0
|
1 |
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32\include\e32math.h
|
|
15 |
//
|
|
16 |
//
|
|
17 |
|
|
18 |
#ifndef __E32MATH_H__
|
|
19 |
#define __E32MATH_H__
|
|
20 |
#include <e32std.h>
|
|
21 |
|
|
22 |
|
|
23 |
/**
|
|
24 |
@publishedAll
|
|
25 |
@released
|
|
26 |
*/
|
|
27 |
const TInt KMaxPrecision=15;
|
|
28 |
|
|
29 |
/**
|
|
30 |
@publishedAll
|
|
31 |
@released
|
|
32 |
|
|
33 |
This constant specifies the maximum number of significant digits available with floating
|
|
34 |
point computations. Rounding and string formatting methods will not use more digits than this.
|
|
35 |
*/
|
|
36 |
const TInt KPrecisionLimit=12;
|
|
37 |
|
|
38 |
/**
|
|
39 |
@publishedAll
|
|
40 |
@released
|
|
41 |
|
|
42 |
Let D be the set of real numbers exactly representable by an IEEE-754 'double'
|
|
43 |
For any positive integer n let X_n be the set of real numbers with an exact
|
|
44 |
decimal representation using n significant digits.
|
|
45 |
Let r_n : D -> X_n be defined by r_n(x)=y such that
|
|
46 |
|y-x| = inf { |z-x| : z in X_n }
|
|
47 |
and (in the case where two such y exist) that the last significant digit in the
|
|
48 |
decimal representation of y is even.
|
|
49 |
This constant is the least n such that r_n is injective.
|
|
50 |
*/
|
|
51 |
const TInt KIEEEDoubleInjectivePrecision=17;
|
|
52 |
|
|
53 |
/**
|
|
54 |
@publishedAll
|
|
55 |
@released
|
|
56 |
*/
|
|
57 |
const TInt KMantissaBits=53;
|
|
58 |
/**
|
|
59 |
@publishedAll
|
|
60 |
@released
|
|
61 |
*/
|
|
62 |
const TInt KMaxExponent=1023;
|
|
63 |
/**
|
|
64 |
@publishedAll
|
|
65 |
@released
|
|
66 |
*/
|
|
67 |
const TInt KExponentBias=1022;
|
|
68 |
/**
|
|
69 |
@publishedAll
|
|
70 |
@released
|
|
71 |
*/
|
|
72 |
const TInt KSpecialExponent=2047;
|
|
73 |
//
|
|
74 |
|
|
75 |
|
|
76 |
/**
|
|
77 |
@publishedAll
|
|
78 |
@released
|
|
79 |
|
|
80 |
The maximum exponent for a 32-bit floating point number.
|
|
81 |
*/
|
|
82 |
const TInt KTReal32MaxExponent=128; // changed from 127
|
|
83 |
|
|
84 |
|
|
85 |
/**
|
|
86 |
@publishedAll
|
|
87 |
@released
|
|
88 |
|
|
89 |
The minimum exponent for a 32-bit floating point number.
|
|
90 |
*/
|
|
91 |
const TInt KTReal32MinExponent=-125;
|
|
92 |
/**
|
|
93 |
@publishedAll
|
|
94 |
@released
|
|
95 |
*/
|
|
96 |
const TInt KTReal32ExponentBias=126;
|
|
97 |
/**
|
|
98 |
@publishedAll
|
|
99 |
@released
|
|
100 |
*/
|
|
101 |
const TInt KTReal32SpecialExponent=255; // changed from KTReal32ExponentBad
|
|
102 |
|
|
103 |
|
|
104 |
/**
|
|
105 |
@publishedAll
|
|
106 |
@released
|
|
107 |
|
|
108 |
A zero exponent value for a 32-bit floating point number.
|
|
109 |
*/
|
|
110 |
const TInt KTReal32ZeroExponent=0;
|
|
111 |
//
|
|
112 |
|
|
113 |
|
|
114 |
/**
|
|
115 |
@publishedAll
|
|
116 |
@released
|
|
117 |
|
|
118 |
The maximum exponent for a 64-bit floating point number.
