0
|
1 |
// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// template\template_assp\pa_usbc.cpp
|
|
15 |
// Platform-dependent USB client controller layer (USB PSL).
|
|
16 |
//
|
|
17 |
//
|
|
18 |
|
|
19 |
|
|
20 |
#include <template_assp.h> // /assp/template_assp/
|
|
21 |
#include <template_assp_priv.h> // /assp/template_assp/
|
|
22 |
|
|
23 |
#include <drivers/usbc.h>
|
|
24 |
|
|
25 |
#include "pa_usbc.h" // .
|
|
26 |
|
|
27 |
// Debug support
|
|
28 |
#ifdef _DEBUG
|
|
29 |
static const char KUsbPanicCat[] = "USB PSL";
|
|
30 |
#endif
|
|
31 |
|
|
32 |
|
|
33 |
// Define USB_SUPPORTS_PREMATURE_STATUS_IN to enable proper handling of a premature STATUS_IN stage, i.e. a
|
|
34 |
// situation where the host sends less data than first announced and instead of more data (OUT) will send an
|
|
35 |
// IN token to start the status stage. What we do in order to implement this here is to prime the TX fifo with
|
|
36 |
// a ZLP immediately when we find out that we're dealing with a DATA_OUT request. This way, as soon as the
|
|
37 |
// premature IN token is received, we complete the transaction by sending off the ZLP. If we don't prime the
|
|
38 |
// TX fifo then there is no way for us to recognise a premature status because the IN token itself doesn't
|
|
39 |
// raise an interrupt. We would simply wait forever for more data, or rather we would time out and the host
|
|
40 |
// would move on and send the next Setup packet.
|
|
41 |
// The reason why we would not want to implement the proper behaviour is this: After having primed the TX fifo
|
|
42 |
// with a ZLP, it is impossible for a user to reject such a (class/vendor specific) Setup request, basically
|
|
43 |
// because the successful status stage happens automatically. At the time the user has received and decoded
|
|
44 |
// the Setup request there's for her no way to stall Ep0 in order to show to the host that this Setup packet
|
|
45 |
// is invalid or inappropriate or whatever, because she cannot prevent the status stage from happening.
|
|
46 |
// (All this is strictly true only if the amount of data in the data stage is less than or equal to Ep0's max
|
|
47 |
// packet size. However this is almost always the case.)
|
|
48 |
//#define USB_SUPPORTS_PREMATURE_STATUS_IN
|
|
49 |
|
|
50 |
|
|
51 |
static const TUsbcEndpointCaps DeviceEndpoints[KUsbTotalEndpoints] =
|
|
52 |
{
|
|
53 |
// Hardware # iEndpoints index
|
|
54 |
{KEp0MaxPktSzMask, (KUsbEpTypeControl | KUsbEpDirOut)}, // 0 - 0
|
|
55 |
{KEp0MaxPktSzMask, (KUsbEpTypeControl | KUsbEpDirIn )}, // 0 - 1
|
|
56 |
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present
|
|
57 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 1 - 3
|
|
58 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 2 - 4
|
|
59 |
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present
|
|
60 |
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present
|
|
61 |
{KIsoMaxPktSzMask, (KUsbEpTypeIsochronous | KUsbEpDirIn )}, // 3 - 7
|
|
62 |
{KIsoMaxPktSzMask, (KUsbEpTypeIsochronous | KUsbEpDirOut)}, // 4 - 8
|
|
63 |
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present
|
|
64 |
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present
|
|
65 |
{KIntMaxPktSzMask, (KUsbEpTypeInterrupt | KUsbEpDirIn )}, // 5 - 11
|
|
66 |
};
|
|
67 |
|
|
68 |
|
|
69 |
// --- TEndpoint --------------------------------------------------------------
|
|
70 |
|
|
71 |
TEndpoint::TEndpoint()
|
|
72 |
//
|
|
73 |
// Constructor
|
|
74 |
//
|
|
75 |
: iRxBuf(NULL), iReceived(0), iLength(0), iZlpReqd(EFalse), iNoBuffer(EFalse), iDisabled(EFalse),
|
|
76 |
iPackets(0), iLastError(KErrNone), iRequest(NULL), iRxTimer(RxTimerCallback, this),
|
|
77 |
iRxTimerSet(EFalse), iRxMoreDataRcvd(EFalse), iPacketIndex(NULL), iPacketSize(NULL)
|
|
78 |
{
|
|
79 |
__KTRACE_OPT(KUSB, Kern::Printf("TEndpoint::TEndpoint"));
|
|
80 |
}
|
|
81 |
|
|
82 |
|
|
83 |
void TEndpoint::RxTimerCallback(TAny* aPtr)
|
|
84 |
//
|
|
85 |
// (This function is static.)
|
|
86 |
//
|
|
87 |
{
|
|
88 |
__KTRACE_OPT(KUSB, Kern::Printf("TEndpoint::RxTimerCallback"));
|
|
89 |
|
|
90 |
TEndpoint* const ep = static_cast<TEndpoint*>(aPtr);
|
|
91 |
if (!ep)
|
|
92 |
{
|
|
93 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !ep"));
|
|
94 |
}
|
|
95 |
else if (!ep->iRxTimerSet)
|
|
96 |
{
|
|
97 |
// Timer 'stop' substitute (instead of stopping it,
|
|
98 |
// we just let it expire after clearing iRxTimerSet)
|
|
99 |
__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxTimerSet - returning"));
|
|
100 |
}
|
|
101 |
else if (!ep->iRxBuf)
|
|
102 |
{
|
|
103 |
// Request already completed
|
|
104 |
__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxBuf - returning"));
|
|
105 |
}
|
|
106 |
else if (ep->iRxMoreDataRcvd)
|
|
107 |
{
|
|
108 |
__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: not yet completing..."));
|
|
109 |
ep->iRxMoreDataRcvd = EFalse;
|
|
110 |
ep->iRxTimer.Again(KRxTimerTimeout);
|
|
111 |
}
|
|
112 |
else
|
|
113 |
{
|
|
114 |
__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: completing now..."));
|
|
115 |
*ep->iPacketSize = ep->iReceived;
|
|
116 |
ep->iController->RxComplete(ep);
|
|
117 |
}
|
|
118 |
}
|
|
119 |
|
|
120 |
|
|
121 |
// --- TTemplateAsspUsbcc public ---------------------------------------------------
|
|
122 |
|
|
123 |
TTemplateAsspUsbcc::TTemplateAsspUsbcc()
|
|
124 |
//
|
|
125 |
// Constructor.
|
|
126 |
//
|
|
127 |
: iCableConnected(ETrue), iBusIsPowered(EFalse),
|
|
128 |
iInitialized(EFalse), iUsbClientConnectorCallback(UsbClientConnectorCallback),
|
|
129 |
iEp0Configured(EFalse)
|
|
130 |
{
|
|
131 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::TTemplateAsspUsbcc"));
|
|
132 |
|
|
133 |
iAssp = static_cast<TemplateAssp*>(Arch::TheAsic());
|
|
134 |
|
|
135 |
iSoftwareConnectable = iAssp->UsbSoftwareConnectable();
|
|
136 |
|
|
137 |
iCableDetectable = iAssp->UsbClientConnectorDetectable();
|
|
138 |
|
|
139 |
if (iCableDetectable)
|
|
140 |
{
|
|
141 |
// Register our callback for detecting USB cable insertion/removal.
|
|
142 |
// We ignore the error code: if the registration fails, we just won't get any events.
|
|
143 |
// (Which of course is bad enough...)
|
|
144 |
(void) iAssp->RegisterUsbClientConnectorCallback(iUsbClientConnectorCallback, this);
|
|
145 |
// Call the callback straight away so we get the proper PIL state from the beginning.
|
|
146 |
(void) UsbClientConnectorCallback(this);
|
|
147 |
}
|
|
148 |
|
|
149 |
for (TInt i = 0; i < KUsbTotalEndpoints; i++)
|
|
150 |
{
|
|
151 |
iEndpoints[i].iController = this;
|
|
152 |
}
|
|
153 |
}
|
|
154 |
|
|
155 |
|
|
156 |
TInt TTemplateAsspUsbcc::Construct()
|
|
157 |
//
|
|
158 |
// Construct.
|
|
159 |
//
|
|
160 |
{
|
|
161 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Construct"));
|
|
162 |
|
|
163 |
TUsbcDeviceDescriptor* DeviceDesc = TUsbcDeviceDescriptor::New(
|
|
164 |
0x00, // aDeviceClass
|
|
165 |
0x00, // aDeviceSubClass
|
|
166 |
0x00, // aDeviceProtocol
|
|
167 |
KEp0MaxPktSz, // aMaxPacketSize0
|
|
168 |
KUsbVendorId, // aVendorId
|
|
169 |
KUsbProductId, // aProductId
|
|
170 |
KUsbDevRelease, // aDeviceRelease
|
|
171 |
1); // aNumConfigurations
|
|
172 |
if (!DeviceDesc)
|
|
173 |
{
|
|
174 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for dev desc failed."));
|
|
175 |
return KErrGeneral;
|
|
176 |
}
|
|
177 |
|
|
178 |
TUsbcConfigDescriptor* ConfigDesc = TUsbcConfigDescriptor::New(
|
|
179 |
1, // aConfigurationValue
|
|
180 |
ETrue, // aSelfPowered (see 12.4.2 "Bus-Powered Devices")
|
|
181 |
ETrue, // aRemoteWakeup
|
|
182 |
0); // aMaxPower (mA)
|
|
183 |
if (!ConfigDesc)
|
|
184 |
{
|
|
185 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for config desc failed."));
|
|
186 |
return KErrGeneral;
|
|
187 |
}
|
|
188 |
|
|
189 |
TUsbcLangIdDescriptor* StringDescLang = TUsbcLangIdDescriptor::New(KUsbLangId);
|
|
190 |
if (!StringDescLang)
|
|
191 |
{
|
|
192 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for lang id $ desc failed."));
|
|
193 |
return KErrGeneral;
|
|
194 |
}
|
|
195 |
|
|
196 |
// ('sizeof(x) - 2' because 'wchar_t KStringXyz' created a wide string that ends in '\0\0'.)
|
|
197 |
|
|
198 |
TUsbcStringDescriptor* StringDescManu =
|
|
199 |
TUsbcStringDescriptor::New(TPtr8(
|
|
200 |
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringManufacturer)),
|
|
201 |
sizeof(KStringManufacturer) - 2, sizeof(KStringManufacturer) - 2));
|
|
202 |
if (!StringDescManu)
|
|
203 |
{
|
|
204 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for manufacturer $ desc failed."));
|
|
205 |
return KErrGeneral;
|
|
206 |
}
|
|
207 |
|
|
208 |
TUsbcStringDescriptor* StringDescProd =
|
|
209 |
TUsbcStringDescriptor::New(TPtr8(
|
|
210 |
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringProduct)),
|
|
211 |
sizeof(KStringProduct) - 2, sizeof(KStringProduct) - 2));
|
|
212 |
if (!StringDescProd)
|
|
213 |
{
|
|
214 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for product $ desc failed."));
|
|
215 |
return KErrGeneral;
|
|
216 |
}
|
|
217 |
|
|
218 |
TUsbcStringDescriptor* StringDescSer =
|
|
219 |
TUsbcStringDescriptor::New(TPtr8(
|
|
220 |
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringSerialNo)),
|
|
221 |
sizeof(KStringSerialNo) - 2, sizeof(KStringSerialNo) - 2));
|
|
222 |
if (!StringDescSer)
|
|
223 |
{
|
|
224 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for serial no $ desc failed."));
|
|
225 |
return KErrGeneral;
|
|
226 |
}
|
|
227 |
|
|
228 |
TUsbcStringDescriptor* StringDescConf =
|
|
229 |
TUsbcStringDescriptor::New(TPtr8(
|
|
230 |
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringConfig)),
|
|
231 |
sizeof(KStringConfig) - 2, sizeof(KStringConfig) - 2));
|
|
232 |
if (!StringDescConf)
|
|
233 |
{
|
|
234 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for config $ desc failed."));
|
|
235 |
return KErrGeneral;
|
|
236 |
}
|
|
237 |
|
|
238 |
const TBool r = InitialiseBaseClass(DeviceDesc,
|
|
239 |
ConfigDesc,
|
|
240 |
StringDescLang,
|
|
241 |
StringDescManu,
|
|
242 |
StringDescProd,
|
|
243 |
StringDescSer,
|
|
244 |
StringDescConf);
|
|
245 |
if (!r)
|
|
246 |
{
|
|
247 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UsbClientController::InitialiseBaseClass failed."));
|
|
248 |
return KErrGeneral;
|
|
249 |
}
|
|
250 |
|
|
251 |
return KErrNone;
|
|
252 |
}
|
|
253 |
|
|
254 |
|
|
255 |
TTemplateAsspUsbcc::~TTemplateAsspUsbcc()
|
|
256 |
//
|
|
257 |
// Destructor.
