0
|
1 |
// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
//
|
|
15 |
|
|
16 |
/**
|
|
17 |
@file
|
|
18 |
@internalComponent
|
|
19 |
*/
|
|
20 |
|
|
21 |
#ifndef MSLABALLOC_H
|
|
22 |
#define MSLABALLOC_H
|
|
23 |
|
|
24 |
#include "mcleanup.h"
|
|
25 |
|
|
26 |
/**
|
|
27 |
Slab allocator.
|
|
28 |
*/
|
|
29 |
class RSlabAllocatorBase
|
|
30 |
{
|
|
31 |
public:
|
|
32 |
RSlabAllocatorBase(TBool aDelayedCleanup);
|
|
33 |
~RSlabAllocatorBase();
|
|
34 |
|
|
35 |
/**
|
|
36 |
Construct a slab allocator.
|
|
37 |
|
|
38 |
@param aMaxSlabs Maximum number of slabs to use. (Number of bits in \a slabBits.)
|
|
39 |
@param aObjectSize Size of objects to allocate.
|
|
40 |
*/
|
|
41 |
TInt Construct(TUint aMaxSlabs, TUint aObjectSize);
|
|
42 |
|
|
43 |
/**
|
|
44 |
Construct a slab allocator using fixed virtual memory.
|
|
45 |
|
|
46 |
@param aMaxSlabs Maximum number of slabs to use. (Number of bits in \a slabBits.)
|
|
47 |
@param aObjectSize Size of objects to allocate.
|
|
48 |
@param aBase Virtual address for start of memory where slabs will be allocated.
|
|
49 |
Zero indicates 'anywhere'.
|
|
50 |
*/
|
|
51 |
TInt Construct(TUint aMaxSlabs, TUint aObjectSize, TLinAddr aBase);
|
|
52 |
|
|
53 |
/**
|
|
54 |
Set the memory object to be used for the slab allocator.
|
|
55 |
*/
|
|
56 |
FORCE_INLINE void SetMemory(DMemoryObject* aMemory, TUint aReserveCount)
|
|
57 |
{
|
|
58 |
__NK_ASSERT_DEBUG(!iMemory);
|
|
59 |
iMemory = aMemory;
|
|
60 |
iReserveCount = aReserveCount;
|
|
61 |
}
|
|
62 |
|
|
63 |
/**
|
|
64 |
Allocate an object.
|
|
65 |
|
|
66 |
@return Allocated object, or the null pointer if there is insufficient memory to perform the allocation.
|
|
67 |
|
|
68 |
@pre MmuLock held
|
|
69 |
@post MmuLock held, but has always beet flashed
|
|
70 |
*/
|
|
71 |
TAny* Alloc();
|
|
72 |
|
|
73 |
/**
|
|
74 |
Free an object previously allocated with #Alloc.
|
|
75 |
|
|
76 |
@param aObject The object.
|
|
77 |
|
|
78 |
@pre MmuLock held
|
|
79 |
@post MmuLock held, but has always beet flashed
|
|
80 |
*/
|
|
81 |
void Free(TAny* aObject);
|
|
82 |
|
|
83 |
protected:
|
|
84 |
class TSlabHeader : public SDblQueLink
|
|
85 |
{
|
|
86 |
public:
|
|
87 |
SDblQue iFreeList; ///< List of unallocated objects in list.
|
|
88 |
TUint iAllocCount; ///< Number of objects allocated in this slab.
|
|
89 |
TAny* iHighWaterMark; ///< End of initialise region in slab.
|
|
90 |
};
|
|
91 |
|
|
92 |
private:
|
|
93 |
TBool NewSlab();
|
|
94 |
void InitSlab(TLinAddr aPage);
|
|
95 |
void FreeSlab(TSlabHeader* aSlab);
|
|
96 |
static void CleanupTrampoline(TAny* aSelf);
|
|
97 |
void Cleanup();
|
|
98 |
#ifdef _DEBUG
|
|
99 |
void CheckSlab(TSlabHeader* aSlab);
|
|
100 |
#endif
|
|
101 |
|
|
102 |
private:
|
|
103 |
SDblQue iFreeList; ///< List of slabs which have unallocated objects in them.
|
|
104 |
TUint iFreeCount; ///< Number of unallocated objects.
|
|
105 |
TUint iReserveCount; ///< Number of unallocated objects to keep in reserve (to allow for recursion during allocation).
|
|
106 |
TUint iObjectsPerSlab; ///< Number of objects in each slab.
|
|
107 |
TUint iObjectSize; ///< Size, in bytes, of objects to be allocated.
|
|
108 |
TSpinLock iSpinLock; ///< Spinlock which protects iFreeList, iFreeCount and TSlabHeader contents.
|
|
109 |
|
|
110 |
TMemoryCleanup iCleanup; ///< Used to queue Cleanup() if iDelayedCleanup is true.
|
|
111 |
TBool iDelayedCleanup; ///< True, if Free() should not free empty slabs.
