r;
|
|
986 |
TUint i=0;
|
|
987 |
for (;i<4;i++)
|
|
988 |
{
|
|
989 |
TName n;
|
|
990 |
n.Format(_L("Temp%d"),i);
|
|
991 |
r=t[i].Create(n,sharedHeapTest1,KDefaultStackSize,NULL,NULL);
|
|
992 |
test(r==KErrNone);
|
|
993 |
}
|
|
994 |
for (i=0;i<4;i++)
|
|
995 |
{
|
|
996 |
t[i].Kill(KErrNone);
|
|
997 |
t[i].Close();
|
|
998 |
}
|
|
999 |
}
|
|
1000 |
|
|
1001 |
LOCAL_C void createTestThreads(TThreadFunction aFunction,RHeap* aHeap)
|
|
1002 |
//
|
|
1003 |
// Create two test threads using the supplied entry point and heap
|
|
1004 |
//
|
|
1005 |
{
|
|
1006 |
|
|
1007 |
|
|
1008 |
test.Next(_L("Create t1"));
|
|
1009 |
RThread t1;
|
|
1010 |
TInt r=t1.Create(_L("Shared1"),aFunction,KDefaultStackSize,aHeap,(TAny*)1);
|
|
1011 |
test(r==KErrNone);
|
|
1012 |
TRequestStatus tStat1;
|
|
1013 |
t1.Logon(tStat1);
|
|
1014 |
test(tStat1==KRequestPending);
|
|
1015 |
|
|
1016 |
test.Next(_L("Create t2"));
|
|
1017 |
RThread t2;
|
|
1018 |
r=t2.Create(_L("Shared2"),aFunction,KDefaultStackSize,aHeap,(TAny*)2);
|
|
1019 |
test(r==KErrNone);
|
|
1020 |
TRequestStatus tStat2;
|
|
1021 |
t2.Logon(tStat2);
|
|
1022 |
test(tStat2==KRequestPending);
|
|
1023 |
|
|
1024 |
test.Next(_L("Wait for t1 or t2 - approx 20 seconds"));
|
|
1025 |
t1.Resume();
|
|
1026 |
t2.Resume();
|
|
1027 |
User::WaitForRequest(tStat1,tStat2);
|
|
1028 |
User::WaitForRequest(tStat1==KRequestPending ? tStat1 : tStat2);
|
|
1029 |
test(tStat1==1);
|
|
1030 |
test(tStat2==2);
|
|
1031 |
CLOSE_AND_WAIT(t1);
|
|
1032 |
CLOSE_AND_WAIT(t2);
|
|
1033 |
}
|
|
1034 |
|
|
1035 |
LOCAL_C void SharedHeapTest1()
|
|
1036 |
//
|
|
1037 |
// Shared heap test using normal chunk heap
|
|
1038 |
//
|
|
1039 |
{
|
|
1040 |
|
|
1041 |
sem.CreateLocal(0); // create synchronisation semaphore
|
|
1042 |
test.Start(_L("Create chunk to share"));
|
|
1043 |
TPtrC sharedHeap=_L("SharedHeap");
|
|
1044 |
TInt minsize = ((RHeap&)User::Allocator()).Size();
|
|
1045 |
gHeapPtr=User::ChunkHeap(&sharedHeap,minsize/*0x20000*/,0x40000);
|
|
1046 |
test(gHeapPtr!=NULL);
|
|
1047 |
TInt count=gHeapPtr->Count();
|
|
1048 |
createTestThreads(sharedHeapTest1,gHeapPtr);
|
|
1049 |
test(count==gHeapPtr->Count());
|
|
1050 |
gHeapPtr->Close();
|
|
1051 |
test.End();
|
|
1052 |
}
|
|
1053 |
|
|
1054 |
LOCAL_C void SharedHeapTest2()
|
|
1055 |
//
|
|
1056 |
// Shared heap test using the current threads heap. Can test kernel
|
|
1057 |
// cleanup since granularity will have been handled by running
|
|
1058 |
// SharedHeapTest2().