|
|
119 |
*/
|
|
120 |
const TInt KTReal64MaxExponent=1024; // changed from 1023
|
|
121 |
|
|
122 |
|
|
123 |
/**
|
|
124 |
@publishedAll
|
|
125 |
@released
|
|
126 |
|
|
127 |
The minimum exponent for a 64-bit floating point number.
|
|
128 |
*/
|
|
129 |
const TInt KTReal64MinExponent=-1021;
|
|
130 |
|
|
131 |
|
|
132 |
/**
|
|
133 |
@publishedAll
|
|
134 |
@released
|
|
135 |
*/
|
|
136 |
const TInt KTReal64ExponentBias=1022;
|
|
137 |
|
|
138 |
|
|
139 |
/**
|
|
140 |
@publishedAll
|
|
141 |
@released
|
|
142 |
*/
|
|
143 |
const TInt KTReal64SpecialExponent=2047; // changed from KTReal64BadExponent
|
|
144 |
|
|
145 |
|
|
146 |
/**
|
|
147 |
@publishedAll
|
|
148 |
@released
|
|
149 |
|
|
150 |
A zero exponent value for a 64-bit floating point number.
|
|
151 |
*/
|
|
152 |
const TInt KTReal64ZeroExponent=0;
|
|
153 |
//
|
|
154 |
|
|
155 |
|
|
156 |
/**
|
|
157 |
@publishedAll
|
|
158 |
@released
|
|
159 |
|
|
160 |
The minimum value of a 64-bit floating point number.
|
|
161 |
*/
|
|
162 |
const TReal KMinTReal=2.2250738585072015E-308; // changed from TReal64
|
|
163 |
|
|
164 |
|
|
165 |
/**
|
|
166 |
@publishedAll
|
|
167 |
@released
|
|
168 |
|
|
169 |
The maximum value of a 64-bit floating point number.
|
|
170 |
*/
|
|
171 |
const TReal KMaxTReal=1.7976931348623157E+308; //
|
|
172 |
//
|
|
173 |
|
|
174 |
|
|
175 |
/**
|
|
176 |
@publishedAll
|
|
177 |
@released
|
|
178 |
|
|
179 |
The minimum value of a 32-bit floating point number.
|
|
180 |
*/
|
|
181 |
const TReal32 KMinTReal32=1.17549435E-38f;
|
|
182 |
|
|
183 |
|
|
184 |
/**
|
|
185 |
@publishedAll
|
|
186 |
@released
|
|
187 |
|
|
188 |
The maximum value of a 32-bit floating point number.
|
|
189 |
*/
|
|
190 |
const TReal32 KMaxTReal32=3.4028234663852885981170418348452e+38f;
|
|
191 |
//
|
|
192 |
|
|
193 |
|
|
194 |
/**
|
|
195 |
@publishedAll
|
|
196 |
@released
|
|
197 |
|
|
198 |
The minimum value of a 64-bit floating point number.
|
|
199 |
*/
|
|
200 |
const TReal64 KMinTReal64=2.2250738585072015E-308;
|
|
201 |
|
|
202 |
|
|
203 |
/**
|
|
204 |
@publishedAll
|
|
205 |
@released
|
|
206 |
|
|
207 |
The maximum value of a 64-bit floating point number.
|
|
208 |
*/
|
|
209 |
const TReal64 KMaxTReal64=1.7976931348623157E+308;
|
|
210 |
//
|
|
211 |
|
|
212 |
|
|
213 |
/**
|
|
214 |
@publishedAll
|
|
215 |
@released
|
|
216 |
*/
|
|
217 |
const TReal KSqhf=0.70710678118654752440;
|
|
218 |
|
|
219 |
|
|
220 |
/**
|
|
221 |
@publishedAll
|
|
222 |
@released
|
|
223 |
|
|
224 |
Log 2 to the base "e".