|
|
258 |
//
|
|
259 |
{
|
|
260 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::~TTemplateAsspUsbcc"));
|
|
261 |
|
|
262 |
// Unregister our callback for detecting USB cable insertion/removal
|
|
263 |
if (iCableDetectable)
|
|
264 |
{
|
|
265 |
iAssp->UnregisterUsbClientConnectorCallback();
|
|
266 |
}
|
|
267 |
if (iInitialized)
|
|
268 |
{
|
|
269 |
// (The explicit scope operator is used against Lint warning #1506.)
|
|
270 |
TTemplateAsspUsbcc::StopUdc();
|
|
271 |
}
|
|
272 |
}
|
|
273 |
|
|
274 |
|
|
275 |
TBool TTemplateAsspUsbcc::DeviceStateChangeCaps() const
|
|
276 |
//
|
|
277 |
// Returns capability of hardware to accurately track the device state (Chapter 9 state).
|
|
278 |
//
|
|
279 |
{
|
|
280 |
// TO DO: Return EFalse or ETrue here, depending on whether the UDC supports exact device state tracking
|
|
281 |
// (most don't).
|
|
282 |
return EFalse;
|
|
283 |
}
|
|
284 |
|
|
285 |
|
|
286 |
TInt TTemplateAsspUsbcc::SignalRemoteWakeup()
|
|
287 |
//
|
|
288 |
// Forces the UDC into a non-idle state to perform a remote wakeup operation.
|
|
289 |
//
|
|
290 |
{
|
|
291 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SignalRemoteWakeup"));
|
|
292 |
|
|
293 |
// TO DO: Do here whatever is necessary for the UDC to signal remote wakeup.
|
|
294 |
|
|
295 |
return KErrNone;
|
|
296 |
}
|
|
297 |
|
|
298 |
|
|
299 |
void TTemplateAsspUsbcc::DumpRegisters()
|
|
300 |
//
|
|
301 |
// Dumps the contents of a number of UDC registers to the screen (using Kern::Printf()).
|
|
302 |
// Rarely used, but might prove helpful when needed.
|
|
303 |
//
|
|
304 |
{
|
|
305 |
Kern::Printf("TCotullaUsbcc::DumpRegisters:");
|
|
306 |
|
|
307 |
// TO DO: Print the contents of some (or all) UDC registers here.
|
|
308 |
}
|
|
309 |
|
|
310 |
|
|
311 |
TDfcQue* TTemplateAsspUsbcc::DfcQ(TInt /* aUnit */)
|
|
312 |
//
|
|
313 |
// Returns a pointer to the kernel DFC queue to be used buy the USB LDD.
|
|
314 |
//
|
|
315 |
{
|
|
316 |
return Kern::DfcQue0();
|
|
317 |
}
|
|
318 |
|
|
319 |
|
|
320 |
// --- TTemplateAsspUsbcc private virtual ------------------------------------------
|
|
321 |
|
|
322 |
TInt TTemplateAsspUsbcc::SetDeviceAddress(TInt aAddress)
|
|
323 |
//
|
|
324 |
// Sets the PIL-provided device address manually (if possible - otherwise do nothing).
|
|
325 |
//
|
|
326 |
{
|
|
327 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetDeviceAddress: %d", aAddress));
|
|
328 |
|
|
329 |
// TO DO (optional): Set device address here.
|
|
330 |
|
|
331 |
if (aAddress)
|
|
332 |
{
|
|
333 |
// Address can be zero.
|
|
334 |
MoveToAddressState();
|
|
335 |
}
|
|
336 |
|
|
337 |
return KErrNone;
|
|
338 |
}
|
|
339 |
|
|
340 |
|
|
341 |
TInt TTemplateAsspUsbcc::ConfigureEndpoint(TInt aRealEndpoint, const TUsbcEndpointInfo& aEndpointInfo)
|
|
342 |
//
|
|
343 |
// Prepares (enables) an endpoint (incl. Ep0) for data transmission or reception.
|
|
344 |
//
|
|
345 |
{
|
|
346 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ConfigureEndpoint(%d)", aRealEndpoint));
|
|
347 |
|
|
348 |
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
|
|
349 |
if (n < 0)
|
|
350 |
return KErrArgument;
|
|
351 |
|
|
352 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
|
|
353 |
if (ep->iDisabled == EFalse)
|
|
354 |
{
|
|
355 |
EnableEndpointInterrupt(n);
|
|
356 |
}
|
|
357 |
ep->iNoBuffer = EFalse;
|
|
358 |
if (n == 0)
|
|
359 |
iEp0Configured = ETrue;
|
|
360 |
|
|
361 |
return KErrNone;
|
|
362 |
}
|
|
363 |
|
|
364 |
|
|
365 |
TInt TTemplateAsspUsbcc::DeConfigureEndpoint(TInt aRealEndpoint)
|
|
366 |
//
|
|
367 |
// Disables an endpoint (incl. Ep0).
|
|
368 |
//
|
|
369 |
{
|
|
370 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeConfigureEndpoint(%d)", aRealEndpoint));
|
|
371 |
|
|
372 |
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
|
|
373 |
if (n < 0)
|
|
374 |
return KErrArgument;
|
|
375 |
|
|
376 |
DisableEndpointInterrupt(n);
|
|
377 |
if (n == 0)
|
|
378 |
iEp0Configured = EFalse;
|
|
379 |
|
|
380 |
return KErrNone;
|
|
381 |
}
|
|
382 |
|
|
383 |
|
|
384 |
TInt TTemplateAsspUsbcc::AllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource)
|
|
385 |
//
|
|
386 |
// Puts the requested endpoint resource to use, if possible.
|
|
387 |
//
|
|
388 |
{
|
|
389 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::AllocateEndpointResource(%d): %d",
|
|
390 |
aRealEndpoint, aResource));
|
|
391 |
|
|
392 |
// TO DO: Allocate endpoint resource here.
|
|
393 |
|
|
394 |
return KErrNone;
|
|
395 |
}
|
|
396 |
|
|
397 |
|
|
398 |
TInt TTemplateAsspUsbcc::DeAllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource)
|
|
399 |
//
|
|
400 |
// Stops the use of the indicated endpoint resource, if beneficial.
|
|
401 |
//
|
|
402 |
{
|
|
403 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeAllocateEndpointResource(%d): %d",
|
|
404 |
aRealEndpoint, aResource));
|
|
405 |
|
|
406 |
// TO DO: Deallocate endpoint resource here.
|
|
407 |
|
|
408 |
return KErrNone;
|
|
409 |
}
|
|
410 |
|
|
411 |
|
|
412 |
TBool TTemplateAsspUsbcc::QueryEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource) const
|
|
413 |
//
|
|
414 |
// Returns the status of the indicated resource and endpoint.
|
|
415 |
//
|
|
416 |
{
|
|
417 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::QueryEndpointResource(%d): %d",
|
|
418 |
aRealEndpoint, aResource));
|
|
419 |
|
|
420 |
// TO DO: Query endpoint resource here. The return value should reflect the actual state.
|
|
421 |
return ETrue;
|
|
422 |
}
|
|
423 |
|
|
424 |
|
|
425 |
TInt TTemplateAsspUsbcc::OpenDmaChannel(TInt aRealEndpoint)
|
|
426 |
//
|
|
427 |
// Opens a DMA channel for this endpoint. This function is always called during the creation of an endpoint
|
|
428 |
// in the PIL. If DMA channels are a scarce resource, it's possible to do nothing here and wait for an
|
|
429 |
// AllocateEndpointResource call instead.
|
|
430 |
//
|
|
431 |
{
|
|
432 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::OpenDmaChannel(%d)", aRealEndpoint));
|
|
433 |
|
|
434 |
// TO DO (optional): Open DMA channel here.
|
|
435 |
|
|
436 |
// An error should only be returned in case of an actual DMA problem.
|
|
437 |
return KErrNone;
|
|
438 |
}
|
|
439 |
|
|
440 |
|
|
441 |
void TTemplateAsspUsbcc::CloseDmaChannel(TInt aRealEndpoint)
|
|
442 |
//
|
|
443 |
// Closes a DMA channel for this endpoint. This function is always called during the destruction of an
|
|
444 |
// endpoint in the PIL.
|
|
445 |
//
|
|
446 |
{
|
|
447 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::CloseDmaChannel(%d)", aRealEndpoint));
|
|
448 |
|
|
449 |
// TO DO (optional): Close DMA channel here (only if it was opened via OpenDmaChannel).
|
|
450 |
}
|
|
451 |
|
|
452 |
|
|
453 |
TInt TTemplateAsspUsbcc::SetupEndpointRead(TInt aRealEndpoint, TUsbcRequestCallback& aCallback)
|
|
454 |
//
|
|
455 |
// Sets up a read request for an endpoint on behalf of the LDD.
|
|
456 |
//
|
|
457 |
{
|
|
458 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupEndpointRead(%d)", aRealEndpoint));
|
|
459 |
|
|
460 |
if (!IS_OUT_ENDPOINT(aRealEndpoint))
|
|
461 |
{
|
|
462 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint));
|
|
463 |
return KErrArgument;
|
|
464 |
}
|
|
465 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
|
|
466 |
if (ep->iRxBuf != NULL)
|
|
467 |
{
|
|
468 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", aRealEndpoint));
|
|
469 |
return KErrGeneral;
|
|
470 |
}
|
|
471 |
ep->iRxBuf = aCallback.iBufferStart;
|
|
472 |
ep->iReceived = 0;
|
|
473 |
ep->iLength = aCallback.iLength;
|
|
474 |
// For Bulk reads we start out with the assumption of 1 packet (see BulkReceive for why):
|
|
475 |
ep->iPackets = IS_BULK_OUT_ENDPOINT(aRealEndpoint) ? 1 : 0;
|
|
476 |
ep->iRequest = &aCallback;
|
|
477 |
ep->iPacketIndex = aCallback.iPacketIndex;
|
|
478 |
if (IS_BULK_OUT_ENDPOINT(aRealEndpoint))
|
|
479 |
*ep->iPacketIndex = 0; // a one-off optimization
|
|
480 |
ep->iPacketSize = aCallback.iPacketSize;
|
|
481 |
|
|
482 |
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
|
|
483 |
if (ep->iDisabled)
|
|
484 |
{
|
|
485 |
ep->iDisabled = EFalse;
|
|
486 |
EnableEndpointInterrupt(n);
|
|
487 |
}
|
|
488 |
else if (ep->iNoBuffer)
|
|
489 |
{
|
|
490 |
__KTRACE_OPT(KUSB, Kern::Printf(" > There had been no Rx buffer available: reading Rx FIFO now"));
|
|
491 |
ep->iNoBuffer = EFalse;
|
|
492 |
if (IS_BULK_OUT_ENDPOINT(aRealEndpoint))
|
|
493 |
{
|
|
494 |
BulkReadRxFifo(n);
|
|
495 |
}
|
|
496 |
else if (IS_ISO_OUT_ENDPOINT(aRealEndpoint))
|
|
497 |
{
|
|
498 |
IsoReadRxFifo(n);
|
|
499 |
}
|
|
500 |
else
|
|
501 |
{
|
|
502 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found"));
|
|
503 |
}
|
|
504 |
}
|
|
505 |
|
|
506 |
return KErrNone;
|
|
507 |
}
|
|
508 |
|
|
509 |
|
|
510 |
TInt TTemplateAsspUsbcc::SetupEndpointWrite(TInt aRealEndpoint, TUsbcRequestCallback& aCallback)
|
|
511 |
//
|
|
512 |
// Sets up a write request for an endpoint on behalf of the LDD.