|
|
1059 |
//
|
|
1060 |
{
|
|
1061 |
|
|
1062 |
test.Start(_L("Current chunk to share"));
|
|
1063 |
test.Next(_L("Bump up granularities"));
|
|
1064 |
//
|
|
1065 |
// First create a number of threads to push up the kernels granularities
|
|
1066 |
//
|
|
1067 |
bumpKernelGranularity();
|
|
1068 |
//
|
|
1069 |
__KHEAP_MARK;
|
|
1070 |
gHeapPtr = (RHeap*)&User::Allocator();
|
|
1071 |
TInt biggest1;
|
|
1072 |
TInt avail1=gHeapPtr->Available(biggest1);
|
|
1073 |
TInt size1=gHeapPtr->Size();
|
|
1074 |
|
|
1075 |
createTestThreads(sharedHeapTest1,NULL);
|
|
1076 |
|
|
1077 |
TInt biggest2;
|
|
1078 |
TInt avail2=gHeapPtr->Available(biggest2);
|
|
1079 |
TInt size2=gHeapPtr->Size();
|
|
1080 |
test.Printf(_L("Before: size %d, %d available (biggest %d)\r\n"),size1,avail1,biggest1);
|
|
1081 |
test.Printf(_L("After: size %d, %d available (biggest %d)\r\n"),size2,avail2,biggest2);
|
|
1082 |
test((size1-avail1)==(size2-avail2)); // no leaks
|
|
1083 |
if (avail1==biggest1) // if it was a single block of free space before
|
|
1084 |
test(avail2==biggest2); // then it should still be a single block
|
|
1085 |
__KHEAP_MARKEND;
|
|
1086 |
test.End();
|
|
1087 |
}
|
|
1088 |
|
|
1089 |
LOCAL_C void SharedHeapTest3()
|
|
1090 |
//
|
|
1091 |
// Shared heap test borrowing a thread's default heap and
|
|
1092 |
// killing threads in different orders.
|
|
1093 |
//
|
|
1094 |
{
|
|
1095 |
|
|
1096 |
test.Start(_L("Create t1 whose heap will be shared"));
|
|
1097 |
gHeapPtr = NULL;
|
|
1098 |
RThread t1;
|
|
1099 |
TInt r=t1.Create(_L("Owner_T1"),sharedHeapTest1,KDefaultStackSize,0x20000,0x40000,(TAny*)1);
|
|
1100 |
test(r==KErrNone);
|
|
1101 |
TRequestStatus tStat1;
|
|
1102 |
t1.Logon(tStat1);
|
|
1103 |
test(tStat1==KRequestPending);
|
|
1104 |
t1.SetPriority(EPriorityMore); //t1 gets to wait on semaphore sem, before we start t2
|
|
1105 |
t1.Resume();
|
|
1106 |
test.Next(_L("Create t2 sharing t1's heap"));
|
|
1107 |
RThread t2;
|
|
1108 |
r=t2.Create(_L("Sharer_T2"),sharedHeapTest1,KDefaultStackSize,gHeapPtr2,(TAny*)2);
|
|
1109 |
test(r==KErrNone);
|
|
1110 |
TRequestStatus tStat2;
|
|
1111 |
t2.Logon(tStat2);
|
|
1112 |
test(tStat2==KRequestPending);
|
|
1113 |
|
|
1114 |
test.Next(_L("Get t1 to exit while t2 continues running"));
|
|
1115 |
test(tStat1==KRequestPending);
|
|
1116 |
test(tStat2==KRequestPending);
|
|
1117 |
t1.SetPriority(EPriorityNormal); //back to the same priority as t2
|
|
1118 |
t2.Resume();
|
|
1119 |
test(tStat1==KRequestPending);
|
|
1120 |
test(tStat2==KRequestPending);
|
|
1121 |
comeInNumber=1;
|
|
1122 |
test.Next(_L("Wait for t1"));
|
|
1123 |
User::WaitForRequest(tStat1);
|
|
1124 |
test(tStat1==1);
|
|
1125 |
test(t1.ExitType()==EExitKill);
|
|
1126 |