|
|
225 |
*/
|
|
226 |
const TReal KRln2=1.4426950408889634;
|
|
227 |
|
|
228 |
|
|
229 |
/**
|
|
230 |
@publishedAll
|
|
231 |
@released
|
|
232 |
|
|
233 |
Log 10 to the base "e".
|
|
234 |
*/
|
|
235 |
const TReal KRln10=0.4342944819032518;
|
|
236 |
|
|
237 |
|
|
238 |
/**
|
|
239 |
@publishedAll
|
|
240 |
@released
|
|
241 |
|
|
242 |
Log 2 to the base 10.
|
|
243 |
*/
|
|
244 |
const TReal KRlg2=0.3010299956639812;
|
|
245 |
|
|
246 |
|
|
247 |
/**
|
|
248 |
@publishedAll
|
|
249 |
@released
|
|
250 |
|
|
251 |
The mathematical constant Pi.
|
|
252 |
*/
|
|
253 |
const TReal KPi=3.1415926535897932;
|
|
254 |
|
|
255 |
|
|
256 |
/**
|
|
257 |
@publishedAll
|
|
258 |
@released
|
|
259 |
|
|
260 |
The reciprocal of the mathematical constant Pi.
|
|
261 |
*/
|
|
262 |
const TReal KPiInv=0.3183098861837907;
|
|
263 |
|
|
264 |
|
|
265 |
/**
|
|
266 |
@publishedAll
|
|
267 |
@released
|
|
268 |
|
|
269 |
The mathematical constant Pi divided by 2.
|
|
270 |
*/
|
|
271 |
const TReal KPiBy2=1.5707963267948966;
|
|
272 |
|
|
273 |
|
|
274 |
/**
|
|
275 |
@publishedAll
|
|
276 |
@released
|
|
277 |
|
|
278 |
Not used.
|
|
279 |
*/
|
|
280 |
const TReal KDrpi=0.6366197723675813;
|
|
281 |
|
|
282 |
|
|
283 |
/**
|
|
284 |
@publishedAll
|
|
285 |
@released
|
|
286 |
|
|
287 |
The square root of 3.
|
|
288 |
*/
|
|
289 |
const TReal KSqt3=1.7320508075688773;
|
|
290 |
|
|
291 |
|
|
292 |
/**
|
|
293 |
@publishedAll
|
|
294 |
@released
|
|
295 |
*/
|
|
296 |
const TReal KMsq3=0.2679491924311227;
|
|
297 |
|
|
298 |
|
|
299 |
/**
|
|
300 |
@publishedAll
|
|
301 |
@released
|
|
302 |
|
|
303 |
The multiplying factor to convert radians to degrees.
|
|
304 |
*/
|
|
305 |
const TReal KRadToDeg=57.29577951308232;
|
|
306 |
|
|
307 |
|
|
308 |
/**
|
|
309 |
@publishedAll
|
|
310 |
@released
|
|
311 |
|
|
312 |
The multiplying factor to convert degrees to radians.
|
|
313 |
*/
|
|
314 |
const TReal KDegToRad=0.017453292519943296;
|
|
315 |
|
|
316 |
|
|
317 |
|
|
318 |
|
|
319 |
class TRealX
|
|
320 |
/**
|
|
321 |
@publishedAll
|
|
322 |
@released
|
|
323 |
|
|
324 |
A class encapsulating an extended precision real value.
|
|
325 |
|
|
326 |
This class provides 64 bit precision and a dynamic range of approximately
|
|
327 |
1E-9863 to 1E+9863. All member functions are optimized for speed.