|
|
513 |
//
|
|
514 |
{
|
|
515 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupEndpointWrite(%d)", aRealEndpoint));
|
|
516 |
|
|
517 |
if (!IS_IN_ENDPOINT(aRealEndpoint))
|
|
518 |
{
|
|
519 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint));
|
|
520 |
return KErrArgument;
|
|
521 |
}
|
|
522 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
|
|
523 |
if (ep->iTxBuf != NULL)
|
|
524 |
{
|
|
525 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: iEndpoints[%d].iTxBuf != NULL", aRealEndpoint));
|
|
526 |
return KErrGeneral;
|
|
527 |
}
|
|
528 |
ep->iTxBuf = aCallback.iBufferStart;
|
|
529 |
ep->iTransmitted = 0;
|
|
530 |
ep->iLength = aCallback.iLength;
|
|
531 |
ep->iPackets = 0;
|
|
532 |
ep->iZlpReqd = aCallback.iZlpReqd;
|
|
533 |
ep->iRequest = &aCallback;
|
|
534 |
|
|
535 |
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
|
|
536 |
if (IS_BULK_IN_ENDPOINT(aRealEndpoint))
|
|
537 |
{
|
|
538 |
if (ep->iDisabled)
|
|
539 |
{
|
|
540 |
ep->iDisabled = EFalse;
|
|
541 |
EnableEndpointInterrupt(n);
|
|
542 |
}
|
|
543 |
BulkTransmit(n);
|
|
544 |
}
|
|
545 |
else if (IS_ISO_IN_ENDPOINT(aRealEndpoint))
|
|
546 |
{
|
|
547 |
IsoTransmit(n);
|
|
548 |
}
|
|
549 |
else if (IS_INT_IN_ENDPOINT(aRealEndpoint))
|
|
550 |
{
|
|
551 |
IntTransmit(n);
|
|
552 |
}
|
|
553 |
else
|
|
554 |
{
|
|
555 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found"));
|
|
556 |
}
|
|
557 |
|
|
558 |
return KErrNone;
|
|
559 |
}
|
|
560 |
|
|
561 |
|
|
562 |
TInt TTemplateAsspUsbcc::CancelEndpointRead(TInt aRealEndpoint)
|
|
563 |
//
|
|
564 |
// Cancels a read request for an endpoint on behalf of the LDD.
|
|
565 |
// No completion to the PIL occurs.
|
|
566 |
//
|
|
567 |
{
|
|
568 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::CancelEndpointRead(%d)", aRealEndpoint));
|
|
569 |
|
|
570 |
if (!IS_OUT_ENDPOINT(aRealEndpoint))
|
|
571 |
{
|
|
572 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint));
|
|
573 |
return KErrArgument;
|
|
574 |
}
|
|
575 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
|
|
576 |
if (ep->iRxBuf == NULL)
|
|
577 |
{
|
|
578 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf == NULL", aRealEndpoint));
|
|
579 |
return KErrNone;
|
|
580 |
}
|
|
581 |
ep->iRxBuf = NULL;
|
|
582 |
ep->iReceived = 0;
|
|
583 |
ep->iNoBuffer = EFalse;
|
|
584 |
|
|
585 |
return KErrNone;
|
|
586 |
}
|
|
587 |
|
|
588 |
|
|
589 |
TInt TTemplateAsspUsbcc::CancelEndpointWrite(TInt aRealEndpoint)
|
|
590 |
//
|
|
591 |
// Cancels a write request for an endpoint on behalf of the LDD.
|
|
592 |
// No completion to the PIL occurs.
|
|
593 |
//
|
|
594 |
{
|
|
595 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::CancelEndpointWrite(%d)", aRealEndpoint));
|
|
596 |
|
|
597 |
if (!IS_IN_ENDPOINT(aRealEndpoint))
|
|
598 |
{
|
|
599 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint));
|
|
600 |
return KErrArgument;
|
|
601 |
}
|
|
602 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
|
|
603 |
if (ep->iTxBuf == NULL)
|
|
604 |
{
|
|
605 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iTxBuf == NULL", aRealEndpoint));
|
|
606 |
return KErrNone;
|
|
607 |
}
|
|
608 |
|
|
609 |
// TO DO (optional): Flush the Ep's Tx FIFO here, if possible.
|
|
610 |
|
|
611 |
ep->iTxBuf = NULL;
|
|
612 |
ep->iTransmitted = 0;
|
|
613 |
ep->iNoBuffer = EFalse;
|
|
614 |
|
|
615 |
return KErrNone;
|
|
616 |
}
|
|
617 |
|
|
618 |
|
|
619 |
TInt TTemplateAsspUsbcc::SetupEndpointZeroRead()
|
|
620 |
//
|
|
621 |
// Sets up an Ep0 read request (own function due to Ep0's special status).
|
|
622 |
//
|
|
623 |
{
|
|
624 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupEndpointZeroRead"));
|
|
625 |
|
|
626 |
TEndpoint* const ep = &iEndpoints[KEp0_Out];
|
|
627 |
if (ep->iRxBuf != NULL)
|
|
628 |
{
|
|
629 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", KEp0_Out));
|
|
630 |
return KErrGeneral;
|
|
631 |
}
|
|
632 |
ep->iRxBuf = iEp0_RxBuf;
|
|
633 |
ep->iReceived = 0;
|
|
634 |
|
|
635 |
return KErrNone;
|
|
636 |
}
|
|
637 |
|
|
638 |
|
|
639 |
TInt TTemplateAsspUsbcc::SetupEndpointZeroWrite(const TUint8* aBuffer, TInt aLength, TBool aZlpReqd)
|
|
640 |
//
|
|
641 |
// Sets up an Ep0 write request (own function due to Ep0's special status).
|
|
642 |
//
|
|
643 |
{
|
|
644 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupEndpointZeroWrite"));
|
|
645 |
|
|
646 |
TEndpoint* const ep = &iEndpoints[KEp0_In];
|
|
647 |
if (ep->iTxBuf != NULL)
|
|
648 |
{
|
|
649 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: iEndpoints[%d].iTxBuf != NULL", KEp0_In));
|
|
650 |
return KErrGeneral;
|
|
651 |
}
|
|
652 |
ep->iTxBuf = aBuffer;
|
|
653 |
ep->iTransmitted = 0;
|
|
654 |
ep->iLength = aLength;
|
|
655 |
ep->iZlpReqd = aZlpReqd;
|
|
656 |
ep->iRequest = NULL;
|
|
657 |
Ep0Transmit();
|
|
658 |
|
|
659 |
return KErrNone;
|
|
660 |
}
|
|
661 |
|
|
662 |
|
|
663 |
TInt TTemplateAsspUsbcc::SendEp0ZeroByteStatusPacket()
|
|
664 |
//
|
|
665 |
// Sets up an Ep0 write request for zero bytes.
|
|
666 |
// This is a separate function because no data transfer is involved here.
|
|
667 |
//
|
|
668 |
{
|
|
669 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SendEp0ZeroByteStatusPacket"));
|
|
670 |
|
|
671 |
// This is possibly a bit tricky. When this function is called it just means that the higher layer wants a
|
|
672 |
// ZLP to be sent. Whether we actually send one manually here depends on a number of factors, as the
|
|
673 |
// current Ep0 state (i.e. the stage of the Ep0 Control transfer), and, in case the hardware handles some
|
|
674 |
// ZLPs itself, whether it might already handle this one.
|
|
675 |
|
|
676 |
// Here is an example of what the checking of the conditions might look like:
|
|
677 |
|
|
678 |
#ifndef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
|
|
679 |
if ((!iEp0ReceivedNonStdRequest && iEp0State == EP0_IN_DATA_PHASE) ||
|
|
680 |
#else
|
|
681 |
if ((!iEp0ReceivedNonStdRequest && iEp0State != EP0_IDLE) ||
|
|
682 |
#endif
|
|
683 |
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
|
|
684 |
(iEp0ReceivedNonStdRequest && iEp0State != EP0_OUT_DATA_PHASE))
|
|
685 |
#else
|
|
686 |
(iEp0ReceivedNonStdRequest))
|
|
687 |
#endif
|
|
688 |
{
|
|
689 |
// TO DO: Arrange for the sending of a ZLP here.
|
|
690 |
}
|
|
691 |
|
|
692 |
return KErrNone;
|
|
693 |
}
|
|
694 |
|
|
695 |
|
|
696 |
TInt TTemplateAsspUsbcc::StallEndpoint(TInt aRealEndpoint)
|
|
697 |
//
|
|
698 |
// Stalls an endpoint.
|
|
699 |
//
|
|
700 |
{
|
|
701 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::StallEndpoint(%d)", aRealEndpoint));
|
|
702 |
|
|
703 |
if (IS_ISO_ENDPOINT(aRealEndpoint))
|
|
704 |
{
|
|
705 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint cannot be stalled"));
|
|
706 |
return KErrArgument;
|
|
707 |
}
|
|
708 |
|
|
709 |
// TO DO: Stall the endpoint here.
|
|
710 |
|
|
711 |
return KErrNone;
|
|
712 |
}
|
|
713 |
|
|
714 |
|
|
715 |
TInt TTemplateAsspUsbcc::ClearStallEndpoint(TInt aRealEndpoint)
|
|
716 |
//
|
|
717 |
// Clears the stall condition of an endpoint.
|
|
718 |
//
|
|
719 |
{
|
|
720 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ClearStallEndpoint(%d)", aRealEndpoint));
|
|
721 |
|
|
722 |
if (IS_ISO_ENDPOINT(aRealEndpoint))
|
|
723 |
{
|
|
724 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint cannot be unstalled"));
|
|
725 |
return KErrArgument;
|
|
726 |
}
|
|
727 |
|
|
728 |
// TO DO: De-stall the endpoint here.
|
|
729 |
|
|
730 |
return KErrNone;
|
|
731 |
}
|
|
732 |
|
|
733 |
|
|
734 |
TInt TTemplateAsspUsbcc::EndpointStallStatus(TInt aRealEndpoint) const
|
|
735 |
//
|
|
736 |
// Reports the stall status of an endpoint.
|
|
737 |
//
|
|
738 |
{
|
|
739 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::EndpointStallStatus(%d)", aRealEndpoint));
|
|
740 |
|
|
741 |
if (IS_ISO_ENDPOINT(aRealEndpoint))
|
|
742 |
{
|
|
743 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint has no stall status"));
|
|
744 |
return KErrArgument;
|
|
745 |
}
|
|
746 |
|
|
747 |
// TO DO: Query endpoint stall status here. The return value should reflect the actual state.
|
|
748 |
return ETrue;
|
|
749 |
}
|
|
750 |
|
|
751 |
|
|
752 |
TInt TTemplateAsspUsbcc::EndpointErrorStatus(TInt aRealEndpoint) const
|
|
753 |
//
|
|
754 |
// Reports the error status of an endpoint.