test(t1.ExitReason()==1);
|
|
1127 |
test(tStat2==KRequestPending);
|
|
1128 |
test(t2.ExitType()==EExitPending);
|
|
1129 |
test.Next(_L("Wait for t2"));
|
|
1130 |
User::WaitForRequest(tStat2);
|
|
1131 |
test(tStat2==2);
|
|
1132 |
test(t2.ExitType()==EExitKill);
|
|
1133 |
test(t2.ExitReason()==2);
|
|
1134 |
CLOSE_AND_WAIT(t2);
|
|
1135 |
CLOSE_AND_WAIT(t1);
|
|
1136 |
test.End();
|
|
1137 |
}
|
|
1138 |
|
|
1139 |
LOCAL_C void TestAuto()
|
|
1140 |
//
|
|
1141 |
// Test heap auto expansion and compression
|
|
1142 |
//
|
|
1143 |
{
|
|
1144 |
|
|
1145 |
test.Start(_L("Create chunk to"));
|
|
1146 |
TPtrC autoHeap=_L("AutoHeap");
|
|
1147 |
gHeapPtr=User::ChunkHeap(&autoHeap,0x1800,0x6000);
|
189
|
1148 |
|
0
|
1149 |
test(gHeapPtr!=NULL);
|
|
1150 |
TInt biggest;
|
|
1151 |
TInt avail=gHeapPtr->Available(biggest);
|
|
1152 |
test(avail==biggest);
|
|
1153 |
TAny *p1=gHeapPtr->Alloc(biggest);
|
|
1154 |
test(p1!=NULL);
|
|
1155 |
TAny *p2=gHeapPtr->Alloc(biggest);
|
|
1156 |
test(p2!=NULL);
|
|
1157 |
TAny *p3=gHeapPtr->Alloc(biggest);
|
|
1158 |
test(p3!=NULL);
|
|
1159 |
TAny *p4=gHeapPtr->Alloc(biggest);
|
|
1160 |
test(p4==NULL);
|
|
1161 |
TInt comp=gHeapPtr->Compress();
|
|
1162 |
test(comp==0);
|
|
1163 |
gHeapPtr->Free(p2);
|
|
1164 |
comp=gHeapPtr->Compress();
|
|
1165 |
test(comp==0);
|
|
1166 |
gHeapPtr->Free(p3);
|
|
1167 |
comp=gHeapPtr->Compress();
|
|
1168 |
// stop wins compiler warning of constant expression as KHeapShrinkHysRatio
|
|
1169 |
// isn't constant for non-emulator builds but ROM 'patchdata'
|
|
1170 |
#pragma warning(disable : 4127)
|
|
1171 |
// When hysteresis value > 4.0*GrowBy then Free() calls
|
|
1172 |
// won't shrink heap but normally will shrink heap
|
|
1173 |
if (KHeapShrinkHysRatio <= 1024)
|
|
1174 |
test(comp==0);
|
|
1175 |
else
|
|
1176 |
test(comp==0x4000);
|
|
1177 |
#pragma warning(default : 4127)
|
|
1178 |
gHeapPtr->Free(p1);
|
|
1179 |
comp=gHeapPtr->Compress();
|
|
1180 |
test(comp==0);
|
|
1181 |
TInt biggest1;
|
|
1182 |
TInt avail1=gHeapPtr->Available(biggest1);
|
189
|
1183 |
test(avail==avail1);
|
0
|
1184 |
test(biggest==biggest1);
|
|
1185 |
test(gHeapPtr->Count()==0);
|
|
1186 |
gHeapPtr->Close();
|
|
1187 |
test.End();
|
|
1188 |
}
|
|
1189 |
|
189
|
1190 |
LOCAL_C TInt NormalChunk(RChunk& aChunk, TInt aInitialSize, TInt aMaxSize)
|
|
1191 |
{
|
|
1192 |
TChunkCreateInfo createInfo;
|
|
1193 |
createInfo.SetNormal(aInitialSize, aMaxSize);
|
|
1194 |
TInt r=aChunk.Create(createInfo);
|
|
1195 |
return r;
|
|
1196 |
}
|
|
1197 |
|
|
1198 |
LOCAL_C TInt DisconnectedChunk(RChunk& aChunk, TInt aInitialBottom, TInt aInitialTop, TInt aMaxSize)
|
|
1199 |
{
|
|
1200 |
TChunkCreateInfo createInfo;
|
|
1201 |