|
|
328 |
*/
|
|
329 |
{
|
|
330 |
public:
|
|
331 |
enum TRealXOrder {ELessThan=1,EEqual=2,EGreaterThan=4,EUnordered=8};
|
|
332 |
public:
|
|
333 |
IMPORT_C TRealX();
|
|
334 |
IMPORT_C TRealX(TInt aInt);
|
|
335 |
IMPORT_C TRealX(TUint aInt);
|
|
336 |
IMPORT_C TRealX(TUint aExp, TUint aMantHi, TUint aMantLo);
|
|
337 |
IMPORT_C TRealX(const TInt64 &aInt);
|
|
338 |
IMPORT_C TRealX(TReal32 aReal) __SOFTFP;
|
|
339 |
IMPORT_C TRealX(TReal64 aReal) __SOFTFP;
|
|
340 |
IMPORT_C TRealX &operator=(TInt aInt);
|
|
341 |
IMPORT_C TRealX &operator=(TUint aInt);
|
|
342 |
IMPORT_C TRealX &operator=(const TInt64& aInt);
|
|
343 |
IMPORT_C TRealX &operator=(TReal32 aReal) __SOFTFP;
|
|
344 |
IMPORT_C TRealX &operator=(TReal64 aReal) __SOFTFP;
|
|
345 |
IMPORT_C TInt Set(TInt aInt);
|
|
346 |
IMPORT_C TInt Set(TUint aInt);
|
|
347 |
IMPORT_C TInt Set(const TInt64& aInt);
|
|
348 |
IMPORT_C TInt Set(TReal32 aReal) __SOFTFP;
|
|
349 |
IMPORT_C TInt Set(TReal64 aReal) __SOFTFP;
|
|
350 |
IMPORT_C operator TInt() const;
|
|
351 |
IMPORT_C operator TUint() const;
|
|
352 |
IMPORT_C operator TInt64() const;
|
|
353 |
IMPORT_C operator TReal32() const __SOFTFP;
|
|
354 |
IMPORT_C operator TReal64() const __SOFTFP;
|
|
355 |
IMPORT_C TInt GetTReal(TReal32 &aVal) const;
|
|
356 |
IMPORT_C TInt GetTReal(TReal64 &aVal) const;
|
|
357 |
IMPORT_C void SetZero(TBool aNegative=EFalse);
|
|
358 |
IMPORT_C void SetNaN();
|
|
359 |
IMPORT_C void SetInfinite(TBool aNegative);
|
|
360 |
IMPORT_C TBool IsZero() const;
|
|
361 |
IMPORT_C TBool IsNaN() const;
|
|
362 |
IMPORT_C TBool IsInfinite() const;
|
|
363 |
IMPORT_C TBool IsFinite() const;
|
|
364 |
IMPORT_C const TRealX &operator+=(const TRealX &aVal);
|
|
365 |
IMPORT_C const TRealX &operator-=(const TRealX &aVal);
|
|
366 |
IMPORT_C const TRealX &operator*=(const TRealX &aVal);
|
|
367 |
IMPORT_C const TRealX &operator/=(const TRealX &aVal);
|
|
368 |
IMPORT_C const TRealX &operator%=(const TRealX &aVal);
|
|
369 |
IMPORT_C TInt AddEq(const TRealX &aVal);
|
|
370 |
IMPORT_C TInt SubEq(const TRealX &aVal);
|
|
371 |
IMPORT_C TInt MultEq(const TRealX &aVal);
|
|
372 |
IMPORT_C TInt DivEq(const TRealX &aVal);
|
|
373 |
IMPORT_C TInt ModEq(const TRealX &aVal);
|
|
374 |
IMPORT_C TRealX operator+() const;
|
|
375 |
IMPORT_C TRealX operator-() const;
|
|
376 |
IMPORT_C TRealX &operator++();
|
|
377 |
IMPORT_C TRealX operator++(TInt);
|
|
378 |
IMPORT_C TRealX &operator--();
|
|
379 |
IMPORT_C TRealX operator--(TInt);
|
|
380 |
IMPORT_C TRealX operator+(const TRealX &aVal) const;
|
|
381 |
IMPORT_C TRealX operator-(const TRealX &aVal) const;
|
|
382 |
IMPORT_C TRealX operator*(const TRealX &aVal) const;
|
|
383 |
IMPORT_C TRealX operator/(const TRealX &aVal) const;
|