|
|
755 |
//
|
|
756 |
{
|
|
757 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::EndpointErrorStatus(%d)", aRealEndpoint));
|
|
758 |
|
|
759 |
if (!IS_VALID_ENDPOINT(aRealEndpoint))
|
|
760 |
{
|
|
761 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_VALID_ENDPOINT(%d)", aRealEndpoint));
|
|
762 |
return KErrArgument;
|
|
763 |
}
|
|
764 |
|
|
765 |
// TO DO: Query endpoint error status here. The return value should reflect the actual state.
|
|
766 |
// With some UDCs there is no way of inquiring the endpoint error status; say 'ETrue' in that case.
|
|
767 |
return KErrNone;
|
|
768 |
}
|
|
769 |
|
|
770 |
|
|
771 |
TInt TTemplateAsspUsbcc::ResetDataToggle(TInt aRealEndpoint)
|
|
772 |
//
|
|
773 |
// Resets to zero the data toggle bit of an endpoint.
|
|
774 |
//
|
|
775 |
{
|
|
776 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ResetDataToggle(%d)", aRealEndpoint));
|
|
777 |
|
|
778 |
// TO DO: Reset the endpoint's data toggle bit here.
|
|
779 |
// With some UDCs there is no way to individually reset the endpoint's toggle bits; just return KErrNone
|
|
780 |
// in that case.
|
|
781 |
|
|
782 |
return KErrNone;
|
|
783 |
}
|
|
784 |
|
|
785 |
|
|
786 |
TInt TTemplateAsspUsbcc::SynchFrameNumber() const
|
|
787 |
//
|
|
788 |
// For use with isochronous endpoints only. Causes the SOF frame number to be returned.
|
|
789 |
//
|
|
790 |
{
|
|
791 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SynchFrameNumber"));
|
|
792 |
|
|
793 |
// TO DO: Query and return the SOF frame number here.
|
|
794 |
return 0;
|
|
795 |
}
|
|
796 |
|
|
797 |
|
|
798 |
void TTemplateAsspUsbcc::SetSynchFrameNumber(TInt aFrameNumber)
|
|
799 |
//
|
|
800 |
// For use with isochronous endpoints only. Causes the SOF frame number to be stored.
|
|
801 |
//
|
|
802 |
{
|
|
803 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetSynchFrameNumber(%d)", aFrameNumber));
|
|
804 |
|
|
805 |
// We should actually store this number somewhere. But the PIL always sends '0x00'
|
|
806 |
// in response to a SYNCH_FRAME request...
|
|
807 |
// TO DO: Store the frame number. Alternatively (until SYNCH_FRAME request specification changes): Do
|
|
808 |
// nothing.
|
|
809 |
}
|
|
810 |
|
|
811 |
|
|
812 |
TInt TTemplateAsspUsbcc::StartUdc()
|
|
813 |
//
|
|
814 |
// Called to initialize the device controller hardware before any operation can be performed.
|
|
815 |
//
|
|
816 |
{
|
|
817 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::StartUdc"));
|
|
818 |
|
|
819 |
if (iInitialized)
|
|
820 |
{
|
|
821 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UDC already initialised"));
|
|
822 |
return KErrNone;
|
|
823 |
}
|
|
824 |
|
|
825 |
// Disable UDC (might also reset the entire design):
|
|
826 |
UdcDisable();
|
|
827 |
|
|
828 |
// Enable UDC's clock:
|
|
829 |
// TO DO: Enable UDC's clock here.
|
|
830 |
|
|
831 |
// Even if only one USB feature has been enabled, we later need to undo it:
|
|
832 |
iInitialized = ETrue;
|
|
833 |
|
|
834 |
// Bind & enable the UDC interrupt
|
|
835 |
if (SetupUdcInterrupt() != KErrNone)
|
|
836 |
{
|
|
837 |
return KErrGeneral;
|
|
838 |
}
|
|
839 |
|
|
840 |
// Write meaningful values to some registers:
|
|
841 |
InitialiseUdcRegisters();
|
|
842 |
|
|
843 |
// Finally, turn on the UDC:
|
|
844 |
UdcEnable();
|
|
845 |
|
|
846 |
return KErrNone;
|
|
847 |
}
|
|
848 |
|
|
849 |
|
|
850 |
TInt TTemplateAsspUsbcc::StopUdc()
|
|
851 |
//
|
|
852 |
// Basically, makes undone what happened in StartUdc.
|
|
853 |
//
|
|
854 |
{
|
|
855 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::StopUdc"));
|
|
856 |
|
|
857 |
if (!iInitialized)
|
|
858 |
{
|
|
859 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UDC not initialized"));
|
|
860 |
return KErrNone;
|
|
861 |
}
|
|
862 |
|
|
863 |
// Disable UDC:
|
|
864 |
UdcDisable();
|
|
865 |
|
|
866 |
// Mask (disable) Reset interrupt:
|
|
867 |
// TO DO: Mask (disable) the USB Reset interrupt here.
|
|
868 |
|
|
869 |
// Disable & unbind the UDC interrupt:
|
|
870 |
ReleaseUdcInterrupt();
|
|
871 |
|
|
872 |
// Finally turn off UDC's clock:
|
|
873 |
// TO DO: Disable UDC's clock here.
|
|
874 |
|
|
875 |
// Only when all USB features have been disabled we'll call it a day:
|
|
876 |
iInitialized = EFalse;
|
|
877 |
|
|
878 |
return KErrNone;
|
|
879 |
}
|
|
880 |
|
|
881 |
|
|
882 |
TInt TTemplateAsspUsbcc::UdcConnect()
|
|
883 |
//
|
|
884 |
// Connects the UDC to the bus under software control. How this is achieved depends on the UDC; the
|
|
885 |
// functionality might also be part of the Variant component (instead of the ASSP).
|
|
886 |
//
|
|
887 |
{
|
|
888 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcConnect"));
|
|
889 |
|
|
890 |
// Here: A call into the Variant-provided function.
|
|
891 |
return iAssp->UsbConnect();
|
|
892 |
}
|
|
893 |
|
|
894 |
|
|
895 |
TInt TTemplateAsspUsbcc::UdcDisconnect()
|
|
896 |
//
|
|
897 |
// Disconnects the UDC from the bus under software control. How this is achieved depends on the UDC; the
|
|
898 |
// functionality might also be part of the Variant component (instead of the ASSP).
|
|
899 |
//
|
|
900 |
{
|
|
901 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcDisconnect"));
|
|
902 |
|
|
903 |
// Here: A call into the Variant-provided function.
|
|
904 |
return iAssp->UsbDisconnect();
|
|
905 |
}
|
|
906 |
|
|
907 |
|
|
908 |
TBool TTemplateAsspUsbcc::UsbConnectionStatus() const
|
|
909 |
//
|
|
910 |
// Returns a value showing the USB cable connection status of the device.
|
|
911 |
//
|
|
912 |
{
|
|
913 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UsbConnectionStatus"));
|
|
914 |
|
|
915 |
return iCableConnected;
|
|
916 |
}
|
|
917 |
|
|
918 |
|
|
919 |
TBool TTemplateAsspUsbcc::UsbPowerStatus() const
|
|
920 |
//
|
|
921 |
// Returns a truth value showing whether VBUS is currently powered or not.
|
|
922 |
//
|
|
923 |
{
|
|
924 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UsbPowerStatus"));
|
|
925 |
|
|
926 |
return iBusIsPowered;
|
|
927 |
}
|
|
928 |
|
|
929 |
|
|
930 |
TBool TTemplateAsspUsbcc::DeviceSelfPowered() const
|
|
931 |
//
|
|
932 |
// Returns a truth value showing whether the device is currently self-powered or not.
|
|
933 |
//
|
|
934 |
{
|
|
935 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeviceSelfPowered"));
|
|
936 |
|
|
937 |
// TO DO: Query and return self powered status here. The return value should reflect the actual state.
|
|
938 |
// (This can be always 'ETrue' if the UDC does not support bus-powered devices.)
|
|
939 |
return ETrue;
|
|
940 |
}
|
|
941 |
|
|
942 |
|
|
943 |
const TUsbcEndpointCaps* TTemplateAsspUsbcc::DeviceEndpointCaps() const
|
|
944 |
//
|
|
945 |
// Returns a pointer to an array of elements, each of which describes the capabilities of one endpoint.
|
|
946 |
//
|
|
947 |
{
|
|
948 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeviceEndpointCaps"));
|
|
949 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Ep: Sizes Mask, Types Mask"));
|
|
950 |
__KTRACE_OPT(KUSB, Kern::Printf(" > --------------------------"));
|
|
951 |
for (TInt i = 0; i < KUsbTotalEndpoints; ++i)
|
|
952 |
{
|
|
953 |
__KTRACE_OPT(KUSB, Kern::Printf(" > %02d: 0x%08x, 0x%08x",
|
|
954 |
i, DeviceEndpoints[i].iSizes, DeviceEndpoints[i].iTypesAndDir));
|
|
955 |
}
|
|
956 |
return DeviceEndpoints;
|
|
957 |
}
|
|
958 |
|
|
959 |
|
|
960 |
TInt TTemplateAsspUsbcc::DeviceTotalEndpoints() const
|
|
961 |
//
|
|
962 |
// Returns the element number of the endpoints array a pointer to which is returned by DeviceEndpointCaps.
|
|
963 |
//
|
|
964 |
{
|
|
965 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeviceTotalEndpoints"));
|
|
966 |
|
|
967 |
return KUsbTotalEndpoints;
|
|
968 |
}
|
|
969 |
|
|
970 |
|
|
971 |
TBool TTemplateAsspUsbcc::SoftConnectCaps() const
|
|
972 |
//
|
|
973 |
// Returns a truth value showing whether or not there is the capability to disconnect and re-connect the D+
|
|
974 |
// line under software control.
|
|
975 |
//
|
|
976 |
{
|
|
977 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SoftConnectCaps"));
|
|
978 |
|
|
979 |
return iSoftwareConnectable;
|
|
980 |
}
|
|
981 |
|
|
982 |
|
|
983 |
void TTemplateAsspUsbcc::Suspend()
|
|
984 |
//
|
|
985 |
// Called by the PIL after a Suspend event has been reported (by us).
|
|
986 |
//
|
|
987 |
{
|
|
988 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Suspend"));
|
|
989 |
|
|
990 |
// TO DO (optional): Implement here anything the device might require after bus SUSPEND signalling.
|
|
991 |
}
|
|
992 |
|
|
993 |
|
|
994 |
void TTemplateAsspUsbcc::Resume()
|
|
995 |
//
|
|
996 |
// Called by the PIL after a Resume event has been reported (by us).
|
|
997 |
//
|
|
998 |
{
|
|
999 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Resume"));
|
|
1000 |
|
|
1001 |
// TO DO (optional): Implement here anything the device might require after bus RESUME signalling.
|
|
1002 |
}
|
|
1003 |
|
|
1004 |
|
|
1005 |
void TTemplateAsspUsbcc::Reset()
|
|
1006 |
//
|
|
1007 |
// Called by the PIL after a Reset event has been reported (by us).
|
|
1008 |
//
|
|
1009 |
{
|
|
1010 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Reset"));
|
|
1011 |
|
|
1012 |
// This does not really belong here, but has to do with the way the PIL sets
|
|
1013 |
// up Ep0 reads and writes.
|
|
1014 |
TEndpoint* ep = &iEndpoints[0];
|
|
1015 |
ep->iRxBuf = NULL;
|
|
1016 |
++ep;
|
|
1017 |
ep->iTxBuf = NULL;
|
|
1018 |
// Idle
|
|
1019 |
Ep0NextState(EP0_IDLE);
|
|
1020 |
|
|
1021 |
// TO DO (optional): Implement here anything the device might require after bus RESET signalling.