createInfo.SetDisconnected(aInitialBottom, aInitialTop, aMaxSize);
|
|
1202 |
TInt r=aChunk.Create(createInfo);
|
|
1203 |
return r;
|
|
1204 |
}
|
|
1205 |
|
|
1206 |
LOCAL_C TBool TestIsHybridHeap(RHeap* aHeap)
|
|
1207 |
{
|
|
1208 |
RHybridHeap::STestCommand cmd;
|
|
1209 |
cmd.iCommand = RHybridHeap::EHeapMetaData;
|
|
1210 |
aHeap->DebugFunction(RHeap::EHybridHeap, (TAny*)&cmd, 0);
|
|
1211 |
|
|
1212 |
RHybridHeap* hybridHeap = (RHybridHeap*) cmd.iData;
|
|
1213 |
return (TestHybridHeap::IsHybrid(hybridHeap));
|
|
1214 |
}
|
|
1215 |
|
|
1216 |
LOCAL_C void TestHeapType()
|
|
1217 |
{
|
|
1218 |
TBool onlyDL = EFalse;
|
|
1219 |
_LIT(KHeap, "NamedHeap");
|
|
1220 |
// 1: Create a heap in a local chunk
|
|
1221 |
RHeap* heap;
|
|
1222 |
heap = UserHeap::ChunkHeap(NULL,0x100,0x2000);
|
|
1223 |
TBool hybrid = TestIsHybridHeap(heap);
|
|
1224 |
if (hybrid==0)
|
|
1225 |
{
|
|
1226 |
test.Printf(_L("Only DL allocator is in use \n"));
|
|
1227 |
onlyDL = ETrue;;
|
|
1228 |
}
|
|
1229 |
else
|
|
1230 |
test(hybrid==1);
|
|
1231 |
heap->Close();
|
|
1232 |
|
|
1233 |
// 2: Create a heap in a global chunk
|
|
1234 |
heap = UserHeap::ChunkHeap(&KHeap,0,0x1800,0x6000);
|
|
1235 |
hybrid = TestIsHybridHeap(heap);
|
|
1236 |
if(!onlyDL)
|
|
1237 |
test(hybrid==1);
|
|
1238 |
heap->Close();
|
|
1239 |
|
|
1240 |
// 3: Create a heap in an existing normal chunk
|
|
1241 |
RChunk chunk;
|
|
1242 |
TInt r = NormalChunk(chunk,0,0x1000);
|
|
1243 |
heap = UserHeap::ChunkHeap(chunk,0);
|
|
1244 |
hybrid = TestIsHybridHeap(heap);
|
|
1245 |
test(hybrid==0);
|
|
1246 |
heap->Close();
|
|
1247 |
|
|
1248 |
// 4: Create a heap in an existing disconnected chunk
|
|
1249 |
// when offset = 0. Minimum heap size for a hybrid heap is 12KB
|
|
1250 |
r = DisconnectedChunk(chunk,0,0,0x3000);
|
|
1251 |
heap = UserHeap::ChunkHeap(chunk,0);
|
|
1252 |
hybrid = TestIsHybridHeap(heap);
|
|
1253 |
if(!onlyDL)
|
|
1254 |
test(hybrid==1);
|
|
1255 |
heap->Close();
|
|
1256 |
|
|
1257 |
// 5: Create a heap in an existing disconnected chunk
|
|
1258 |
// when offset > 0
|
|
1259 |
r = DisconnectedChunk(chunk,0,0x1800,0x6000);
|
|
1260 |
heap = UserHeap::OffsetChunkHeap(chunk,0,0x2800);
|
|
1261 |
hybrid = TestIsHybridHeap(heap);
|
|
1262 |
test(hybrid==0);
|
|
1263 |
heap->Close();
|
|
1264 |
|
|
1265 |
// 6: Create a fixed length heap at a normal chunk's base address
|
|
1266 |
r = NormalChunk(chunk,0x1000,0x1000);
|
|
1267 |
heap = UserHeap::FixedHeap(chunk.Base(), 0x1000);
|
|
1268 |
hybrid = TestIsHybridHeap(heap);
|
|
1269 |
test(hybrid==0);
|
|
1270 |
heap->Close();
|
|
1271 |
chunk.Close();
|
|
1272 |
|
|
1273 |
// 7: Create a fixed length heap at a disconnected chunk's base address
|
|
1274 |
// when bottom = 0
|
|
1275 |