|
|
112 |
|
|
113 |
TBool iAllocatingSlab; ///< True if a new slab page is being allocated.
|
|
114 |
TBitMapAllocator* iSlabMap; ///< Bitmap of allocated slabs.
|
|
115 |
DMemoryObject* iMemory; ///< The memory object used to store slabs.
|
|
116 |
DMemoryMapping* iMapping; ///< The memory mapping used for slabs.
|
|
117 |
TLinAddr iBase; ///< Address of first slab.
|
|
118 |
};
|
|
119 |
|
|
120 |
|
|
121 |
/**
|
|
122 |
Template for a slab allocator which can allocate up to N objects of type T.
|
|
123 |
*/
|
|
124 |
template <class T, TUint N>
|
|
125 |
class RSlabAllocator : public RSlabAllocatorBase
|
|
126 |
{
|
|
127 |
public:
|
|
128 |
enum
|
|
129 |
{
|
|
130 |
EObjectSize = sizeof(T)>sizeof(SDblQueLink) ? sizeof(T) : sizeof(SDblQueLink),
|
|
131 |
EObjectsPerSlab = (KPageSize-sizeof(TSlabHeader))/EObjectSize,
|
|
132 |
EMaxSlabs = (N+EObjectsPerSlab-1)/EObjectsPerSlab
|
|
133 |
};
|
|
134 |
|
|
135 |
FORCE_INLINE RSlabAllocator()
|
|
136 |
: RSlabAllocatorBase(EFalse)
|
|
137 |
{
|
|
138 |
__ASSERT_COMPILE(EObjectsPerSlab>0);
|
|
139 |
}
|
|
140 |
|
|
141 |
FORCE_INLINE TInt Construct()
|
|
142 |
{
|
|
143 |
return RSlabAllocatorBase::Construct(EMaxSlabs,EObjectSize);
|
|
144 |
}
|
|
145 |
|
|
146 |
/**
|
|
147 |
Allocate an object.
|
|
148 |
|
|
149 |
@return Allocated object, or the null pointer if there is insufficient memory to perform the allocation.
|
|
150 |
*/
|
|
151 |
FORCE_INLINE T* Alloc()
|
|
152 |
{
|
|
153 |
return (T*)RSlabAllocatorBase::Alloc();
|
|
154 |
}
|
|
155 |
|
|
156 |
/**
|
|
157 |
Free an object previously allocated with #Alloc.
|
|
158 |
|
|
159 |
@param aObject Object.
|
|
160 |
*/
|
|
161 |
FORCE_INLINE void Free(T* aObject)
|
|
162 |
{
|
|
163 |
RSlabAllocatorBase::Free(aObject);
|
|
164 |
}
|
|
165 |
};
|
|
166 |
|
|
167 |
|
|
168 |
/**
|
|
169 |
Template for a slab allocator for allocating objects of type T, using the
|
|
170 |
virtual address region [B..E)
|
|
171 |
*/
|
|
172 |
template <class T, TLinAddr B, TLinAddr E>
|
|
173 |
class RStaticSlabAllocator : public RSlabAllocatorBase
|
|
174 |
{
|
|
175 |
public:
|
|
176 |
enum
|
|
177 |
{
|
|
178 |
EObjectSize = sizeof(T)>sizeof(SDblQueLink) ? sizeof(T) : sizeof(SDblQueLink),
|
|
179 |
EObjectsPerSlab = (KPageSize-sizeof(TSlabHeader))/EObjectSize,
|
|
180 |
EMaxSlabs = (E-B)/KPageSize
|
|
181 |
};
|
|
182 |
|
|
183 |
FORCE_INLINE RStaticSlabAllocator()
|
|
184 |
: RSlabAllocatorBase(ETrue)
|
|
185 |
{
|
|
186 |
__ASSERT_COMPILE(EObjectsPerSlab>0);
|
|
187 |
}
|
|
188 |
|
|
189 |
FORCE_INLINE TInt Construct()
|
|
190 |
{
|
|
191 |
return RSlabAllocatorBase::Construct(EMaxSlabs,EObjectSize,B);
|
|
192 |
}
|
|
193 |
|
|
194 |
/**
|
|
195 |
Allocate an object.
|
|
196 |
|
|
197 |
@return Allocated object, or the null pointer if there is insufficient memory to perform the allocation.
|
|
198 |
*/
|
|
199 |
FORCE_INLINE T* Alloc()
|
|
200 |
{
|
|
201 |
return (T*)RSlabAllocatorBase::Alloc();
|
|
202 |
}
|
|
203 |
|
|
204 |
/**
|
|
205 |
Free an object previously allocated with #Alloc.
|
|
206 |
|
|
207 |
@param aObject Object.
|
|
208 |
*/
|
|
209 |
FORCE_INLINE void Free(T* aObject)
|
|
210 |
{
|
|
211 |
RSlabAllocatorBase::Free(aObject);
|
|
212 |
}
|
|
213 |
};
|
|
214 |
|
|
215 |
#endif
|
|
216 |
|