|
|
1022 |
|
|
1023 |
// Write meaningful values to some registers
|
|
1024 |
InitialiseUdcRegisters();
|
|
1025 |
UdcEnable();
|
|
1026 |
if (iEp0Configured)
|
|
1027 |
EnableEndpointInterrupt(0);
|
|
1028 |
}
|
|
1029 |
|
|
1030 |
|
|
1031 |
// --- TTemplateAsspUsbcc private --------------------------------------------------
|
|
1032 |
|
|
1033 |
void TTemplateAsspUsbcc::InitialiseUdcRegisters()
|
|
1034 |
//
|
|
1035 |
// Called after every USB Reset etc.
|
|
1036 |
//
|
|
1037 |
{
|
|
1038 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::InitialiseUdcRegisters"));
|
|
1039 |
|
|
1040 |
// Unmask Suspend interrupt
|
|
1041 |
// TO DO: Unmask Suspend interrupt here.
|
|
1042 |
|
|
1043 |
// Unmask Resume interrupt
|
|
1044 |
// TO DO: Unmask Resume interrupt here.
|
|
1045 |
|
|
1046 |
// Unmask Start-of-Frame (SOF) interrupt
|
|
1047 |
// TO DO (optional): Unmask SOF interrupt here.
|
|
1048 |
|
|
1049 |
// Disable interrupt requests for all endpoints
|
|
1050 |
// TO DO: Disable interrupt requests for all endpoints here.
|
|
1051 |
}
|
|
1052 |
|
|
1053 |
|
|
1054 |
void TTemplateAsspUsbcc::UdcEnable()
|
|
1055 |
//
|
|
1056 |
// Enables the UDC for USB transmission or reception.
|
|
1057 |
//
|
|
1058 |
{
|
|
1059 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcEnable"));
|
|
1060 |
|
|
1061 |
// TO DO: Do whatever is necessary to enable the UDC here. This might include enabling (unmasking)
|
|
1062 |
// the USB Reset interrupt, setting a UDC enable bit, etc.
|
|
1063 |
}
|
|
1064 |
|
|
1065 |
|
|
1066 |
void TTemplateAsspUsbcc::UdcDisable()
|
|
1067 |
//
|
|
1068 |
// Disables the UDC.
|
|
1069 |
//
|
|
1070 |
{
|
|
1071 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcDisable"));
|
|
1072 |
|
|
1073 |
// TO DO: Do whatever is necessary to disable the UDC here. This might include disabling (masking)
|
|
1074 |
// the USB Reset interrupt, clearing a UDC enable bit, etc.
|
|
1075 |
}
|
|
1076 |
|
|
1077 |
|
|
1078 |
void TTemplateAsspUsbcc::EnableEndpointInterrupt(TInt aEndpoint)
|
|
1079 |
//
|
|
1080 |
// Enables interrupt requests for an endpoint.
|
|
1081 |
//
|
|
1082 |
{
|
|
1083 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::EnableEndpointInterrupt(%d)", aEndpoint));
|
|
1084 |
|
|
1085 |
// Enable (unmask) interrupt requests for this endpoint:
|
|
1086 |
// TO DO: Enable interrupt requests for aEndpoint here.
|
|
1087 |
}
|
|
1088 |
|
|
1089 |
|
|
1090 |
void TTemplateAsspUsbcc::DisableEndpointInterrupt(TInt aEndpoint)
|
|
1091 |
//
|
|
1092 |
// Disables interrupt requests for an endpoint.
|
|
1093 |
//
|
|
1094 |
{
|
|
1095 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DisableEndpointInterrupt(%d)", aEndpoint));
|
|
1096 |
|
|
1097 |
// Disable (mask) interrupt requests for this endpoint:
|
|
1098 |
// TO DO: Disable interrupt requests for aEndpoint here.
|
|
1099 |
}
|
|
1100 |
|
|
1101 |
|
|
1102 |
void TTemplateAsspUsbcc::ClearEndpointInterrupt(TInt aEndpoint)
|
|
1103 |
//
|
|
1104 |
// Clears a pending interrupt request for an endpoint.
|
|
1105 |
//
|
|
1106 |
{
|
|
1107 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ClearEndpointInterrupt(%d)", aEndpoint));
|
|
1108 |
|
|
1109 |
// Clear (reset) pending interrupt request for this endpoint:
|
|
1110 |
// TO DO: Clear interrupt request for aEndpoint here.
|
|
1111 |
}
|
|
1112 |
|
|
1113 |
|
|
1114 |
void TTemplateAsspUsbcc::Ep0IntService()
|
|
1115 |
//
|
|
1116 |
// ISR for endpoint zero interrupt.
|
|
1117 |
//
|
|
1118 |
{
|
|
1119 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0IntService"));
|
|
1120 |
|
|
1121 |
// TO DO: Enquire about Ep0 status & the interrupt cause here. Depending on the event and the Ep0 state,
|
|
1122 |
// one or more of the following functions might then be called:
|
|
1123 |
Ep0Cancel();
|
|
1124 |
Ep0ReadSetupPkt();
|
|
1125 |
Ep0EndXfer();
|
|
1126 |
Ep0PrematureStatusOut();
|
|
1127 |
Ep0Transmit();
|
|
1128 |
Ep0StatusIn();
|
|
1129 |
Ep0Receive();
|
|
1130 |
ClearStallEndpoint(0);
|
|
1131 |
|
|
1132 |
ClearEndpointInterrupt(0);
|
|
1133 |
return;
|
|
1134 |
}
|
|
1135 |
|
|
1136 |
|
|
1137 |
void TTemplateAsspUsbcc::Ep0ReadSetupPkt()
|
|
1138 |
//
|
|
1139 |
// Called from the Ep0 ISR when a new Setup packet has been received.
|
|
1140 |
//
|
|
1141 |
{
|
|
1142 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0ReadSetupPkt"));
|
|
1143 |
|
|
1144 |
TEndpoint* const ep = &iEndpoints[KEp0_Out];
|
|
1145 |
TUint8* buf = ep->iRxBuf;
|
|
1146 |
if (!buf)
|
|
1147 |
{
|
|
1148 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Ep0 Rx buffer available (1)"));
|
|
1149 |
StallEndpoint(KEp0_Out);
|
|
1150 |
return;
|
|
1151 |
}
|
|
1152 |
|
|
1153 |
// TO DO: Read Setup packet data from Rx FIFO into 'buf' here.
|
|
1154 |
// (In this function we don't need to use "ep->iReceived" since Setup packets
|
|
1155 |
// are always 8 bytes long.)
|
|
1156 |
|
|
1157 |
// Upcall into PIL to determine next Ep0 state:
|
|
1158 |
TUsbcEp0State state = EnquireEp0NextState(ep->iRxBuf);
|
|
1159 |
|
|
1160 |
if (state == EEp0StateStatusIn)
|
|
1161 |
{
|
|
1162 |
Ep0NextState(EP0_IDLE); // Ep0 No Data
|
|
1163 |
}
|
|
1164 |
else if (state == EEp0StateDataIn)
|
|
1165 |
{
|
|
1166 |
Ep0NextState(EP0_IN_DATA_PHASE); // Ep0 Control Read
|
|
1167 |
}
|
|
1168 |
else
|
|
1169 |
{
|
|
1170 |
Ep0NextState(EP0_OUT_DATA_PHASE); // Ep0 Control Write
|
|
1171 |
}
|
|
1172 |
|
|
1173 |
ep->iRxBuf = NULL;
|
|
1174 |
const TInt r = Ep0RequestComplete(KEp0_Out, 8, KErrNone);
|
|
1175 |
|
|
1176 |
// Don't finish (proceed) if request completion returned 'KErrNotFound'!
|
|
1177 |
if (!(r == KErrNone || r == KErrGeneral))
|
|
1178 |
{
|
|
1179 |
DisableEndpointInterrupt(0);
|
|
1180 |
}
|
|
1181 |
|
|
1182 |
// TO DO (optional): Clear Ep0 Setup condition flags here.
|
|
1183 |
|
|
1184 |
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
|
|
1185 |
if (iEp0State == EP0_OUT_DATA_PHASE)
|
|
1186 |
{
|
|
1187 |
// Allow for a premature STATUS IN
|
|
1188 |
// TO DO: Arrange for the sending of a ZLP here.
|
|
1189 |
}
|
|
1190 |
#endif
|
|
1191 |
}
|
|
1192 |
|
|
1193 |
|
|
1194 |
void TTemplateAsspUsbcc::Ep0ReadSetupPktProceed()
|
|
1195 |
//
|
|
1196 |
// Called by the PIL to signal that it has finished processing a received Setup packet and that the PSL can
|
|
1197 |
// now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 interrupt).
|
|
1198 |
//
|
|
1199 |
{
|
|
1200 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0ReadSetupPktProceed"));
|
|
1201 |
|
|
1202 |
EnableEndpointInterrupt(0);
|
|
1203 |
}
|
|
1204 |
|
|
1205 |
|
|
1206 |
void TTemplateAsspUsbcc::Ep0Receive()
|
|
1207 |
//
|
|
1208 |
// Called from the Ep0 ISR when a data packet has been received.
|
|
1209 |
//
|
|
1210 |
{
|
|
1211 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0Receive"));
|
|
1212 |
|
|
1213 |
TEndpoint* const ep = &iEndpoints[KEp0_Out];
|
|
1214 |
TUint8* buf = ep->iRxBuf;
|
|
1215 |
if (!buf)
|
|
1216 |
{
|
|
1217 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Ep0 Rx buffer available (2)"));
|
|
1218 |
StallEndpoint(KEp0_Out);
|
|
1219 |
return;
|
|
1220 |
}
|
|
1221 |
|
|
1222 |
TInt n = 0;
|
|
1223 |
// TO DO: Read packet data from Rx FIFO into 'buf' and update 'n' (# of received bytes) here.
|
|
1224 |
|
|
1225 |
ep->iReceived = n;
|
|
1226 |
ep->iRxBuf = NULL;
|
|
1227 |
const TInt r = Ep0RequestComplete(KEp0_Out, n, KErrNone);
|
|
1228 |
|
|
1229 |
// Don't finish (proceed) if request was 'KErrNotFound'!
|
|
1230 |
if (!(r == KErrNone || r == KErrGeneral))
|
|
1231 |
{
|
|
1232 |
DisableEndpointInterrupt(0);
|
|
1233 |
}
|
|
1234 |
|
|
1235 |
// TO DO (optional): Clear Ep0 Rx condition flags here.
|
|
1236 |
|
|
1237 |
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
|
|
1238 |
// Allow for a premature STATUS IN
|
|
1239 |
// TO DO: Arrange for the sending of a ZLP here.
|
|
1240 |
#endif
|
|
1241 |
}
|
|
1242 |
|
|
1243 |
|
|
1244 |
void TTemplateAsspUsbcc::Ep0ReceiveProceed()
|
|
1245 |
//
|
|
1246 |
// Called by the PIL to signal that it has finished processing a received Ep0 data packet and that the PSL can
|
|
1247 |
// now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 interrupt).
|
|
1248 |
//
|
|
1249 |
{
|
|
1250 |
Ep0ReadSetupPktProceed();
|
|
1251 |
}
|
|
1252 |
|
|
1253 |
|
|
1254 |
void TTemplateAsspUsbcc::Ep0Transmit()
|
|
1255 |
//
|
|
1256 |
// Called from either the Ep0 ISR or the PIL when a data packet has been or is to be transmitted.
|
|
1257 |
//
|
|
1258 |
{
|
|
1259 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0Transmit"));
|
|
1260 |
|
|
1261 |
if (iEp0State != EP0_IN_DATA_PHASE)
|
|
1262 |
{
|
|
1263 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: Invalid Ep0 state when trying to handle EP0 IN"));
|
|
1264 |
// TO DO (optional): Do something about this warning.