r = DisconnectedChunk(chunk,0,0x2000,0x2000);
|
|
1276 |
heap = UserHeap::FixedHeap(chunk.Base(), 0x2000);
|
|
1277 |
hybrid = TestIsHybridHeap(heap);
|
|
1278 |
test(hybrid==0);
|
|
1279 |
heap->Close();
|
|
1280 |
chunk.Close();
|
|
1281 |
|
|
1282 |
// 8: Create a fixed length heap at a disconnected chunk's base address
|
|
1283 |
// when bottom > 0
|
|
1284 |
r = DisconnectedChunk(chunk,0x6000,0x7000,0x13000);
|
|
1285 |
heap = UserHeap::FixedHeap(chunk.Base()+ 0x6000, 0x1000);
|
|
1286 |
hybrid = TestIsHybridHeap(heap);
|
|
1287 |
test(hybrid==0);
|
|
1288 |
heap->Close();
|
|
1289 |
chunk.Close();
|
|
1290 |
|
|
1291 |
// 9: Create a fixed length heap for allocated buffer
|
|
1292 |
heap = UserHeap::ChunkHeap(&KNullDesC(), 4096, (4096 * 1024));
|
|
1293 |
test(heap != NULL);
|
|
1294 |
TAny* buffer = heap->Alloc(1024 * 1024);
|
|
1295 |
test(buffer != NULL);
|
|
1296 |
TInt lth = heap->AllocLen(buffer);
|
|
1297 |
test.Printf(_L("Fixed heap buffer: %x, length: %x \n"), buffer, lth);
|
|
1298 |
|
|
1299 |
RHeap* heapf = UserHeap::FixedHeap(buffer, (1024 * 1024));
|
|
1300 |
test(heapf != NULL);
|
|
1301 |
test.Printf(_L("Fixed heap: %x \n"), heapf);
|
|
1302 |
hybrid = TestIsHybridHeap(heapf);
|
|
1303 |
test(hybrid==0);
|
|
1304 |
|
|
1305 |
heapf->Close();
|
|
1306 |
heap->Free(buffer);
|
|
1307 |
|
|
1308 |
heap->Close();
|
|
1309 |
}
|
0
|
1310 |
|
|
1311 |
GLDEF_C TInt E32Main(void)
|
|
1312 |
{
|
|
1313 |
|
|
1314 |
test.Title();
|
|
1315 |
|
|
1316 |
__KHEAP_MARK;
|
|
1317 |
|
|
1318 |
test.Start(_L("Test 1"));
|
|
1319 |
UserHal::PageSizeInBytes(PageSize);
|
|
1320 |
TestRHeap T;
|
189
|
1321 |
|
0
|
1322 |
T.Test1();
|
|
1323 |
test.Next(_L("Test auto expand and compress"));
|
|
1324 |
TestAuto();
|
|
1325 |
test.Next(_L("Test 2"));
|
|
1326 |
T.Test2();
|
|
1327 |
test.Next(_L("Test 3"));
|
|
1328 |
T.Test3();
|
|
1329 |
test.Next(_L("Test 4"));
|
|
1330 |
T.Test4();
|
|
1331 |
test.Next(_L("Test 5"));
|
|
1332 |
T.Test5();
|
|
1333 |
test.Next(_L("Test 7"));
|
|
1334 |
T.Test7();
|
|
1335 |
test.Next(_L("Test 8"));
|
|
1336 |
T.Test8();
|
|
1337 |
test.Next(_L("Test CompressAll()"));
|
|
1338 |
T.TestCompressAll();
|
|
1339 |
test.Next(_L("Test offset heap"));
|
|
1340 |
T.TestOffset();
|
|
1341 |
test.Next(_L("Shared heap test 1"));
|
|
1342 |
SharedHeapTest1();
|
|
1343 |
test.Next(_L("Shared heap test 2"));
|
|
1344 |
SharedHeapTest2();
|
|
1345 |
test.Next(_L("Shared heap test 3"));
|
|
1346 |
SharedHeapTest3();
|
|
1347 |
sem.Close();
|
189
|
1348 |
test.Next(_L("Test HeapType()"));
|
|
1349 |
TestHeapType();
|
0
|
1350 |
|
|
1351 |
__KHEAP_CHECK(0);
|
|
1352 |
__KHEAP_MARKEND;
|
189
|
1353 |
|
0
|
1354 |
test.End();
|
|
1355 |
return(0);
|
|
1356 |
}
|
|
1357 |
|