|
384 |
IMPORT_C TRealX operator%(const TRealX &aVal) const;
|
|
385 |
IMPORT_C TInt Add(TRealX& aResult,const TRealX &aVal) const;
|
|
386 |
IMPORT_C TInt Sub(TRealX& aResult,const TRealX &aVal) const;
|
|
387 |
IMPORT_C TInt Mult(TRealX& aResult,const TRealX &aVal) const;
|
|
388 |
IMPORT_C TInt Div(TRealX& aResult,const TRealX &aVal) const;
|
|
389 |
IMPORT_C TInt Mod(TRealX& aResult,const TRealX &aVal) const;
|
|
390 |
IMPORT_C TRealXOrder Compare(const TRealX& aVal) const;
|
|
391 |
inline TBool operator==(const TRealX &aVal) const;
|
|
392 |
inline TBool operator!=(const TRealX &aVal) const;
|
|
393 |
inline TBool operator>=(const TRealX &aVal) const;
|
|
394 |
inline TBool operator<=(const TRealX &aVal) const;
|
|
395 |
inline TBool operator>(const TRealX &aVal) const;
|
|
396 |
inline TBool operator<(const TRealX &aVal) const;
|
|
397 |
public:
|
|
398 |
/**
|
|
399 |
The mantissa.
|
|
400 |
*/
|
|
401 |
// Represented as two adjacent 32 bit values, rather than one 64 value.
|
|
402 |
// This is to avoid EABI introduced padding overheads and BC breakages.
|
|
403 |
// This representation works because the mantissa is always accessed from
|
|
404 |
// assembler code as two 32 bit quantities. The C++ code that accesses it
|
|
405 |
// now constructs an automatic TInt64 with the two components.
|
|
406 |
TUint32 iMantLo;
|
|
407 |
TUint32 iMantHi;
|
|
408 |
|
|
409 |
/**
|
|
410 |
The sign: 0 for +, 1 for -
|
|
411 |
*/
|
|
412 |
TInt8 iSign;
|
|
413 |
|
|
414 |
/**
|
|
415 |
Flags: 0 for exact, 1 for rounded down, 2 for rounded up
|
|
416 |
*/
|
|
417 |
TUint8 iFlag;
|
|
418 |
|
|
419 |
/**
|
|
420 |
Exponent: biased by 32767, iExp=0 => zero, +65535 => infinity or NaN
|
|
421 |
*/
|
|
422 |
TUint16 iExp;
|
|
423 |
};
|
|
424 |
|
|
425 |
|
|
426 |
|
|
427 |
|
|
428 |
struct SPoly
|
|
429 |
/**
|
|
430 |
@publishedAll
|
|
431 |
@released
|
|
432 |
|
|
433 |
A structure containing the set of coefficients for a polynomial.
|
|
434 |
|
|
435 |
@see Math::Poly
|
|
436 |
*/
|
|
437 |
{
|
|
438 |
TInt num;
|
|
439 |
TReal c[1];
|
|
440 |
};
|
|
441 |
|
|
442 |
|
|
443 |
|
|
444 |
|
|
445 |
class Math
|
|
446 |
/**
|
|
447 |
@publishedAll
|
|
448 |
@released
|
|
449 |
|
|
450 |
A collection of mathematical functions.
|
|
451 |
*/
|
|
452 |
{
|
|
453 |
public:
|
|
454 |
IMPORT_C static TInt ACos(TReal &aTrg,const TReal &aSrc);
|
|
455 |
IMPORT_C static TInt ASin(TReal &aTrg,const TReal &aSrc);
|
|
456 |
IMPORT_C static TInt ATan(TReal &aTrg,const TReal &aSrc);
|
|
457 |
IMPORT_C static TInt ATan(TReal &aTrg,const TReal &aSrcY,const TReal &aSrcX);
|
|
458 |
IMPORT_C static TInt Cos(TReal &aTrg,const TReal &aSrc);
|
|
459 |
|
|
460 |
/**
|
|
461 |
This function is not implemented by Symbian OS.