|
|
1265 |
}
|
|
1266 |
|
|
1267 |
TEndpoint* const ep = &iEndpoints[KEp0_In];
|
|
1268 |
const TUint8* buf = ep->iTxBuf;
|
|
1269 |
if (!buf)
|
|
1270 |
{
|
|
1271 |
__KTRACE_OPT(KUSB, Kern::Printf(" > No Tx buffer available: returning"));
|
|
1272 |
return;
|
|
1273 |
}
|
|
1274 |
const TInt t = ep->iTransmitted; // already transmitted
|
|
1275 |
buf += t;
|
|
1276 |
TInt n = 0; // now transmitted
|
|
1277 |
|
|
1278 |
// TO DO: Write packet data (if any) into Tx FIFO from 'buf' and update 'n' (# of tx'ed bytes) here.
|
|
1279 |
|
|
1280 |
ep->iTransmitted += n;
|
|
1281 |
|
|
1282 |
// coverity[dead_error_condition]
|
|
1283 |
// The next line should be reachable when this template file is edited for use
|
|
1284 |
if (n == KEp0MaxPktSz)
|
|
1285 |
{
|
|
1286 |
if (ep->iTransmitted == ep->iLength && !(ep->iZlpReqd))
|
|
1287 |
Ep0NextState(EP0_END_XFER);
|
|
1288 |
}
|
|
1289 |
else if (n && n != KEp0MaxPktSz)
|
|
1290 |
{
|
|
1291 |
// Send off the data
|
|
1292 |
__ASSERT_DEBUG((ep->iTransmitted == ep->iLength),
|
|
1293 |
Kern::Printf(" > ERROR: Short packet in mid-transfer"));
|
|
1294 |
Ep0NextState(EP0_END_XFER);
|
|
1295 |
// TO DO: Send off the data here.
|
|
1296 |
}
|
|
1297 |
else // if (n == 0)
|
|
1298 |
{
|
|
1299 |
__ASSERT_DEBUG((ep->iTransmitted == ep->iLength),
|
|
1300 |
Kern::Printf(" > ERROR: Nothing transmitted but still not finished"));
|
|
1301 |
if (ep->iZlpReqd)
|
|
1302 |
{
|
|
1303 |
// Send a zero length packet
|
|
1304 |
ep->iZlpReqd = EFalse;
|
|
1305 |
Ep0NextState(EP0_END_XFER);
|
|
1306 |
// TO DO: Arrange for the sending of a ZLP here.
|
|
1307 |
}
|
|
1308 |
else
|
|
1309 |
{
|
|
1310 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: nothing transmitted & no ZLP req'd"));
|
|
1311 |
}
|
|
1312 |
}
|
|
1313 |
}
|
|
1314 |
|
|
1315 |
|
|
1316 |
void TTemplateAsspUsbcc::Ep0EndXfer()
|
|
1317 |
//
|
|
1318 |
// Called at the end of a Ep0 Control transfer.
|
|
1319 |
//
|
|
1320 |
{
|
|
1321 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0EndXfer"));
|
|
1322 |
|
|
1323 |
// TO DO (optional): Clear Ep0 Rx condition flags here.
|
|
1324 |
|
|
1325 |
Ep0NextState(EP0_IDLE);
|
|
1326 |
TEndpoint* const ep = &iEndpoints[KEp0_In];
|
|
1327 |
ep->iTxBuf = NULL;
|
|
1328 |
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrNone);
|
|
1329 |
}
|
|
1330 |
|
|
1331 |
|
|
1332 |
void TTemplateAsspUsbcc::Ep0Cancel()
|
|
1333 |
//
|
|
1334 |
// Called when an ongoing Ep0 Control transfer has to be aborted prematurely (for instance when receiving a
|
|
1335 |
// new Setup packet before the processing of the old one has completed).
|
|
1336 |
//
|
|
1337 |
{
|
|
1338 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0Cancel"));
|
|
1339 |
|
|
1340 |
Ep0NextState(EP0_IDLE);
|
|
1341 |
TEndpoint* const ep = &iEndpoints[KEp0_In];
|
|
1342 |
if (ep->iTxBuf)
|
|
1343 |
{
|
|
1344 |
ep->iTxBuf = NULL;
|
|
1345 |
const TInt err = (ep->iTransmitted == ep->iLength) ? KErrNone : KErrCancel;
|
|
1346 |
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, err);
|
|
1347 |
}
|
|
1348 |
}
|
|
1349 |
|
|
1350 |
|
|
1351 |
void TTemplateAsspUsbcc::Ep0PrematureStatusOut()
|
|
1352 |
//
|
|
1353 |
// Called when an ongoing Ep0 Control transfer encounters a premature Status OUT condition.
|
|
1354 |
//
|
|
1355 |
{
|
|
1356 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0PrematureStatusOut"));
|
|
1357 |
|
|
1358 |
// TO DO (optional): Clear Ep0 Rx condition flags here.
|
|
1359 |
|
|
1360 |
Ep0NextState(EP0_IDLE);
|
|
1361 |
|
|
1362 |
// TO DO (optional): Flush the Ep0 Tx FIFO here, if possible.
|
|
1363 |
|
|
1364 |
TEndpoint* const ep = &iEndpoints[KEp0_In];
|
|
1365 |
if (ep->iTxBuf)
|
|
1366 |
{
|
|
1367 |
ep->iTxBuf = NULL;
|
|
1368 |
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrPrematureEnd);
|
|
1369 |
}
|
|
1370 |
}
|
|
1371 |
|
|
1372 |
|
|
1373 |
void TTemplateAsspUsbcc::Ep0StatusIn()
|
|
1374 |
//
|
|
1375 |
// Called when an ongoing Ep0 Control transfer moves to a Status IN stage.
|
|
1376 |
//
|
|
1377 |
{
|
|
1378 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0StatusIn"));
|
|
1379 |
|
|
1380 |
Ep0NextState(EP0_IDLE);
|
|
1381 |
}
|
|
1382 |
|
|
1383 |
|
|
1384 |
void TTemplateAsspUsbcc::BulkTransmit(TInt aEndpoint)
|
|
1385 |
//
|
|
1386 |
// Endpoint 1 (BULK IN).
|
|
1387 |
// Called from either the Ep ISR or the PIL when a data packet has been or is to be transmitted.
|
|
1388 |
//
|
|
1389 |
{
|
|
1390 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::BulkTransmit(%d)", aEndpoint));
|
|
1391 |
|
|
1392 |
// TO DO: Enquire about Ep status here.
|
|
1393 |
|
|
1394 |
const TInt idx = 3; // only in our special case of course!
|
|
1395 |
TEndpoint* const ep = &iEndpoints[idx];
|
|
1396 |
const TUint8* buf = ep->iTxBuf;
|
|
1397 |
if (!buf)
|
|
1398 |
{
|
|
1399 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Tx buffer has been set up"));
|
|
1400 |
DisableEndpointInterrupt(aEndpoint);
|
|
1401 |
ep->iDisabled = ETrue;
|
|
1402 |
ClearEndpointInterrupt(aEndpoint);
|
|
1403 |
return;
|
|
1404 |
}
|
|
1405 |
const TInt t = ep->iTransmitted; // already transmitted
|
|
1406 |
const TInt len = ep->iLength; // to be sent in total
|
|
1407 |
// (len || ep->iPackets): Don't complete for a zero bytes request straight away.
|
|
1408 |
if (t >= len && (len || ep->iPackets))
|
|
1409 |
{
|
|
1410 |
if (ep->iZlpReqd)
|
|
1411 |
{
|
|
1412 |
__KTRACE_OPT(KUSB, Kern::Printf(" > 'Transmit Short Packet' explicitly"));
|
|
1413 |
// TO DO: Arrange for the sending of a ZLP here.
|
|
1414 |
ep->iZlpReqd = EFalse;
|
|
1415 |
}
|
|
1416 |
else
|
|
1417 |
{
|
|
1418 |
__KTRACE_OPT(KUSB, Kern::Printf(" > All data sent: %d --> completing", len));
|
|
1419 |
ep->iTxBuf = NULL;
|
|
1420 |
ep->iRequest->iTxBytes = ep->iTransmitted;
|
|
1421 |
ep->iRequest->iError = KErrNone;
|
|
1422 |
EndpointRequestComplete(ep->iRequest);
|
|
1423 |
ep->iRequest = NULL;
|
|
1424 |
}
|
|
1425 |
}
|
|
1426 |
else
|
|
1427 |
{
|
|
1428 |
buf += t;
|
|
1429 |
TInt left = len - t; // left in total
|
|
1430 |
TInt n = (left >= KBlkMaxPktSz) ? KBlkMaxPktSz : left; // now to be transmitted
|
|
1431 |
__KTRACE_OPT(KUSB, Kern::Printf(" > About to send %d bytes (%d bytes left in total)", n, left));
|
|
1432 |
|
|
1433 |
// TO DO: Write data into Tx FIFO from 'buf' here.
|
|
1434 |
|
|
1435 |
ep->iTransmitted += n;
|
|
1436 |
ep->iPackets++; // only used for (len == 0) case
|
|
1437 |
left -= n; // (still) left in total
|
|
1438 |
if (n < KBlkMaxPktSz)
|
|
1439 |
{
|
|
1440 |
__KTRACE_OPT(KUSB, Kern::Printf(" > 'Transmit Short Packet' implicitly"));
|
|
1441 |
// TO DO: Arrange for the sending of a ZLP here.
|
|
1442 |
ep->iZlpReqd = EFalse;
|
|
1443 |
}
|
|
1444 |
// If double-buffering is available, it might be possible to stick a second packet
|
|
1445 |
// into the FIFO here.
|
|
1446 |
|
|
1447 |
// TO DO (optional): Send another packet if possible (& available) here.
|
|
1448 |
}
|
|
1449 |
|
|
1450 |
ClearEndpointInterrupt(aEndpoint);
|
|
1451 |
}
|
|
1452 |
|
|
1453 |
|
|
1454 |
|
|
1455 |
void TTemplateAsspUsbcc::BulkReceive(TInt aEndpoint)
|
|
1456 |
//
|
|
1457 |
// Endpoint 2 (BULK OUT) (This one is called in an ISR.)
|
|
1458 |
//
|
|
1459 |
{
|
|
1460 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::BulkReceive(%d)", aEndpoint));
|
|
1461 |
|
|
1462 |
// TO DO: Enquire about Ep status here.
|
|
1463 |
const TUint32 status = *(TUint32*)0xdefaced; // bogus
|
|
1464 |
|
|
1465 |
const TInt idx = 4; // only in our special case of course!
|
|
1466 |
TEndpoint* const ep = &iEndpoints[idx];
|
|
1467 |
TUint8* buf = ep->iRxBuf;
|
|
1468 |
if (!buf)
|
|
1469 |
{
|
|
1470 |
__KTRACE_OPT(KUSB, Kern::Printf(" > No Rx buffer available: setting iNoBuffer"));
|
|
1471 |
ep->iNoBuffer = ETrue;
|
|
1472 |
DisableEndpointInterrupt(aEndpoint);
|
|
1473 |
ep->iDisabled = ETrue;
|
|
1474 |
ClearEndpointInterrupt(aEndpoint);
|
|
1475 |
return;
|
|
1476 |
}
|
|
1477 |
TInt bytes = 0;
|
|
1478 |
const TInt r = ep->iReceived; // already received
|
|
1479 |
// TO DO: Check whether a ZLP was received here:
|
|
1480 |
if (status & 1) // some condition
|
|
1481 |
{
|
|
1482 |
__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet"));
|
|
1483 |
}
|
|
1484 |
else if (status & 2) // some other condition
|
|
1485 |
{
|
|
1486 |
// TO DO: Get number of bytes received here.
|
|
1487 |
bytes = *(TUint32*)0xdadadada; // bogus
|
|
1488 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes));
|
|
1489 |
if (r + bytes > ep->iLength)
|
|
1490 |
{
|
|
1491 |
__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer"));
|
|
1492 |
ep->iNoBuffer = ETrue;
|
|
1493 |
StopRxTimer(ep);
|
|
1494 |
*ep->iPacketSize = ep->iReceived;
|
|
1495 |
RxComplete(ep);
|
|
1496 |
|
|
1497 |
// TO DO (optional): Clear Ep Rx condition flags here.
|
|
1498 |
|
|
1499 |
ClearEndpointInterrupt(aEndpoint);
|
|
1500 |
return;
|
|
1501 |
}
|
|
1502 |
buf += r; // set buffer pointer
|
|
1503 |
|
|
1504 |
// TO DO: Read 'bytes' bytes from Rx FIFO into 'buf' here.
|
|
1505 |
|
|
1506 |
ep->iReceived += bytes;
|
|
1507 |
}
|
|
1508 |
else
|
|
1509 |
{
|
|
1510 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Inconsistent Ep%d state", aEndpoint));
|
|
1511 |
|
|
1512 |
// TO DO (optional): Clear Ep Rx condition flags here.
|
|
1513 |
|
|
1514 |
ClearEndpointInterrupt(aEndpoint);
|
|
1515 |
return;
|
|
1516 |
}
|
|
1517 |
|
|
1518 |
if (bytes == 0)
|
|
1519 |
{
|
|
1520 |
// ZLPs must be recorded separately
|
|
1521 |
const TInt i = ep->iReceived ? 1 : 0;
|
|
1522 |
ep->iPacketIndex[i] = r;
|
|
1523 |
ep->iPacketSize[i] = 0;
|
|
1524 |
// If there were data packets before: total packets reported 1 -> 2
|
|
1525 |
ep->iPackets += i;
|
|
1526 |
}
|
|
1527 |
|
|
1528 |
if ((bytes < KBlkMaxPktSz) ||
|
|
1529 |
(ep->iReceived == ep->iLength))
|
|
1530 |
{
|
|
1531 |
StopRxTimer(ep);
|
|
1532 |
*ep->iPacketSize = ep->iReceived;
|
|
1533 |
RxComplete(ep);
|
|
1534 |
// since we have no buffer any longer we disable interrupts:
|
|
1535 |
DisableEndpointInterrupt(aEndpoint);
|
|
1536 |
ep->iDisabled = ETrue;
|
|
1537 |
}
|
|
1538 |
else
|
|
1539 |
{
|
|
1540 |
if (!ep->iRxTimerSet)
|
|
1541 |
{
|
|
1542 |
__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer"));
|
|
1543 |
ep->iRxTimerSet = ETrue;
|
|
1544 |
ep->iRxTimer.OneShot(KRxTimerTimeout);
|
|
1545 |
}
|
|
1546 |
else
|
|
1547 |
{
|
|
1548 |
ep->iRxMoreDataRcvd = ETrue;
|
|
1549 |
}
|
|
1550 |
}
|
|
1551 |
|
|
1552 |
// TO DO (optional): Clear Ep Rx condition flags here.
|
|
1553 |
|
|
1554 |
ClearEndpointInterrupt(aEndpoint);
|
|
1555 |
}
|
|
1556 |
|
|
1557 |
|
|
1558 |
void TTemplateAsspUsbcc::BulkReadRxFifo(TInt aEndpoint)
|
|
1559 |
//
|
|
1560 |
// Endpoint 2 (BULK OUT) (This one is called w/o interrupt to be served.)
|
|
1561 |
//
|
|
1562 |
{
|
|
1563 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::BulkReadRxFifo(%d)", aEndpoint));
|
|
1564 |
|
|
1565 |
// TO DO: Enquire about Ep status here.
|
|
1566 |
const TUint32 status = *(TUint32*)0xdefaced; // bogus
|
|
1567 |
|
|
1568 |
const TInt idx = 4; // only in our special case of course!
|
|
1569 |
TEndpoint* const ep = &iEndpoints[idx];
|
|
1570 |
TUint8* buf = ep->iRxBuf;
|
|
1571 |
if (!buf)
|
|
1572 |
{
|
|
1573 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Rx buffer has been set up"));
|
|
1574 |
return;
|
|
1575 |
}
|
|
1576 |
TInt bytes = 0;
|
|
1577 |
const TInt r = ep->iReceived; // already received
|
|
1578 |
// TO DO: Check whether a ZLP was received here:
|
|
1579 |
if (status & 1) // some condition
|
|
1580 |
{
|
|
1581 |
__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet"));
|
|
1582 |
}
|
|
1583 |
else if (status & 2) // some other condition
|
|
1584 |
{
|
|
1585 |
// TO DO: Get number of bytes received here.
|
|
1586 |
bytes = *(TUint32*)0xdadadada; // bogus
|
|
1587 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes));
|
|
1588 |
if (r + bytes > ep->iLength)
|
|
1589 |
{
|
|
1590 |
__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer"));
|
|
1591 |
ep->iNoBuffer = ETrue;
|
|
1592 |
*ep->iPacketSize = ep->iReceived;
|
|
1593 |
RxComplete(ep);
|
|
1594 |
return;
|
|
1595 |
}
|
|
1596 |
buf += r; // set buffer pointer
|
|
1597 |
|
|
1598 |
// TO DO: Read 'bytes' bytes from Rx FIFO into 'buf' here.
|
|
1599 |
|
|
1600 |
ep->iReceived += bytes;
|
|
1601 |
}
|
|
1602 |
else
|
|
1603 |
{
|
|
1604 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Inconsistent Ep%d state", aEndpoint));
|
|
1605 |
return;
|
|
1606 |
}
|
|
1607 |
|
|
1608 |
if (bytes == 0)
|
|
1609 |
{
|
|
1610 |
// ZLPs must be recorded separately
|
|
1611 |
const TInt i = ep->iReceived ? 1 : 0;
|
|
1612 |
ep->iPacketIndex[i] = r;
|
|
1613 |
ep->iPacketSize[i] = 0;
|
|
1614 |
// If there were data packets before: total packets reported 1 -> 2
|
|
1615 |
ep->iPackets += i;
|
|
1616 |
}
|
|
1617 |
|
|
1618 |
if ((bytes < KBlkMaxPktSz) ||
|
|
1619 |
(ep->iReceived == ep->iLength))
|
|
1620 |
{
|
|
1621 |
*ep->iPacketSize = ep->iReceived;
|
|
1622 |
RxComplete(ep);
|
|
1623 |
}
|
|
1624 |
else
|
|
1625 |
{
|
|
1626 |
if (!ep->iRxTimerSet)
|
|
1627 |
{
|
|
1628 |
__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer"));
|
|
1629 |
ep->iRxTimerSet = ETrue;
|
|
1630 |
ep->iRxTimer.OneShot(KRxTimerTimeout);
|
|
1631 |
}
|
|
1632 |
else
|
|
1633 |
{
|
|
1634 |
ep->iRxMoreDataRcvd = ETrue;
|
|
1635 |
}
|
|
1636 |
}
|
|
1637 |
|
|
1638 |
// TO DO (optional): Clear Ep Rx condition flags here.
|
|
1639 |
|
|
1640 |
}
|
|
1641 |
|
|
1642 |
|
|
1643 |
void TTemplateAsspUsbcc::IsoTransmit(TInt aEndpoint)
|
|
1644 |
//
|
|
1645 |
// Endpoint 3 (ISOCHRONOUS IN).
|
|
1646 |
//
|
|
1647 |
{
|
|
1648 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::IsoTransmit(%d)", aEndpoint));
|
|
1649 |
|
|
1650 |
// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit.
|
|
1651 |
|
|
1652 |
}
|
|
1653 |
|
|
1654 |
|
|
1655 |
void TTemplateAsspUsbcc::IsoReceive(TInt aEndpoint)
|
|
1656 |
//
|
|
1657 |
// Endpoint 4 (ISOCHRONOUS OUT) (This one is called in an ISR.)
|
|
1658 |
//
|
|
1659 |
{
|
|
1660 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::IsoReceive(%d)", aEndpoint));
|
|
1661 |
|
|
1662 |
// TO DO: Read data from endpoint FIFO. Might be similar to BulkReceive.
|
|
1663 |
}
|
|
1664 |
|
|
1665 |
|
|
1666 |
void TTemplateAsspUsbcc::IsoReadRxFifo(TInt aEndpoint)
|
|
1667 |
//
|
|
1668 |
// Endpoint 4 (ISOCHRONOUS OUT) (This one is called w/o interrupt to be served.)
|
|
1669 |
//
|
|
1670 |
{
|
|
1671 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::IsoReadRxFifo(%d)", aEndpoint));
|
|
1672 |
|
|
1673 |
// TO DO: Read data from endpoint FIFO. Might be similar to BulkReadRxFifo.
|
|
1674 |
}
|
|
1675 |
|
|
1676 |
|
|
1677 |
void TTemplateAsspUsbcc::IntTransmit(TInt aEndpoint)
|
|
1678 |
//
|
|
1679 |
// Endpoint 5 (INTERRUPT IN).
|
|
1680 |
//
|
|
1681 |
{
|
|
1682 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::IntTransmit(%d)", aEndpoint));
|
|
1683 |
|
|
1684 |
// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit.
|
|
1685 |
}
|
|
1686 |
|
|
1687 |
|
|
1688 |
void TTemplateAsspUsbcc::RxComplete(TEndpoint* aEndpoint)
|
|
1689 |
//
|
|
1690 |
// Called at the end of an Rx (OUT) transfer to complete to the PIL.
|
|
1691 |
//
|
|
1692 |
{
|
|
1693 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::RxComplete"));
|
|
1694 |
|
|
1695 |
TUsbcRequestCallback* const req = aEndpoint->iRequest;
|
|
1696 |
|
|
1697 |
__ASSERT_DEBUG((req != NULL), Kern::Fault(KUsbPanicCat, __LINE__));
|
|
1698 |
|
|
1699 |
aEndpoint->iRxBuf = NULL;
|
|
1700 |
aEndpoint->iRxTimerSet = EFalse;
|
|
1701 |
aEndpoint->iRxMoreDataRcvd = EFalse;
|
|
1702 |
req->iRxPackets = aEndpoint->iPackets;
|
|
1703 |
req->iError = aEndpoint->iLastError;
|
|
1704 |
EndpointRequestComplete(req);
|
|
1705 |
aEndpoint->iRequest = NULL;
|
|
1706 |
}
|
|
1707 |
|
|
1708 |
|
|
1709 |
void TTemplateAsspUsbcc::StopRxTimer(TEndpoint* aEndpoint)
|
|
1710 |
//
|
|
1711 |
// Stops (cancels) the Rx timer for an endpoint.
|
|
1712 |
//
|
|
1713 |
{
|
|
1714 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::StopRxTimer"));
|
|
1715 |
|
|
1716 |
if (aEndpoint->iRxTimerSet)
|
|
1717 |
{
|
|
1718 |
__KTRACE_OPT(KUSB, Kern::Printf(" > stopping rx timer"));
|
|
1719 |
aEndpoint->iRxTimer.Cancel();
|
|
1720 |
aEndpoint->iRxTimerSet = EFalse;
|
|
1721 |
}
|
|
1722 |
}
|
|
1723 |
|
|
1724 |
|
|
1725 |
void TTemplateAsspUsbcc::EndpointIntService(TInt aEndpoint)
|
|
1726 |
//
|
|
1727 |
// ISR for endpoint interrupts.
|
|
1728 |
// Note: the aEndpoint here is a "hardware endpoint", not a aRealEndpoint.