|
|
462 |
*/
|
|
463 |
IMPORT_C static TInt DtoR(TReal &aTrg,const TDesC &aSrc,TInt &aPos,const TChar aPoint);
|
|
464 |
IMPORT_C static TInt Exp(TReal &aTrg,const TReal &aSrc);
|
|
465 |
IMPORT_C static TInt Frac(TReal &aTrg,const TReal &aSrc);
|
|
466 |
IMPORT_C static TInt Int(TReal &aTrg,const TReal &aSrc);
|
|
467 |
IMPORT_C static TInt Int(TInt16 &aTrg,const TReal &aSrc);
|
|
468 |
IMPORT_C static TInt Int(TInt32 &aTrg,const TReal &aSrc);
|
|
469 |
IMPORT_C static TInt Log(TReal &aTrg,const TReal &aSrc);
|
|
470 |
IMPORT_C static TInt Ln(TReal &aTrg,const TReal &aSrc);
|
|
471 |
IMPORT_C static TInt Mod(TReal &aTrg,const TReal &aSrc,const TReal &aModulus);
|
|
472 |
IMPORT_C static TReal Poly(TReal aVal,const SPoly *aPoly) __SOFTFP;
|
|
473 |
IMPORT_C static TInt Pow(TReal &aTrg,const TReal &aSrc,const TReal &aPower);
|
|
474 |
IMPORT_C static TInt Pow10(TReal &aTrg,const TInt exp);
|
|
475 |
IMPORT_C static TInt Rand(TInt64 &aSeed);
|
|
476 |
IMPORT_C static TReal FRand(TInt64 &aSeed) __SOFTFP;
|
|
477 |
IMPORT_C static TUint32 Random();
|
|
478 |
IMPORT_C static TInt Round(TReal &aTrg,const TReal &aSrc,TInt aDecimalPlaces);
|
|
479 |
IMPORT_C static TInt Sin(TReal &aTrg,const TReal &aSrc);
|
|
480 |
IMPORT_C static TInt Sqrt(TReal &aTrg,const TReal &aSrc);
|
|
481 |
IMPORT_C static TInt Tan(TReal &aTrg,const TReal &aSrc);
|
|
482 |
IMPORT_C static TBool IsZero(const TReal &aVal);
|
|
483 |
IMPORT_C static TBool IsNaN(const TReal &aVal);
|
|
484 |
IMPORT_C static TBool IsInfinite(const TReal &aVal);
|
|
485 |
IMPORT_C static TBool IsFinite(const TReal &aVal);
|
|
486 |
IMPORT_C static void PolyX(TRealX& aY, const TRealX& aX, TInt aDeg, const TRealX *aCoef);
|
|
487 |
static TInt MultPow10X(TRealX& aTrg, TInt aPower);
|
|
488 |
IMPORT_C static void Mul64(Int64 aX, Int64 aY, Int64& aOutH, Uint64& aOutL);
|
|
489 |
IMPORT_C static void UMul64(Uint64 aX, Uint64 aY, Uint64& aOutH, Uint64& aOutL);
|
|
490 |
IMPORT_C static Int64 DivMod64(Int64 aDividend, Int64 aDivisor, Int64& aRemainder);
|
|
491 |
IMPORT_C static Uint64 UDivMod64(Uint64 aDividend, Uint64 aDivisor, Uint64& aRemainder);
|
|
492 |
private:
|
|
493 |
IMPORT_C static void SetZero(TReal &aVal,TInt aSign=0);
|
|
494 |
IMPORT_C static void SetNaN(TReal &aVal);
|
|
495 |
IMPORT_C static void SetInfinite(TReal &aVal,TInt aSign);
|
|
496 |
};
|
|
497 |
|
|
498 |
#include <e32math.inl>
|
|
499 |
|
|
500 |
#endif // __E32MATH_H__
|