|
|
1729 |
//
|
|
1730 |
{
|
|
1731 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::EndpointIntService(%d)", aEndpoint));
|
|
1732 |
|
|
1733 |
switch (aEndpoint)
|
|
1734 |
{
|
|
1735 |
case 0:
|
|
1736 |
Ep0IntService();
|
|
1737 |
break;
|
|
1738 |
case 1:
|
|
1739 |
BulkTransmit(aEndpoint);
|
|
1740 |
break;
|
|
1741 |
case 2:
|
|
1742 |
BulkReceive(aEndpoint);
|
|
1743 |
break;
|
|
1744 |
case 3:
|
|
1745 |
IsoTransmit(aEndpoint);
|
|
1746 |
break;
|
|
1747 |
case 4:
|
|
1748 |
IsoReceive(aEndpoint);
|
|
1749 |
break;
|
|
1750 |
case 5:
|
|
1751 |
IntTransmit(aEndpoint);
|
|
1752 |
break;
|
|
1753 |
default:
|
|
1754 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found"));
|
|
1755 |
break;
|
|
1756 |
}
|
|
1757 |
}
|
|
1758 |
|
|
1759 |
|
|
1760 |
TInt TTemplateAsspUsbcc::ResetIntService()
|
|
1761 |
//
|
|
1762 |
// ISR for a USB Reset event interrupt.
|
|
1763 |
// This function returns a value which can be used on the calling end to decide how to proceed.
|
|
1764 |
//
|
|
1765 |
{
|
|
1766 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ResetIntService"));
|
|
1767 |
|
|
1768 |
// Clear an interrupt:
|
|
1769 |
// TO DO: Clear reset interrupt flag here.
|
|
1770 |
|
|
1771 |
// TO DO (optional): Enquire about special conditions and possibly return here.
|
|
1772 |
|
|
1773 |
DeviceEventNotification(EUsbEventReset);
|
|
1774 |
|
|
1775 |
return KErrNone;
|
|
1776 |
}
|
|
1777 |
|
|
1778 |
|
|
1779 |
void TTemplateAsspUsbcc::SuspendIntService()
|
|
1780 |
//
|
|
1781 |
// ISR for a USB Suspend event interrupt.
|
|
1782 |
//
|
|
1783 |
{
|
|
1784 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SuspendIntService"));
|
|
1785 |
|
|
1786 |
// Clear an interrupt:
|
|
1787 |
// TO DO: Clear suspend interrupt flag here.
|
|
1788 |
|
|
1789 |
DeviceEventNotification(EUsbEventSuspend);
|
|
1790 |
}
|
|
1791 |
|
|
1792 |
|
|
1793 |
void TTemplateAsspUsbcc::ResumeIntService()
|
|
1794 |
//
|
|
1795 |
// ISR for a USB Resume event interrupt.
|
|
1796 |
//
|
|
1797 |
{
|
|
1798 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ResumeIntService"));
|
|
1799 |
|
|
1800 |
// Clear an interrupt:
|
|
1801 |
// TO DO: Clear resume interrupt flag here.
|
|
1802 |
|
|
1803 |
DeviceEventNotification(EUsbEventResume);
|
|
1804 |
}
|
|
1805 |
|
|
1806 |
|
|
1807 |
void TTemplateAsspUsbcc::SofIntService()
|
|
1808 |
//
|
|
1809 |
// ISR for a USB Start-of-Frame event interrupt.
|
|
1810 |
//
|
|
1811 |
{
|
|
1812 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SofIntService"));
|
|
1813 |
|
|
1814 |
// Clear an interrupt:
|
|
1815 |
// TO DO: Clear SOF interrupt flag here.
|
|
1816 |
|
|
1817 |
// TO DO (optional): Do something about the SOF condition.
|
|
1818 |
}
|
|
1819 |
|
|
1820 |
|
|
1821 |
void TTemplateAsspUsbcc::UdcInterruptService()
|
|
1822 |
//
|
|
1823 |
// Main UDC ISR - determines the cause of the interrupt, clears the condition, dispatches further for service.
|
|
1824 |
//
|
|
1825 |
{
|
|
1826 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::InterruptService"));
|
|
1827 |
|
|
1828 |
// TO DO: Find the cause of the interrupt (possibly querying a number of status registers) here.
|
|
1829 |
|
|
1830 |
// Determine the type of UDC interrupt & then serve it:
|
|
1831 |
// (The following operations are of course EXAMPLES only.)
|
|
1832 |
volatile const TUint32* const status_reg = (TUint32*) 0xdefaced;
|
|
1833 |
const TUint32 status = *status_reg;
|
|
1834 |
enum {reset_interrupt, suspend_interrupt, resume_interrupt, sof_interrupt, ep_interrupt};
|
|
1835 |
|
|
1836 |
// Reset interrupt
|
|
1837 |
if (status & reset_interrupt)
|
|
1838 |
{
|
|
1839 |
ResetIntService();
|
|
1840 |
}
|
|
1841 |
|
|
1842 |
// Suspend interrupt
|
|
1843 |
if (status & suspend_interrupt)
|
|
1844 |
{
|
|
1845 |
SuspendIntService();
|
|
1846 |
}
|
|
1847 |
|
|
1848 |
// Resume interrupt
|
|
1849 |
if (status & resume_interrupt)
|
|
1850 |
{
|
|
1851 |
ResumeIntService();
|
|
1852 |
}
|
|
1853 |
|
|
1854 |
// Start-of-Frame interrupt
|
|
1855 |
if (status & sof_interrupt)
|
|
1856 |
{
|
|
1857 |
SofIntService();
|
|
1858 |
}
|
|
1859 |
|
|
1860 |
// Endpoint interrupt
|
|
1861 |
if (status & ep_interrupt)
|
|
1862 |
{
|
|
1863 |
const TInt ep = status & 0xffff0000;
|
|
1864 |
{
|
|
1865 |
EndpointIntService(ep);
|
|
1866 |
}
|
|
1867 |
}
|
|
1868 |
}
|
|
1869 |
|
|
1870 |
|
|
1871 |
void TTemplateAsspUsbcc::Ep0NextState(TEp0State aNextState)
|
|
1872 |
//
|
|
1873 |
// Moves the Ep0 state to aNextState.
|
|
1874 |
//
|
|
1875 |
{
|
|
1876 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0NextState"));
|
|
1877 |
|
|
1878 |
iEp0State = aNextState;
|
|
1879 |
}
|
|
1880 |
|
|
1881 |
|
|
1882 |
void TTemplateAsspUsbcc::UdcIsr(TAny* aPtr)
|
|
1883 |
//
|
|
1884 |
// This is the static ASSP first-level UDC interrupt service routine. It dispatches the call to the
|
|
1885 |
// actual controller's ISR.
|
|
1886 |
//
|
|
1887 |
{
|
|
1888 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcIsr"));
|
|
1889 |
|
|
1890 |
static_cast<TTemplateAsspUsbcc*>(aPtr)->UdcInterruptService();
|
|
1891 |
}
|
|
1892 |
|
|
1893 |
|
|
1894 |
TInt TTemplateAsspUsbcc::UsbClientConnectorCallback(TAny* aPtr)
|
|
1895 |
//
|
|
1896 |
// This function is called in ISR context by the Variant's UsbClientConnectorInterruptService.
|
|
1897 |
// (This function is static.)
|
|
1898 |
//
|
|
1899 |
{
|
|
1900 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UsbClientConnectorCallback"));
|
|
1901 |
|
|
1902 |
TTemplateAsspUsbcc* const ptr = static_cast<TTemplateAsspUsbcc*>(aPtr);
|
|
1903 |
ptr->iCableConnected = ptr->iAssp->UsbClientConnectorInserted();
|
|
1904 |
#ifdef _DEBUG
|
|
1905 |
_LIT(KIns, "inserted");
|
|
1906 |
_LIT(KRem, "removed");
|
|
1907 |
__KTRACE_OPT(KUSB, Kern::Printf(" > USB cable now %lS", ptr->iCableConnected ? &KIns : &KRem));
|
|
1908 |
#endif
|
|
1909 |
if (ptr->iCableConnected)
|
|
1910 |
{
|
|
1911 |
ptr->DeviceEventNotification(EUsbEventCableInserted);
|
|
1912 |
}
|
|
1913 |
else
|
|
1914 |
{
|
|
1915 |
ptr->DeviceEventNotification(EUsbEventCableRemoved);
|
|
1916 |
}
|
|
1917 |
|
|
1918 |
return KErrNone;
|
|
1919 |
}
|
|
1920 |
|
|
1921 |
|
|
1922 |
TInt TTemplateAsspUsbcc::SetupUdcInterrupt()
|
|
1923 |
//
|
|
1924 |
// Registers and enables the UDC interrupt (ASSP first level interrupt).
|
|
1925 |
//
|
|
1926 |
{
|
|
1927 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupUdcInterrupt"));
|
|
1928 |
|
|
1929 |
// Register UDC interrupt:
|
|
1930 |
const TInt error = Interrupt::Bind(EAsspIntIdUsb, UdcIsr, this);
|
|
1931 |
if (error != KErrNone)
|
|
1932 |
{
|
|
1933 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Binding UDC interrupt failed"));
|
|
1934 |
return error;
|
|
1935 |
}
|
|
1936 |
|
|
1937 |
// Enable UDC interrupt:
|
|
1938 |
Interrupt::Enable(EAsspIntIdUsb);
|
|
1939 |
|
|
1940 |
return KErrNone;
|
|
1941 |
}
|
|
1942 |
|
|
1943 |
|
|
1944 |
void TTemplateAsspUsbcc::ReleaseUdcInterrupt()
|
|
1945 |
//
|
|
1946 |
// Disables and unbinds the UDC interrupt.
|
|
1947 |
//
|
|
1948 |
{
|
|
1949 |
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ReleaseUdcInterrupt"));
|
|
1950 |
|
|
1951 |
// Disable UDC interrupt:
|
|
1952 |
Interrupt::Disable(EAsspIntIdUsb);
|
|
1953 |
|
|
1954 |
// Unregister UDC interrupt:
|
|
1955 |
Interrupt::Unbind(EAsspIntIdUsb);
|
|
1956 |
}
|
|
1957 |
|
|
1958 |
|
|
1959 |
//
|
|
1960 |
// --- DLL Exported Function --------------------------------------------------
|
|
1961 |
//
|
|
1962 |
|
|
1963 |
DECLARE_STANDARD_EXTENSION()
|
|
1964 |
//
|
|
1965 |
// Creates and initializes a new USB client controller object on the kernel heap.
|
|
1966 |
//
|
|
1967 |
{
|
|
1968 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support (Udcc)..."));
|
|
1969 |
|
|
1970 |
TTemplateAsspUsbcc* const usbcc = new TTemplateAsspUsbcc();
|
|
1971 |
if (!usbcc)
|
|
1972 |
{
|
|
1973 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for TTemplateAsspUsbcc failed"));
|
|
1974 |
return KErrNoMemory;
|
|
1975 |
}
|
|
1976 |
|
|
1977 |
TInt r;
|
|
1978 |
if ((r = usbcc->Construct()) != KErrNone)
|
|
1979 |
{
|
|
1980 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Construction of TTemplateAsspUsbcc failed (%d)", r));
|
|
1981 |
delete usbcc;
|
|
1982 |
return r;
|
|
1983 |
}
|
|
1984 |
|
|
1985 |
if (usbcc->RegisterUdc(0) == NULL)
|
|
1986 |
{
|
|
1987 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: PIL registration of PSL failed"));
|
|
1988 |
delete usbcc;
|
|
1989 |
return KErrGeneral;
|
|
1990 |
}
|
|
1991 |
|
|
1992 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support: Done"));
|
|
1993 |
|
|
1994 |
return KErrNone;
|
|
1995 |
}
|
|
1996 |
|
|
1997 |
|
|
1998 |
// --- EOF --------------------------------------------------------------------
|